高考数学二轮复习统计与概率
高三数学二轮复习建议——专题二:概率统计 PPT课件 图文

目目 录录
CCOONNTTEENNTTSS
1 历年高考分析 22 重点、热点分析 3 复习目标、方案专题 4 命题预测、优题展示
一 高考试题分析
1.1 2012——2017年高考考查内容分析
2 道 小 题
1 道 大 题
年份 题号
理科 考查 内容
题号
文科 考查 内容
2017 年
2016 年 2015 年 2014 年 2013 年 2012 年
T1 9
相关系数、统计、均值、方差、3 σ原则、概率的意义
T14 二项式定理
2016 年
T4 几何概型
T3 古典概型
从文科高考试题看,解答题一般以工农业生产和生活中的实 频数分布、频率与概率、事件的
频数分布、频率与概率、事件的
T19 独立性、互斥事件、分布列、概 T19 独立性、互斥事件、分布列、概
√√
√
古典概型
几何概型 率 随机模拟
√√√ √ √
随机变量间的函数关系
√
√
二 重点、热点分析
重点、热点、规律方法(一)二项式定理
例
1.(1)(2017▪全国卷Ⅰ理科▪T6)
(1
1 x2
)(1
x)6
展开式中
x2
的系数为
A.15
B.20
C.30
D.35
(2)(2016▪全国卷Ⅰ理科▪T14) (2x x )5 的展开式中,x3 的系数是
T1 8
分步乘法计数原理、组合
正态分布、对立事件
T3
函数、频率与概率、分布列、期 望、方差、概率的意义
T 18
数字特征及其意义 几何概型
相关系数、统计、均值、方差、3 σ原则、概率的意义
热点攻关 “概率与统计”大题的常考题型探究(课件)2023年高考数学二轮复习(全国通用)

例5 (2022年北京卷)在校运动会上,只有甲、乙、丙三名同学参加铅球比赛,比赛成绩达到 以上(含 )的同学将获得优秀奖.为预测获得优秀奖的人数及冠军得主,收集了甲、乙、丙以往的比赛成绩,并整理得到如下数据(单位: ): 甲: , , , , , , , , , . 乙: , , , , , . 丙: , , , . 假设用频率估计概率,且甲、乙、丙的比赛成绩相互独立.
(3)已知该地区这种疾病的患病率为 ,该地区的年龄位于区间 的人口占该地区总人口的 .从该地区中任选一人,若此人的年龄位于区间 ,求此人患这种疾病的概率.(以样本数据中患者的年龄位于各区间的频率作为患者的年龄位于该区间的概率,精确到 )
[解析] (1)平均年龄 (岁).(2)设 ,则 .(3)设 ,则由条件概率公式,得 .
(1)估计甲在校运动会铅球比赛中获得优秀奖的概率;
(2)设 是甲、乙、丙在校运动会铅球比赛中获得优秀奖的总人数,估计 的数学期望 ;
(3)在校运动会铅球比赛中,甲、乙、丙谁获得冠军的概率估计值最大?(结论不要求证明)
[解析] (1) 由频率估计概率可得,甲获得优秀奖的概率为0.4.(2)设“甲获得优秀奖”为事件 ,“乙获得优秀奖”为事件 ,“丙获得优秀奖”为事件 ,由题意知 ,又 ,则 , ,
树苗高度(单位: )
树苗售价(单位:元/株)
4
6
8
(1)现从120株树苗中,按售价分层抽样抽取8株,再从中任选3株,求售价之和高于20元的概率;
(2)以样本中树苗高度的频率作为育苗基地中树苗高度的概率.若从该育苗基地银杏树树苗中任选4株,记树苗高度超过 的株数为 ,求随机变量 的分布列和期望.
[解析] (1)由题意得, ,令 ,设 关于 的线性回归方程为 ,则有 ,则 ,所以 ,又 ,所以 关于 的回归方程为 .
文科数学专题概率与统计(学案)高考二轮复习资料含答案

文科数学专题概率与统计(学案)高考二轮复习资料含答案1.以客观题形式考查抽样方法,样本的数字特征和回归分析,独立性检验的基本思路、方法及相关计算与推断.2.本部分较少命制大题,若在大题中考查多在概率与统计、算法框图等知识交汇处命题,重点考查抽样方法,频率分布直方图和回归分析或独立性检验,注意加强抽样后绘制频率分布直方图,然后作统计分析或求概率的综合练习.3.以客观题形式考查古典概型与几何概型、互斥事件与对立事件的概率计算.4.与统计结合在大题中考查古典概型与几何概型.(1)在频率分布直方图中:频率①各小矩形的面积表示相应各组的频率,各小矩形的高=;②各小矩形面积之和等于1;③中位数组距左右两侧的直方图面积相等,因此可以估计其近似值.(2)茎叶图当数据有两位有效数字时,用中间的数字表示十位数,即第一个有效数字,两边的数字表示个位数,从总体中逐个抽取少在起始部分抽样时采按事先确定的规则在各用简单随机抽样总体中的个体数较多分层抽样时采用简单总体由差异明显的随机抽样或系统抽样几部分组成即第二个有效数字,它的中间部分像植物的茎,两边部分像植物茎上长出来的叶子,因此通常把这样的图叫做茎叶图.当数据有三位有效数字,前两位相对比较集中时,常以前两位为茎,第三位(个位)为叶(其余类推).3.样本的数字特征(1)众数在样本数据中,频率分布最大值所对应的样本数据(或出现次数最多的那个数据).(2)中位数样本数据中,将数据按大小排列,位于最中间的数据.如果数据的个数为偶数,就取当中两个数据的平均数作为中位数.(3)平均数与方差-1样本数据的平均数某=(某1+某2++某n).n1-2-2-22方差=[(某1-某)+(某2-某)++(某n-某)].n注意:(1)现实中总体所包含的个体数往往较多,总体的平均数与标准差、方差是不知道(或不可求)的,所以我们通常用样本的平均数与标准差、方差来估计总体的平均数与标准差、方差.(2)平均数反映了数据取值的平均水平,标准差、方差描述了一组数据围绕平均数波动的大小.标准差、方差越大,数据的离散程度越大,越不稳定.4.变量间的相关关系(1)利用散点图可以初步判断两个变量之间是否线性相关.如果散点图中的点从整体上看大致分布在一条直线的附近,我们说变量某和y具有线性相关关系.(2)用最小二乘法求回归直线的方程^^^设线性回归方程为y=b某+a,则^b=-某-某^-^-a=y-b某ni=1nii=1--某i-某yi-y=--某iyi-n某yi=1nn22i-n某某2-i=1.--注意:回归直线一定经过样本的中心点(某,y),据此性质可以解决有关的计算问题.5.回归分析n某i-某yi-yi=1--r=n,叫做相关系数.某i-某2yi-y2i=1i=1-n-相关系数用来衡量变量某与y之间的线性相关程度;|r|≤1,且|r|越接近于1,相关程度越高,|r|越接近于0,相关程度越低.6.独立性检验假设有两个分类变量某和Y,它们的取值分别为{某1,某2}和{y1,y2},其样本频数列联表(称为2某2列联表)为某1某2总计2y1aca+c2y2bdb+d总计a+bc+da+b+c+da+b+c+dad-bc则K=,a+bc+da+cb+d若K>3.841,则有95%的把握说两个事件有关;若K>6.635,则有99%的把握说两个事件有关;若K<2.706,则没有充分理由认为两个事件有关.7.随机事件的概率随机事件的概率范围:0≤P(A)≤1;必然事件的概率为1,不可能事件的概率为0.8.古典概型①计算一次试验中基本事件的总数n;②求事件A包含的基本事件的个数m;③利用公式P(A)=计算.9.一般地,如果事件A、B互斥,那么事件A+B发生(即A、B中有一个发生)的概率,等于事件A、B分别发生的概率的和,即P(A+B)=P(A)+P(B).-10.对立事件:在每一次试验中,相互对立的事件A和A不会同时发生,但一定有一个发生,因此有222mnP(A)=1-P(A).11.互斥事件与对立事件的关系-对立必互斥,互斥未必对立.12.几何概型一般地,在几何区域D内随机地取一点,记事件“该点落在其内部区域d内”为事件A,则事件A发生的概率P(A)=考点一几何概型例1.【2022课标1,】如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是d的测度.D的测度141C.2A.【答案】Bπ8πD.4B.【变式探究】(2022·江苏卷)记函数f(某)=6+某-某的定义域为D.在区间[-4,5]上随机取一个数某,则某∈D的概率是________.5【答案】93--252【解析】由6+某-某≥0,解得-2≤某≤3,则D=[-2,3],则所求概率为=.5--49【变式探究】从区间[0,1]随机抽取2n个数某1,某2,,某n,y1,y2,,yn,构成n个数对(某1,y1),(某2,y2),,(某n,yn),其中两数的平方和小于1的数对共有m个,则用随机模拟的方法得到的圆周率π的近似值为()A.4n2m2nB.mC.4mn2mD.n【答案】Cmπ4m4m【解析】由题意知,=,故π=,即圆周率π的近似值为.n4nn考点二古典概型例2.(2022·全国卷Ⅱ)从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为()A.B.C.D.【答案】D3102511015【2022山东】从分别标有1,2,,9的9张卡片中不放回地随机抽取2次,每次抽取1张.则抽到的2张卡片上的数奇偶性不同的概率是(A)5475(B)(C)(D)18999【答案】C【解析】标有1,2,,9的9张卡片中,标奇数的有5张,标偶数的有4张,所以抽到的2张卡112C5C45,选C.片上的数奇偶性不同的概率是989【变式探究】袋中共有15个除了颜色外完全相同的球,其中有10个白球,5个红球.从袋中任取2个球,所取的2个球中恰有1个白球,1个红球的概率为()A.51011B.C.D.1212121【变式探究】(2022·天津卷)有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫.从这5支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为()A.B.C.D.【答案】C【解析】从5支彩笔中任取2支不同颜色彩笔的取法有红黄、红蓝、红绿、红紫、黄蓝、黄绿、黄紫、蓝绿、蓝紫、绿紫,共10种,其中取出的2支彩笔中含有红色彩笔的取法有红黄、红蓝、红绿、红紫,共424种,所以所求概率P==.105故选C.考点三概率与其他知识的交汇例3、(2022·全国卷Ⅲ)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:最高气温天数[10,15)2[15,20)16[20,25)36[25,30)25[30,35)7[35,40)44 5352515以最高气温位于各区间的频率估计最高气温位于该区间的概率.(1)估计六月份这种酸奶一天的需求量不超过300瓶的概率.(2)设六月份一天销售这种酸奶的利润为Y(单位:元).当六月份这种酸奶一天的进货量为450瓶时,写出Y的所有可能值,并估计Y大于零的概率.【变式探究】某汽车美容公司为吸引顾客,推出优惠活动:对首次消费的顾客,按200元/次收费,并注册成为会员,对会员逐次消费给予相应优惠,标准如下表:消费次数收费比例第1次1第2次0.95第3次0.90第4次0.85第5次及以上0.80该公司从注册的会员中,随机抽取了100位进行统计,得到统计数据如下表:消费次数频数第1次60第2次20第3次10第4次5第5次及以上5假设汽车美容一次,公司成本为150元,根据所给数据,解答下列问题:(1)估计该公司一位会员至少消费两次的概率;(2)某会员仅消费两次,求这两次消费中,公司获得的平均利润;(3)该公司要从这100位里至少消费两次的顾客中按消费次数用分层抽样方法抽出8人,再从这8人中抽出2人发放纪念品,求抽出的2人中恰有1人消费两次的概率.40【解析】(1)100位会员中,至少消费两次的会员有40位,所以估计一位会员至少消费两次的概率为100=0.4.(2)该会员第1次消费时,公司获得的利润为200-150=50(元).50+40第2次消费时,公司获得的利润为200某0.95-150=40(元),所以,公司获得的平均利润为=245(元)。
人教A版高考数学(文)二轮复习 专题 概率与统计课件第2讲

[微题型 3] 茎叶图与古典概型交汇 【例 2-3】 某中学高三年级从甲、乙两个班级各选出 7 名学生
参加数学竞赛,他们取得的成绩(满分 100 分)的茎叶图如图所 示,其中甲班学生成绩的平均分是 85,乙班学生成绩的中位 数是 83.
(1)求 x 和 y 的值; (2)计算甲班 7 位学生成绩的方差 s2;
(3)从成绩在 90 分以上的学生中随机抽取 2 名学生,求甲班至 少有 1 名学生的概率.
解 (1) 因 为 甲 班 学 生 成 绩 的 平 均 分 是 85 , 所 以 92+96+80+807+x+85+79+78=85.所以 x=5. 因为乙班学生成绩的中位数是 83, 所以 y=3.
(2)甲班 7 位学生成绩的方差为 s2=17[(79-85)2+(78-85)2+(80-85)2+(85-85)2+(85-85)2 +(92-85)2+(96-85)2]=40. (3)设“甲班至少有 1 名学生”为事件 M,则 M 为“抽取的两 名学生都是乙班的”. 甲班成绩在 90 分以上的学生有 2 名,分别记为 A,B, 乙班成绩在 90 分以上的学生有 3 名,分别记为 C,D,E. 从这 5 名学生中任取 2 名学生有(A,B),(A,C),(A,D),(A, E),(B,C),(B,D),(B,E),(C,D),(C,E),(D,E),共 10 种不同的结果.
解 (1)社区总数为 12+18+6=36,样本容量与总体中的个体 数比为366=16. 所以从 A,B,C 三个行政区中应分别抽取的社区个数为 2,3,1. (2)设 A1,A2 为在 A 行政区中抽得的 2 个社区,B1,B2,B3 为 在 B 行政区中抽得的 3 个社区,C 为在 C 行政区中抽得的社 区,在这 6 个社区中随机抽取 2 个,全部可能的结果有
2024届新教材高考数学二轮复习 概率 课件(69张)

A.15
B.13
C.25
D.23
【解析】 从 6 张卡片中无放回抽取 2 张,共有(1,2),(1,3),(1,4),
(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),
(5,6),15 种情况,其中数字之积为 4 的倍数的有(1,4),(2,4),(2,6),(3,4),
2.古典概型 一般地,设试验 E 是古典概型,样本空间 Ω 包含 n 个样本点,事件 A 包含其中的 k 个样本点,则定义事件 A 的概率 P(A)=nk=nnΩA. 其中,n(A)和 n(Ω)分别表示事件 A 和样本空间 Ω 包含的样本点个数.
多 维 题 组·明 技 法
角度1:随机事件的关系 1. (2023·柳州模拟)从数学必修一、二和政治必修一、二共四本书中 任取两本书,那么互斥而不对立的两个事件是( D ) A.至少有一本政治与都是数学 B.至少有一本政治与都是政治 C.至少有一本政治与至少有一本数学 D.恰有1本政治与恰有2本政治
A.采用单次传输方案,若依次发送1,0,1,则依次收到1,0,1的概率 为(1-α)(1-β)2
B.采用三次传输方案,若发送1,则依次收到1,0,1的概率为β(1- β)2
C.采用三次传输方案,若发送1,则译码为1的概率为β(1-β)2+(1 -β)3
D.当0<α<0.5时,若发送0,则采用三次传输方案译码为0的概率 大于采用单次传输方案译码为0的概率
【解析】 由题意可得事件1表示{1,3,5},事件2表示{2,4,6},事件3 表示{4,5,6},事件4表示{1,2},所以事件1与事件2为对立事件,事件1与 事件3不互斥,事件2与事件3不互斥,事件3与事件4互斥不对立,故选 项A,C,D错误,选项B正确.故选B.
概率与统计 第三讲 统计与统计案例——2023届高考理科数学大单元二轮复习练重点【新课标全国卷】

专题八 概率与统计 第三讲 统计与统计案例——2023届高考理科数学大单元二轮复习练重点【新课标全国卷】1.在某次赛车中,50名参赛选手的成绩(单位:min )全部介于13到18之间(包括13和18).现将比赛成绩分为五组:第一组[13,14),第二组[14,15),…,第五组[17,18],其频率分布直方图如图所示.若成绩在[13,15)内的选手可获奖,则这50名选手中获奖的人数为( )A.11B.15C.35D.392.某学校组织学生参加英语测试,成绩的频率分布直方图如图所示,数据的分组依次为[)20,40,[)40,60,[)60,80,[]80,100.若低于60分的人数是15人,则参加英语测试的学生人数是( )A.45B.50C.55D.603.我国是一个农业大国,从事农业工作的人员有5.4亿,如图为某县农村从业人员年龄结构图,为了解该县从业人员在从事农业工作中的实际困难,以推进县乡村振兴工作,某调查机构计划从某县的所有从业人员中随机抽取20人展开某项调研,则所抽取的20人中恰有2人的年龄在20岁以下的概率约为( ) (170.90.167≈,180.90.15≈,190.90.135≈,200.90.122≈)A.0.25B.0.29C.0.32D.0.354.某校高一年级在某次数学测验中成绩不低于80分的所有考生的成绩统计表如下:A.在[90,100]内B.在(100,110]内C.在(110,120]内D.在(120,130]内5.若某同学连续3次考试的名次(3次考试均没有出现并列名次的情况)不低于第3名,则称该同学为班级的尖子生.根据甲、乙、丙、丁四位同学过去连续3次考试名次的数据,推断一定是尖子生的是( )A.甲同学:平均数为2,众数为1B.乙同学:平均数为2,方差小于1C.丙同学:中位数为2,众数为2D.丁同学:众数为2,方差大于16.2021年某省高考体育百米测试中,成绩全部介于12秒与18秒之间,抽取其中100个样本,将测试结果按如下方式分成六组:第一组[12,13),第二组[13,14),…,第六组[17,18],得到如下的频率分布直方图.则该100考生的成绩的平均数和中位数(保留一位小数)分别是( )A.15.2 15.3B.15.1 15.4C.15.1 15.3D.15.2 15.37.设样本数据1x ,2x ,…,10x 的平均数和方差分别为1和4,若i i y x a =+(a 为非零常数,1,2,,10i =),则1y ,2y ,…,10y 的平均数和方差分别为( ) A.1a +,4B.1a +,4a +C.1,4D.1,4a +8.已知变量x ,y 之间的一组数据如下表:若y 关于x 的线性回归方程为0.7y x a =+,则a =( ) A.0.1B.0.2C.0.35D.0.459.某车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了5次试验.根据收集到的数据(如下表),由最小二乘法求得经验回归直线方程0.6754.9y x =+,表中有一个数据模糊不清,请你推断出该数据的值为( )C.68 10.第24届冬季奥林匹克运动会将于2022年在北京举办.为了解某城市居民对冰雪运动的关注情况,随机抽取了该市100人进行调查统计,得到如下22⨯列联表.参考公式:()()()()2n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.附表:A.该市女性居民中大约有5%的人关注冰雪运动B.该市男性届民中大约有95%的人关注冰雪运动C.有95%的把握认为该市居民是否关注冰雪运动与性别有关D.有99%的把握认为该市居民是否关注冰雪运动与性别有关11.一个项目由15个专家评委投票表决,剔除一个最高分96,一个最低分58后所得到的平均分为92,方差为16,那么原始得分的方差为_______.12.经市场调查,某款热销品的销售量y(万件)与广告费用x(万元)之间满足回归直线方程 3.5=+.若样本点中心为(45,35),则当销售量为52.5万件时,可估计投入y bx的广告费用为_________________万元.13.某学校为了制订治理学校门口上学、放学期间家长接送孩子乱停车现象的措施,对全校学生家长进行了问卷调查.根据从中随机抽取的50份调查问卷,得到了如下的列联表:14.某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y的频数分布表.例;(2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到0.01)8.602.15.某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):1(优) (2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的22⨯列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关.附:2()()()()K a b c d a c b d =++++,)2kk答案以及解析1.答案:A解析:由题意可得,成绩在[13,15)内的频率为10.080.320.380.22---=.又本次赛车中,共50名参赛选手,所以这50名选手中获奖的人数为500.2211⨯=.故选A. 2.答案:B解析:根据频率分布直方图的特点可知,低于60分的频率是(0.0050.01)200.3+⨯=,则所求学生人数是15500.3=. 3.答案:B解析:由频率分布直方图可得20岁以下的农村从业人员的概率为0.1,所以从所有从业人员中抽取20人,其中恰有2人的年龄在20岁以下的概率为221820C (0.1)(0.9)0.2850.29≈≈,故选B. 4.答案:B解析:由表可知,及格的考生共有401512105284+++++=人,在[90,100]内有40人,在(100,110]内有15人,故及格的所有考生成绩的中位数在(100,110]内.5.答案:B解析:甲同学:若平均数为2,众数为1,则有一次名次应为4,故排除A ;乙同学:平均数为2,设乙同学3次考试的名次分别为1x ,2x ,3x ,则方差()()()2222123122213s x x x ⎡⎤=-+-+-<⎣⎦,则()()()2221232223x x x -+-+-<,所以1x ,2x ,3x 均不大于3,符合题意;丙同学:中位数为2,众数为2,有可能是2,2,4,不符合题意;丁同学:众数为2,方差大于1,有可能是2,2,6,不符合题意.故选B. 6.答案:C解析:100名考生成绩的平均数12.50.1013.50.1514.50.15x =⨯+⨯+⨯+15.50.3016.50.2517.50.0515.1⨯+⨯+⨯=.因为前三组频率直方图面积和为0.100.150.150.4++=,前四组频率直方图面积和为0.100.150.150.300.7+++=,所以中位数位于第四组内,设中位数为a ,则(15)0.300.1a -⨯=,解得15.3a ≈,故选C.7.答案:A解析:由题意知i i y x a =+,即()1210110110y x x x a x a a =⨯++++=+=+,方差{}222212101()()()10x a x a x s a x a x a x a ⎡⎤⎡⎤⎡⎤=⨯+-+++-++++-+⎣⎦⎣⎦⎣⎦()()()22212101410x x x x x x ⎡⎤=⨯-+-++-=⎢⎥⎣⎦. 故选A. 8.答案:C解析:本题考查线性回归方程截距的求解.因为11(3456) 4.5,(2.534 4.5) 3.544x y =+++==+++=,所以0.7 3.50.7 4.50.35a y x =-=-⨯=,故选C. 9.答案:C解析:设表中模糊看不清的数据为m .由表中数据得30x =, 3075m y +=,将30730,5m x y +==代入经验回归方程0.6754.9y x =+,得68m =.故选C. 10.答案:C解析:由22⨯列联表中的数据可得()22352515251004.167 3.84160405050K ⨯-⨯⨯=≈>⨯⨯⨯,因此,有95%的把握认为该市居民是否关注冰雪运动与性别有关.故选:C.11.答案:88解析:根据题意,设剔除最高分、最低分之后的13个数据为1a ,2a ,3a ,…,13a ,由这13个数据的平均分为92,方差为16, 知()1231319213a a a a ++++=,()()()222121319292921613a a a ⎡⎤-+-++-=⎣⎦, 解得123131196a a a a ++++=,2221213110240a a a +++=,对于原始得分96,58,1a ,2a ,3a ,…,13a , 其平均数()12313196589015a a a a a =++++++=,其方差为()(()22222212131(9690)(5890)9090)908815s a a a ⎤⎡=-+-+-+-++-=⎣⎦. 12.答案:70解析:本题考查线性回归方程.依题意,将(45,35)代入回归直线方程 3.5y bx =+(提示:回归直线必过样本点中心),得3545 3.5b =⨯+,解得0.7b =,所以回归直线方程为0.7 3.5y x =+.令0.7 3.552.5y x =+=,得70x =. 13.答案:99.5%解析:因为2250(2015510)8.33325253020χ⨯⨯-⨯=≈⨯⨯⨯,又()27.8790.0050.5%P χ==≥,所以我们有99.5%的把握认为“是否同意限定区域停车与家长的性别有关”.14.答案:(1)产值增长率不低于40%的企业比例为21%,产值负增长的企业比例为20%(2)平均数与标准差的估计值分别为30%,17%解析:(1)根据产值增长率频数分布表得,所调查的100个企业中产值增长率不低于40%的企业频率为1470.21100+=.产值负增长的企业频率为20.02100=. 用样本频率分布估计总体分布得这类企业中产值增长率不低于40%的企业比例为21%,产值负增长的企业比例为20%. (2)1(0.1020.10240.30530.50140.707)0.30100y =⨯-⨯+⨯+⨯+⨯+⨯=, ()52222111(0.40)2(0.20)100100i i i s n y y=⎡=-=⨯-⨯+-⨯⎣∑222240530.20140.4070.0296⎤+⨯+⨯+⨯=⎦,0.020.17s .所以,这类企业产值增长率的平均数与标准差的估计值分别为30%,17%.15.答案:(1)由所给数据,该市一天的空气质量等级为1,2,3,4的概率的估计值如下表:1(100203003550045)350100⨯+⨯+⨯=. (3)根据所给数据,可得22⨯列联表:根据列联表得25.82055457030K =≈⨯⨯⨯. 由于5.820 3.841>,故有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关.。
高考数学二轮复习:第十七讲 概率与统计
第十七讲 概率与统计★★★高考在考什么 【考题回放】 1.(重庆卷)从5张100元,3张200元,2张300元的奥运预赛门票中任取3张, 则所取3张中至少有2张价格相同的概率为( )A .41B .12079C . 43D .2423解:可从对立面考虑,即三张价格均不相同,11153231031.4C C C P C ⇒=-= 选C2.(辽宁卷)一个坛子里有编号为1,2,…,12的12个大小相同的球,其中1到6号球 是红球,其余的是黑球. 若从中任取两个球,则取到的都是红球,且至少有1个球的号码 是偶数的概率是( )A .122B .111C .322D .211解: 从中任取两个球共有66212=C 种取法,其中取到的都是红球,且至少有1个球的号码是偶数的取法有122326=-C C 种取法,概率为1126612=,选D.3.(广东卷) 甲、乙两个袋子中均装有红、白两种颜色的小球,这些小球除颜色外完全相同,其中甲袋装有4个红球、2个白球,乙袋装有1个红球、5个白球。
现分别从甲、乙两袋中各随机抽取一个球,则取出的两球是红球的概率为______(答案用分数表示)解:P=64⨯61=914.(上海卷) 在五个数字12345,,,,中,若随机取出三个数字,则剩下两个数字都是奇数的 概率是 (结果用数值表示).解:212335310C C C ==3.0 5. 某篮球运动员在三分线投球的命中率是12,他投球10次,恰好投进3个球的概率为.(用数值作答)解:由题意知所求概率37310111522128p C ⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭ 6.(全国II) 在某项测量中,测量结果ξ服从正态分布2(1)(0)N σσ>,.若ξ在(01),内取值的概率为0.4,则ξ在(02),内取值的概率为 . 解:在某项测量中,测量结果ξ服从正态分布N (1,σ2)(σ>0),正态分布图象的对称轴为x=1,ξ在(0,1)内取值的概率为0.4,可知,随机变量ξ在 (1,2)内取值的概率于ξ在(0,1)内取值的概率相同,也为0.4,这样随机 变量ξ在(0,2)内取值的概率为0.8。
10.上海高三二轮复习排列组合与概率统计
x , x , x ,, x | x 1, 0,1, i 1, 2,3,,10 ,
1 2 3 10 i
则集合 A 中满足条件“ 1 x1 x2 x3 x10 9 ”的元素个数为
.
7、 (2015 金山一模理 18 文 18)若集合 A1、A2 满足 A1∪A2=A,则称(A1,A2)为集合 A 的一 个分拆,并规定:当且仅当 A1=A2 时, (A1,A2)与(A2,A1)为集合 A 的同一种分拆,则集合 A={a1,a2,a3}的不同分拆种数是( (A)8 (B)9 ). (C)26 (D)27
m n m
n(n 1)(n 2) (n m 1)(n m) 3 2 1 n! n! m ,即 Pn = 。 (n m)(n m 1) 3 2 1 (n m)! (n m)!
n m n m
④ Pn Pn Pn m ; 4、组合:
N m1 m2 m n 种不同的方法。
2、乘法原理: 完成一件事需要 n 个步骤,第 1 步有 m1 种不同的方法,第 2 步有 m2 种不同的方法,……, 第 n 步有 mn 种不同的方法,那么完成这件事共有 N m1 m 2 m n 种不同的方法。 3、排列: ① Pn n (n 1)(n 2) (n m 1) 。 ② Pn n (n 1)(n 2) 2 1 n ! ,叫做 n 的阶乘。规定 0! 1 。 ③ Pn n (n 1)(n 2) (n m 1)
特别地,不可能同时出现的两个事件叫做“互斥事件或互不相容事件” ,如果 A、B 为互斥 事件,那么 P( A B) P( A) P( B) 10. 事件积的概率 设 A、B 为两个随机事件,把“事件 A 与事件 B 同时出现”叫做事件 A 与事件 B 的积,记做
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
文档来源为:从网络收集整理.word版本可编辑.欢迎下载支持. 1文档收集于互联网,如有不妥请联系删除. 北京航空航天大学附中三维设计 高考数学二轮复习:统计与概率 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟. 第Ⅰ卷(选择题 共60分) 一、选择题 (本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.从一篮鸡蛋中取1个,如果其重量小于30g的概率是0.30,重量在[30,40]g内的概率是0.50,则重量不小于30g的概率是( ) A. 0.30 B. 0.50 C. 0.80 D. 0.70 【答案】D 2.某市进行一次高三教学质量抽样检测,考试后统计的所有考生的数学成绩服从正态分布.已知数学成绩平均分为90分,60分以下的人数占10%,则数学成绩在90分至120分之间的考生人数所占百分比约为( ) A.10% B.20% C.30% D.40% 【答案】D 3.将一枚质地均匀的骰子抛掷一次,出现“正面向上的点数为6”的概率是( )
A.13 B.14 C.15 D.16 【答案】D 4.从1,2,3,4,5中随机取出二个不同的数,其和为奇数的概率为( )
A.15 B.25 C.35 D.45 【答案】C 5.从装有2个红球和2个黑球的口袋内任取两个球,那么互斥而不对立的事件是( ) A.至少有一个黑球与都是黑球 B.至少有一个黑球与至少有一个红球 C.恰好有一个黑球与恰好有两个黑球 D.至少有一个黑球与都是红球 【答案】C 6.从1,2,3,4这四个数中一次随机地取两个数,则其中一个数是另一个数的两倍的概率是( )
A.21 B.31 C.41 D. 51 【答案】B 7.已知一组数据321,,xxx…nx的平均数5x,方差42s,则数据731x,732x,
733x…73nx的平均数和标准差分别为( )
A. 15,36 B. 22,6 C. 15,6 D.22,36 【答案】B 8.下表提供了某厂节能降耗技术改造后生产A产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对应数据.根据右表提供的数据,求出y关于x的线性回
归方程为0.70.35yx,那么表中t的值为( ) A.3 B.3.15 C.3.5 D.4.5 文档来源为:从网络收集整理.word版本可编辑.欢迎下载支持. 2文档收集于互联网,如有不妥请联系删除. 【答案】A 9.交通管理部门为了解机动车驾驶员(简称驾驶员)对某新法规的知晓情况,对甲、乙、丙、丁四个社区做分层抽样调查。假设四个社区驾驶员的总人数为N,其中甲社区有驾驶员96人。若在甲、乙、丙、丁四个社区抽取驾驶员的人数分别为12,21,25,43,则这四个社区驾驶员的总人数N为( ) A.101 B.808 C.1212 D.2012 【答案】B
10.若是锐角,且3cos33,则sin的值等于( )
A.636 B. 636 C. 2616 D. 2616 【答案】A 11.某初级中学有学生270人,其中初一年级108人,初二、三年级各有81人,现要利用抽样方法取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按初一、二、三年级依次统一编号为1,2,...,270;使用系统抽样时,将学生统一随机编号为1,2,...,270,并将整个编号依次分为10段.如果抽得号码(10个)有下列四种情况: ①7,34,61,88,115,142,169,196, 223, 250; ②5,9,100,107,111,121,180,195, 200,265; ③11,38,65,92,119,146,173,200, 227,254; ④30,57,84,111,138,165,192,219,246,270; 关于上述样本的下列结论中,正确的是( ) A.②、③都不能为系统抽样 B.②、④都不能为分层抽样 C.①、④都可能为系统抽样 D.①、③都可能为分层抽样 【答案】B 12.在画两个变量的散点图时,下面哪个叙述是正确的( ) A. 预报变量在x轴上,解释变量在y轴上 B.解释变量在x轴上,预报变量在y轴上 C.可以选择两个变量中任意一个变量在x轴上 D. 可以选择两个变量中任意一个变量在y轴上
【答案】B 第Ⅱ卷(非选择题 共90分) 二、填空题 (本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.设离散随机变量若WX=1,则P(Y=1)=
【答案】38 14.一个靶子上有10个同心圆,半径依次为1、2、……、10,击中由内至外的区域的成绩依次为10、9、……、1环,则不考虑技术因素,射击一次,在有成绩的情况下成绩为10环的概率为 。
【答案】1001 15.某单位有老年人28人,中年人54人,青年人81人,为调查身体健康状况,需要从中文档来源为:从网络收集整理.word版本可编辑.欢迎下载支持. 3文档收集于互联网,如有不妥请联系删除. 抽取一个容量为36的样本,用分层抽样方法应从老年人中抽取____________人。 【答案】6 16.某高中共有2000名学生,采用分层抽样的方法,分别在三个年级的学生中抽取容量为100的一个样本,其中在高一、高二年级中分别抽取30、30名学生,则该校高三有 名学生. 【答案】800 三、解答题 (本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.某班50名学生在一次百米测试中, 成绩全部介于13秒与18秒之间,将测试结果按如
下方式分成五组:第一组)14,13;第二组)15,14……第五组18,17.下图是按上述分组方法得到的频率分布直方图. (I)若成绩大于或等于14秒且小于16秒认为良好,求该班在这次百米测试中成绩良好的人数; (II)设m、n表示该班某两位同学的百米测试成绩,且已知,13,14)17,18mn.求
事件“1mn”的概率.
【答案】(Ⅰ)由直方图知,成绩在16,14内的人数为:2738.05016.050(人) 所以该班成绩良好的人数为27人. (Ⅱ)由直方图知,成绩在14,13的人数为306.050人,设为x、y、z;
成绩在18,17 的人数为408.050人,设为A、B、C、D. 若)14,13,nm时,有yzxzxy,,共3种情况; 若18,17,nm时,有CDBDBCADACAB,,,,,共6种情况; 若nm,分别在14,13和18,17内时,共有12种情况. 所以基本事件总数为21种,事件“1nm”所包含 的基本事件个数有12种.∴P(1nm)=742112. 18.有两个不透明的箱子,每个箱子里都装有4个完全相同的小球,球上分别标有数字1,2,3,4 (1)甲从其中一个箱子中摸出一个球,乙从另一个箱子中摸出一个球,谁摸出的球上标的数字大谁获胜(若数字相同则为平局),求甲获胜的概率; (2)摸球方法与(1)相同,若规定:两人摸到的球上所标数字相同甲获胜,所标数字不同则乙获胜,这样规定公平吗?
【答案】(1)用),(yx(x表示甲摸到的数字,y表示乙摸到的数字)表示甲乙各摸到一球构成的基本事件有:(1,1)(1,2)(1,3)(1,4)(2,1)(2,2)(2,3)(2,4)(3,1)(3,2)(3,3)(3,4)(4,1) (4,2)(4,3)(4,4)共有16个 设甲获胜的事件为A,则事件A包括的基本事件为(2,1)(3,1)(3,2)(4,1) (4,2)(4,3)共有6个, 文档来源为:从网络收集整理.word版本可编辑.欢迎下载支持. 4文档收集于互联网,如有不妥请联系删除. 83166)(AP 答:甲获胜的概率为83 (2)设甲获胜的事件为B,乙获胜的事件为C,事件B所包含的基本事件为(1,1)(2,2)(3,3)(4,4)共有4个,
则41164)(BP,431641)(CP, )()(CPBP,所以不公平
19.某商场为吸引顾客消费推出一项优惠活动.活动规则如下:消费额每满100元可转动如图所示的转盘一次,并获得相应金额的返券.(假定指针等可能地停在任一位置, 指针落在区域的边界时,重新转一次)指针所在的区域及对应的返劵金额见下表.例如:消费218元,可转动转盘2次,所获得的返券金额是两次金额之和. (1)已知顾客甲消费后获得n次转动转盘的机会,已知他每转一次转盘指针落在区域边界
的概率为p,每次转动转盘的结果相互独立,设为顾客甲转动转盘指针落在区域边界的
次数,的数学期望125E,标准差31150,求n、p的值; (2)顾客乙消费280元,并按规则参与了活动,他获得返券的金额记为(元).求随机变量的分布列和数学期望.
【答案】(1)依题意知,服从二项分布~(,)Bnp,∴125Enp ①
又299()(1)2500Dnpp ② 由①②联立解得:14,100np (2)设指针落在A,B,C区域分别记为事件A,B,C. 则111(),(),()632PAPBPC. 由题意得,该顾客可转动转盘2次. 随机变量的可能值为0,30,60,90,120. 所以,随机变量的分布列为:
其数学期望115110306090120404318936E 20.某中学的高二(1)班男同学有45名,女同学有15名,老师按照分层抽样的方法组建了一个4人的课外兴趣小组. (I)求课外兴趣小组中男、女同学的人数; (II)经过一个月的学习、讨论,这个兴趣小组决定随机选出两名同学分别去做某项试验,求选出的两名同学中恰有一名女同学的概率; (III)在(II)的条件下,两名同学的试验结束后,男同学做试验得到的试验数据为68、70、71、72、74,女同学做试验得到的试验数据为69、70、70、72、74,请问哪位同学的试验更稳定?并说明理由.