雅克比迭代法

雅克比迭代法
雅克比迭代法

雅克比迭代法

上机题目:

用雅克比迭代法解线性方程组

上机程序:

#include

#include

main()

{

double A[3][3]={{5,2,1},{-1,4,2},{2,-3,10}},b[3]={-12,20,3}; // 输入系数矩阵A 和右端向量b double n=3, tol=1.0e-3,x[3]={-3,1,1}; // 输入方程大小n,误差限tol,和初始向量x

double y[3]; // 记录每次迭代产生的新的近似解

double maxerr; // maxerr 记录相邻两个数值解想x 与y 的差的绝对值的最大的那个分量。

int k,i,j;

printf("此线性方程组的增广矩阵如下:\n ");

// 下面循环是输出增广矩阵(A, b)

for (k=0;k

{

for (i=0;i

{printf("%f ",A[k][i]);

}

printf("%f \n", b[k]);

}

// 输出增广矩阵(A, b)完

printf("此方程组的精确解为x=(-4, 3, 2),\n"); // 显示精确解以便于对比

// 输出初始迭代向量

printf("\n Jacobi迭代的初始值x^0=(");

for (i=0;i

{printf(" %f ",x[i]);

}

printf(") \n");

// 输出初始迭代向量完

printf("误差限是%f \n",tol); // 输出误差限

printf(" Jacobi迭代解序列X^(k) max|x^(k+1)-x^(k)| \n ");

printf("x^%d = ",k=0);

for(i=0;i

printf("%f ",x[i]);

printf("\n");

// Jacobi迭代

k=0;

do

{ for(i=0;i

{

double T=0.0;

for(j=0;j

{

if(j==i)continue;

T=T+A[i][j]*x[j];

}

y[i]=(b[i]-T)/A[i][i];

}

// Jacobi迭代完

//求相邻两个数值解想x 与y 的差的绝对值的最大的那个分量

maxerr=fabs(y[0]-x[0]);

for (j=1;j

{ if (maxerr

maxerr=fabs(y[j]-x[j]);

}

//求相邻两个数值解想x 与y 的差的绝对值的最大的那个分量完

for(i=0;i

{

x[i]=y[i];

}

k=k+1;

printf("x^%d=",k);

for(i=0;i

printf(" %f",maxerr);

printf("\n");

}while(maxerr>tol);

}

运行结果:

牛顿迭代法文献综述

“牛顿迭代法”最新进展文献综述牛顿法是一种重要的迭代法,它是逐步线性化的方法的典型代表。牛顿迭代法又称为牛顿-拉夫逊方法,它是牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法。多数方程不存在求根公式,因此求精确根非常困难,甚至不可能,从而寻找方程的近似根就显得特别重要。方法使用函数f(x)的泰勒级数的前面几项来寻找方程f(x) = 0的根。牛顿迭代法是求方程根的重要方法之一,其最大优点是在方程f(x) = 0的单根附近具有平方收敛,而且该法还可以用来求方程的重根、复根。另外该方法广泛用于计算机编程中。 介绍一下牛顿迭代法研究的前沿进展,1992年南京邮电学院基础课部的夏又生写的一篇题名一类代数方程组反问题的牛顿迭代法,对一类代数方程组反问题提出了一个可行的迭代解法。从算法上看,它是一种解正问题—迭代—解正问题迭代改善的求解过程。湖南师范大学的吴专保;徐大发表的题名堆浸工艺中浸润面的非线性问题牛顿迭代方法,为了研究堆浸工艺的机理,用牛顿迭代公式寻求浸润面的非线性方程的数值解,经过14次迭代的误差达到了,说明此算法收敛有效。浙江大学电机系的林友仰发表的牛顿迭代法在非线性电磁场解算中的限制对非线性电磁场解算中的限制做了分析,求解非线性方程组时迭代法是不可避免的。牛顿—拉斐森迭代法由于它的收敛速度快常被优先考虑。应用这个方法的主要问题是求雅可比矩阵。因为雅可比矩阵元素的计算非常费时。然而,本文要说明的是当利用以三角形为单元的有限元法求解非线性方程组时,应用牛顿法其雅可比矩阵容易求得,并且它保持了原系数的对称性和稀疏性,因而节省了时间。与此相反,若在差分法中应用牛顿迭代,并且按习惯用矩形网格进行剖分,则雅可比阵的计算很费时,而且不再保持原有对称性,这就使得存贮量和计算时间大为增加。南株洲工学院信息与计算科学系的吕勇;刘兴国发表的题名为牛顿迭代法加速收敛的一种修正格式,主要内容牛顿迭代法是求解非线性方程的一种重要的数值计算方法,在通常情况下,它具有至少平方收敛。本文利用文献[4]所建立的迭代格式xn+1=xn-αf(xfn)(x+n)f′(xn),对迭代格式中的参数α的讨论,实现了牛顿迭代法加速收敛的一种修正格式。

牛顿迭代法

牛顿迭代法 李保洋 数学科学学院信息与计算科学学号:060424067 指导老师:苏孟龙 摘要:牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法,即牛顿迭代法.迭代法是一种不断用变量的旧值递推新值的过程.跟迭代法相对应的是直接法或者称为一次解法,即一次性解决问题.迭代法又分为精确迭代和近似迭代.“牛顿迭代法”属于近似迭代法,本文主要讨论的是牛顿迭代法,方法本身的发现和演变和修正过程,避免二阶导数计算的Newton迭代法的一个改进,并与中国古代的算法,即盈不足术,与牛顿迭代算法的比较. 关键词:Newton迭代算法;近似求解;收敛阶;数值试验;中国古代数学; 九章算术;Duffing方程;非线性方程;收敛速度;渐进性 0 引言: 迭代法也称辗转法,是一种不断用变量的旧值递推新值的过程,跟迭代法相对应的是直接法或者称为一次解法,即一次性解决问题.迭代法又分为精确迭代和近似迭代.“二分法”和“牛顿迭代法”属于近似迭代法. 迭代算法是用计算机解决问题的一种基本方法.它利用计算机运算速度快、适合做重复性操作的特点,让计算机对一组指令(或一定步骤)进行重复执行,在每次执行这组指令(或这些步骤)时,都从变量的原值推出它的一个新值.具体使用迭代法求根时应注意以下两种可能发生的情况: (1)如果方程无解,算法求出的近似根序列就不会收敛,迭代过程会变成死循环,因此在使用迭代算法前应先考察方程是否有解,并在程序中对迭代的次数给予限制. (2)方程虽然有解,但迭代公式选择不当,或迭代的初始近似根选择不合理,也会导致迭代失败. 所以利用迭代算法解决问题,需要做好以下三个方面的工作: 1、确定迭代变量.在可以用迭代算法解决的问题中,至少存在一个直接或间接地不断由旧值递推出新值的变量,这个变量就是迭代变量. 2、建立迭代关系式.所谓迭代关系式,指如何从变量的前一个值推出其下一个值的公式(或关系).迭代关系式的建立是解决迭代问题的关键,通常可以使用递推或倒推的方法来完成. 3、对迭代过程进行控制,在什么时候结束迭代过程?这是编写迭代程序必须考虑的问题.不能让迭代过程无休止地重复执行下去.迭代过程的控制通常可分为两种情况:一种是所需的迭代次数是个确定的值,可以计算出来;另一种是所需的迭代次数无法确定.对于前一种情况,可以构建一个固定次数的循环来实现对迭代过程的控制;对于后一种情况,需要进一步分析出用来结束迭代过程的条件. 1牛顿迭代法:

雅可比迭代法

2013-2014(1)专业课程实践论文 题目:雅可比迭代法

一、算法理论 设有方程组),...,2,1(1 n i b x a i j n j ij ==∑= 记作,b Ax = (1) A 为非奇异阵且),,...,2,1(0n i a ij =≠将A 分裂为U L D A --=,其中 D =????????????????nn a a a 22 11,L =-??? ????? ???? ????-00001,21323121n n n n a a a a a a U =-?? ? ?? ? ? ? ????????-0000,122311312n n n n a a a a a a 将式(1)第)....2,1(n i i =个方程用ii a 去除再移项,得到等价方程组 (),,...,2,111n i x a b a x n i j j j ij i ii i =??? ? ? ?? -=∑≠= (2) 简记作 ,0f x B x += 其中 ().,111 0b D f U L D A D I B ---=+=-= 对方程组(2)应用迭代法,得到解式(1)的雅可比迭代公式 () () ()()()()()????????? ?? ? ??- ==∑≠=+,1,...,11002010n i j i k j ij i ii k i t n x a b a x x x x x , 初始向量 (3)

其中()()()()()T k n k k k x x x x ,,...,21=为第k 次迭代向量。设()k x 已经算出,由式(3)可计算下一次迭代向量()(),,...,2,1,...;2,1,01n i k x k ==+ 显然迭代公式(3)的矩阵形式为 ()()()()???+=+,010f x B x x k k ,初始向量 其中0B 称为雅可比方法迭代矩阵。

迭代法与D值法使用

迭代法 对于两端固定的单跨超静定粱,有转角位移方程如下: F AB AB AB B A AB AB M L i i i M +?-+=6 24?? (F AB M 为A 端的固端弯矩,如在均布荷载作用下2 12 1ql M F AB -=) 令' =AB A AB M i ?2,'=BA B AB M i ?2,L i M AB AB AB ?-="6 所以:F AB AB BA AB AB M M M M M +"+'+'=2 ('AB M 近端转角弯矩,' BA M 远端转角弯矩) 对于框架横梁,AB ?=0,所以0=" AB M , F AB BA AB AB M M M M +'+'=2 即('++?? ? ??'+'=AB F AB BA AB AB M M M M M ) (1) 对于一点A ,AB M +AC M +AD M =0,有02,,,,,,=+ ' + ' ∑∑∑===D C B i F Ai D C B i iA D C B i Ai M M M ,可以得 到: ??? ? ??+'-=' ∑∑∑===D C B i F Ai D C B i iA D C B i Ai M M M ,,,,,,21,

其中: ???? ??+'- =' ∑∑∑===D C B i F Ai D C B i iA D C B i Ai Ai Ai M M i i M ,,,,,,2 1 (2) (2)式得到的' Ai M 为近似值,需要经过多次的迭代才满足精度,迭代的同时, 'iA M 也进行了迭代。这两个值趋近于准确解。 最后:根据(1)式,F Ai iA Ai Ai M M M M +'+'=2。 (3) 迭代法的步骤: 1. 计算固端弯矩F Ai M 和结点不平衡弯矩 ∑=D C B i F Ai M ,,,并设1=-2ik ik ik i i i μ' ∑初始值为 零。 2. 计算分配系数:∑=- D C B i Ai Ai i i ,,2 1,算出与结点相关杆件的弯矩分配系数。 3. 计算结点各杆件的近端转角弯矩:公式(2) ??? ? ??+'-='∑∑∑===D C B i F Ai D C B i iA D C B i Ai Ai Ai M M i i M ,,,,,,21 4. 多次迭代,保证精度。 5. 得到杆端最后弯矩:公式(3),F Ai iA Ai Ai M M M M +'+'=2 举例:

Newton迭代法实例

基于牛顿迭代法的圆形断面临界水深直接计算 学院:建筑工程学院学号:2111206052 姓名:王瑞峰 一、问题来源 圆形断面由于具有受力条件好、适应地形能力强、水力条件好等优点,已成为农田灌溉、城市给水排水等工程较常采用的断面形式。而临界水深的计算则是进行圆形断面水力计算的关键,但其计算较繁杂,要求解高次隐函数方程,且未知量包含在三角函数中,求解难度大。自20世纪90年代,对圆形断面临界水深的计算进行了大量研究,获得了较多成果。鉴此,本文应用牛顿迭代算法,得到一种较简洁且可提供高精度算法程序的近似计算公式。 二、数学模型 相应于断面单位能量最小值的水深称为临界水深,其计算公式为: 需满足的临界流方程为: 其中 式中,d为洞径;为临界水深对应的圆心角,rad;n为流速分布不均匀系数(不特殊说明时取1.0);Q为流量,m3Is;g为重力加速度(通常取9.81 m/s2);分别为临界流对应的过水断面面积和水面宽度。 无压流圆形断面的水力要素见图1 将式(1)、(3)、(4)代入式(2)得: 将式(5)整理即得临界水深的非线形方程: 由此可知.式(6)为临界水深h。的高次隐函数方程,且未知量包含在三角函数中。 即圆形断面临界水深的求解即为式(6)的求根问题。在现行工程实际中计算临界水深时均采用近似公式或试算法,所得结果精度不高且效率较低。 三、方法选择 牛顿迭代法是求方程根的重要方法之一,其最大优点是在方程f(x) = 0的单根附近具有平方收敛,而且该法还可以用来求方程的重根、复根。 解非线性方程f(x)=0的牛顿法是把非线性方程线性化的一种近似方法。把f(x)在x0点

附近展开成泰勒级数f(x) = f(x0)+(x-x0)f'(x0)+(x-x0)^2*f''(x0)/2! +… 取其线性部分,作为非线性方程f(x) = 0的近似方程,即泰勒展开的前两项,则有f(x0)+f'(x0)(x- x0)=f(x)=0 设f'(x0)≠0则其解为x1=x0-f(x0)/f'(x0) 这样,得到牛顿法的一个迭代序列:x(n+1)=x(n)-f(x(n))/f'(x(n))。 在对式(6)的求解方法中,应首选牛顿迭代法,因为牛顿迭代法可快速求解出其他方法求不出或难以求出的解。 引入无量纲参数k: 将式(7)代入式(6)得: 的一阶、二阶导函数分别为: 由牛顿迭代法可得: 式中,=0,1,2…为迭代次数;为的初值。 将式(8)、(9)代入式(10),可得相应于式(6)临界水深对应中心角的牛顿迭代公式: 由式(11)迭代计算出临界水深对应的中心角后,代入式(1)即可得临界水深。 根据文献,为避免渡状水面有可能接触洞顶引起水流封顶现象。洞内水面线以上的空间不宜小于隧洞断面面积的15%,且高度不小于0.4m。可得临界水深对应的中心角的最大值一般不超过4.692,相应可得无量纲参数值的上限为0.5044。故取值范围为[O.000 0,0.504 4]。 查阅文献与的近似公式: 若将式(12)视为初值函数,代入式(11)进行一次迭代计算,不仅得到了直接计算的公式,且提高了计算结果的精度。 其中 将式(13)代入式(1)即得圆形断面临界水深。 计算实例: 某引水式电站输水隧洞为圆形断面,已知洞径d=3.0 m,试确定设计流量Q=8.0m3/s时的临界水深。 四、编程实现 本文采用Fortran软件求解,程序的代码如下:

MATLAB样例之雅克比迭代法

要求: 下面分别使用雅克比迭代法和高斯-赛德尔迭代法求一个方程组的近似解用的线性方程组是按实验要求给的: 7*x1+x2+2*x3=10 x1+8*x2+2*x3=8 2*x1+2*x2+9*x3=6 雅克比迭代法的matlab代码:(老师写的) A=[7,1,2;1,8,2;2,2,9]; b=[10;8;6]; if(any(diag(A))==0) error('error,pause') end eps=input('误差限eps='); N=input('迭代次数N='); D=diag(diag(A)); B=inv(D)*(D-A); f=inv(D)*b; K=0; x0=zeros(size(b)); while 1 x1=B*x0+f K=K+1; fprintf('第-次迭代的近似解为',K) disp(x1'); if norm(x1-x0,inf)N fprintf('迭代超限') end x0=x1; end 高斯-赛德尔迭代法matlab代码:(自己改的)

A=[7,1,2;1,8,2;2,2,9]; b=[10;8;6]; if(all(diag(A))==0) error('error,pause') end eps=input('误差限eps='); N=input('迭代次数N='); D=diag(diag(A)); B=inv(D)*(D-A); f=inv(D)*b; K=0; x0=zeros(size(b)); x00=x0; while 1 x11=B*x0+f; x00(1,1)=x11(1,1); x12=B*x00+f; x00(2,1)=x12(2,1); x13=B*x00+f; x00(3,1)=x13(3,1); x1=x00 K=K+1; fprintf('第-次迭代的近似解为',K) disp(x1'); if norm(x1-x0,inf)N fprintf('迭代超限') end x0=x1; end

非线性方程组的牛顿迭代法的应用

非线性方程组的牛顿迭代法的应用

CENTRAL SOUTH UNIVERSITY 数值分析实验报告

非线性方程组的牛顿迭代法的应用 一、问题背景 非线性是实际问题中经常出现的,并且在科学与工程计算中的地位越来越重要,很多我们熟悉的线性模型都是在一定条件下由非线性问题简化的,为得到更符合实际的解答,往往需要直接研究非线性科学,它是21世纪科学技术发展的重要支柱,非线性问题的数学模型有无限维的如微分方程,也有有限维的。道遥咏计算机进行科学计算都要转化为非线性的单个方程或方程组的求解。从线性到非线性是一个质的变化,方程的性质有本质不同,求解方法也有很大差别。本文主要介绍的是非线性方程组的牛顿迭代法的数值解法。 二、数学模型 对于方程()0=x f ,如果()x f 湿陷性函数,则它的求根是容易的。牛顿法实质上是一种线性化方法,其基本思想是将线性方程()0=x f 逐步归结为某种线性方程来求解。 设已知方程()0=x f 有近似根k x (假定()0'≠k x f ),将函数()x f 在点k x 展开,有 ()()()()k k k x x x f x f x f -+≈', 于是方程()0=x f 可近似地表示为 ()()()0'=-+k k k x x x f x f 这是个线性方程,记其根为1+k x ,则1+k x 的计算公式 () () k k k k x f x f x x ' 1- =+, ,1,0=k 这就是牛顿法。 三、算法及流程 对于非线性方程 ()()()???? ????????=n n n n x L x x f M x L x x f x L x x f f ,,,,,,,,,2 12 12211 在()k x 处按照多元函数的泰勒展开,并取线性项得到

非线性方程组的牛顿迭代法的应用

CENTRAL SOUTH UNIVERSITY 数值分析实验报告

非线性方程组的牛顿迭代法的应用 一、问题背景 非线性是实际问题中经常出现的,并且在科学与工程计算中的地位越来越重要,很多我们熟悉的线性模型都是在一定条件下由非线性问题简化的,为得到更符合实际的解答,往往需要直接研究非线性科学,它是21世纪科学技术发展的重要支柱,非线性问题的数学模型有无限维的如微分方程,也有有限维的。道遥咏计算机进行科学计算都要转化为非线性的单个方程或方程组的求解。从线性到非线性是一个质的变化,方程的性质有本质不同,求解方法也有很大差别。本文主要介绍的是非线性方程组的牛顿迭代法的数值解法。 二、数学模型 对于方程()0=x f ,如果()x f 湿陷性函数,则它的求根是容易的。牛顿法实质上是一种线性化方法,其基本思想是将线性方程()0=x f 逐步归结为某种线性方程来求解。 设已知方程()0=x f 有近似根k x (假定()0'≠k x f ),将函数()x f 在点k x 展开,有 ()()()()k k k x x x f x f x f -+≈', 于是方程()0=x f 可近似地表示为 ()()()0'=-+k k k x x x f x f 这是个线性方程,记其根为1+k x ,则1+k x 的计算公式 ()() k k k k x f x f x x ' 1- =+, ,1,0=k 这就是牛顿法。 三、算法及流程 对于非线性方程 ()()()???? ????????=n n n n x L x x f M x L x x f x L x x f f ,,,,,,,,,2 1212211 在()k x 处按照多元函数的泰勒展开,并取线性项得到

用牛顿迭代法求近似根

用牛顿迭代法求近似根

————————————————————————————————作者:————————————————————————————————日期:

第四题 题目:用Newton 法求方程在 74 28140x x -+= (0.1,1.9)中的近似根(初始近似值取为区间端点,迭代6次或误差小于0.00001). 解:此题是用牛顿迭代法求解近似根的问题 1. Newton 迭代法的算法公式及应用条件: 设函数在有限区间[a,b]上二阶导数存在,且满足条件 ⅰ. ()()0f a f b <; ⅱ. ()''f x 在区间[a,b]上不变号; ⅲ. ()'0f x ≠; ⅳ. ()()'f c f c b a ≤-,其中c 是a,b 中使()()''min(,)f a f b 达到的一个. 则对任意初始近似值0[,]x a b ∈,由Newton 迭代过程 ()()() 1'k k k k k f x x x x f x +=Φ=-,k=0,1,2… 所生成的迭代序列{ k x }平方收敛于方程()0f x =在区间[a,b]上的唯一解а. 对本题: )9.1()9.1(0 )8(4233642)(0 )16(71127)(0 )9.1(,0)1.0(,1428)(3225333647>?''<-=-=''<-=-='<>+-=f f x x x x x f x x x x x f f f x x x f Θ 故以1.9为起点 ?? ???='-=+9.1)()(01x x f x f x x k k k k 2. 程序编写 #include #include void main() { double x0,x=1.9; do

线性方程组的迭代法应用及牛顿迭代法的改进

线性方程组的迭代法应用及牛顿迭代法的改进 摘要: 迭代解法就是通过逐次迭代逼近来得到近似解的方法。由于从不同 的问题而导出的线性代数方程组的系数矩阵不同,因此对于大型稀疏矩阵所对应线性代数方程组,用迭代法求解。本文论述了Jacobi 法,Gauss-Seidel 法,逐次超松弛法这三种迭代法,并在此基础上对牛顿型的方法进行了改进,从而使算法更为精确方便。 关键词:线性方程组,牛顿迭代法,Jacobi 法,Gauss-Seidel 法,逐次超松弛 法 1.线性方程组迭代法 1.1线性方程组的迭代解法的基本思想 迭代法求解基本思想:从某一初始向量X (0)=[x 1(0) ,x 2(0) ,……………x n (0) ]出发,按某种迭代规则,不断地对前一次近似值进行修改,形成近似解的向量{X (k)}。当近似解X (k) =[x 1(k) ,x 2(k) ,……………x n (k) ]收敛于方程组的精确解向量X* =[x 1*,x 2*,……………x n *]时,满足给定精度要求的近似解向量X (k)可作为X*的数值解。 1.2 线性方程组的迭代法主要研究的三个问题 (1) 如何构造迭代公式 (2) 向量数列{X (k)}的收敛条件 (3) 迭代的结束和误差估计 解线性方程组的迭代解法主要有简单迭代法、 Gauss-Seidel 法和SOR 法。简单迭代法又称同时代换法或Jacobi 法,是最简单的解线性方程组的迭代解法也是其他解法的基础。 1.3Jacobi 迭代法 设方程组点系数矩阵n n j A ai R ???=∈??满足条件0ii a ≠,i=0,1,2, …n 。把A 分解为 A=D+L+U

数值分析5-用Jacobi迭代法和Gauss-Seidel迭代法求解线性方程组

作业六:分别编写用Jacobi迭代法和Gauss-Seidel迭代法求解线性方程组Ax=B的标准程序,并求下列方程组的解。 可取初始向量 X(0) =(0,0,0)’; 迭代终止条件||x(k+1)-x(k)||<=10e-6 (1) = (2) = Jacobi迭代法: 流程图 开 始 判断b中的最大值 有没有比误差大 给x赋初值 进行迭代 求出x,弱到100次还没到,警告不收 结束

程序 clear;clc; A=[8,-1,1;2,10,01;1,1,-5]; b=[1;4;3]; e=1e-6; x0=[0;0;0]'; n=length(A); x=zeros(n,1); k=0; r=max(abs(b)); while r>e for i=1:n d=A(i,i); if abs(d)100 warning('不收敛'); end end x=x0;

程序结果(1)

(2)

Gauss-Seidel迭代法: 程序 clear;clc; %A=[8,-1,1;2,10,01;1,1,-5]; %b=[1;4;3]; A=[5,2,1;-1,4,2;2,-3,10]; b=[-12;20;3]; m=size(A); if m(1)~=m(2) error('矩阵A不是方阵'); end n=length(b); %初始化 N=0;%迭代次数 L=zeros(n);%分解A=D+L+U,D是对角阵,L是下三角阵,U是上三角阵U=zeros(n); D=zeros(n); G=zeros(n);%G=-inv(D+L)*U d=zeros(n,1);%d=inv(D+L)*b x=zeros(n,1); for i=1:n%初始化L和U for j=1:n if ij U(i,j)=A(i,j); end end end for i=1:n%初始化D D(i,i)=A(i,i); end G=-inv(D+L)*U;%初始化G d=(D+L)\b;%初始化d %迭代开始 x1=x; x2=G*x+d; while norm(x2-x1,inf)>10^(-6)

牛顿迭代法及其应用教学提纲

编号 毕业设计(论文)题目 Newton Raphson 算法及其应用 二级学院数学与统计学院 专业信息与计算科学 班级108010101

学生姓名侯杰学号10801010106 指导教师职称 时间 目录 摘要 (3) Abstract (3) 一、绪论 (4) 1.1 选题的背景和意义 (4) 1.2 牛顿迭代法的优点及缺点 (4) 二、Newton Raphson 算法的基本原理 (5) 2.1 Newton Raphsn算法 (5) 2.2 一种修正的Newton Raphsn算法 (7) 2.3 另外一种Newton Raphsn算法的修正 (11) 三、Newton Raphson 算法在计算方程中的应用 (18) 四、利用牛顿迭代法计算附息国债的实时收益率 (21) 4.1附息国债实时收益率的理论计算公式 (22) 4.2附息国债实时收益率的实际计算方法 (22)

4.3利用牛顿迭代法计算 (23) 五、结论 (26) 致谢 (27) 参考文献 (28) 摘要 牛顿在17世纪提出的一种近似求解方程的方法,即牛顿拉夫森迭代法.迭代法是一种不断的用变量的旧值递推新值的过程.跟迭代法相对应的是直接法或被称为一次解法,即一次性解决的问题.迭代法又分为精确迭代以及近似迭代.“牛顿迭代法”就属于近似迭代法,本文主要讨论的就是牛顿迭代法,方法本身的发现到演变到修正的过程,避免二阶导数计算的Newton迭代法的一个改进,以及用牛顿迭代法解方程,利用牛顿迭代法计算国债的实时收益率。 关键词:Newton Raphson迭代算法;近似解;收益率; Abstract In the 17th century,Newton raised by an approximate method of solving equations,that is Newton Iteration,a process of recursion new value constantly with the old value of variable. Correspond with the iterative method is a direct method or as a solution,that is a one-time problem solving. Iteration is divided into exact iterative and approximate iterative. "Newton Iterative Method" are approximate iterative method. This article mainly focuses on the Newton Iteration. The main contents of this article include the discovery,evolution and amendment process of this methods; an improve of avoiding calculating Newton Iteration with second-order derivative; Newton Raphson iterative method of solving equations and Calculating the real-time yield of government bonds. Keywords: Newton Iterative Algorithm; approximate solution; Yield;

迭代法及其在数值求解线性方程组中的应用

郑州师范学院 毕业论文 题目迭代法及其在数值求解 线性方程组中的应用 姓名陈丹丹 学号124103052041 院系数学与统计学院 专业数学与应用数学 年级班级B12数应2班 指导教师王明建 2016年5月20 日

毕业论文作者声明 本人郑重声明:所呈交的毕业论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。 本人完全了解有关保障、使用毕业论文的规定,同意学校保留并向有关毕业论文管理机构送交论文的复印件和电子版。同意省级优秀毕业论文评选机构将本毕业论文通过影印、缩印、扫描等方式进行保存、摘编或汇编;同意本论文被编入有关数据库进行检索和查阅。 本毕业论文内容不涉及国家机密。 论文题目:迭代法及其在数值求解线性方程组中的应用 作者单位:郑州师范学院 作者签名:

目录 摘要 (1) 引言 (3) 1.预备知识 (3) 1.1迭代法的基本形式 (3) 1.2Jocabi迭代法 (4) 1.2.1分量形式的Jacobi迭代法 (4) 1.2.2矩阵形式的Jacobi迭代法 (5) 1.2.3Jacobi迭代法的算法实现步骤 (6) 1.3Gauss-Seidel迭代法 (6) 1.3.1分量形式的Gauss-seidel迭代法 (6) 1.3.2矩阵形式的Gauss-seidel迭代法 (6) 1.3.3Gauss-Seidel迭代法的算法实现步骤 (7) 1.4超松弛迭代法(SOR迭代法) (7) 1.4.1分量形式的SOR方法 (7) 1.4.2矩阵形式的SOR方法 (8) 1.4.3SOR迭代法的算法实现步骤 (9) 1.5迭代法的收敛性 (9) 2. 数值求解线性方程组 (10) 2.1用Jacobi迭代法求解 (10)

利用牛顿迭代法求解非线性代数方程组

利用牛顿迭代法求解非线性代数方程组 一、 问题描述 在实际应用的很多领域中,都涉及到非线性方程组的求解问题。由于方程的非线性,给我们解题带来一定困难。牛顿迭代法是求解非线性方程组的有效方法。下面具体对牛顿迭代法的算法进行讨论,并通过实例理解牛顿迭代法。 二、 算法基本思想 牛顿迭代法求解非线性代数方程组的主要思想是将非线性函数线性化。下面我们具体讨论线性化过程: 令: ()()()()?? ?? ????????=????? ???????=????????????=0000,,2121 n n x x x x x f x f x f x F (3-1) 则非线性方程组(3-2) ()()()0 ,,,0 ,,,0,,,21212211===n n n n x x x f x x x f x x x f (3-2) 可写为向量形式 ()0=x F (3-3) ? ()0=x F 成为向量函数。

设()()() ()k n k k x x x ,,,2 1 是方程组(3-2)的一组近似解,把它的左端在()()() ()k n k k x x x ,,,2 1 处用多元函数的泰勒展式展开,然后取线性部分,便得方程组(3-2)得近似方程组 ()()() ( ) ()()() () ()()()() ( )()()() () ()()() () ( ) ()()() () ()0 ,,,,,,0 ,,,,,,0 ,,,,,,1 21211 2122121 211211=???+=???+=???+∑∑∑===k j n j k n k k n k n k k n k j n j k n k k k n k k k j n j k n k k k n k k x x x x x f x x x f x x x x x f x x x f x x x x x f x x x f (3-4) 这是关于()()()n i x x x k i i k i ,,2,1 =-=?的线性方程组,如果它的系数矩阵 ????????? ???????????????????????????????n n n n n n x f x f x f x f x f x f x f x f x f 2 1 2221 2121 11 (3-5) 非奇异,则可解得 () ()()???? ?? ? ???????---?????????? ??????????????????????????????=?????????????????-n n n n n n n k n k k f f f x f x f x f x f x f x f x f x f x f x x x 21 1 2 1 2221 2121 11 21 (3-6) 矩阵(3-5)称为向量函数()x F 的Jacobi 矩阵,记作()x F ' 。又记

雅克比迭代法和高斯-赛德尔法解线性方程组(C++)

作业:① 分别用J 法和G-S 法求解下列方程,并讨论结果。 123122*********x x x -?????? ??? ?= ??? ? ??? ??????? #include using namespace std; //J 法解线性方程 int main(){ int m,n,i,j,times=0,mtimes; double s,sum,max; cout<<"请输入系数矩阵行数m 、列数n :"<>m>>n; if(m>A[i][j]; cout<<"请输入常数向量B :"<>B[i]; cout<<"请输入最大允许误差s:"<>s; cout<<"请输入最大迭代次数:"<>mtimes; cout<<"请输入一零级向量X:"<>X[i]; T[i]=X[i];//T[]存放上一次迭代结果 }

牛顿迭代法论文

目录 一牛顿迭代法的简介 (4) 1.1 牛顿迭代法的产生背景 (4) 1.2 牛顿迭代法的概述 (4) 1.3 牛顿迭代法的优点 (4) 二牛顿迭代法的分析 (4) 2.1 牛顿迭代法的思想 (4) 2.2 牛顿迭代法的要求 (5) 2.3 牛顿.迭代法 (6) 三牛顿迭代求根的方法 (7) 四牛顿迭代法具体例子的实现 (7) 伍牛顿迭代法的收敛性 (10) 六、迭代求根应注意的事项 (10) 七、参考文献 (11) 八附录.c语言代码 (13)

题目: 牛顿法---插值方法 摘要: 牛顿迭代法(Newton's method)又称为牛顿-拉夫逊方法(Newton-Raphson method),它是牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法。多数方程不存在求根公式,因此求精确根非常困难,甚至不可能,从而寻找方程的近似根就显得特别重要。牛顿迭代法是求方程根的重要方法之一,其最大优点是在方程f(x) = 0的单根附近具有平方收敛,而且该法还可以用来求方程的重根、复根,此时线性收敛,但是可通过一些方法变成超线性收敛。另外该方法广泛用于计算机编程中。牛顿迭代法是一个重要的计算方法和思想。牛顿迭代法的主要功能:计算方程时可以比较快速方便的计算出来结果但并不影响计算出来结果的精确度,运用于多种工业设计和数学设计方面. 关键字: 牛顿迭代方程根算法

一 .牛顿迭代法简介 1.1 牛顿迭代法的产生背景 牛顿迭代法(Newton's method)又称为牛顿-拉夫逊方法(Newton-Raphson method),它是牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法。多数方程不存在求根公式,因此求精确根非常困难,甚至不可能,从而寻找方程的近似根就显得特别重要。方法使用函数f(x)的泰勒级数的前面几项来寻找方程f(x) = 0的根。牛顿迭代法是求方程根的重要方法之一,其最大优点是在方程f(x) = 0的单根附近具有平方收敛,而且该法还可以用来求方程的重根、复根,此时线性收敛,但是可通过一些方法变成超线性收敛。另外该方法广泛用于计算机编程中。 1.2 牛顿迭代法的概述 牛顿迭代法(Newton's method)又称为牛顿-拉夫逊方法(Newton-Raphson method),它是牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法。多数方程不存在求根公式,因此求精确根非常困难,甚至不可能,从而寻找方程的近似根就显得特别重要。方法使用函数f(x)的泰勒级数的前面几项来寻找方程f(x) = 0的根。设r是f(x) = 0的根,选取x0作为r初始近似值,过点(x0,f(x0))做曲线y = f(x)的切线L,L的方程为y = f(x0) f'(x0)(x-x0),求出L与x轴交点的横坐标 x1 = x0-f(x0)/f'(x0),称x1为r的一次近似值。过点(x1,f(x1))做曲线y = f(x)的切线,并求该切线与x轴的横坐标 x2 = x1-f(x1)/f'(x1),称x2为r的二次近似值。重复以上过程,得r的近似值序列,其中x(n+1)=x(n)-f(x(n))/f'(x(n)),称为r的n+1次近似值,上式称为牛顿迭代公式。解非线性方程f(x)=0的牛顿法是把非线性方程线性化的一种近似方法。把f(x)在x0点附近展开成泰勒级数 f(x) = f(x0)+(x-x0)f'(x0)+(x-x0)^2*f''(x0)/2! +…取其线性部分,作为非线性方程f(x) = 0的近似方程,即泰勒展开的前两项,则有f(x0)+f'(x0)(x-x0)=f(x)=0 设f'(x0)≠0则其解为x1=x0-f(x0)/f'(x0) 这样,得到牛顿法的一个迭代序列:x(n+1)=x(n)-f(x(n))/f'(x(n))。 1.3 牛顿迭代法的优点 迭代法是求方程近似根的一个重要方法,也是计算方法中的一种基本方法,它的算法简单,是用于求方程或方程组近似根的一种常用的算法设计方法。牛顿迭代法是求方程根的重要方法之一,其最大优点是在方程f(x) = 0的单根附近具

牛顿-拉夫逊迭代法原理及其实现

牛顿迭代法(简写)就是一种近似求解实数域与复数域求解方程的数学方法。那么这个方法是具体是什么原理呢? 牛顿迭代如何迭代? 直接看数学公式描述如何迭代不直观,先来看动图就很容易理解牛顿迭代法为什么叫迭代法以及怎样迭代的: 牛顿迭代法是原理是根据一个初始点在该点做切线,切线与X轴相交得出下一个迭代点的坐标,再在处做切线,依次类推,直到求得满足精度的近似解为止。 由前面描述知道,牛顿迭代法是用来近似求解方程的,这里有两个点需要说明:?为啥要近似求解?很多方程可能无法直接求取其解 ?迭代法非常适合计算机编程实现,实际上计算机编程对于牛顿迭代法广为应用来看看,数学上如何描述的? 其中为函数在处的一阶导数,也就是该点的切线。 来简单推一推上面公式的由来,直线函数方程为: 知道一个直线的一个坐标点以及斜率则该直线的方程就很容易可以得知:

那么该直线与轴的交点,就是y=0也即等式x 的解: 啥时候停止迭代呢? 1.计算出 2.给出一个初始假定根值x0,利用上面迭代式子进行迭代 3.计算绝对相对迭代近似误差 4.将绝对相对近似误差与预定的相对误差容限进行比较。如果,则迭 代步骤2,否则停止算法。另外,检查迭代次数是否已超过允许的最大迭代次数。如果是这样,则需要终止算法并退出。另一个终止条件是: 如何编码呢? 由于牛顿迭代法主要目的是解方程,当然也有可能用于某一个数学函数求极值,所以无法写出通用的代码,这里仅仅给出一个编代码的思路。相信掌握了思路,对于各种实际应用应该能很快的写出符合实际应用的代码。 假定一函数为 其波形图如下: 其一阶导数为:

那么对于该函数的根: 从图上大致可以知道有两个根,如果直接解方程,则很难求出其根,可以编个代码试试: #include #include #include /*假定待求根函数如下*/ #define F(x) (2*(x)*(x)-10*cos(x)+(x)-80) /*其一阶导数为*/ #define DF(x) (4*(x)+10*sin(x)+1) float newton_rooting(float x0,float precision,float min_deltax,int max_iterations) { float xn,xn1,fn,fn1,dfn; float deltax; int step = 0; xn = x0; xn1 = x0; do{ xn = xn1; fn = F(xn); dfn = DF(xn); /*判0*/ if( fabs(dfn) <1e-6 ) { if( fabs(fn)>precision ) return NAN; else return fn; } xn1 = xn - fn/dfn; fn1 = F(xn1); deltax = fabs(xn1-xn); step++; if( step>max_iterations ) { if( fabs(fn1)precision || deltax>min_deltax );

牛顿迭代法在架空线路中的应用

牛顿迭代法在架空线路中的应用 牛顿迭代法(Newton's method )又称为牛顿-拉夫逊方法(Newton-Raphson method ),它是牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法。多数方程不存在求根公式,因此求精确根非常困难,甚至不可能,从而寻找方程的近似根就显得特别重要。牛顿迭代法是求方程根的重要方法之一,其最大优点是在方程f(x) = 0的单根附近具有平方收敛,而且该法还可以用来求方程的重根、复根,此时线性收敛,但是可通过一些方法变成超线性收敛。另外该方法广泛用于计算机编程中。下面就从其原理、几何意义、迭代步骤及实例等方面介绍牛顿迭代法。 一、原理 简单迭代法是用直接的方法从原方程中隐含地解出x ,从而确定出)(x ?。而牛顿迭代法是用一种间接而特殊的方法来确定)(x ?的。下面具体推到牛顿迭代公式。 假设k x 是非线性方程为0)(=x f 的一个近似根,把)(x f 在k x 处作泰勒展开: +-+ -+=2 ' '' )(! 2)())(()()(k k k k k x x x f x x x f x f x f 若取前两项来近似代替)(x f (称为)(x f 的线性化),则得近似的线性方程 0))(()()(' =-+≈k k k x x x f x f x f 设0)(' ≠k x f ,令其解为1+k x ,则得 ) ()(' 1k k k k x f x f x x -=+ (1) 这称为0)(=x f 的牛顿迭代公式。 它对应的迭代方程为) ()(' x f x f x x -=显然是0)(=x f 的同解方程,故其迭代函数为 ) ()()(' k k k x f x f x x - =? (0)(' ≠x f ) 在0)(=x f 的根α的某个邻域)|(|δα≤-x R 内,0)(≈x f 1| )('|| )(||)(||)(|2 ' '' <≤?= L x f x f x f x ?

相关文档
最新文档