2018年上海市浦东新区高考数学一模试卷含详解

合集下载

2018-2019学年上海市浦东新区建平中学高一上学期期中考试数学试卷含详解

2018-2019学年上海市浦东新区建平中学高一上学期期中考试数学试卷含详解

2018-2019学年上海市浦东新区建平中学高一(上)期中数学试卷一、填空题1.设全集∪={1,2,3,4,5,6},集合A={2,4,6},则∁U A=.2.不等式<0的解集是.3.已知集合A={﹣1,0,2},B={a2+1},若B⊄A,则实数a的值为.4.用列举法写出集合A={y|y=x2﹣1,x∈Z,|x|≤1}=5.已知不等式x2﹣ax+b≤0的解集为[2,3],则a+b=6.命题“如果a≠0,那么a2>0”的逆否命题为.7.已知集合A={(x,y)|y=x+1,x∈R},B={(x,y)|y=3﹣x.x∈R},则A∩B=.8.若“x>1”是“x≥a”的充分不必要条件,则a的取值范围为.9.已知集合A={x||x﹣1|≤1},B={x|ax=2},若A∪B=A,则实数a的取值集合为10.已知集合{x|(x﹣2)(x2﹣2x+a)=0,x∈R}中的所有元素之和为2,则实数a的取值集合为.11.已知正实数x,y满足x+y=1,则﹣的最小值是12.若不等式x+4≤a(x+y)对任意x>0,y>0恒成立,则a的取值范围是.二、选择题13.“x>1”是“”成立的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件14.若实数a、b满足条件a>b,则下列不等式一定成立的是()A.<B.a2>b2C.ab>b2D.a3>b315.设集合P={m|﹣1<m≤0},Q={m|mx2+2mx﹣1<0}对任意x∈R恒成立,则P与Q的关系是()A.P⊄Q B.Q⊄P C.P=Q D.P∩Q=∅16.已知集合A={1,2,3,…n)(n∈N*},集合B={j1,j2,…j k)(k≥2,k∈N*)是集合A的子集,若1≤j1<j2<…<j m≤n且j i+1﹣j i≥m(i=1,2,……,k﹣1),满足集合B的个数记为n(k⊕m),则7(3⊕2)=()A.9B.10C.11D.12三、解答题17.已知x,y是实数,求证:x2+y2≥2x+2y﹣2.18.已知全集U=R,集合A={x|x2﹣x﹣12<0},B={y|y=,x∈R},求A∩B,A∪(∁U B).19.已知命题p:关于x的一元二次方程x2﹣2x+|m﹣2|=0有两个不相等的实数根;命题q:关于x的一元二次方程x2﹣mx+|a+1|+|a﹣3|=0对于任意实数a都没有实数根.(1)若命题p为真命题,求实数m的取值范围;(2)若命题p和命题q中有且只有一个为真命题,求实数m的取值范围.20.已知集合A={x|x2﹣x﹣2≥0},集合B={x|(1﹣m2)x2+2mx﹣1<0,m∈R}.(1)当m=2时,求集合∁R A和集合B;(2)若集合B∩Z为单元素集,求实数m的取值集合;(3)若集合(A∩B)∩Z的元素个数为n(n∈N*)个,求实数m的取值集合.21.已知集合P的元素个数为3n(n∈N*)个且元素为正整数,将集合P分成元素个数相同且两两没有公共元素的三个集合A、B、C,即P=A∪B∪C,A∩B=∅,A∩C=∅,B∩C=∅,其中A={a1,a2,…,a n},B={b1,b2,…b n},C={c1,c2,…,c n}.若集合A、B、C中的元素满足c1<c2<…<c n,a k+b k=c k,k=1,2,…n,则称集合P为“完美集合”.(1)若集合P={1,2,3},Q={1,2,3,4,5,6},判断集合P和集合Q是否为“完美集合”?并说明理由;(2)已知集合P={1,x,3,4,5,6}为“完美集合”,求正整数x的值;(3)设集合P={x|1≤x≤3n,n≥2,n∈N*}①证明:集合P为“完美集合”的一个必要条件是n=4k或n=4k+1(k∈N*)②判断当n=4时,集合P是否为“完美集合”,如果是,求出所有符合条件的集合C;如果不是,请说明理由.2018-2019学年上海市浦东新区建平中学高一(上)期中数学试卷参考答案与试卷解析一、填空题1.【解答】解:全集∪={1,2,3,4,5,6},集合A={2,4,6},则∁U A={1,3,5}.故答案为:{1,3,5}.2.【解答】解:∵<0,∴(x﹣1)(x+2)<0,解得:﹣2<x<1,故不等式的解集是(﹣2,1),故答案为:(﹣2,1).3.【解答】解:若B⊂A,则①a2+1=﹣1,a∈∅;②a2+1=0,a∈∅;③a2+1=2,a=±1;∵B⊄A,∴a≠±1.故答案为:a≠±1.4.【解答】解:∵|x|≤1,且x∈Z;∴x=﹣1,0,或1;∴x2=0,或1;∴y=﹣1,或0;∴A={﹣1,0}.故答案为:{﹣1,0}.5.【解答】解:不等式x2﹣ax+b≤0的解集为[2,3],∴方程x2﹣ax+b=0的实数根为2和3,∴,a=5,b=6;∴a+b=11.故答案为:11.6.【解答】解:原命题“如果a≠0,那么a2>0”,∴其逆否命题为:“若a2≤0,则a=0”.故答案为:若a2≤0,则a=0.7.【解答】解:A∩B={(x,y)|}={(1,2)}.故答案为:{(1,2)}.8.【解答】解:若“x>1”是“x≥a”的充分不必要条件,则a≤1,故答案为:a≤19.【解答】解:A={x|0≤x≤2},①B=∅,a=0,②B≠∅,B={},0<≤2,≥,∴a≥1,故实数a的取值集合为[1,+∞)∪{0}.故答案为:[1,+∞)∪{0}.10.【解答】解:∵集合{x|(x﹣2)(x2﹣2x+a)=0,x∈R}中的所有元素之和为2,∴x2﹣2x+a=0的解为x=0或无解,∴a=0或Δ=4﹣4a<0,解得a>1.∴实数a的取值集合为{a|a=0或a>1}.故答案为:{a|a=0或a>1}.11.【解答】解:正实数x,y满足x+y=1,则﹣===()[x+(y+1)]﹣4=(5+)﹣4=当且仅当且x+y=1即y=,x=时取得最小值是/故答案为:12.【解答】解:∵不等式x+4≤a(x+y),x>0,y>0,∴a≥=,令=t>0,可得:f(t)=.f′(t)===.可知:t=时函数f(t)取得最大值,=4.f(0)=0.∴0<f(t)≤4.∵不等式x+4≤a(x+y)对任意x>0,y>0恒成立,∴a的取值范围是a≥4.故答案为:[4,+∞).二、选择题13.【解答】解:若x>1,则0<,则成立,即充分性成立,若当x<0时,成立,但x>1不成立,即必要性不成立,即“x>1”是“”成立的充分不必要条件,故选:A.14.【解答】解:根据题意,依次分析选项:对于A、a=1,b=﹣1时,有>成立,故A错误;对于B、a=1,b=﹣2时,有a2<b2成立,故B错误;对于C、a=1,b=﹣2时,有ab<b2成立,故C错误;对于D、由不等式的性质分析可得若a>b,必有a3>b3成立,则D正确;故选:D.15.【解答】解:∵集合P={m|﹣1<m≤0},Q={m|mx2+2mx﹣1<0}对任意x∈R恒成立,∴Q={m|﹣1<m≤0}.∴P与Q的关系是P=Q.故选:C.16.【解答】解:由题意可得n=7,k=3,m=2,那么集合A={1,2,3,4,5,6,7};集合B={j1,j2,j3},1≤j1<j2≤7,j i+1﹣j i≥2满足集合B的个数列罗出来,可得:{1,3,5},{1,3,6},{1,3,7},{1,4,6},{1,4,7};{1,5,7},{2,4,6},{2,4,7},{2,5,7},{3,5,7},故选:B.三、解答题17.【解答】证明:因为x2﹣2x+1=(x﹣1)2≥0,可得x2≥2x﹣1,y2﹣2y+1=(y﹣1)2≥0,可得y2≥2y﹣1,所以x2+y2≥2x+2y﹣2.18.【解答】解:A={x|﹣3<x<4};∵x4+1≥2x2;∴;∴B={y|y≥2};∴A∩B=[2,4),∁U B={y|y<2};∴A∪(∁U B)=(﹣∞,4).19.【解答】解:(1)命题p:关于x的一元二次方程x2﹣2x+|m﹣2|=0有两个不相等的实数根,可得Δ=12﹣4|m﹣2|>0,解得﹣1<m<5;(2)命题q:关于x的一元二次方程x2﹣mx+|a+1|+|a﹣3|=0对于任意实数a都没有实数根,可得﹣x2+mx=|a+1|+|a﹣3|,由|a+1|+|a﹣3|≥|a+1﹣a+3|=4,可得﹣x2+mx﹣4≥0无实数解,可得Δ=m2﹣16<0,即﹣4<m<4,命题p和命题q中有且只有一个为真命题,可得或,即有4≤m<5或﹣4<m≤﹣1.20.【解答】解:集合A={x|x2﹣x﹣2≥0}={x|x≥2或x≤﹣1},集合{x|(1﹣m2)x2+2mx﹣1<0,m∈R}={x|[(1+m)x﹣1][(1﹣m)x+1]<0}(1)当m=2时,集合∁R A={x|﹣1<x<2};集合B={x|x>1或x<};(2)因为集合B∩Z为单元素集,且0∈B,所以,解得m=0,当m=0时,经验证,满足题意.故实数m的取值集合为{0}(3)集合(A∩B)∩Z的元素个数为n(n∈N*)个,等价于(1﹣m2)x2+2mx﹣1<0在(﹣∞,﹣1]∪[2,+∞)上有整数解,所以令f(x)=(1﹣m2)x2+2mx﹣1,依题意有1﹣m2≤0或或,解得m<﹣或m>0.21.【解答】解:(1)将P分为集合{1}、{2}、{3},满足条件,是完美集合.将Q分成3个,每个中有两个元素,若为完美集合,则a1+b1=c1、a2+b2=c2,Q中所有元素之和为21,21÷2=c1+c2=10.5,不符合要求;(2)若集合A={1,4},B={3,5},根据完美集合的概念知集合C={6,7},若集合A={1,5},B={3,6},根据完并集合的概念知集合C={4,11},若集合A={1,3},B={4,6},根据完并集合的概念知集合C={5,9},故x的一个可能值为7,9,11中任一个;(3)①证明:P中所有元素之和为1+2+…+3n==a1+b1+c1+a2+b2+c2+…+a n+b n+c n=2(c1+c2+…+c n﹣1+c n),∵c n=3n,∴=c1+c2+…+c n﹣1+3n,∴=c1+c2+…+c n﹣1,等号右边为正整数,则等式左边9n(n﹣1)可以被4整除,∴n=4k或n﹣1=4k,即n=4k或n=4k+1;②p是完美集合,A={1,4,3,2},B={6,5,8,10},C={7,9,11,12}或A={1,2,4,3},B={5,8,7,9},C={6,10,11,12}或A={2,4,3,1},B={6,5,7,11},C={8,9,10,12}.。

2018年上海中学自主招数学试卷-含答案详解

2018年上海中学自主招数学试卷-含答案详解

2018年上海中学自主招数学试卷一、选择题(本大题共4小题,共12.0分。

在每小题列出的选项中,选出符合题目的一项)1. 已知x2+ax−12能分解成两个整数系数的一次因式的积,则整数a的个数有( )A. 0B. 2C. 4D. 62. 如图,D、E分别为△ABC的底边所在直线上的两点,BD=EC,过A作直线l,作DM//BA 交l于M,作EN//CA交l于N.设△ABM面积为S1,△ACN面积为S2,则( )A. S1>S2B. S1=S2C. S1<S2D. S1与S2的大小与过点A的直线位置有关3. 设p1、p2、q1、q2为实数,则p1p2=2(q1+q2),若方程甲:x2+p1x+q1=0,乙:x2+ p2x+q2=0,则( )A. 甲必有实根,乙也必有实根B. 甲没有实根,乙也没有实根C. 甲、乙至少有一个有实根D. 甲、乙是否总有一个有实根不能确定4. 设a=121+223+325+⋯+100722013,b=123+225+327+⋯+100722015,则以下四个选项中最接近a−b的整数为( )A. 252B. 504C. 1007D. 2013二、填空题(本大题共8小题,共24.0分)5. 已知1a +1b=1a+b,则ba+ab的值等于______ .6. 有______个实数x,可以使得√120−√x为整数.7. 如图,△ABC中,AB=AC,CD=BF,BD=CE,用含∠A的式子表示∠EDF,则∠EDF=______.8. 在直角坐标系中,抛物线y=x2+mx−34m2(m>0)与x轴交于A,B两点.若A,B两点到原点的距离分别为OA,OB,且满足1OB −1OA=23,则m的值等于_______.9. 定圆A的半径为72,动圆B的半径为r,r<72且r是一个整数,动圆B保持内切于圆A且沿着圆A的圆周滚动一圈,若动圆B开始滚动时的切点与结束时的切点是同一点,则r共有______个可能的值.10. 学生若干人租游船若干只,如果每船坐4人,就余下20人,如果每船坐8人,那么就有一船不空也不满,则学生共有______人.11. 对于各数互不相等的正整数组(a1,a2,…a n)(n是不小于2的正整数),如果在i<j时有a i>a j,则称a i与a j是该数组的一个“逆序”,例如数组(2,4,3,1)中有逆序“2,1”、“4,3”、“4,1”、“3,1”,其逆序数为4,现若各数互不相同的正整数组(a1,a2,a3,a4,a5,a6)的逆序数为2,则(a6,a5,a4,a3,a2,a1)的逆序数为______.12. 若n为正整数,则使得关于x的不等式1121<nx+n<1019有唯一的整数解的n的最大值为______.三、解答题(本大题共2小题,共16.0分。

上海市浦东新区普通高中2025届高考仿真卷数学试题含解析

上海市浦东新区普通高中2025届高考仿真卷数学试题含解析

上海市浦东新区普通高中2025届高考仿真卷数学试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。

2.答题时请按要求用笔。

3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.若复数z 满足()134i z i +=+,则z 对应的点位于复平面的( )A .第一象限B .第二象限C .第三象限D .第四象限 2.已知函数()2ln 2x x f x ex a x=-+-(其中e 为自然对数的底数)有两个零点,则实数a 的取值范围是( ) A .21,e e ⎛⎤-∞+ ⎥⎝⎦ B .21,e e ⎛⎫-∞+ ⎪⎝⎭ C .21,e e ⎡⎫-+∞⎪⎢⎣⎭ D .21,e e ⎛⎫-+∞ ⎪⎝⎭3.等比数列{}n a 的前n 项和为n S ,若0n a >,1q >,3520a a +=,2664a a =,则5S =( )A .48B .36C .42D .314.设函数()f x 在定义城内可导,()y f x =的图象如图所示,则导函数()y f x '=的图象可能为( )A .B .C .D .5.为计算23991223242...100(2)S =-⨯+⨯-⨯++⨯-, 设计了如图所示的程序框图,则空白框中应填入( )A .100i <B .100i >C .100i ≤D .100i ≥6.阿波罗尼斯(约公元前262~190年)证明过这样的命题:平面内到两定点距离之比为常数()0,1k k k >≠的点的轨迹是圆.后人将这个圆称为阿氏圆.若平面内两定点A ,B 间的距离为2,动点P 与A ,B 的距离之比为22,当P ,A ,B 不共线时,PAB ∆的面积的最大值是( )A .22B 2C .223D .237.设a ,b ,c 为正数,则“a b c +>”是“222a b c +>”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不修要条件8.秦九韶是我国南宁时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例.若输入n 、x 的值分别为3、1,则输出v 的值为( )A .7B .8C .9D .109.已知正项等比数列{}n a 满足76523a a a =+,若存在两项m a ,n a ,使得219m n a a a ⋅=,则19m n+的最小值为( ). A .16 B .283 C .5 D .410.已知单位向量a ,b 的夹角为34π,若向量2m a =,4n a b λ=-,且m n ⊥,则n =( ) A .2B .2C .4D .6 11.若()*3n x n N x x ⎛+∈ ⎝的展开式中含有常数项,且n 的最小值为a ,则22a aa x dx --=( ) A .36π B .812π C .252π D .25π12.对某两名高三学生在连续9次数学测试中的成绩(单位:分)进行统计得到折线图,下面是关于这两位同学的数学成绩分析.①甲同学的成绩折线图具有较好的对称性,故平均成绩为130分; ②根据甲同学成绩折线图提供的数据进行统计,估计该同学平均成绩在区间内;③乙同学的数学成绩与测试次号具有比较明显的线性相关性,且为正相关;④乙同学连续九次测验成绩每一次均有明显进步.其中正确的个数为( )A .B .C .D . 二、填空题:本题共4小题,每小题5分,共20分。

2018年高考数学真题试卷(上海卷)(秋考)含逐题详解

2018年高考数学真题试卷(上海卷)(秋考)含逐题详解

2018年普通高等学校招生全国统一考试(上海卷)数学试卷(满分150分,考试时间120分钟)考生注意1.本场考试时间120分钟,试卷共4页,满分150分,答题纸共2页.2.作答前,在答题纸正面填写姓名,准考证号,反面填写姓名,将核对后的条形码贴在答题纸指定位置.3.所有作答务必填涂或书写在答题纸上与试卷题号对应的区域,不得错位.在试卷上作答一律不得分.4.用2B 铅笔作答选择题,用黑色字迹钢笔,水笔或圆珠笔作答非选择题.一,填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分)1.行列式4125的值为_________.2.双曲线2214x y -=的渐近线方程为_________. 3.在7(1)x +的二项展开式中,2x 项的系数为_________.(结果用数值表示) 4.设常数a R ∈,函数2()log ()f x x a =+。

若()f x 的反函数的图像经过点(3,1),则a =_________.5.已知复数z 满足(1)17i z i +=-(i 是虚数单位),则z =_________.6.记等差数列{}n a 的前n 项和为n S ,若30a =,6714a a +=,则7S =_________.7.已知12,1,,1,2,32α⎧⎫∈---⎨⎬⎩⎭。

若幂函数()f x x α=为奇函数,且在(0,)+∞上递减,则 α=_________.8.在平面直角坐标系中,已知点(1,0)A -,(2,0)B ,E ,F 是y 轴上的两个动点,且2EF =,则AE BF •的最小值为_________.9.有编号互不相同的五个砝码,其中5克,3克,1克砝码各一个,2克砝码两个。

从中随机选取三个,则这三个砝码的总质量为9克的概率是_________.(结果用最简分数表示)10.设等比数列{}n a 的通项公式为1n n a q-=(*n ∈N ),前n 项和为n S 。

2025届上海市第一中学高考数学一模试卷含解析

2025届上海市第一中学高考数学一模试卷含解析

2025届上海市第一中学高考数学一模试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。

2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。

3.考生必须保证答题卡的整洁。

考试结束后,请将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.若实数,x y 满足不等式组121210x y x y x y +≥-⎧⎪-≤-⎨⎪--≤⎩,则234x y -+的最大值为( )A .1-B .2-C .3D .22.已知函数()f x 是定义域为R 的偶函数,且满足()(2)f x f x =-,当[0,1]x ∈时,()f x x =,则函数4()()12x F x f x x +=+-在区间[9,10]-上零点的个数为( ) A .9 B.10 C .18 D .203.中国的国旗和国徽上都有五角星,正五角星与黄金分割有着密切的联系,在如图所示的正五角星中,以A 、B 、C 、D 、E 为顶点的多边形为正五边形,且512PT AP -=,则512AT ES --=( )A 51+B 51+C 51RD - D 51RC - 4.在260202x y x y x y --≤⎧⎪-+≥⎨⎪+≥⎩条件下,目标函数()0,0z ax by a b =+>>的最大值为40,则51a b +的最小值是( ) A .74 B .94 C .52 D .25.某三棱锥的三视图如图所示,则该三棱锥的体积为A .23B .43C .2D .836.已知抛物线()220y px p =>经过点()2,22M ,焦点为F ,则直线MF 的斜率为( ) A .22 B .24 C .22 D .22-7.正四棱锥P ABCD -的五个顶点在同一个球面上,它的底面边长为6,侧棱长为23,则它的外接球的表面积为( )A .4πB .8πC .16πD .20π8. “角谷猜想”的内容是:对于任意一个大于1的整数n ,如果n 为偶数就除以2,如果n 是奇数,就将其乘3再加1,执行如图所示的程序框图,若输入10n =,则输出i 的( )A .6B .7C .8D .99.已知变量x ,y 满足不等式组210x y x y x +≤⎧⎪-≤⎨⎪≥⎩,则2x y -的最小值为( )A .4-B .2-C .0D .410.从抛物线24y x =上一点P (P 点在x 轴上方)引抛物线准线的垂线,垂足为M ,且||5PM =,设抛物线的焦点为F ,则直线MF 的斜率为( )A .2-B .2C .43-D .4311.若某几何体的三视图(单位:cm )如图所示,则此几何体的体积是( )A .36 cm 3B .48 cm 3C .60 cm 3D .72 cm 312.如图所示,正方体1111ABCD A B C D -的棱AB ,11A D 的中点分别为E ,F ,则直线EF 与平面11AA D D 所成角的正弦值为( )A 5B 30C 6D 25 二、填空题:本题共4小题,每小题5分,共20分。

上海黄浦区2025届高考数学一模试卷含解析

上海黄浦区2025届高考数学一模试卷含解析

上海黄浦区2025届高考数学一模试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。

2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。

3.考生必须保证答题卡的整洁。

考试结束后,请将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.甲在微信群中发了一个6元“拼手气”红包,被乙、丙、丁三人抢完,若三人均领到整数元,且每人至少领到1元,则乙获得“最佳手气”(即乙领到的钱数多于其他任何人)的概率是( ) A .13B .310C .25D .342.已知a R ∈若(1-ai )( 3+2i )为纯虚数,则a 的值为 ( ) A .32-B .32C .23-D .233.在ABC 中,12BD DC =,则AD =( ) A .1344+AB AC B .21+33AB ACC .12+33AB ACD .1233AB AC -4.曲线24x y =在点()2,t 处的切线方程为( ) A .1y x =-B .23y x =-C .3y x =-+D .25y x =-+5.设M 是ABC ∆边BC 上任意一点,N 为AM 的中点,若AN AB AC λμ=+,则λμ+的值为( ) A .1B .12C .13D .146.已知向量(3sin ,2)a x =-,(1,cos )b x =,当a b ⊥时,cos 22x π⎛⎫+= ⎪⎝⎭( ) A .1213-B .1213C .613-D .6137.已知函数()sin(2)f x x ϕ=+,其中(0,)2πϕ∈,若,()6x R f x f π⎛⎫∀∈≤ ⎪⎝⎭恒成立,则函数()f x 的单调递增区间为( )A .,()36k k k z ππππ⎡⎤-+∈⎢⎥⎣⎦ B .2,()33k k k z ππππ⎡⎤-+∈⎢⎥⎣⎦C .2,()33k k k z ππππ⎡⎤++∈⎢⎥⎣⎦D .2,()3k k k Z πππ⎡⎤+⎢⎥⎣∈⎦8.2019年10月1日,为了庆祝中华人民共和国成立70周年,小明、小红、小金三人以国庆为主题各自独立完成一幅十字绣赠送给当地的村委会,这三幅十字绣分别命名为“鸿福齐天”、“国富民强”、“兴国之路”,为了弄清“国富民强”这一作品是谁制作的,村支书对三人进行了问话,得到回复如下: 小明说:“鸿福齐天”是我制作的;小红说:“国富民强”不是小明制作的,就是我制作的; 小金说:“兴国之路”不是我制作的,若三人的说法有且仅有一人是正确的,则“鸿福齐天”的制作者是( ) A .小明B .小红C .小金D .小金或小明9.已知()f x 是定义在[]2,2-上的奇函数,当(]0,2x ∈时,()21xf x =-,则()()20f f -+=( )A .3-B .2C .3D .2-10.如图,在ABC ∆中, 13AN AC =,P 是BN 上的一点,若23mAC AP AB =-,则实数m 的值为( )A .13B .19C .1D .211.已知集合A={x|y=lg (4﹣x 2)},B={y|y=3x ,x >0}时,A∩B=( ) A .{x|x >﹣2} B .{x|1<x <2} C .{x|1≤x≤2} D .∅12.已知定义在R 上的函数()f x 在区间[)0,+∞上单调递增,且()1y f x =-的图象关于1x =对称,若实数a 满足()12log 2f a f ⎛⎫<- ⎪⎝⎭,则a 的取值范围是( ) A .10,4⎛⎫ ⎪⎝⎭B .1,4⎛⎫+∞⎪⎝⎭C .1,44⎛⎫⎪⎝⎭D .()4,+∞二、填空题:本题共4小题,每小题5分,共20分。

上海市徐汇区南洋模范中学2025届高考数学一模试卷含解析

上海市徐汇区南洋模范中学2025届高考数学一模试卷含解析

上海市徐汇区南洋模范中学2025届高考数学一模试卷请考生注意:1.请用2B 铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。

写在试题卷、草稿纸上均无效。

2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知函数2()ln(1)33x x f x x x -=+-+-,不等式()22(4)50f a x f x +++对x ∈R 恒成立,则a 的取值范围为( ) A .[2,)-+∞B .(,2]-∞-C .5,2⎡⎫-+∞⎪⎢⎣⎭D .5,2⎛⎤-∞- ⎥⎝⎦2.设函数()f x 的定义域为R ,满足(2)2()f x f x +=,且当2(]0,x ∈时,()(2)f x x x =--.若对任意(,]x m ∈-∞,都有40()9f x ≤,则m 的取值范围是( ). A .9,4⎛⎤-∞ ⎥⎝⎦B .19,3⎛⎤-∞ ⎥⎝⎦C .(,7]-∞D .23,3⎛⎤-∞ ⎥⎝⎦3.正方体1111ABCD A B C D -,()1,2,,12i P i =是棱的中点,在任意两个中点的连线中,与平面11A C B 平行的直线有几条( )A .36B .21C .12D .64.公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”,利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”。

如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出的n 值为( )(参考数据:003 1.732,sin150.2588,sin750.9659≈≈≈ )A .48B .36C .24D .125.运行如图所示的程序框图,若输出的值为300,则判断框中可以填( )A .30i >?B .40i >?C .50i >?D .60i >?6.设命题p:n ∃>1,n 2>2n ,则⌝p 为( ) A .21,2n n n ∀>> B .21,2n n n ∃≤≤ C .21,2n n n ∀>≤D .21,2n n n ∃>≤7.已知集合{}21|A x log x =<,集合{}|2B y y x ==-,则A B =( )A .(),2-∞B .(],2-∞C .()0,2D .[)0,+∞8.某四棱锥的三视图如图所示,记S 为此棱锥所有棱的长度的集合,则( ).A .22S ,且3SB .22S ,且23SC .22S ,且3SD .22S ,且23S9.已知命题p :“a b >”是“22a b >”的充要条件;:q x ∃∈R ,|1|x x +≤,则( ) A .()p q ⌝∨为真命题 B .p q ∨为真命题 C .p q ∧为真命题D .()p q ∧⌝为假命题10.已知函数2(0)()ln (0)x x f x x x ⎧≤=⎨>⎩,且关于x 的方程()0f x x a +-=有且只有一个实数根,则实数a 的取值范围( ). A .[0,)+∞B .(1,)+∞C .(0,)+∞D .[,1)-∞11.第七届世界军人运动会于2019年10月18日至27日在中国武汉举行,中国队以133金64银42铜位居金牌榜和奖牌榜的首位.运动会期间有甲、乙等五名志愿者被分配到射击、田径、篮球、游泳四个运动场地提供服务,要求每个人都要被派出去提供服务,且每个场地都要有志愿者服务,则甲和乙恰好在同一组的概率是( ) A .110B .15C .140D .94012.已知三棱锥P ABC -中,O 为AB 的中点,PO ⊥平面ABC ,90APB ∠=︒,2PA PB ==,则有下列四个结论:①若O 为ABC 的外心,则2PC =;②ABC 若为等边三角形,则⊥AP BC ;③当90ACB ∠=︒时,PC 与平面PAB 所成的角的范围为0,4π⎛⎤⎥⎝⎦;④当4PC =时,M 为平面PBC 内一动点,若OM ∥平面PAC ,则M 在PBC内轨迹的长度为1.其中正确的个数是( ). A .1B .1C .3D .4二、填空题:本题共4小题,每小题5分,共20分。

2023-2024学年上海市高考数学模拟试题(一模)含解析

2023-2024学年上海市高考数学模拟试题(一模)含解析

2023-2024学年上海市高考数学模拟试题(一模)一、填空题(1-4每题4分,5-6每题5分,共26分)1.已知集合{}21,RA y y x x ==-∈,{B x y ==,则A B = ______.【正确答案】⎡-⎣【分析】先求函数21,R y x x =-∈的值域,即可化简集合A,再求函数y =的定义域,即可化简集合B ,最后由集合的交集运算即可得到答案.【详解】因为{}21,R A y y x x ==-∈,所以A 为函数21,R y x x =-∈的值域,因为211y x =-≥-,所以{}1A y y =≥-.因为{B x y ==,所以B为函数y =的定义域,由220x -≥得22x ≤,即x ≤≤,所以{B x x =≤≤,所以{}{1A B y y x x ⎡⋂=≥-⋂≤≤=-⎣.故⎡-⎣2.若复数z 满足32iiz -=(其中i 是虚数单位),则||z =______.【分析】化简复数z ,再求出z ,进而求出||z .【详解】∵32i (32i)i 23i23i i i i 1z --+====--⨯-,∴23i z =-+,∴||z ==3.已知向量()3,6a = ,()3,4b =- ,则a 在b方向上的数量投影为______.【正确答案】3-【分析】根据题意,结合向量的投影公式,即可求解.【详解】因为向量()3,6a =,()3,4b =- ,所以a 在b方向上的数量投影为336415cos ,35a b a a b b⨯+⨯-⋅-====-.故答案为.3-4.若函数2()lg(2)f x ax x a =-+的定义域为R ,则实数a 的取值范围为__________.【正确答案】(1,)+∞【分析】由题意,函数2()lg(2)f x ax x a =-+的定义域为R ,转化为不等式220ax x a -+>在R 上恒成立,利用一元二次函数的性质,即可求解.【详解】由题意,函数2()lg(2)f x ax x a =-+的定义域为R ,即不等式220ax x a -+>在R 上恒成立,当0a =时,不等式等价与20x ->,不符合题意;则满足2)22(40a a ->⎧⎨∆=-<⎩,解得1a >,即实数a 的取值范围是(1,)+∞.本题主要考查了对数函数的性质,以及一元二次函数的图象与性质的应用,其中解答中把函数的定义域为R ,转化为不等式220ax x a -+>在R 上恒成立,利用一元二次函数的性质求解是解答的关键,着重考查了转化思想,以及分析问题和解答问题的能力.5.等差数列{}n a 中,18153120a a a ++=,则9102a a -的值是______.【正确答案】24【分析】先由等差数列的通项公式化简18153120a a a ++=得到1724a d +=,再由等差数列的通项公式把9102a a -化为17a d +即可求出答案.【详解】设等差数列{}n a 的首项为1a ,公差为d ,则()1815111173312014535d a a a a a a a d d ++=++++=+=,所以1724a d +=.所以()()9101112224897d a a a a a d d -=++-=+=.故246.过抛物线24x y =的焦点且倾斜角为3π4的直线被抛物线截得的弦长为______.【正确答案】8【分析】写出直线方程,联立抛物线的方程,运用定义和焦点弦长公式,计算即可得到.【详解】抛物线24x y =的焦点为()0,1F ,准线方程为1y =-,直线l 的倾斜角为3π4,设直线l 与抛物线交于,M N 两点,则直线l 的方程为1y x =-+,代入24x y =得2610y y -+=,则1(M x ,1)y ,2(N x ,2)y ,126y y +=,则1228MN MF NF y y =+=++=,故8二、单项选择题(每题5分,共50分)7.设:x a α>,1:0x xβ->,若α是β的充分条件,则实数a 的取值范围是()A.()0,+∞ B.(],1-∞ C.[)1,+∞ D.(],0-∞【正确答案】C【分析】解分式不等式10x x->得β,由α是β的充分条件等价于β包含α,根据包含关系列不等式求解即可【详解】()1010x x x x->⇔->,解得1x >或0x <,由α是β的充分条件,则有1a ≥.故选:C8.函数()(1f x x =+)A.奇函数B.偶函数C.非奇非偶函数D.既奇又偶函数【正确答案】C【分析】求出()f x 的定义域不关于原点对称,即可判断()f x 为非奇非偶函数.【详解】函数()(1f x x =+的定义域为101x x -≥+,则()()110111x x x x ⎧+-≥⇒-<≤⎨≠-⎩,由于定义域不关于原点对称,故()f x 为非奇非偶函数.故选:C .9.已知事件A 与事件B 是互斥事件,则()A.)(0P A B ⋂= B.)()()(P A B P A P B ⋂=C.)()(1P A P B =- D.)(1P A B ⋃=【正确答案】D【分析】根据互斥事件、对立事件、必然事件的概念可得答案.【详解】因为事件A 与事件B 是互斥事件,则A B 、不一定是互斥事件,所以()P A B ⋂不一定为0,故选项A 错误;因为事件A 与事件B 是互斥事件,所以A B ⋂=∅,则()0P A B ⋂=,而()()P A P B 不一定为0,故选项B 错误;因为事件A 与事件B 是互斥事件,不一定是对立事件,故选项C 错误;因为事件A 与事件B 是互斥事件,A B ⋃是必然事件,所以()1P A B ⋃=,故选项D 正确.故选:D.10.甲,乙两个小组各10名学生的数学测试成绩如下(单位:分).甲组:76,90,84,86,81,87,86,82,85,83乙组:82,84,85,89,79,80,91,89,79,74现从这20名学生中随机抽取一人,将“抽出的学生为甲组学生”记为事件A ;“抽出的学生的数学测试成绩不低于85分”记为事件B ,则()|P A B 的值是()A.59B.49C.29D.19【正确答案】A【分析】利用条件概率公式求解即可得()P A B到答案.【详解】由题意知,()101202P A ==,()920P B =()P AB 表示20人随机抽取一人,既是甲组又是数学测试成绩不低于85分的概率,()51204P AB ==,根据条件概率的计算公式得()()()1549920P AB P A B P B ===.故选:A11.如图,四边形ABCD 是边长为1的正方形,MD ⊥平面ABCD ,NB ⊥平面ABCD ,且1MD NB ==,点G 为MC 的中点.则下列结论中不.正确的是()A.MC AN⊥ B.平面//DCM 平面ABN C.直线GB 与AM 是异面直线 D.直线GB 与平面AMD 无公共点【正确答案】D【分析】根据给定条件,证明//AN DG 判断A ;利用线面、面面平行的判定推理判断B ;取DM 中点O ,证得四边形ABGO 是梯形判断CD 作答.【详解】因为MD ⊥平面ABCD ,NB ⊥平面ABCD ,则//MD NB ,取,,AB CD AN 的中点,,F E H ,连接,,,EF EG FH GH ,如图,点G 为MC的中点,则//////EG MD NB FH ,且1122EG MD NB FH ===,于是四边形EFHG 是平行四边形,//,GH EF GH EF =,在正方形ABCD 中,//,EF AD EF AD =,则//,GH AD GH AD =,因此四边形ADGH 为平行四边形,//AN DG ,而1MD CD ==,点G 为MC 的中点,有DG MC ⊥,所以MC AN ⊥,A 正确;因为//MD NB ,MD ⊂平面DCM ,NB ⊄平面DCM ,则//NB 平面DCM ,又//AB CD ,CD ⊂平面DCM ,AB ⊄平面DCM ,则//AB 平面DCM ,而,,NB AB B NB AB =⊂ 平面ABN ,所以平面//DCM 平面ABN ,B 正确;取DM 中点O ,连接,GO AO ,则有11////,22GO CD AB GO CD AB ==,即四边形ABGO 为梯形,因此直线,AO BG 必相交,而AO ⊂平面AMD ,于是直线GB 与平面AMD 有公共点,D 错误;显然点A ∈平面ABGO ,点M ∉平面ABGO ,直线BG ⊂平面ABGO ,点A ∉直线BG ,所以直线GB 与AM 是异面直线,C 正确.故选:D结论点睛:经过平面内一点和外一点的直线,与平面内不经过该点的直线是异面直线.12.数列{}n a 的前n 项和1nn S a =-,*n ∈N ,关于数列{}n a 有以下命题:①{}n a 一定是等比数列,但不可能是等差数列;②{}n a 一定是等差数列,但不可能是等比数列;③{}n a 可能是等比数列,也可能是等差数列;④{}n a 可能既不是等差数列,也不是等比数列;⑤{}n a 可能既是等差数列,又是等比数列;其中正确命题的个数是()A.1B.2C.3D.4【正确答案】B【分析】分0a =,1a =,0a ≠且1a ≠三种情况讨论,由11,1,2n n n S n a S S n -=⎧=⎨-≥⎩求出n a ,根据等差、等比数列的通项公式的特征可作出判断.【详解】当0a =时,1n S =-,则111a S ==-,当2n ≥时,10n n n a S S -=-=,即1,10,2n n a n -=⎧=⎨≥⎩,此时,数列{}n a 既不是等差数列,也不是等比数列;当1a =时,0n S =,则110a S ==,当2n ≥时,10n n n a S S -=-=,则()0n a n N *=∈,此时,数列{}n a 为等差数列,但不是等比数列;当0a ≠且1a ≠时,111a S a ==-,当2n ≥时,()()()111111nn n n n n a S S a aa a ---=-=---=-,则()21a a a =-,()()1111n n n n a a a a a a a+--∴==-且()2111a a a a a a -==-,则数列{}n a 是以a 为公比的等比数列.由以上分析知,正确的说法为③④.故选:B.本题考查数列通项n a 与n S 的关系及等差、等比数列的通项公式,准确把握等差、等比数列的通项公式特征是解决问题的关键.13.已知参数方程3342x t ty t ⎧=-⎪⎨=⎪⎩[]1,1t ∈-,则下列曲线方程符合该方程的是()A.B.C.D.【正确答案】B【分析】利用特殊值法即可选出答案.【详解】令20y t ==得1,0,1t =-,将其分别代入334x t t =-得1,0,1x =-,所以该方程所表示的曲线恒过点()()()1,0,0,0,1,0-,显然只有B 项满足.故选:B.14.设函数()sin 6f x x π⎛⎫=- ⎪⎝⎭,若对于任意5,62ππα⎡⎤∈--⎢⎥⎣⎦,在区间[]0,m 上总存在唯一确定的β,使得()()0f f αβ+=,则m 的最小值为A.π6B.π2C.7π6D.π【正确答案】B【分析】先求()3[,0]2f α∈-,再由存在唯一确定的β,使得()()3[0,]2f f βα=-∈,得2[,)633m πππ-∈,从而得解.【详解】当5,62ππα⎡⎤∈--⎢⎥⎣⎦时,有2,36ππαπ⎡⎤-∈--⎢⎥⎣⎦,所以()3[,0]2f α∈-.在区间[]0,m 上总存在唯一确定的β,使得()()0f f αβ+=,所以存在唯一确定的β,使得()()3[0,]2f f βα=-∈.[]0,,[,]666m m πππββ∈-∈--,所以25[,),[,63326m m πππππ-∈∈.故选B.本题主要考查了三角函数的图像和性质,考查了函数与方程的思想,正确理解两变量的关系是解题的关键,属于中档题.15.若曲线||2y x =+与曲线22:144x y C λ+=恰有两个不同的交点,则实数λ的取值范围是()A.(1,)+∞B.(,1]-∞C.(](),11,-∞-⋃+∞ D.[1,0)(1,)-+∞U 【正确答案】C【分析】先分析出||2y x =+表示起点为()2,0A -的两条斜率分别为1和-1的射线.若曲线22:144x y C λ+=为椭圆,只需点()2,0A -落在椭圆内,列不等式求出λ的范围;若当曲线22:144x y C λ+=为双曲线时,只需把||2y x =+表示的射线与渐近线比较,列不等式求出λ的范围.【详解】如图示:||2y x =+表示起点为()2,0A -的两条斜率分别为1和-1的射线.当曲线22:144x y C λ+=为椭圆时,即0λ>,只需点()2,0A -落在椭圆内,即240144λ+<,解得:1λ>;当曲线22:144x y C λ+=为双曲线时,即0λ<,渐近线方程:y =要使曲线||2y x =+与曲线22:144x y C λ+=恰有两个不同的交点,1≤,解得.1λ≤-所以实数λ的取值范围是(],1(1,)-∞-+∞ 故选:C16.已知定义在R 上的函数()f x 满足如下条件:①函数()f x 的图象关于y 轴对称;②对于任意x R ∈,()(2)f x f x =-;③当[0,1]x ∈时,3()2f x x =;④()(4)g x f x =.若过点(1,0)-的直线l 与函数()g x 的图象在[0,2]x ∈上恰有8个交点,则直线l 斜率k 的取值范围是()A.60,11⎛⎫⎪⎝⎭B.30,5⎛⎫ ⎪⎝⎭C.(0,1)D.330,8⎛⎫ ⎪⎝⎭【正确答案】A【分析】结合①②可知()f x 是周期为2的函数,再结合④可知()g x 是周期为12的函数,结合③作出()g x 在[0,2]上的图像,然后利用数形结合即可求解.【详解】因为函数()f x 的图象关于y 轴对称,所以()f x 为偶函数,即()()f x f x =-,又因为对于任意x R ∈,()(2)f x f x =-,所以()(2)()f x f x f x =-=-,从而()(2)f x f x =+,即()f x 是周期为2的函数,因为()(4)g x f x =,则()g x 图像是()f x 的图像的横坐标缩短为原来的14得到,故()g x 也是偶函数,且周期为11242⨯=,结合当[0,1]x ∈时,3()2f x x =,可作出()g x 在[0,2]的图像以及直线l 的图像,如下图所示:当74x =时,易知3()2g x =,即73(,)42A ,则直线MA 的斜率362711(1)4MAk -==--,过点(1,0)-的直线l 与函数()g x 的图象在[0,2]x ∈上恰有8个交点,则只需6011MA k k <<=,即直线l 斜率k 的取值范围是60,11⎛⎫ ⎪⎝⎭.故选:A.三、解答题(本题满分14分,第1小题满分4分,第2小题满分10分)17.已知椭圆()2222:10x y C a b a b +=>>的离心率为2,椭圆的一个顶点与两个焦点构成的三角形面积为2.(1)求椭圆C 的方程;(2)已知直线()()10y k x k =->与椭圆C 交于A ,B 两点,且与x 轴,y 轴交于M ,N 两点.①若MB AN = ,求k 的值;②若点Q 的坐标为7,04⎛⎫⎪⎝⎭,求证:QA QB ⋅ 为定值.【正确答案】(1)22142x y +=(2)①22k =;②证明见解析【分析】(1)根据椭圆的离心率和三角形的面积即可求出224,2a b ==,则椭圆方程可得;(2)①根据根与系数的关系以及向量的数量积的运算即可求出;②根据根与系数的关系以及向量的数量积的运算即可求出.【小问1详解】22c e a ==,222a c ∴=,代入222a b c =+得b c =.又椭圆的一个顶点与两个焦点构成的三角形的面积为2,即1222b c ⨯=,即2bc =,以上各式联立解得224,2a b ==,则椭圆方程为22142x y +=.【小问2详解】①直线()1y k x =-与x 轴交点为()1,0M ,与y 轴交点为()0,N k -,联立()22241x y y k x ⎧+=⎪⎨=-⎪⎩消去y 得:()222124240k x k x k +-+-=,()()4222164122424160k k k k ∆=-+-=+>设()()1122,,,A x y B x y ,则2122412kx x k+=+()()22111,,,,MB x y AN x k y =-=--- 又212241,12k MB AN x x k =+==+ 由得:解得:2k =±.由0k >得22k =;②证明:由①知2122412k x x k +=+212224,12k x x k-=+)()()2112212127777,,114444QA QB x y x y x x k x x ⎛⎫⎛⎛⎫⎛⎫∴⋅=-⋅-=--+-- ⎪ ⎪⎪⎝⎭⎝⎝⎭⎝⎭ ()()22212127491416k x x k x x k ⎛⎫=++--+++⎪⎝⎭()2222222472449151124121616k k k k k k k -⎛⎫=++--++=- ⎪++⎝⎭,QA QB ∴⋅为定值.方法点睛:求定值问题常见的方法①从特殊入手,求出定值,再证明这个值与变量无关.②直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.(卷二)一、填空题(每题5分,共20分)18.已知圆22:16C x y +=,直线:()(32)0l a b x b a y a -+--=(,a b 不同时为0),当,a b 变化时,圆C 被直线l 截得的弦长的最小值为___________.【正确答案】【分析】由题意知直线l 恒过定点(3,1),当圆心到直线距离取最大值时,此时圆C 被直线l 截得的弦长为最小值,即可求出答案.【详解】把直线:()(32)0l a b x b a y a -+--=化为(21)(3)0a x yb x y --+-+=2103301x y x x y y --==⎧⎧⇒⎨⎨-+==⎩⎩,恒过定点(3,1),当圆C 被直线l 截得的弦长的最小值时,圆心(0,0)到定点(3,1)的距离为,圆心到直线:()(32)0l a b x b a y a -+--=距离,此时直线弦长为最小值=.故答案为.19.若随机变量()3,XB p ,()22,YN σ,若()10.657P X ≥=,()02P Y p <<=,则()4P Y >=______.【正确答案】0.2【分析】解不等式1﹣(1﹣p )3=0.657得到p =0.3,再利用正态分布求解.【详解】解:∵P (X ≥1)=0.657,∴1﹣(1﹣p )3=0.657,即(1﹣p )3=0.343,解得p =0.3,∴P (0<Y <2)=p =0.3,∴P (Y >4)=12(02)2P Y -<<=120.30.22-⨯=.故0.2.20.已知在R 上的减函数()y f x =,若不等式()()2233f x x f y y -≤---成立,函数()1y f x =-的图象关于点()1,0中心对称,则当14x ≤≤时,yx的取值范围是______.【正确答案】12,4⎡⎤-⎢⎥⎣⎦【分析】由对称性得函数()f x 是奇函数,由奇函数的定义及单调性化简不等式为具体的不等式,变形为两个不等式组,在平面直角坐标系中作出这两个不等式组表示的平面区域在直线1x =和4x =之间的部分,yx表示这部分的点到原点连线的斜率,由图可得其取值范围.【详解】∵函数(1)=-y f x 的图象关于点(1,0)中心对称,∴函数()y f x =的图象关于原点对称,即()f x 是奇函数,不等式()()2233f x x f y y -≤---可化为()()2233f x x f y y -≤+,又()f x 是R 上的减函数,∴2233x x y y -≥+,即()(3)0x y x y +--≥030x y x y +≥⎧⎨--≥⎩或030x y x y +≤⎧⎨--≤⎩,作出这两个不等式组表示的平面区域在直线1x =和4x =之间的部分,如图阴影部分(含边界),yx表示阴影部分的点与原点连线的斜率,1x =与4x =分别代入30x y --=,可得(1,2)D -,(4,1)B ,2OD k =-,14OB k =,∴124y x -≤≤.故12,4⎡⎤-⎢⎥⎣⎦.21.设数列{}n a 的前n 项和为n S ,且2n S 是6和n a 的等差中项,若对任意的*n ∈N ,都有[]13,n nS s t S -∈,则t s -的最小值为________.【正确答案】94【分析】先根据和项与通项关系得{}n a 通项公式,再根据等比数列求和公式得n S ,再根据函数单调性得13n nS S -取值范围,即得t s ,取值范围,解得结果.【详解】因为2n S 是6和n a 的等差中项,所以46n n S a =+当2n ≥时,111114643n n n n n n n S a a a a a a ----=+∴=-∴=-当1n =时,11146=2S a a =+∴因此112[1()]13132([1()]132313n n n n n a S ---=⨯-∴==--+当n 为偶数时,3143[1()][,)2332n n S =-∈当n 为奇数时,313[1(](,2]232n n S =+∈因此343(,2][,)232n S ∈U 因为13n n S S -在343(,2][,232U 上单调递增,所以[]113232*********,,4662244n n S s t t s S ⎡⎤-∈⋃⊆∴-≥-=⎢⎥⎣⎦)(,故94本题考查根据和项求通项、等比数列定义、等比数列求和公式、利用函数单调性求值域,考查综合分析求解能力,属较难题.二、单项选择题(每题5分,共10分)22.在正四面体A BCD -中,点P 为BCD ∆所在平面上的动点,若AP 与AB 所成角为定值,0,4πθθ⎛⎫∈ ⎪⎝⎭,则动点P 的轨迹是()A.圆B.椭圆C.双曲线D.抛物线【正确答案】B【分析】把条件转化为AB 与圆锥的轴重合,面BCD 与圆锥的相交轨迹即为点P 的轨迹后即可求解.【详解】以平面截圆锥面,平面位置不同,生成的相交轨迹可以为抛物线、双曲线、椭圆、圆.令AB 与圆锥的轴线重合,如图所示,则圆锥母线与AB 所成角为定值,所以面BCD 与圆锥的相交轨迹即为点P 的轨迹.根据题意,AB 不可能垂直于平面BCD ,即轨迹不可能为圆.面BCD 不可能与圆锥轴线平行,即轨迹不可能是双曲线.可进一步计算AB 与平面BCD 所成角为θ=时,轨迹为抛物线,arctan θ≠时,轨迹为椭圆, 0,4πθ⎛⎫∈ ⎪⎝⎭,所以轨迹为椭圆.故选:B.本题考查了平面截圆锥面所得轨迹问题,考查了转化化归思想,属于难题.23.若P 在曲线22:14x C y +=上,若存在过P 的直线交曲线C 于A 点,交直线:4l x =于B 点,满足||||PA PB =或||||PA AB =,则称P 点为“H 点”,那么下列结论中正确的是()A.曲线C 上所有点都是H 点B.曲线C 上仅有有限多个点是H 点C.曲线C 上所有点都不是H 点D.曲线C 上有无穷多个点(但不是全部)是H 点【正确答案】D【分析】设出22P A x x -≤<≤,利用相似三角形求得P x 和A x 的关系,设出PA 的方程与椭圆方程联立求得A P x x 的表达式,利用判别式大于0求得k 和m 的不等式关系,最后联立①②③求得A x 的范围,进而通过1A x <时,242P A x x =-<-,故此时不存在H 点,进而求得H 点的横坐标取值范围,判断出题设的选项.【详解】解:由题意,P 、A 的位置关系对称,于是不妨设22,(P A x x -≤<≤此时)PA AB =.由相似三角形,244A P x x -=-即:24P A x x =-⋯①设:PA y kx m =+,与椭圆联立方程组,2214y kx mx y =+⎧⎪⎨+=⎪⎩消y 得22212104k x kmx m ⎛⎫+++-= ⎪⎝⎭解得22114A P m x x k -=⋯+②0∆> ,2241k m >-⋯③联立①②③,得2222114A A x x k-<+,而2202114k<<+,即222A A x x -<,即12A x ≤≤,而当1A x <时,242P A x x =-<-,故此时不存在H 点又因为P 的位置可以和A 互换(互换后即)PA PB =,所以H 点的横坐标取值为[2,0][1,2]-⋃.故选:D.本题主要考查了直线与圆锥曲线的关系问题.解题的关键是求得H 点的横坐标取值范围.属于较难题.三、多项选择题(每题6分,共12分)24.“阿基米德多面体”也称为半正多面体,是由边数不全相同的正多边形为面围成的多面体,它体现了数学的对称美.如图,将正方体沿交于一顶点的三条棱的中点截去一个三棱锥,共截去八个三棱锥,得到的半正多面体的表面积为3,则关于该半正多面体的下列说法中正确的是()A.与AB 所成的角是60°的棱共有8条B.AB 与平面BCD 所成的角为30°C.二面角A BC D --的余弦值为33-D.经过A ,B ,C ,D 四个顶点的球面面积为2π【正确答案】CD【分析】补全该半正多面体得到一正方体.对于A 选项,由正三角形可得60°角,再利用平行关系得结果;B 选项,利用正方体找出线面角为∠ABE=45°;C 选项,先作出二面角的补角∠AFE ,在△AEF 中,求出3cos 3EF AFE AF ∠==即可得结果;D 选项,由半正多面体的对称中心与相应的正方体的对称中心为同一点,构造三角形,求出球的半径,最后求得经过A ,B ,C ,D 四个顶点的球面面积.【详解】补全该半正多面体得到一正方体,设正方体的棱长为a .由题意,该半正多面体是由6个全等的正方形与8个全等的正三角形构成,由半正多面体的表面积为33+,可得223228633422a ⎛⎫⎫⨯⨯+⨯=+ ⎪⎪ ⎪⎪⎝⎭⎝⎭,解得a =1.对于A ,在与AB 相交的6条棱中,与AB 成60°角的棱有4条,这4条棱中,每一条都有3条平行的棱,故与AB 所成的角是60°的棱共有16条,故A 不正确;对于B ,因为AE ⊥平面BCD ,所以AB 与平面BCD 所成角为∠ABE =45°,故B 不正确;对于C ,取BC 中点F ,连接EF ,AF ,则有AF ⊥BC ,EF ⊥BC ,故二面角A -BC -D 的补角为∠AFE .二面角A -BC -D 的余弦值为-cos ∠AFE ,在Rt △AEF 中,1,,24AE EF AE EF ==⊥,∴AF =3cos 3EF AFE AF ∠==,cos 3AFE -∠=-,故C 正确;对于D ,由半正多面体的对称中心与相应的正方体的对称中心为同一点,即为正方体对角线的中点O ,点O 在平面ABE 的投影为投影点O 1,则有1111,22OO AO ==,∴22AO ==,故经过A ,B ,C ,D 四个顶点的球面的半径为面积为2422S ππ⎛⎫== ⎪ ⎪⎝⎭,故D 正确.故选:CD立体几何中补形是一种常用的方法:(1)一个不规则几何体是由规则几何体经过截取得到的,通常可以用补形,还原为规则几何体,如正方体,长方体等;(2)通常可以用来求①体积(距离),②与外接球(内切球)相关的问题.25.在棱长为1的正方体1111ABCD A B C D -中,已知点P 为侧面11BCC B 上的一动点,则下列结论正确的是()A.若点P 总保持1PA BD ⊥,则动点P 的轨迹是一条线段;B.若点P 到点A 的距离为3,则动点P 的轨迹是一段圆弧;C.若P 到直线AD 与直线1CC 的距离相等,则动点P 的轨迹是一段抛物线;D.若P 到直线BC 与直线11C D 的距离比为1:2,则动点P 的轨迹是一段双曲线.【正确答案】ABD【分析】由1BD ⊥平面1AB C 且平面1AB C 平面111BCC B B C =,即可判断A ;根据球的性质及与正方体的截面性质即可判断B ;作PE BC ⊥,EF AD ⊥,连接PF ,作1PQ CC ⊥.建立空间直角坐标系,由PF PQ =即可求得动点P 的轨迹方程,即可判断C ;根据题意,由距离比即可求得轨迹方程,进而判断D.【详解】对于A ,111,BD B C D A AB ⊥⊥,且1AC AB A ⋂=,所以1BD ⊥平面1AB C ,平面1AB C 平面111BCC B B C =,故动点P 的轨迹为线段1BC ,所以A 正确;对于B ,点P 的轨迹为以A 为球心、半径为233的球面与面11BCC B 的交线,即为一段圆弧,所以B 正确;对于C ,作PE BC ⊥,EF AD ⊥,连接PF ;作1PQ CC ⊥.由PF PQ =,在面11BCC B 内,以C 为原点、以直线CB 、CD 、1CC 为x ,y ,z轴建立平面直角坐标系,如下图所示:设(),0,P x z,则x =,化简得221x z -=,P 点轨迹所在曲线是一段双曲线,所以C 错误.对于D ,由题意可知点P 到点1C 的距离与点P 到直线BC 的距离之比为2:1,结合C 中所建立空间直角坐标系,可得121PC PE =,所以21241PC PE =,代入可得()222141x z z +-=,化简可得221314493z x ⎛⎫+ ⎪⎝⎭-=,故点P 的轨迹为双曲线,所以D 正确.综上可知,正确的为ABD.故选:ABD.本题考查了空间几何体中截面的形状判断,空间直角坐标系的综合应用,轨迹方程的求法,属于难题.四、解答题(本题满分18分(本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分)26.对于数列{}n a ,若存在正数k ,使得对任意*,m n ∈N ,m n ≠,都满足||||m n a a k m n -≤-,则称数列{}n a 符合“()L k 条件”.(1)试判断公差为2的等差数列{}n a 是否符合“(2)L 条件”?(2)若首项为1,公比为q 的正项等比数列{}n a 符合“1(2L 条件”.求q 的范围;(3)在(2)的条件下,记数列{}n a 的前n 项和为n S ,证明:存在正数0k ,使得数列{}n S 符合“0()L k 条件”.【正确答案】(1)符合(2)1[,1]2(3)证明见解析【分析】(1)将12(1)n a a n =+-代入||||m n a a k m n -≤-即可得证;(2)由“正项等比数列”分成1q =,1q >,01q <<三类,结合数列单调性进行分析求证;(3)1q =时,n S n =,01k ≥即可成立;当112q ≤<时,设m n <,则等价于证明0(1)()m n q q k q n m ---≤即可.【小问1详解】因为{}n a 是等差数列且公差为2,所以12(1)n a a n =+-,所以对任意m ,*n ∈N ,m n ≠,11|||[2(1)][2(1)]||2()|2m n a a a m a n m n m n -=+--+-=-≤-恒成立,所以数列{}n a 符合“(2)L 条件”.【小问2详解】因为0n a >,所以0q >.若1q =,则1||0||2m n a a m n -=≤-,数列{}n a 符合“1()2L 条件”;若1q >,因为数列{}n a 递增,不妨设m n <,则1()2n m a a n m ≤--,即1122n m a n a m -≤-,(*)设12n n b a n =-,由(*)式中的m ,n 任意性得数列{}n b 不递增,所以11111()(1)022n n n n n b b a a q q -++-=--=--≤,*n ∈N ,则当[2(1)]41log q n ->-时,11(1)02n q q --->,矛盾.若01q <<,则数列{}n a 单调递减,不妨设m n <,则1()2n m a a n m ≤--,即1122m n a m a n +≤+,(**)设12n n c a n =+,由(**)式中的m ,n 任意性得,数列{}n a 不递减,所以11111()(1)022n n n n n c c a a q q +++-=-+=-+≥,*n ∈N .因为01q <<时,11()(1)2n f n q q -=-+单调递增,所以1()(1)(1)02max f n f q ==-+≥,因为01q <<,所以112q ≤<.综上,公比q 的范围为1[,1]2.【小问3详解】由(2)得,11n n q S q-=-,112q ≤<,当1q =时,n S n =,要存在0k 使得0||||n m S S k n m -≤-,只要01k ≥即可.当112q ≤<时,要证数列{}n S 符合“0()L k 条件”,只要证存在00k >,使得011||11n mq q k n m q q---≤---,*n ∈N ,不妨设m n <,则只要证0(1)()m n q q k q n m ---≤,只要证00(1)(1)m m n n q k q q k q ≤+-+-.设0()(1)n n g n q k q =+-,由m ,n 的任意性,只要证00(1)()(1)(1)(1)()0n n g n g n q q k q q k q +-=-+-=--≥,只要证0n k q ≥,*n ∈N ,因为112q ≤<,所以存在0k q ≥,上式对*n ∈N 成立.所以,存在正数0k ,使得数列{}n S 符合“0()L k 条件”.思路点睛:对于数列中的恒成立或存在性问题,通常结合条件进行分类讨论,构造合适的函数模型,借助函数性质进行判断.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年上海市浦东新区高考数学一模试卷一.填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分)1.(4分)集合A={1,2,3,4},B={1,3,5,7},则A∩B=.2.(4分)不等式<1的解集为.3.(4分)已知函数f(x)=2x﹣1的反函数是f﹣1(x),则f﹣1(5)=.4.(4分)已知向量,,则向量在向量的方向上的投影为.5.(4分)已知i是虚数单位,复数z满足,则|z|=.6.(4分)在(2x+1)5的二项展开式中,x3的系数是.7.(5分)某企业生产的12个产品中有10个一等品,2个二等品,现从中抽取4个产品,其中恰好有1个二等品的概率为.8.(5分)已知函数y=f(x)是定义在R上的偶函数,且在[0,+∞)上增函数,若f(a+1)≤f(4),则实数a的取值范围是.9.(5分)已知等比数列前n项和为S n,则使得S n>2018的n的最小值为.10.(5分)圆锥的底面半径为3,其侧面展开图是一个圆心角为的扇形,则此圆锥的表面积为.11.(5分)已知函数f(x)=sinωx(ω>0),将f(x)的图象向左平移个单位得到函数g(x)的图象,令h(x)=f(x)+g(x),如果存在实数m,使得对任意的实数x,都有h(m)≤h(x)≤h(m+1)成立,则ω的最小值为.12.(5分)在平面直角坐标系中,O为坐标原点,M、N是双曲线上的两个动点,动点P满足,直线OM与直线ON斜率之积为2,已知平面内存在两定点F1、F2,使得||PF1|﹣|PF2||为定值,则该定值为.二.选择题(本大题共4题,每题5分,共20分)13.(5分)若实数x,y∈R,则命题甲“”是命题乙“”的()A.充分非必要B.必要非充分C.充要D.既非充分又非必要14.(5分)已知△ABC中,,AB=AC=1,点P是AB边上的动点,点Q 是AC边上的动点,则的最小值为()A.﹣4B.﹣2C.﹣1D.015.(5分)某食品的保鲜时间y(单位:小时)与储存温度x(单位:°C)满足函数关系y=e kx+b(e=2.718…为自然对数的底数,k,b为常数),若该食品在0°C 的保鲜时间是192小时,在22°C的保鲜时间是48小时,则该食品在33°C的保鲜时间是()小时.A.22B.23C.24D.3316.(5分)关于x的方程x2+arcsin(cosx)+a=0恰有3个实数根x1、x2、x3,则x12+x22+x32=()A.1B.2C.D.2π2三.解答题(本大题共5题,共14+14+14+16+18=76分)17.(14分)如图,在长方体ABCD﹣A1B1C1D1中,AB=2,AD=1,A1A=1.(1)求异面直线BC1与CD1所成的角;(2)求三棱锥B﹣D1AC的体积.18.(14分)在△ABC中,角A、B、C所对的边分别为a、b、c,已知,,且.(1)求C;(2)若c2=7b2,且,求b的值.19.(14分)已知等差数列{a n}的公差为2,其前n项和(n∈N*,p(1)求p的值及{a n}的通项公式;(2)在等比数列{b n}中,b2=a1,b3=a2+4,令(k∈N*),求数列{c n}的前n项和T n.20.(16分)已知椭圆(a>b>0)的左、右焦点分别为F1、F2,设点A(0,b),在△AF1F2中,,周长为.(1)求椭圆Γ的方程;(2)设不经过点A的直线l与椭圆Γ相交于B、C两点,若直线AB与AC的斜率之和为﹣1,求证:直线l过定点,并求出该定点的坐标;(3)记第(2)问所求的定点为E,点P为椭圆Γ上的一个动点,试根据△AEP 面积S的不同取值范围,讨论△AEP存在的个数,并说明理由.21.(18分)已知函数f(x)的定义域为D,值域为f(D),即f(D)={y|y=f(x),x∈D},若f(D)⊆D,则称f(x)在D上封闭.(1)分别判断函数f(x)=2017x+log2017x,在(0,1)上是否封闭,说明理由;(2)函数的定义域为D=[a,b],且存在反函数y=f﹣1(x),若函数f(x)在D上封闭,且函数f﹣1(x)在f(D)上也封闭,求实数k的取值范围;(3)已知函数f(x)的定义域为D,对任意x,y∈D,若x≠y,有f(x)≠f(y)恒成立,则称f(x)在D上是单射,已知函数f(x)在D上封闭且单射,并且满足f x(D)⊊D,其中f n+1(x)=f(f n(x))(n∈N*),f1(x)=f(x),证明:存在D的真子集,D n⊊D n﹣1⊊…⊊D3⊊D2⊊D1⊊D,使得f(x)在所有D i(i=1,2,3,…,n)上封闭.2018年上海市浦东新区高考数学一模试卷参考答案与试题解析一.填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分)1.(4分)集合A={1,2,3,4},B={1,3,5,7},则A∩B={1,3} .【考点】1E:交集及其运算.【专题】11:计算题;37:集合思想;4O:定义法;5J:集合.【分析】利用交集定义直接求解.【解答】解:∵集合A={1,2,3,4},B={1,3,5,7},∴A∩B={1,3}.故答案为:{1,3}.【点评】本题考查交集的求法,考查交集定义等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.2.(4分)不等式<1的解集为(1,+∞)∪(﹣∞,0).【考点】7E:其他不等式的解法.【专题】11:计算题;35:转化思想;49:综合法;59:不等式的解法及应用.【分析】首先移项通分,等价变形为整式不等式解之【解答】解:原不等式等价于,即x(x﹣1)>0,所以不等式的解集为(1,+∞)∪(﹣∞,0);故答案为:(1,+∞)∪(﹣∞,0)【点评】本题考查了分式不等式的解法;关键是正确转化为整式不等式解之.3.(4分)已知函数f(x)=2x﹣1的反函数是f﹣1(x),则f﹣1(5)=3.【考点】4R:反函数.【专题】35:转化思想;4R:转化法;51:函数的性质及应用.【分析】令f﹣1(5)=a,则f(a)=5.解得答案.【解答】解:令f﹣1(5)=a,则f(a)=2a﹣1=5,解得:a=3,故答案为:3.【点评】本题考查的知识点是反函数,熟练掌握反函数性质,原函数过(a,b)点,反函数过(b,a)点,是解答的关键.4.(4分)已知向量,,则向量在向量的方向上的投影为﹣1.【考点】9O:平面向量数量积的性质及其运算.【专题】11:计算题;38:对应思想;4O:定义法;5A:平面向量及应用.【分析】根据投影的定义,应用公式向量在向量方向上的投影为:||cos<,>=,代值计算即可【解答】解:向量=(1,﹣2),=(3,4),则向量在向量方向上的投影为:||cos<,>===﹣1.故答案为:﹣1【点评】本题主要考查向量投影的定义及求解的方法,公式与定义两者要灵活运用.解答关键在于要求熟练应用公式.5.(4分)已知i是虚数单位,复数z满足,则|z|=.【考点】A8:复数的模.【专题】11:计算题.【分析】利用复数的运算法则、共轭复数、复数的模的计算公式即可得出,【解答】解:∵复数z满足,∴z=,化为4z=,即z=,∴|z|==.故答案为:.【点评】本题考查了复数的运算法则、共轭复数、复数的模的计算公式,属于基础题.6.(4分)在(2x+1)5的二项展开式中,x3的系数是80.【考点】DA:二项式定理.【专题】11:计算题;38:对应思想;4R:转化法;5P:二项式定理.【分析】利用二项展开式的通项公式写出第r+1项,令x的指数为3求出展开式中x3的系数.=C5r(2x)5﹣r,【解答】解:设求的项为T r+1今r=2,∴T3=23C52x3=80x3.∴x3的系数是80.故答案为:80【点评】本题考查二项展开式的通项公式是解决二项展开式的特定项问题的工具.7.(5分)某企业生产的12个产品中有10个一等品,2个二等品,现从中抽取4个产品,其中恰好有1个二等品的概率为.【考点】CB:古典概型及其概率计算公式.【专题】11:计算题;34:方程思想;4O:定义法;5I:概率与统计.【分析】现从中抽取4个产品,基本事件总数n==495,其中恰好有1个二等品包含的基本事件个数m==240,由此能求出其中恰好有1个二等品的概率.【解答】解:某企业生产的12个产品中有10个一等品,2个二等品,现从中抽取4个产品,基本事件总数n==495,其中恰好有1个二等品包含的基本事件个数m==240,∴其中恰好有1个二等品的概率为p===.故答案为:.【点评】本题考查概率的求法,考查古典概型等基础知识,考查运算求解能力,考查函数与方程思想,属于基础题.8.(5分)已知函数y=f(x)是定义在R上的偶函数,且在[0,+∞)上增函数,若f(a+1)≤f(4),则实数a的取值范围是[﹣5,3] .【考点】3N:奇偶性与单调性的综合.【专题】35:转化思想;48:分析法;51:函数的性质及应用.【分析】由题意可得f(x)=f(|x|),则f(a+1)≤f(4),即为f(|a+1|)≤f (4),可得|a+1|≤4,解不等式即可得到所求范围.【解答】解:函数y=f(x)是定义在R上的偶函数,且在[0,+∞)上增函数,可得f(x)=f(|x|),则f(a+1)≤f(4),即为f(|a+1|)≤f(4),可得|a+1|≤4,即﹣4≤a+1≤4,解得﹣5≤a≤3,则实数a的取值范围是[﹣5,3].故答案为:[﹣5,3].【点评】本题考查函数的奇偶性和单调性的运用:解不等式,考查转化思想和运算能力,属于中档题.9.(5分)已知等比数列前n项和为S n,则使得S n>2018的n的最小值为10.【考点】89:等比数列的前n项和.【专题】11:计算题;34:方程思想;35:转化思想;54:等差数列与等比数列.【分析】根据题意,由数列分析可得该等比数列的首项与公比,计算可得其前n项和S n==(3n﹣1),解不等式3n﹣1>18×2018,解可得n的值.【解答】解:根据题意,等比数列为{a n},其首项a1=,公比q==3,其前n项和S n==(3n﹣1),若S n>2018,即3n﹣1>18×2018又由n∈N*,则n≥10,故答案为:10.【点评】本题考查等比数列的前n项和公式,注意分析该数列的首项与公比.10.(5分)圆锥的底面半径为3,其侧面展开图是一个圆心角为的扇形,则此圆锥的表面积为36π.【考点】L5:旋转体(圆柱、圆锥、圆台).【专题】11:计算题;31:数形结合;44:数形结合法;5F:空间位置关系与距离.【分析】设此圆锥的母线长为l,根据圆锥的侧面展开图扇形的弧长等于圆锥底面周长可得l=9,由此能求出此圆锥的表面积.【解答】解:设此圆锥的母线长为l,根据圆锥的侧面展开图扇形的弧长等于圆锥底面周长可得,2π×3=×l,解得l=9,∴此圆锥的表面积为S=πrl+πr2=π×3×9+π×9=36π.故答案为:36π.【点评】本题考查圆锥的表面积的求法,考查圆锥结构特征等基础知识,考查运算求解能力、考查函数与方程思想,是基础题.11.(5分)已知函数f(x)=sinωx(ω>0),将f(x)的图象向左平移个单位得到函数g(x)的图象,令h(x)=f(x)+g(x),如果存在实数m,使得对任意的实数x,都有h(m)≤h(x)≤h(m+1)成立,则ω的最小值为π.【考点】HJ:函数y=Asin(ωx+φ)的图象变换.【专题】35:转化思想;49:综合法;57:三角函数的图像与性质.【分析】利用y=Asin(ωx+φ)的图象变换规律求得f(x)的解析式,再利用三角函数的周期性,求得ω的最小值.【解答】解:函数f(x)=sinωx(ω>0),将f(x)的图象向左平移个单位得到函数g(x)=sin(ωx+)=cosωx的图象,令h(x)=f(x)+g(x)=sinωx+cosωx=sin(ωx+),如果存在实数m,使得对任意的实数x,都有h(m)≤h(x)≤h(m+1)成立,∴•≤1,∴ω≥π,则ω的最小值为π,故答案为:π.【点评】本题主要考查y=Asin(ωx+φ)的图象变换规律,三角函数的周期性,属于基础题.12.(5分)在平面直角坐标系中,O为坐标原点,M、N是双曲线上的两个动点,动点P满足,直线OM与直线ON斜率之积为2,已知平面内存在两定点F1、F2,使得||PF1|﹣|PF2||为定值,则该定值为2.【考点】KC:双曲线的性质.【专题】34:方程思想;48:分析法;5D:圆锥曲线的定义、性质与方程.【分析】设动点P(x,y),M(x1,y1)、N(x2,y2),由直线OM与ON的斜率之积为2,得:2x1x2﹣y1y2=0,由向量的坐标运算、向量相等得到x=2x1﹣x2,y=2y1﹣y2,把M、N代入双曲线方程化简,结合式子的特点化简2x2﹣y2,得到点P的轨迹方程,根据双曲线的定义即可得到所求定值.【解答】解:设动点P(x,y),M(x1,y1)、N(x2,y2),∵直线OM与ON的斜率之积为2,∴•=2,所以2x1x2﹣y1y2=0,①,∵动点P满足,∴(x,y)=(2x1﹣x2,2y1﹣y2),则x=2x1﹣x2,y=2y1﹣y2,∵M、N是双曲线上的点,∴2x12﹣y12=4,2x22﹣y22=4.∴2x2﹣y2=2(2x1﹣x2)2﹣(2y1﹣y2)2=4(2x12﹣y12)+(2x22﹣y22)﹣4(2x1x2﹣y1y2)=4×4+4﹣4(2x1x2﹣y1y2)=20﹣4(2x1x2﹣y1y2),把①代入上式得:2x2﹣y2=20,即﹣=1,所以点P是双曲线﹣=1上的点,因为﹣=1的两个焦点为:F1(﹣,0)、F2(,0),所以||PF1|﹣|PF2||为定值2.故答案为:2.【点评】本题考查动点的轨迹方程的求法,双曲线的定义,两个向量坐标形式的运算,解题时要认真审题,考查了学生分析问题和解决问题的能力.二.选择题(本大题共4题,每题5分,共20分)13.(5分)若实数x,y∈R,则命题甲“”是命题乙“”的()条件.A.充分非必要B.必要非充分C.充要D.既非充分又非必要【考点】29:充分条件、必要条件、充要条件.【专题】38:对应思想;4R:转化法;5L:简易逻辑.【分析】根据充分必要条件的定义判断即可.【解答】解:由甲推不出乙,比如x=1,y=7,故不是充分条件,由乙可推出甲,是必要条件,故选:B.【点评】本题考查了充分必要条件的定义,考查不等式问题,是一道基础题.14.(5分)已知△ABC中,,AB=AC=1,点P是AB边上的动点,点Q 是AC边上的动点,则的最小值为()A.﹣4B.﹣2C.﹣1D.0【考点】9O:平面向量数量积的性质及其运算.【专题】11:计算题;31:数形结合;41:向量法;5A:平面向量及应用.【分析】根据题意,以A为原点,以AB所在对的直线为x轴,以AC所在的直线为y轴,建立如图所示的平面直角坐标系,根据向量的坐标运算和向量的数量积即可求出【解答】解:∵△ABC中,,AB=AC=1,以A为原点,以AB所在的直线为x轴,以AC所在的直线为y轴,建立如图所示的平面直角坐标系,则B(1,0),C(0,1)设P的坐标为(m,0)0≤m≤1,Q的坐标为(0,n),0≤n≤1,∴=(﹣1,n),=(m,﹣1),∴=﹣m﹣n=﹣(m+n)≥﹣2,当且仅当m=n=1时取等号,故的最小值为﹣2,故选:B.【点评】本题考查了向量的坐标运算以及向量的数量积,属于中档题15.(5分)某食品的保鲜时间y(单位:小时)与储存温度x(单位:°C)满足函数关系y=e kx+b(e=2.718…为自然对数的底数,k,b为常数),若该食品在0°C 的保鲜时间是192小时,在22°C的保鲜时间是48小时,则该食品在33°C的保鲜时间是()小时.A.22B.23C.24D.33【考点】36:函数解析式的求解及常用方法.【专题】11:计算题;34:方程思想;4O:定义法;51:函数的性质及应用.【分析】由该食品在0°C的保鲜时间是192小时,在22°C的保鲜时间是48小时,列出方程组,求出,由此能出该食品在33°C的保鲜时间.【解答】解:某食品的保鲜时间y(单位:小时)与储存温度x(单位:°C)满足函数关系y=e kx+b(e=2.718…为自然对数的底数,k,b为常数),该食品在0°C的保鲜时间是192小时,在22°C的保鲜时间是48小时,∴,解得e11k=,∴该食品在33°C的保鲜时间:y=e33k+b=(e11k)3×e b=()3×192=24(小时).故选:C.【点评】本题考查该食品在33°C的保鲜时间的求法,考查待定系数法等基础知识,运算求解能力,考查函数与方程思想,是基础题.16.(5分)关于x的方程x2+arcsin(cosx)+a=0恰有3个实数根x1、x2、x3,则x12+x22+x32=()A.1B.2C.D.2π2【考点】HV:反三角函数.【专题】34:方程思想;48:分析法;51:函数的性质及应用.【分析】令f(x)=x2+arcsin(cosx)+a,判断f(x)的奇偶性,由题意可得f(0)=0,求得a,再由反三角函数的定义和性质,化简函数,求得f(x)=0的解,即可得到所求和.【解答】解:令f(x)=x2+arcsin(cosx)+a,可得f(﹣x)=(﹣x)2+arcsin(cos(﹣x))+a=f(x),则f(x)为偶函数,∵f(x)=0有三个实数根,∴f(0)=0,即0++a=0,故有a=﹣,关于x的方程即x2+arcsin(cosx)﹣=0,∴x2 =0,且+arcsin(cosx1)﹣=0,x32+arcsin(cosx3)﹣=0,x1=﹣x3,由y=x2和y=﹣arcsin(cosx),当x>0,且0<x<π时,y=﹣arcsin(cosx)=﹣arcsin(sin(﹣x))=﹣(﹣x))=x,则﹣π<x<0时,y=﹣arcsin(cosx)=﹣x,由y=x2和y=﹣arcsin(cosx)的图象可得:它们有三个交点,且为(0,0),(﹣1,1),(1,1),则x12+x22+x32=0+1+1=2.故选:B.【点评】本题考查反三角函数的定义和性质,以及函数方程的转化思想,以及化简整理的运算能力,属于中档题.三.解答题(本大题共5题,共14+14+14+16+18=76分)17.(14分)如图,在长方体ABCD﹣A1B1C1D1中,AB=2,AD=1,A1A=1.(1)求异面直线BC1与CD1所成的角;(2)求三棱锥B﹣D1AC的体积.【考点】LF:棱柱、棱锥、棱台的体积;LM:异面直线及其所成的角.【专题】11:计算题;35:转化思想;45:等体积法;5F:空间位置关系与距离.【分析】(1)求出AD1∥BC1,∠AD1C是异面直线BC1与CD1所成的角或其补角,由此能求出异面直线BC1与CD1所成的角.(2)由,能求出三棱锥B﹣D1AC的体积.【解答】解:(1)∵在长方体ABCD﹣A1B1C1D1中,AD1∥BC1,∴∠AD1C是异面直线BC1与CD1所成的角或其补角.(2分)∵AB=2,AD=1,A1A=1.∴在等腰△ACD1中,∴cos∠CD1A===,…(4分)∴异面直线BC1与CD1所成的角.…(1分)(2)…(4分)==.…(3分)【点评】本题考查异面直线所成角的求法,考查三棱锥的体积的求法,考查空间中线线、线面、面面的位置关系等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查化归与转化思想、函数与方程思想、数形结合思想,是中档题.18.(14分)在△ABC中,角A、B、C所对的边分别为a、b、c,已知,,且.(1)求C;(2)若c2=7b2,且,求b的值.【考点】HT:三角形中的几何计算.【专题】35:转化思想;56:三角函数的求值;58:解三角形;5A:平面向量及应用.【分析】(1)直接利用向量的数量积和三角函数的关系式的恒等变换求出C的值.(2)直接利用(1)的结论和余弦定理及三角形的面积求出结果.【解答】解:(1)由,∴2ccosC+acosB+bcosA=0,由正弦定理得:2sinCcosC+sinAcosB+sinBcosA=0,∴2sinCcosC+sin(A+B)=0;2sinCcosC+sinC=0;由sinC≠0,∴,∴;(2)由c2=a2+b2﹣2abcosC,∴7b2=a2+b2﹣2abcosC,∴a2+ab﹣6b2=0,∴a=2b;由知,,∴,∴b=2.【点评】本题考查的知识要点:三角函数关系式的恒等变换,向量的数量积的应用,余弦定理的应用,三角形面积公式的应用.19.(14分)已知等差数列{a n}的公差为2,其前n项和(n∈N*,p ∈R).(1)求p的值及{a n}的通项公式;(2)在等比数列{b n}中,b2=a1,b3=a2+4,令(k∈N*),求数列{c n}的前n项和T n.【考点】8E:数列的求和.【专题】11:计算题;34:方程思想;35:转化思想;54:等差数列与等比数列.【分析】(1)根据题意,由数列的前n项和公式分析可得a n=S n﹣S n﹣1=2pn﹣p+2,﹣a n=2p=2,结合题意可得p的值,代入a n=2pn﹣p+2中计算可分析可得a n+1得答案;(2)根据题意,表示出数列{C n},分n为奇数、偶数两种情况分析,求和即可得答案.【解答】解:(1)根据题意,等差数列{a n}中,当n≥2时,有a n=S n﹣S n﹣1=pn2+2n﹣[p(n﹣1)2+2(n﹣1)]=2pn﹣p+2,则a n=2p(n+1)﹣p+2,+1﹣a n=2p=2,∴a n+1∴p=1,a n=3+(n﹣1)2=2n+1,(2)∵b2=a1=3,b3=a2+4=9,∴q=3,,当n=2k,k∈N*时,T n=a1+b2+a3+b4+…+a2k﹣1+b2k=(a1+a3+…+a2k﹣1)+(b2+b4+…+b2k)=(3+7+…+4k﹣1)+(3+27+…+32k﹣1)==;当n=2k﹣1,k∈N*时,n+1是偶数,=,∴.【点评】本题考查数列的递推公式,涉及数列的求和,关键是求出数列的通项公式.20.(16分)已知椭圆(a>b>0)的左、右焦点分别为F1、F2,设点A(0,b),在△AF1F2中,,周长为.(1)求椭圆Γ的方程;(2)设不经过点A的直线l与椭圆Γ相交于B、C两点,若直线AB与AC的斜率之和为﹣1,求证:直线l过定点,并求出该定点的坐标;(3)记第(2)问所求的定点为E,点P为椭圆Γ上的一个动点,试根据△AEP 面积S的不同取值范围,讨论△AEP存在的个数,并说明理由.【考点】K4:椭圆的性质.【专题】16:压轴题;34:方程思想;49:综合法;5D:圆锥曲线的定义、性质与方程.【分析】(1)由已知可得,且,联立可得a,b的值,则椭圆方程可求;(2)设直线l方程:y=kx+m,交点B(x1,y1),C(x2,y2),联立直线方程与椭圆方程,化为关于x的一元二次方程,由斜率公式、根与系数的关系及k AB+k AC=﹣1,可得m=﹣2k﹣1,得到直线方程y=kx+m=kx﹣2k﹣1,由直线系方程可得直线l过定点,并求出该定点的坐标;(3)直线l AE:x+y﹣1=0,求得|AE|,设直线l:y=﹣x+t与椭圆相切,联立后由判别式等于0求得t值,求出两切线到l AE:x+y﹣1=0的距离,再求出△AEP面积S的不同取值范围,然后对面积分类分析△AEP的个数.【解答】(1)解:由,得,∴…①又△AF1F2周长为,∴…②联立①②,解得.∴椭圆方程为;(2)证明:设直线l方程:y=kx+m,交点B(x1,y1),C(x2,y2)由,得(1+4k2)x2+8kmx+4(m2﹣1)=0.,,依题:k AB+k AC=﹣1,即:,∵y1=kx1+m,y2=kx2+m,∴,得,则m=﹣2k﹣1.∴y=kx+m=kx﹣2k﹣1过定点(2,﹣1);(3)解:l AE:x+y﹣1=0,.设直线l:y=﹣x+t与椭圆相切,由,得.由△=4t2﹣5(t2﹣1)=0,得t=.得两切线到l AE:x+y﹣1=0的距离分别为,∴,.当时,△AEP个数为0个;当时,△AEP个数为1个;当时,△AEP个数为2个;当时,△AEP个数为3个;当时,△AEP个数为4个.【点评】本题考查椭圆的简单性质,考查直线与椭圆位置关系的应用,体现了分类讨论的数学思想方法,考查运算能力,属难题.21.(18分)已知函数f(x)的定义域为D,值域为f(D),即f(D)={y|y=f(x),x∈D},若f(D)⊆D,则称f(x)在D上封闭.(1)分别判断函数f(x)=2017x+log2017x,在(0,1)上是否封闭,说明理由;(2)函数的定义域为D=[a,b],且存在反函数y=f﹣1(x),若函数f(x)在D上封闭,且函数f﹣1(x)在f(D)上也封闭,求实数k的取值范围;(3)已知函数f(x)的定义域为D,对任意x,y∈D,若x≠y,有f(x)≠f(y)恒成立,则称f(x)在D上是单射,已知函数f(x)在D上封闭且单射,并且满足f x(D)⊊D,其中f n+1(x)=f(f n(x))(n∈N*),f1(x)=f(x),证明:存在D的真子集,D n⊊D n﹣1⊊…⊊D3⊊D2⊊D1⊊D,使得f(x)在所有D i(i=1,2,3,…,n)上封闭.【考点】36:函数解析式的求解及常用方法.【专题】33:函数思想;4R:转化法;51:函数的性质及应用.【分析】(1)根据函数封闭的定义封闭求出两个函数的值域即可判断f(x),g (x)是否在(0,1)上封闭;(2)根据封闭的定义以及反函数的定义得到关于k的不等式组,解出即可;(3)得到p是唯一的使得f(x)=f(p)的根,因为f(x)是单射,就有了f(D1)⊊D1.接着令D n+1=f(D n),并重复上述论证证明D n+1⊊D n.【解答】解:(1)因为函数f(x)的定义域为(0,+∞),值域为(﹣∞,+∞),(取一个具体例子也可),所以f(x)在(0,1)上不封闭.…(结论和理由各1分)t=x+1∈(1,2),g(x)在(0,1)上封闭…(结论和理由各1分)(2)函数f(x)在D上封闭,则f(D)⊆D.函数f﹣1(x)在f(D)上封闭,则D⊆f(D),得到:D=f(D).…(2分)在D=[a,b]单调递增.则f(a)=a,f(b)=b在[﹣1,+∞)两不等实根.,故,解得.另解:在[﹣1,+∞)两不等实根.令k+1=t2﹣t在t∈[0,+∞)有两个不等根,故解得.(3)如果f(D)=D,则f n(D)=D,与题干矛盾.因此f(D)⊊D,取D1=f(D),则D1=f(D),则D1⊊D.接下来证明f(D1)⊊D1,因为f(x)是单射,因此取一个p∈D﹣D1,则p是唯一的使得f(x)=f(p)的根,换句话说f(p)∉f(D1).考虑到p∈D﹣D1,即D1⊆D,因为f(x)是单射,则f(D1)⊊f(D﹣{p})=f(D)﹣{f(p)}=D1﹣{f(p)}⊊D1这样就有了f(D1)⊊D1.接着令D n=f(D n),并重复上述论证证明D n+1⊊D n.+1【点评】本题主要考查函数值域的求法,以及与函数有关的新定义,综合性较强,难度较大.。

相关文档
最新文档