全体自然数之和

合集下载

欧拉证明全体自然数之和

欧拉证明全体自然数之和

欧拉证明全体自然数之和欧拉证明全体自然数之和这个问题,是一个非常重要的数学问题,也是一个非常有趣的问题。

欧拉在18世纪初提出了这个问题,并成功地给出了一个非常鲜明的证明。

欧拉的证明方法非常巧妙,简单而又深刻,给人留下了深刻的印象。

欧拉的证明方法是基于一个叫做调和级数的概念。

调和级数是指形式为1 + 1/2 + 1/3 + 1/4 + … + 1/n的数列。

调和级数收敛,但是它的收敛速度非常慢。

欧拉发现了一个非常巧妙的方法,利用调和级数来证明全体自然数之和。

欧拉的证明方法非常简单。

他首先将全体自然数按照奇数和偶数分类,得到:1 +2 +3 +4 + … = (1 + 3 +5 + …)+(2 + 4 +6 + …)接下来,欧拉构造一个新的级数,按照下面的方式排列:1 + 1/2 + 2/3 + 1/4 + 3/5 + 1/6 + 4/7 + ……可以看出,这个级数的每一个分数项都是由上面的两类数列相加而来。

例如,第一个分数项就是1/1+1/2,第二个分数项就是1/2+2/3,第三个分数项就是1/3+3/5……。

欧拉接下来证明了这个级数是发散的。

具体的证明方法是,先采用反证法,假设级数是收敛的,然后运用调和级数收敛速度极慢的特性,得到该级数远大于调和级数,因此与假设矛盾,该级数必须是发散的。

最后,欧拉采用逆向思维,发现这个级数可以表示为:1 + (1/2 + 1/3)+(1/4 + 1/5 + 1/6)+ (1/7 + 1/8 + …)这样就得到了:1 + 1/2 + 1/3 + 1/4 + … + 1/n = 1 + (1/2 + 1/3)+(1/4 + 1/5 + 1/6)+ (1/7 + 1/8 + …)+……欧拉认为这种级数形式的证明方法比传统的归纳法要更加直观,有效地展示了数学的美妙和深刻。

欧拉证明全体自然数之和的方法确实非常巧妙,其重要性也不容忽视。

当然,现代的数学研究早已超越了这个问题,而且有新的更加深入的研究和证明方法,但是,欧拉的证明方法依然具有深远的意义,其证明思路和方法可以为广大数学爱好者所借鉴和借鉴。

实变函数(程其襄版)第一至四章课后习题答案

实变函数(程其襄版)第一至四章课后习题答案
(1)单射:对任意 ,若 ,使得 ;
(2)满射:对任意 ,存在 ,使得 .
则称A和B对等,记为 ,规定 .
例1 我们可给出有限集合的一个不依赖与于元素个数概念的定义:集合A称为有限合,如果 或者A和正整数的某截断 对等。
注:有限集合的一个不依赖与于元素个数概念的定义,例如A的总个数与正整数的某个截断相对应。
实变函数论建立在实数理论和集合论的基础上,对于实数的性质,我们假定读者已经学过,所以本书只是介绍集合论方面的基本知识。
§1 集合的表示
集合是数学中所谓原始概念之一,不能用别的概念加以定义,就目前来说,我们只要求掌握一下朴素的说法:
在一定范围内的个体事物的全体,当将它们看作一个整体时,我们把这个整体称作一个集合,其中每一个个体事物叫做该集合的元素。
例3和例4说明,一个无限集可以和它的一
个真子集对等(可以证明,这一性质正是无
限集的特征,常用来作为无限集的定义)。
这一性质对有限集来说显然不能成立。由此可以看出无限集与有限集之间的深刻差异。
对等关系显然有一下性质:
定理1
对任意集合A,B,C,均有:
(1)(反射性) ;
(2) (对Hale Waihona Puke 性) ;(3) (传递性) .
当我们讨论集合都是某个大集合S的子集时,我们称 为A的余集,并记为
在欧式空间 中, 写成
当全集确定时,显然 因此研究差集运算可以通过研究余集运算来实现。
例9
例10 若 定义在集合E上,S=E,则
在集合论中处理差集或余集运算式时常用到以下公式
定理2(德摩根公式)
若 是一族集合,则
证明(1)的证明,设 则 ,因此对任意 即对任意 , 从而 反之,设 ,则对任意 即对任意 则 从而 综合可得

集合论

集合论

集合论初中毕业升入高一级学校的同学们会一致发现自己所学的第一个数学概念都是:集合。

这门研究集合的数学理论在现代数学中被恰当地称为集合论。

它是数学的一个基本分支,在数学中占据着一个极其独特的地位,其基本概念已渗透到数学的所有领域。

如果把现代数学比作一座无比辉煌的大厦,那么可以说集合论正是构成这座大厦的基石,由此可见它在数学中的重要性。

其创始人康托尔也以其集合论的成就被誉为对二十世纪数学发展影响最深的学者之一。

下面就让我们一起去探究一下这门独特而重要的数学理论的来龙去脉,追觅它所走过的曲折历程吧。

集合论的诞生集合论是德国著名数学家康托尔于19世纪末创立的。

十七世纪数学中出现了一门新的分支:微积分。

在之后的一二百年中这一崭新学科获得了飞速发展并结出了丰硕成果。

其推进速度之快使人来不及检查和巩固它的理论基础。

十九世纪初,许多迫切问题得到解决后,出现了一场重建数学基础的运动。

正是在这场运动中,康托尔开始探讨了前人从未碰过的实数点集,这是集合论研究的开端。

到1874年康托尔开始一般地提出“集合”的概念。

他对集合所下的定义是:把若干确定的有区别的(不论是具体的或抽象的)事物合并起来,看作一个整体,就称为一个集合,其中各事物称为该集合的元素。

人们把康托尔于1873年12月7日给戴德金的信中最早提出集合论思想的那一天定为集合论诞生日。

康托尔的不朽功绩在中学数学中我们所学习的只是集合论的最基本知识。

学习过程中,同学们或许觉得一切都是很自然与简单的,根本无法想象它在诞生之日遭到激烈反对的情景,也体会不到康托尔的功绩之所在。

前苏联数学家柯尔莫戈洛夫评价康托尔的工作时说:“康托尔的不朽功绩在于他向无穷的冒险迈进”。

因而只有当我们了解了康托尔在对无穷的研究中究竟做出了些什么结论后才会真正明白他工作的价值之所在和众多反对之声之由来。

数学与无穷有着不解之缘,但在研究无穷的道路上却布满了陷阱。

因为这一原因,在数学发展的历程中,数学家们始终以一种怀疑的眼光看待无穷,并尽可能回避这一概念。

趣味数学手抄报内容大全

趣味数学手抄报内容大全

趣味数学手抄报内容趣味数学手抄报内容大全一些趣味的数学知识有助于提升学生们学习数学的兴趣,以下是小编收集的相关手抄报内容,仅供大家阅读参考!趣味数学知识(一)在我们的概念中,“1“是一个最小的数字,它是整数数字的开始之数,是万数之首,是的,“1”是万数之首,它的地位也是最特殊的,下面,就和小编一起认识这个神奇的数字吧。

一、最小的数字。

古老而庞大的自然数家族,是由全体自然数1、2、3、4、5、6、7、8、9、10……集合在一起组成的。

其中最小的是“1”,找不到最大的。

如果你有兴趣的话,可以找一找。

二、没有最大的自然数。

也许你认为可以找到一个最大的自然数(n),但是,你立刻就会发现另一个自然数(n+1),它大于n。

这就说明在自然数家族中永远找不到最大的自然数。

三、“1”确实是自然数家族中最小的。

自然数是无限的,而“1”是自然数中最小的。

有人提出异议,不同意“1”是最小的自然数,说“0”比“1”小,“0”应该是最小的自然数。

这是不对的',因为自然数指的是正整数,“0”是唯一的非正非负的整数,因而“0”不属于自然数家族。

“1”确实是自然数家族中最小的。

可别小看了这个最小的“1”,它是自然数的单位,是自然数中的第一代,人类最先认识的是“1”,有了“1”,才能得到1、2、3、4……给你讲了万数之首“1”的特殊地位,所以,你千万别小看了它哦。

趣味数学故事(二)说起数学的作用,我们说上一天一夜也说不完,没有数学,我们生活也很不方便。

那么,你知道数学除了日常生活中的简单运算,还可以做什么?能像警察那样破案吗?可以的,不信看看侠盗亚森罗宾是怎样用数学破案的。

巴黎郊外有一座中世纪留下的古老城堡,其年代几乎与著名的“巴黎圣母院”同样久远,因而成了旅游观光的胜地,吸引了来自世界各地的游客。

下面这则故事就是出自—位导游之口。

古堡的顶层有一座尘封的钟楼,里面住着一个怪人,唯一的对外通道是个走起来嘎嘎响、陡峭异常的木质楼梯,大约有几十级,但肯定不到一百级。

实变函数(程其襄版)第一至四章课后习题答案

实变函数(程其襄版)第一至四章课后习题答案
2.集合的包含关系
若集合A和B满足关系:对任意 ∈A,可以得到x∈B,则成A是B的子集,记为A B或B A,若A B但A并不与B相同,则称A是B的真子集.
例7. 若 在R上定义,且在[a,b]上有上界M,即任意对
∈[a,b]有 M.用集合语言表示为:[a,b] { : M}.
用集合语言描述函数性质,是实变函数中的常用方法,请在看下例.
定理1
(交换律)
证明我们只证明
先设 则有 且有 于是这证来自了在证反过来的包含关系,设 ,则有 ,此即 ,因此 于是 。
综合起来,便是等式成立。
这表面,集合运算的分配律,在无限并的情况下依然成立
3、集合的差集和余集
若A和B是集合,称 为A和B是差集,A\B也可以记为A-B,如图1.3是A-B的示意图:
请读者注意:我们怎样把描述函数列性质的 语言,转换为集合语言。
例12 设 是定义在E上的函数列,若x是使 收敛与0的点,则对任意的 ,存在 ,使得对任意 即
顺便说明一下,一个集合的各个元素必须是彼此互异的,哪些事物是给定集合的元素必须是明确的,下面举出几个集合的例子。
例14,7 ,8,3四个自然数构成的集合。
例2全体自然数
例30和1之间的实数全体
例4 上的所有实函数全体
例5A,B,C三个字母构成的集合
例6平面上的向量全体
全体高个子并不构成一个集合,因为一个人究竟算不算高个子并没有明确的界限,有时难以判断他是否属于这个集合。
例1设 和 是定义在E上的函数,则对任意
例2.
例3若记
例4 若 是一族开区间,而 ,则存在
使得 (有限覆盖定理)
例5若 是定义在E上的函数,则
2、集合的交集
设A,B是任意两个集合,由一切既属于A又属于B的元素组成的集合C称为A和B的交集或积集,简称为交或积,记作 ,它可以表示为

趣味数学手抄报内容大全

趣味数学手抄报内容大全

趣味数学手抄报内容大全趣味数学手抄报内容大全一些趣味的数学知识有助于提升学生们学习数学的兴趣,以下是小编收集的相关手抄报内容,仅供大家阅读参考!趣味数学知识(一)在我们的概念中,“1“是一个最小的数字,它是整数数字的开始之数,是万数之首,是的,“1”是万数之首,它的地位也是最特殊的,下面,就和小编一起认识这个神奇的数字吧。

一、最小的数字。

古老而庞大的自然数家族,是由全体自然数1、2、3、4、5、6、7、8、9、10……集合在一起组成的。

其中最小的是“1”,找不到最大的。

如果你有兴趣的话,可以找一找。

二、没有最大的自然数。

也许你认为可以找到一个最大的自然数(n),但是,你立刻就会发现另一个自然数(n+1),它大于n。

这就说明在自然数家族中永远找不到最大的自然数。

三、“1”确实是自然数家族中最小的。

自然数是无限的,而“1”是自然数中最小的。

有人提出异议,不同意“1”是最小的自然数,说“0”比“1”小,“0”应该是最小的自然数。

这是不对的,因为自然数指的是正整数,“0”是唯一的非正非负的整数,因而“0”不属于自然数家族。

“1”确实是自然数家族中最小的。

可别小看了这个最小的“1”,它是自然数的单位,是自然数中的第一代,人类最先认识的是“1”,有了“1”,才能得到1、2、3、4……给你讲了万数之首“1”的特殊地位,所以,你千万别小看了它哦。

趣味数学故事(二)说起数学的作用,我们说上一天一夜也说不完,没有数学,我们生活也很不方便。

那么,你知道数学除了日常生活中的简单运算,还可以做什么?能像警察那样破案吗?可以的,不信看看侠盗亚森罗宾是怎样用数学破案的。

巴黎郊外有一座中世纪留下的古老城堡,其年代几乎与著名的“巴黎圣母院”同样久远,因而成了旅游观光的胜地,吸引了来自世界各地的游客。

下面这则故事就是出自—位导游之口。

古堡的顶层有一座尘封的钟楼,里面住着一个怪人,唯一的对外通道是个走起来嘎嘎响、陡峭异常的木质楼梯,大约有几十级,但肯定不到一百级。

实变函数引论参考答案_曹怀信_陕师大版第一到第四章

实变函数引论参考答案_曹怀信_陕师大版第一到第四章

习题1.11.证明下列集合等式. (1) ;(2) ()()()C B C A C B A \\\ =;(3) ()()()C A B A C B A \\\=.证明 (1) )()C \B (c C B A A =)()( c c C B A A B A =c C A B A )()( =)(\)(C A B A = .(2) c C B A A )(C \B)(=)()(c c C B C A ==)\()\(C A C A .(3) )(\C)\(B \c C B A A =c c C B A )( =)(C B A c =)()(C A B A c =)()\(C A B A =.2.证明下列命题.(1) ()A B B A = \的充分必要条件是:A B ⊂;(2) ()A B B A =\ 的充分必要条件是:=B A Ø;(3) ()()B B A B B A \\ =的充分必要条件是:=B Ø.证明 (1) A B A B B B A B B A B B A c c ==== )()()()\(的充要[条 是:.A B ⊂(2) c c c c B A B B B A B B A B B A ===)()()(\)(必要性. 设A B B A =\)( 成立,则A B A c = , 于是有c B A ⊂, 可得.∅=B A 反之若,∅≠B A 取B A x ∈, 则B x A x ∈∈且, 那么B x A x ∉∈且与c B A ⊂矛盾.充分性. 假设∅=B A 成立, 则c B A ⊂, 于是有A B A c = , 即.\)(A B B A =(3) 必要性. 假设B B A B B A \)()\( =, 即.\c C A B A B A == 若,∅≠B 取,B x ∈ 则,c B x ∉ 于是,c B A x ∉ 但,B A x ∈ 与c C A B A =矛盾.充分性. 假设∅=B 成立, 显然B A B A \= 成立, 即B B A B B A \)()\( =.3.证明定理1.1.6.定理1.1.6 (1) 如果{}n A 是渐张集列, 即),1(1≥∀⊂+n A A n n 则{}n A 收敛且∞=∞→=1;lim n n n n A A (2) 如果{}n A 是渐缩集列, 即),1(1≥∀⊃+n A A n n 则{}n A 收敛且 ∞=∞→=1.lim n n n n A A 证明 (1) 设),1(1≥∀⊂+n A A n n 则对任意∞=∈1,n n A x 存在N 使得,N A x ∈ 从而),(N n A x N ≥∀∈ 所以,lim n n A x ∞→∈ 则.lim 1n n n n A A ∞→∞=⊂ 又因为∞=∞→∞→⊂⊂1,lim lim n n n n n n A A A 由此可见{}n A 收敛且 ∞=∞→=1;lim n n n n A A(2) 当)1(1≥∀⊃+n A A n n 时, 对于,lim n n A x ∞→∈存在)1(1≥∀<+k n n k k 使得),1(≥∀∈k A x k n 于是对于任意的,1≥n 存在0k 使得n n k >0, 从而,0n n A A x k ⊂∈ 可见.lim 1 ∞=∞→⊂n n n nA A 又因为,lim lim 1n n n n n n A A A ∞→∞→∞=⊂⊂ 所以可知{}n A 收敛且 ∞=∞→=1.lim n n n n A A 4.设f 是定义于集合E 上的实值函数,c 为任意实数,证明: (1) ⎥⎦⎤⎢⎣⎡+≥=>∞=n c f E c f E n 1][1 ; (2) ⎥⎦⎤⎢⎣⎡+<=≤∞=n c f E c f E n 1][1 ; (3) 若))(()(lim E x x f x f n n ∈∀=∞→,则对任意实数c 有 ⎥⎦⎤⎢⎣⎡->=⎥⎦⎤⎢⎣⎡->=≥∞→∞=∞=∞=∞=k c f E k c f E c f E n n k n N n N k 1lim 1][111 . 证明 (1) 对任意的[],c f E x >∈ 有,)(c x f > 则存在+∈Z n 使得n c x f 1)(+≥成立. 即,1⎥⎦⎤⎢⎣⎡+≥∈n c f E x 那么.11 ∞=⎥⎦⎤⎢⎣⎡+≥∈n n c f E x 故[];11 ∞=⎥⎦⎤⎢⎣⎡+≥⊂>n n c f E c f E 另一方面, 若,11 ∞=⎥⎦⎤⎢⎣⎡+≥∈n n c f E x 则存在+∈Z n 0使得,110 ∞=⎥⎦⎤⎢⎣⎡+≥∈n n c f E x 于是c n c x f >+≥01)(, 故[]c f E x >∈. 则有[].11 ∞=⎥⎦⎤⎢⎣⎡+≥⊃>n n c f E c f E (2) 设[]c f E x ≤∈, 则c x f ≤)(, 从而对任意的+∈Z n , 都有n c x f 1)(+<, 于是 ∞=⎥⎦⎤⎢⎣⎡+<∈11n n c f E x , 故有[];11 ∞=⎥⎦⎤⎢⎣⎡+<⊂≤n n c f E c f E 另一方面, 设 ∞=⎥⎦⎤⎢⎣⎡+<∈11n n c f E x , 则对于任意的+∈Z n , 有n c x f 1)(+<,由n 的任意性, 可知c x f ≤)(, 即[]c f E x ≤∈, 故[] ∞=⎥⎦⎤⎢⎣⎡+<⊃≤11n n c f E c f E . (3) 设[]c f E x ≥∈, 则c x f ≥)(. 由),)(()(lim E x x f x f n n ∈∀=∞→ 可得对于任意的+∈Z k , 存在N 使得)(1|)()(|N n k x f x f n ≥∀<-, 即)1(11)()(≥-≥->k k c k x f x f n , 即k c x f n 1)(->, 故)1(1lim ≥∀⎥⎦⎤⎢⎣⎡->∈∞→k k c f E x n n , 所以 ∞=∞→⎥⎦⎤⎢⎣⎡->∈11lim k n n k c f E x , 故[] ∞=∞→⎥⎦⎤⎢⎣⎡->⊂≥11lim k n n k c f E c f E ; 另一方面, 设 ∞=∞→⎥⎦⎤⎢⎣⎡->∈101lim k n n k c f E x , 则对任意+∈Z k 有⎥⎦⎤⎢⎣⎡->∈∞→k c f E x n n 1lim 0. 由下极限的定义知:存在1N 使得当1N n ≥时, 有)(10+∈∀⎥⎦⎤⎢⎣⎡->∈Z k k c f E x n , 即对任意+∈Z k 有k c x f n 1)(0->; 又由),)(()(lim E x x f x f n n ∈∀=∞→ 知),()(lim 00x f x f n n =∞→ 即对任意的+∈Z k , 存在2N 使得当2N n ≥时, 有k x f x f n 1|)()(|00<-. 取},m ax {21N N N =, 则有k c x f n 1)(0->与k x f x f n 1|)()(|00<-同时成立, 于是有k c x f k x f n 1)(1)(00->>+, 从而k c x f 2)(0->, 由k 的任意性知:c x f ≥)(0, 即[]c f E x ≥∈0, 故有 [] ∞=∞→⎥⎦⎤⎢⎣⎡->⊃≥11lim k n n k c f E c f E ; 综上所述:[].11lim 111 ∞=∞=∞=∞=∞→⎥⎦⎤⎢⎣⎡->=⎥⎦⎤⎢⎣⎡->=≥k N N n n n n n k c f E k c f E c f E 5.证明集列极限的下列性质.(1) c n n cn n A A ∞→∞→=⎪⎭⎫ ⎝⎛lim lim _____; (2) c n n c n n A A _____lim lim ∞→∞→=⎪⎭⎫ ⎝⎛; (3) ()n n n n A E A E ∞→∞→=lim \\lim ; (4) ()n n n n A E A E ∞→∞→=lim \\lim . 证明 (1) c n n n n m c m n c n m m c n n m m c n n A A A A A ∞→∞=∞=∞=∞=∞=∞=∞→====⎪⎭⎫ ⎝⎛lim )()(lim 111_____ . (2) c n n n n n m c m c n m m c n n m m c n n A A A A A _____111lim )()(lim ∞→∞=∞=∞=∞=∞=∞=∞→====⎪⎭⎫ ⎝⎛ . (3) () ∞=∞=∞=∞=∞=∞=∞→===111))(()()\(\lim n n m n n m c m c m n n m m n n A E A E A E A E c n n m m n c n m m n n m c m A E A E A E )())(()(111 ∞=∞=∞=∞=∞=∞==== ∞=∞=∞→==1lim \\n n m n n m A E A E . (4) () ∞=∞=∞=∞=∞=∞=∞→===111))(()()\(\lim n n m cm n n m n n m c m m n n A E A E A E A E c n nm m n c n m m n n m c m A E A E A E )())(()(111 ∞=∞=∞=∞=∞=∞==== ∞=∞=∞→==1lim \\n n m n n m A E A E .6.如果}{},{n n B A 都收敛,则}\{},{},{n n n n n n B A B A B A 都收敛且(1) ()n n n n n n n B A B A ∞→∞→∞→=lim lim lim ;(2) ()n n n n n n n B A B A ∞→∞→∞→=lim lim lim ;(3) ()n n n n n n n B A B A ∞→∞→∞→=lim \lim \lim . 习题1.21.建立区间)1,0(与]1,0[之间的一一对应.解 令1111{,,,,}2345E =, 111{0,1,,,}234F =,(0,1)\D E =, 则(0,1)E D =,[0,1]F D =. 定义:(0,1)[0,1]φ→为: ;11();(1,2,)210;2x x D x x n n n x φ⎧⎪∈⎪⎪===⎨+⎪⎪=⎪⎩ 则φ为(0,1)[0,1]→之间的一个一一对应. 2.建立区间],[b a 与],[d c 之间的一一对应,其中d c b a <<,.解 定义: :[,][,]a b c d φ→为:()().([,])d c d c bc ad x x a c x x a b b a b a b a φ---=-+=+∀∈--- 可以验证: :[,][,]a b c d φ→为一个一一对应.3.建立区间),(b a 与],[d c 之间的一一对应,其中d c b a <<,.解 令{,,,}234b a b a b a E a a a ---=+++,{,,,,}23d c d c F c d c c --=++ (,)\D a b E =. 定义:(,)[,]a c d φ→为: ;();(1,2.)d c bc ad x x D b a b a d c b a x c x a n φ--⎧+∈⎪--⎪--⎪=+=+=⎨可以验证: :(,)[,]a b c d φ→为一个一一对应.4.试问:是否存在连续函数,把区间]1,0[一一映射为区间)1,0(?是否存在连续函数,把区间]1,0[一一映射为]4,3[]2,1[ ?答 不存在连续函数把区间[0,1]一一映射为(0,1); 因为连续函数在闭区间[0,1]存在最大、最小值.也不存在连续函数把区间[0,1]一一映射为[1,2][3,4]; 因为连续函数在闭区间[1,2]上存在介值性定理, 而区间[1,2][3,4]不能保证介值性定理永远成立.5.证明:区间2~)1,0()1,0(~)1,0(R ⨯且ℵ=2R .证明 记(0,1)A =,则(0,1)(0,1)A A ⨯=⨯.任取(,)x y A A ∈⨯, 设1231230.,0.,x a a a y b b b == 为实数,x y 正规无穷十进小数表示, 并令1122(,)0.f x y a b a b =, 则得到单射:f A A A ⨯→. 因此由定理1.2.2知A A A ⨯≤.若令10.5A A =⨯, 则1~A A A A ⊂⨯. 从而由定理1.2.2知: A A A ≤⨯. 最后, 根据Bernstein 定理知: (0,1)~(0,1)(0,1)⨯.对于(,)(0,1)(0,1)x y ∀∈⨯,定义2:(0,1)(0,1)R φ⨯→为:(,)((),())22x y tg x tg y ππφππ=--,则φ为2(0,1)(0,1)R ⨯→的一个一一对应,即2(0,1)(0,1)~R ⨯. 又因为: (0,1)~R , 则由对等的传递性知: 2(0,1)~(0,1)(0,1)~~R R ⨯且2R R ==ℵ. 6.证明:{}1:),(22≤+=y x y x A 与{}1:),(22<+=y x y x B 对等并求它们的基数.证明 令221{(,):(1,2,3,)}E x y x y n n =+==, \D A E =, 221{(,):(1,2,3,)}1F x y x y n n =+==+. 则,A E D B F D ==. 定义: :A B φ→为: 2222(,);(,),(,)11;(1,2,3,),(,).1x y x y D x y x y x y n x y E n n φ∈⎧⎪=⎨+=+==∈⎪+⎩ 可以验证: :A B φ→为一一对应, 即~A B . 又因为2~(0,1)(0,1)~~B R R ⨯, 所以 A B ==ℵ.7.证明:直线上任意两个区间都是对等且具有基数ℵ.证明 对任意的,I J R ⊆, 取有限区间(,)a b I ⊆,则(,)a b I R ℵ=≤≤=ℵ, 则由Bernstern 定理知I =ℵ, 同理J =ℵ. 故I J ==ℵ.习题1.31.证明:平面上顶点坐标为有理点的一切三角形之集M 是可数集. 证明 因为有理数集Q 是可数集,平面上的三角形由三个顶点所确定,而每个顶点由两个数决定,故六个数可确定一个三角形,所以M 中的每个元素由Q 中的六个相互独立的数所确定,即Q},,,,:{621621∈=x x x a M x x x 所以M 为可数集.2.证明:由平面上某些两两不交的闭圆盘之集M 最多是可数集. 证明 对于任意的M O ∈, 使得Q ∈)(O f . 因此可得:Q →M f :. 因为1O 与2O 不相交,所以)()(21O f O f ≠. 故f 为单射,从而a M =≤Q .3.证明:(1)任何可数集都可表示成两个不交的可数集之并;(2)任何无限集都可表成可数个两两不交的无限集之并.证明 (2) 当E 可数时,存在双射Q )1,0(:→E f . 因为∞=⎪⎪⎭⎫ ⎝⎛⎪⎭⎫⎢⎣⎡+=11,11)1,0(n n n Q Q 所以∞=∞=--=⎪⎪⎭⎫ ⎝⎛⎪⎭⎫⎢⎣⎡+==11111,11))1,0((n n n A n n f f E Q Q . 其中:)(),3,2,1(1,111j i A A n n n f A j i n ≠Φ==⎪⎪⎭⎫ ⎝⎛⎪⎭⎫⎢⎣⎡+=- 且Q . 又因为Q Q ⎪⎭⎫⎢⎣⎡+⎪⎪⎭⎫ ⎝⎛⎪⎭⎫⎢⎣⎡+-n n n n f 1,11~1,111且Q ⎪⎭⎫⎢⎣⎡+n n 1,11 可数,所以E 可表示成可数个两两不交的无限集之并.当E 不可数时,由于E 无限,所以存在可数集E E ⊂1, 且1\E E 不可数且无限,从而存在可数集12\E E E ⊂,且)(\\)\(2121E E E E E E =无限不可数. 如此下去,可得),3,2,1( =n E n 都可数且不相交,从而1011)()\(E E E E E E i i n i ==∞=∞=. 其中)0(≥i E i 无限且不交. 4.证明:可数个不交的非空有限集之并是可数集.5.证明:有限或可数个互不相交的有限集之并最多是可数集.证明 有限个互不相交的有限集之并是有限集;而可数个互不相交的有限集之并最多是可数集.6.证明:单调函数的不连续点之集至多是可数集.证明 不妨设函数f 在),(b a 单调递增,则f 在0x 间断当且仅当0)(lim )(lim )0()0(_0000>==--+→→+x f x f x f x f x x x x . 于是,每个间断点0x 对应一个开区间))0(),0((00+-x f x f .下面证明:若x x '''<为()f x 的两个不连续点,则有(0)(0)f x f x '''+≤-. 事实上,任取一点1x ,使1x x x '''<<,于是11(0)lim ()inf{()}()sup {()}lim ()x x x x x x x x x f x f x f x f x f x f x +-'>'''→→'''<<'+==≤≤=, 从而x '对应的开区间((0),(0))f x f x ''-+与x ''对应的开区间((0),(0))f x f x ''''-+不相交,即不同的不连续点对应的开区间互不相交,又因为直线上互不相交的开区间所构成的集合至多是可数集,所以可知单调函数的不连续点之集至多是可数集.7.证明:若存在某正数d 使得平面点集E 中任意两点之间的距离都大于d ,则E 至多是可数集.证明 定义映射}:)3,{(:E x d x E f ∈→,即))(3,()(E x d x D x f ∈=,其中)3,(d x D 表示以E x ∈为中心,以3d 为半径的圆盘. 显然当y x ≠时,有∅=)3,()3,(d y D d x D ,即)()(y f x f ≠,于是f 为双射,由第2题知:a E x d x ≤∈}:)3,{(,故a E ≤. 习题1.41.直线上一切闭区之集具有什么基数?区间],[b a 中的全体有理数之集的基数是什么?答 直线上一切闭区间之集的基数是c . 这是因为:2),(],[:R ∈→b a b a f 为单射,而R ∈→a b a f ],[:为满射,所以c M c =≤≤=2R R .区间],[b a 中的全体有理数之集的基数是c ,这是因为:a b a a =≤≤Q Q ],[.2.用],[b a C 表示],[b a 上的一切连续实值函数之集,证明:(1) 设},,,,{],[21 n r r r b a =Q ,],[,b a C g f ∈,则⇔=g f ),2,1)(()( ==k r g r f k k ;(2) 公式)),(,),(),(()(21 n r f r f r f f =π定义了单射)(],[:R S b a C →π;(3) c b a C =],[.证明 (1) 必要性. 显然.充分性. 假设),2,1)(()( ==k r g r f k k 成立. 因为},,,{\],[321 r r r b a x ∈∀,存在有理数列∞=1}{n n x ,使得x x n n =∞→lim ,由],[,b a c g f ∈,可得 )()lim ()(lim x f x f x f n n n ==∞→∞→及)()lim ()(lim x g x g x g n n n ==∞→∞→. 又因为∞=1}{n n x 为有理点列,所以有)()(n n x g x f =,故],[b a x ∈∀,都有)()(x g x f =.(2) ],[,b a c g f ∈∀,设)()(g f ππ=,即 )),(,),(),(()),(,),(),((2121 n n r g r g r g r f r f r f =.由(1)知:g f =. 故π为单射.(3) 由(2)知:c R S b a c =≤)(],[;又由],[b a c ⊂R ,可得],[b a c c ≤=R . 故c b a C =],[.3.设],[b a F 为闭区间]1,0[上的一切实值函数之集,证明:(1) ]},[:))(,{()(b a x x f x f ∈=π定义了一个单射)(],[:2R P b a F →π;(2) ]1,0[⊂∀E ,E E χα=)(定义了单射],[])1,0([:b a F P →α;(3) ],[b a F 的基数是c 2.证明 (1) ],[,b a F g f ∈∀,设)()(g f ππ=,即]},[:))(,{(]},[:))(,{(b a x x g x b a x x f x ∈=∈.从而]),[)(()(b a x x g x f ∈∀=,故π为单射.(2) ]1,0[,⊂∀F E ,设)()(F E αα=,则F E F E χααχ===)()(,故α为单射. (3) 由(1)知:c P b a F 2)(],[2=≤R ;又由(2)知:],[2])1,0([b a F P c ≤=,故c b a F 2],[=.4.证明:c n =C .证明 因为R R C ⨯~,而c =⨯R R ,故c =C ;又由定理1..4.5知:c n=C . 5.证明:若E 为任一平面点集且至少有一内点,则c E =.证明 显然c E =⨯≤R R . 设00E x ∈,则0>∃δ使得E x B ⊂),(0δ,可知E x B c ≤=),(0δ,故c E =.第一章总练习题.1 证明下列集合等式.(1) ()()F F E F E E F E \\\ ==;(2) ()()()G F G E G F E \\\ =.证明 (1) 因为\()()()()()\c c c c c E E F EE F E E F E E E F E F ====, ()\()()()\c c c E F F E F F E F F F E F ===.所以\\()()\E F E E F E F F ==.(2) 因为()\()()()(\)(\),c c c c E F G E F G E F G E G F G E G F G ==== 所以()()()G F G E G F E \\\ =..2 证明下列集合等式.(1) ()B A B A n n n n \\11∞=∞== ;(2) ()B A B A n n n n \\11∞=∞== . 证明 (1)1111\()()(\)c c n n n n n n n n A B A B A B A B ∞∞∞∞=======. (2) 1111\()()(\)c c n n n n n n n n A B A B A B A B ∞∞∞∞=======. 3.证明:22[][][]cc E f g c E f E g +≥⊂≥≥,其中g f ,为定义在E 的两个实值函数,c 为任一常数.证明 若()()22c c x E f E g ∉≥≥, 则有()2c f x <且()2c g x <, 于是 ()()()()f x g x f g x c +=+<, 故()x E f g c ∉+≥. 所以()()()22c c E f g c E f E g +≥⊂≥≥. 4.证明:n R 中的一切有理点之集n Q 与全体自然数之集对等. 证明 因为0Q =ℵ,所以0Q Q Q Q n =⨯⨯⨯=ℵ(推论1.3.1). 又因为0N =ℵ, 所以0Q n N ==ℵ, 故Q ~n N .5.有理数的一切可能的序列所成之集)(Q S 具有什么基数?6.证明:一切有理系数的多项式之集][x Q 是可数集.证明 设},Q ,,,,,0,][:][{][Q 1100111∈≠++++==---n n n n n n n n n n a a a a a a x a x a x a x P x P x 于是.][Q ][Q 0 ∞==n n x x 显然,Q~][Q 1n +x n 所以,Q ][Q 1n a x n ==+ 因此由定理1.3.5知:.][Q a x = 7.证明:一切实系数的多项式之集][x R 的基数为c .证明 记 },R ,,,,,0,][:][{][R 1100111∈≠++++==---n n n n n n n n n n a a a a a a x a x a x a x P x P x 于是.][R ][R 0 ∞==n n x x 显然,R ~][R 1n +x n 所以,R ][R 1n c x n ==+ 因此由定理1.4.3知:.][R c x =8.证明:全体代数数(即可作为有理系数多项式之根的数)之集是可数集,并由此说明超越数(即不是代数数的实数)存在,而且全体超越数之集的基数是c .证明 由于有理系数多项式的全体是可数集,设其元素为,,,,,,210 n P P P P 记多项式)(x P n 的全体实根之集为,n A 由于n 次多项式根的个数为有限个,故n A 为有限集,从而代数数全体 ∞==0n n A A 为可数个有限集的并,故A 为可数集,即.a A =设超越数全体所成之集为,B 即,\R A B = 则R,=B A 从而B 必为无限集,由于A 为可数集,而任一无限集添加一个可数集其基数不变,故.R c B A B ===9.证明:A B B A \~\,则B A ~.证明 因为),()\(),()\(B A A B B B A B A A ==又因为,)(\)(\,~,\~\∅==B A A B B A B A B A B A A B B A所以由保并性知),()\(~)()\(B A A B B A B A即.~B A10.证明:若,,D B B A <≤则D A <. 证明 (反证法) 假设,D A = 则由已知可得,B D ≤ 这与D B <矛盾. 故有D A <.11.证明:若c B A = ,则c A =或c B =.证明 假设,a B A == 则有,a B A = 这与c B A = 矛盾,故有c A =或c B =.12.证明:若c A k k =+∈Z ,则存在+∈Z k 使得c A k =. 证明同上.。

所有自然数之和是负十二分之一

所有自然数之和是负十二分之一

刘大可文最近有一个很有趣的视频,讲述了这样一件数学趣事:全体自然数的和是-1/12。

虽然果壳和知乎上都已经有了问答,但是数学语言过于晦涩,不利于理解,所以我自己写了一份更简洁的日志作为阐述,不过尽量保证了严谨。

首先说视频,他是这么证明的:设这个东西等于多少呢?很显然,这要看你在什么地方停下来了,如果你停在第奇数个1上,结果就是1;如果停在偶数个1上,那结果就是0。

既然这样的话,那就平均一下好了,它等于1/2。

看到这里,你显然会觉得这实在荒唐愚蠢,但是更“荒唐”的东西还在后面,但新奇的东西也在后面,你最好还是继续看下去。

好,有了S1=1/2,他又令那么取两个S2错开一位相加,即则有2S2=S1=1/2,,也就是S2=1/4 !虽然这让人很不服气,但是他接着计算既然S2=1/4,那么我们大功告成了,S=-1/12——全体自然数的和是-1/12 !看到这里的时候,我想几乎所有人都和我一样觉得这实在是牵强附会荒唐可笑,但视频中一再声称这种算法的意义,所以我翻墙出去做了个简单的研究,得到了这样的结论:我们确实可以对全体自然数求和得到-1/12 ,但这个和并非我们做加法得到的代数和,而是发散级数和——这个-1/12 根本就不“加”出来的。

于是,下面就是我对这个问题的解释,虽然有一些公式,但是都极其简单,你可以轻松阅读不费脑子。

要弄明白这个问题,我们首先要知道什么是“级数”以及“发散级数”,而这是一个非常简单的问题。

随便找一个数列,比如等差数列a n=n ,也就是1 、2、3 、4 、5、6 ……把数列中的每个元素都用加号连接起来,就是一个级数,其实就是求总和。

对于上面的a n,它的级数就是其中,级数的前n项的和被称作部分和,记作S n(其实就是“数列的前n项和”,高考复习翻来覆去做过的那个东西)。

那么只要上过高中就能意识到,随着n趋于无穷,级数的部分和S n有可能趋近于某一个值,即有极限,比如级数1+1/2+1/4+1/8……,它的部分和就会不断趋近于2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

全体自然数之和
“全体自然数的和是-1/12”这个惊人的结论已经在互联网上传播了许多年,也有许多讨论它的文章,往期节目也触及过这个问题,本期节目集中展示了另一种常人或许可以接受的解释。

这类悖谬常理的数学结论最容易让公众产生“科学家关起门来胡闹”的错误印象,但事实并非如此,在量子物理揭示的无穷现象中,这样的结论真的能排上实际的用场。

限于表达的形式,我们无法在这期节目里充分流露出这样一种观点:数学并不仅仅是形式的演绎,不仅仅是“大脑分泌物”而已,在严格的意义上,数学更接近经验科学,它同样以模型和观察的方式,探索着客观世界面貌。

全体自然数的和是-1/12,这是怎么来的?
一个最通俗,所以也最引人争议的做法,是一种看上去很简单的算术算法:
首先令S0=1-2+3-4+5-6……
我们已经在往期节目里看到过令它收敛到1/4的方法。

再令全体自然数的和为S,减去这个S0,则有:
S-S0=0+4+0+8+0+12+0+16……
也就等于4个S,也就是说-S0等于3个S,所以S等于负十二分之一。

所以虽然往期节目里一般的收敛法不能直接求出全体自然数的
和,但仍然间接暗示了这个怪异的结论。

事实上,不论用什么方法计算全体自然数的和,只要不是无穷大,就是-1/12。

除了上期的拉马努金和之外,我们再考虑这样一个更简单的对象:阶乘。

中学课本就讲过,某个自然数的阶乘是指把不大于这个数的自然数逐个连乘起来,写作一个感叹号。

比如5!=1×2×3×4×5。

1!当然是1,另外根据n!=n(n-1)!取n=1,就有0!也=1。

到此为止,一切都很简单,很可以理解——但现在如果告诉你(1/2)!=根号π/2;(-1/2)!=根号π;(-2)!=∞,你恐怕就会感到困惑了,因为这些“非自然数”的阶乘看起来根本没有意义——如果将这种困惑用数学语言表述出来,就是1/2、-1/2、-2……之类的数字,并不在阶乘这种一元函数的定义域上。

正如同如果我们定义了函数f(x)=x+1,其中x∈[1,2],那么f(0)就没有意义一样。

但与阶乘不同的是,这个f(x)未免太简单了,即便f(0)即便不在定义域内,我们也会不由自主地将它拓展,得到f(0)=1。

然后自责到:这个函数既然没有延伸到x=0,我们又有什么理由认为它会这样延伸呢?
然而我们的确有一个极好的理由认为f(0)就=1,这个理由就是“光滑”。

乍看起来,将这一小截线段光滑地延伸出去有无穷多种方案,新加入的曲线只要能在端点处与线段相切,哪怕是儿童一笔画都没有问
题。

其实并没有这么简单:我们知道,函数某一点的导数就是这一点的切线斜率,那么对于切点来说,左右两边不仅函数值相同,而且导数值也相同,因此看起来很光溜。

我们可以称它为一阶可导。

但观察导数的导数,就会发现切点两侧并不相同,因此这个切点附近二阶不可导。

而数学意义上的“光滑”是指“无穷多阶都可导”,这样无穷严格的条件排除了所有单纯的相切,以至于产生了一个惊人的结论:光滑函数任取其中一小段,就能唯一确定整个函数。

所以要在数学意义上光滑地延长f(x),唯一的结果就是f(0)=1,这种满足强迫症的操作就叫“解析延拓”——这就有趣了。

阶乘是一个定义在全体自然数上的离散函数,画在平面上就是一串散点,我们会本能地心生不满,想要将它们光滑地连接起来——在这里,那些散点就相当于“一小段函数”,而那个连接延伸出来的函数,就是阶乘的解析延拓,Γ函数。

但与案例中的f(x)不同,Γ函数在形式上与阶乘毫无共通,是一个积分形式的超越函数。

我们不必对此过于介怀,毕竟是哥德巴赫在1722年向伯努利提出了这个问题,并且直到1729年才由更强大的欧拉最终解决,所以有心无力的同学只需观察这个结论即可:
对于任何自然数,可见Γ函数果然是阶乘的延拓。

所以对Γ函数取负数和分数的值,就是拓展的阶乘运算了。

而要用同样的理念解决全体自然数的和就精妙得多:无穷大不是一个具体的数,我们先要设法将“全体自然数的和”浓缩在某个函数上才能尝试延拓——这个函数倒不复杂,就是这个ζ函数。

“全体自然数的和”就是它在s=-1时的值。

糟糕的是,自古以来,我们就不知道这个函数的任何数值结果:当s小于1的时候它显然发散,趋于无穷,而s=1的时候它就是调和级数,我们在往期节目中证明了它不收敛——除此之外就一无所知了。

终于在1735年,欧拉证明了自然数的平方倒数和收敛于π2/6,并在此后数年研究了它的许多性质,同时计算出了全体自然数的和是-1/12这个惊人的结论,以及全体自然数的平方和是0、立方和是
1/120这些同样疯狂的结论。

最终使这些结论确立起来的是黎曼,他在1859年找到了ζ函数
的解析延拓:
这同样是个积分形式的超越方程,其中的Γ就是阶乘延拓后的Γ函数,将s=-1带入其中,就能轻易得出全体自然数的和是-1/12这
个结论。

到此为止,我们至少用四种方法得出了全体自然数的和是-1/12,但是直到今天,我们都不知道这意味着什么,只知道在量子力学中如果遇到全体自然数和,-1/12代替无穷就总能得到最符合实验结果的数值。

仔细想一想也的确如此,无穷大从来都是人类想象出来的概念,从来都不是任何观察到的结果。

于是最有可能的情况是,正如在数轴另一头发现负数,在数轴两侧发现虚数,这一切都暗示着数轴无穷远处并非混沌一片,那里蕴藏着崭新的数学体系等待我们建立。

相关文档
最新文档