窦房结细胞
血管生理学

Lecture notes心肌细胞跨膜电活动【摘要】心室肌细胞的静息电位数值是K+平衡电位、少量Na+内流及生电性Na+-K+泵活动的综合反映。
心室肌细胞的动作电位可分为0、1、2、3、4共五个时期。
0期形成机制:Na+通道开放和Na+内流;1期机制:Na+通道失活,一过性K+外流;2期机制:电压门控L 型钙通道激活引起Ca2+缓慢持久内流,同时K+外流;3期机制:钙通道失活关闭,K+迅速外流。
4期机制:Na+-K+泵、Na+-Ca2+交换和Ca2+泵,恢复细胞内外离子的正常浓度梯度。
浦肯野细胞的动作电位0、1、2、3期的离子机制与心室肌细胞相似,但在4期,表现为自动去极化,主要是由随时间而逐渐增强的内向电流(If)所引起。
窦房结细胞的动作电位分为0、3、4共三个时期,无明显的1期和2期,4期自动去极化速度快于浦肯野细胞;窦房结细胞的0期去极化是L型Ca2+通道激活、Ca2+内流引起的;随后钾通道开放、K+外流引起3期;4期自动去极化的机制主要是K+外流的进行性衰减。
心脏是推动血液流动的动力器官。
心房和心室不停地进行有顺序的、协调的收缩和舒张交替的活动,是心脏实现泵血功能、推动血液循环的必要条件,而心肌细胞的动作电位则是触发心肌收缩和泵血的动因。
根据组织学特点、电生理特性以及功能上的区别,心肌细胞可分为两大类:一类是普通的心肌细胞,包括心房肌和心室肌,含丰富的肌原纤维,具有兴奋性、传导性和收缩性,但不具有自动产生节律性兴奋的能力;主要执行收缩功能,故又称为工作细胞。
另一类是一些特殊分化了的心肌细胞,组成心脏的特殊传导系统,其中主要包括P细胞和浦肯野细胞,具有兴奋性和传导性之外,还具有自动产生节律性兴奋的能力,故称为自律细胞,但它们含肌原纤维甚少(或完全缺乏),基本无收缩能力;主要功能是产生和传播兴奋,控制心脏的节律性活动。
一、心肌细胞的跨膜电位及其形成机制不同类型心肌细胞的跨膜电位不仅在幅度和持续时间上各不相同,形成的离子基础也有一定的差别,这是不同类别心肌细胞在心脏整体活动过程中起着不同作用的基本原因。
窦房结P细胞跨膜电位和产生机理

【提问】窦房结P细胞跨膜电位及产生机理?【回答】学员dbss9ffe42,您好!您的问题答复如下:外Ca2+浓度的影响,可被Ca2+通道抑制剂(如维拉帕米、Mn2+)阻断。
当膜电位由最大复极电位自动去极化到阈电位时,膜上L型Ca2+抖通道被激活,引起Ca2+。
内流,导致0期去极化。
祝您学习愉快!【追问】那么请问窦房结P细胞的复极化是受什么影响【回答】学员nflalihh,您好!您的问题答复如下:窦房结细胞的动作电位具有以下特点:①最大复极电位与阈电位的绝对值小;②0期去极化的幅度小、时程长、去极化速率较慢;③没有明显的复极1期和2期;④4期自动去极化速度快。
1.去极化过程:0期去极L型Ca2+通道激活,Ca2+内流。
2.复极化过程:3期复极L型Ca2+通道逐渐失活,Ca2+内流相应减少,及Ik通道的开放,K+外流增加。
3.4期自动去极化机制:①IK:复极至-60mV时,因失活逐渐关闭,导致K+外流衰减,是最重要的离子基础;②Ica-T:在4期自动去极化到-50mV时,T型Ca2+通道激活,引起少量Ca2+内流参与4期自动去极化后期的形成;③If:窦房结细胞最大复极电位只有-70mY,If不能充分激活,在P细胞4期自动去极化中作用不大。
【追问】老师这道题还是不明白【回答】学员zhulipeng,您好!您的问题答复如下:窦房结细胞的生物电特点是没有稳定的静息电位。
动作电位复极至3期末进入第4期,便自动缓慢去极。
窦房结的最大舒张电位约-60mV,阈电位约-40mV。
0期去极化速度缓慢,主要是Ca2+缓慢内流引起。
复极化无明显的l期和2期平台,随即转入复极化3期,后者主要是K+外流形成。
4期的自动去极化主要是由于K+通道逐渐关闭,Na+、Ca2+内流逐渐增多而引起。
</【追问】课堂上讲的是Na+内流引起去极化,为什么到了这里成了Ca2+内流了呢,还有没有别的细胞也是不受Na+影响的【回答】学员yinxinyang,您好!您的问题答复如下:心肌自律细胞的去极化都是钙离子的内流引起的。
窦房结的名词解释生理学

窦房结的名词解释生理学窦房结,也称为SA结(Sinoatrial node),是心脏起搏和传导系统中的一部分,被誉为“心脏的起搏器”。
它位于心脏右耳嵴上部的心房侧壁,是一片由起搏细胞组成的结构。
窦房结具有独立自主地产生心脏起搏信号,并将其传导至心房、房室结和心室等心肌组织的能力。
窦房结在心脏节律控制中扮演着重要角色。
它的主要功能是以恒定的频率产生起搏信号,并将此信号传导至心脏其他部位,引发心脏的收缩。
这个起搏信号的频率大约为每分钟60-100次,被称为正常的窦性心律。
在正常情况下,窦房结的起搏信号会通过心房肌传导至房室结,从而促使心房的收缩。
这一过程一般是无感的,人们只会感知到心率的改变。
窦房结的起搏信号是受到神经系统的调控的。
通过交感神经和副交感神经的作用,心脏的节律可以调整。
交感神经通常会加快窦房结的节律,使心率增加;而副交感神经则会减慢窦房结的节律,使心率降低。
这种神经调节可以使心脏适应各种生理和心理的需求。
窦房结的生理学过程与离子通道和细胞内外离子浓度变化密切相关。
窦房结的起搏细胞内外离子浓度的不同导致了细胞膜的极化和去极化,从而形成了起搏信号。
在窦房结的细胞内外,钠离子、钾离子、钙离子等离子的浓度存在着动态的变化。
这些离子通道的开闭状态对于窦房结的起搏有着至关重要的影响。
当心脏处于休息状态时,窦房结的起搏频率会相对较低,受到自身细胞的调节。
而当人体处于运动、兴奋或恐惧等情绪状态时,交感神经会兴奋窦房结细胞,提高起搏频率。
另一方面,当人体处于休息、放松或睡眠状态时,副交感神经会抑制窦房结的活动,使起搏频率降低。
值得注意的是,窦房结的异常功能可能导致心脏节律失常。
例如,窦房结功能低下可以导致窦房结功能不良综合征,即窦房结心律过缓或停搏。
窦房结功能亢进则可能导致窦房结心律过速。
这些心脏节律异常需要及时诊断和治疗,以避免对心脏功能和人体健康的不良影响。
综上所述,窦房结是心脏起搏和传导系统中的一个重要组成部分,负责产生心脏的起搏信号,并传导至其他心肌组织。
生理学重点

生理学重点一、绪论生理学定义:研究正常生命活动规律的科学。
生理学研究的三个水平:1、整体水平,2、器官、系统水平,3、细胞、分子水平。
生理学的研究方法:实验。
实验类型:1.急性实验(分为在体实验和离体实验两类),2.慢性实验新陈代谢:新陈代谢是生命活动的最基本表现,它是以生物体与外环境进行物质代谢和能量代谢为基础的生命现象。
物质代谢:分为合成代谢和分解代谢。
兴奋性:机体、组织或细胞对刺激发生反应的能力,称为兴奋性。
适应性:生物体对环境所产生的这种适应环境的能力和特性,称为适应性。
生殖:生物体生长发育到一定阶段后,能够产生与自己相近似的子代个体的功能称为生殖。
体液:体液是机体内液体的总称。
正常成年人的体液约占体重的60%,40%分布在细胞内,称为细胞内液,另外20%分布于细胞外,称为细胞外液。
细胞外液中组织液约占15%,血浆约占5%。
细胞外液称为机体的内环境。
机体三大调节方式:神经调节,体液调节,自身调节。
神经调节:神经调节是机体最主要的调节方式,它是通过反射活动来实现的。
特点:反应迅速、精确、短暂。
体液调节:当机体环境发生改变时,引起某些内分泌腺或内分泌细胞的分泌活动,释放激素并通过组织液或血液循环等来调节机体的新陈代谢、生长、发育、生殖及某些器官的功能活动,这种调节方式被称为体液调节。
特点:反应相对较迟缓,但作用持久,广泛。
自身调节:自身调节是指某些组织或器官不依赖神经、体液调节,而自身对环境的改变也可做出一些适应性的反应。
特点:自身调节的幅度、范围都不会太大,对刺激的感受性也较低,它是机体调节的辅助方式。
反馈控制系统:负反馈控制系统、正反馈控制系统。
负反馈:指受控部分发出的反馈信息抑制或减弱了控制部分的活动。
它的重要作用在于维持机体稳态。
但具有滞后,波动的缺点。
正反馈:指受控部分发出的反馈信息,促进或加强控制部分的活动。
前馈控制系统特点:调节具有前瞻性。
二、细胞的基本功能细胞膜的跨膜物质转运功能:被动转运、主动转运、胞纳与胞吐。
窦房结自律细胞自律性的产生机制及影响因素

【考点】⼼肌的⾃动节律性。
【解析】4期⾃动除极是⾃律性产⽣的基础,不同类型的⾃律性细胞,4期除极的速度不同,引起4期⾃动除极的离⼦流基础也不同。
窦房结⾃律细胞其4期⾃动除极是随时间⽽增长的净向内向电流所引起。
它是由Ik,If和Is1-2三重离⼦电流所组合⽽成。
Ik通道在3期复极达-40mv时便逐渐失活。
因⽽K+的外向电流出现递减,导致膜内正电荷逐渐增多,从⽽开始出现4期⾃动除极化现象。
这种K+外流的逐渐衰退,是窦房结⾃律细胞4期⾃动除极的最重要的离⼦基础。
If是⼀种进⾏性增强的内向离⼦(主要位Na+)流。
在窦房结⾃律细胞4期⾃动除极过程中虽有作⽤,但⽐Ik⼩得多。
在窦房结⾃律细胞⾃动除极过程中还存在⼀种⾮特异的缓慢内向电流Is1-2,可能是⽣电性Na+-Ca2+交换的结果。
在⾃动除极的后1/3期间开始起作⽤,是⾃动除极过程的末期出现起动电位的电⽣理基础。
⾃律性的⾼低受4期⾃动除极的速度,舒张电位的⽔平,以及阈电位⽔平的影响。
(1)4期⾃动除极的速度除度快,到达阈电位的时间就缩短,单位时间内爆发兴奋的次数增加,⾃律性就增⾼,反之,⾃律性就降低。
(2)舒张电位的⽔平舒张电位的绝对值变⼩,与阈电位的差距就减⼩,到达阈电位的时间就缩短,⾃律性增⾼,反之⾃律性则降低。
(3)阈电位⽔平。
阈电位降低,由舒张电位到达阈电位的距离缩⼩,⾃律性增⾼。
反之,⾃律性降低。
2016年北京协和医学院306西医综合考研生理学复习笔记(七)

1.静息电位——K+外流的平衡电位。
2.动作电位——复极化复杂,持续时间较长。
0 期(去极化)——Na+内流接近 Na+电化平衡电位,构成动作电位的上升支。
1 期(快速复极初期)——K+外流所致。
更多资料下载:
2 期(平台期)——Ca2+、Na+内流与 K+外流处于平衡。
更多资料下载:
才思教育考研考博全心全意
报名包括网上报名和现场确认两个阶段。 (一) 网上报名: 中国研究生招生信息网(简称“中国研招网”), 网址: http://yz.chsi. cn , 网上报名日 期: 2014 年 10 月 。 报名期间将对考生学历(学籍) 信息进行网上校验, 并在考生提 交报名信息三天内反馈校验结果。考生可随时上网查看学历(学籍) 校验结果。 未通过学历(学籍)校验的考生应及时到学籍学历权威认 证机构进行认证, 在现场确认时将认证报告交报考点核验。 2 (二)现场确认 1. 报考点现场确认时间 2014 年 11 月 10 日 至 11 月 12 日 。 2. 现场确认地点 北京地区现场确认地点为本校研招办, 京外地区现场确认地点为 各省、 自 治区、 直辖市高校招生办公室指定的报考点。 逾期不再受理, 报考资格无效。 (三) 北京地区现场确认工作流程: 考生持本人第二代身份证(包括现役军人及军队文职干部) 、学 生证(普通高校应届本科毕业生和成人高校应届本科毕业生)、 学历 证书(非应届生)、 在录取当年 9 月 1 日 前可取得国家承认本科毕业证 书的自 学考试和网络教育本科生, 须持颁发毕业证书的省级高等教育 自 学考试办公室或网络教育高校出具的相关证明、 网上报名的报名号 进行确认。 具体流程: 考生签订诚信承诺书、报名确认单→工作人员查验证 件、 资格审查(统考港澳台生) →照相→考生核对确认《报名情况登 记表》、领取并认真阅读《考场规则和违规行为处理规定》、领取有关 资料→完毕。 (四) 注意事项 1. 报考点选择: 在北京地区报名考试的考生, 含京内统考生、 所 有统考港澳台学生(含京内、 京外), 在网上报名时, 均选择本校北 京报考点(北京协和医学院“ 1123”), 并网上支付报名费, 否则报名 无效。 上述考生均在本校北京报考点参加现场确认、 初试。 京外地区考生的现场确认和初试地点请咨询选择的报考点。 2. 支付报名费方式: 在要求网上支付省市报名的考生: 提交网报 信息后,应在网上报名截止日 期( 10 月 31 日 ) 前, 以“网上支付” 方式交纳报考费, 得到交费成功信息后, 方可持报名号在规定时间到 指定报考点确认网报信息。 否则报名无效。 3 在不要求网上支付省市报名的考生: 在现场确认时, 向报考点支 付报名费。 3. 本校报考点还接收报考卫生部老年医学研究所(84512) 和中国 食品药品检定研究院(84503) 的北京地区考生报名。 (五) 京外地区的初试地点由现场确认资格地点指定。 (六) 初试前, 考生可凭网报用户名和密码登陆“中国研招网”
窦房结细胞动作电位的主要特点

窦房结细胞动作电位的主要特点以《窦房结细胞动作电位的主要特点》为标题,写一篇3000字的中文文章窦房结细胞动作电位(简称:AP)是一种重要的生物电位,它可以帮助我们了解细胞内发生的电化学活动。
本文主要介绍窦房结细胞动作电位的主要特点,并对其对细胞生理学和药理学研究的重要作用进行讨论。
窦房结细胞动作电位是指窦房结细胞内发生的脉冲性膜电位变化,由于窦房结细胞具有正常细胞极性,因此外界电场可以在其表面形成电势差,从而引起窦房结细胞内的膜电势变化,进而引起细胞内的传导电导变化。
AP是由于细胞内的特定离子通道的变化引起的,当细胞内的离子通道被关闭,窦房结细胞会产生快速的电位反复,而细胞内离子通道开放时,细胞会出现持续性的电位变化。
窦房结细胞动作电位具有多种特点。
首先,其具有膜电潜力变量和时间变量的双重变化特性,其膜电潜力变量的变化可源于内部或外部的电场,而时间变量的变化可源于电解质浓度的变化或细胞内不同离子通道的激活和失活。
其次,AP的持续时间可以从解离时间的几微秒到数秒不等,而膜电位的幅值也会随着发放末端和破裂点之间的距离而发生变化,其末端膜电位会变得更低。
最后,窦房结细胞动作电位具有抵御外界干扰的特点,即在外界电场强大或受高能粒子辐射时,其仍保持着正常活动,因此能够稳定地产生正常AP。
窦房结细胞动作电位具有重要的生理和药理学意义。
生理学上,AP控制着心肌的发放,从而控制心率,而AP的大小变化可以影响心室的负荷,从而影响心脏的功能,所以AP的变化是心脏循环系统的重要参数。
药理学上,AP的变化可以用来检测药物的作用,窦房结细胞动作电位的变化可作为药效评价的重要指标,有助于评价新药的安全性和有效性。
综上所述,窦房结细胞动作电位是细胞生理学和药理学研究中一个重要的参数,它可以帮助我们更好地理解细胞内的电化学过程,并可用于评价新药的作用,提高药物研发的效率。
窦房结的作用原理

窦房结的作用原理
窦房结是心脏的一部分,位于右心房的上部,它被称为“心脏
的起搏点”,具有自律性和节律性的特点。
窦房结的作用原理是通过自身呈现的电生理活动调控心脏的收缩和舒张,起到产生并传导心房激动的功能。
具体来说,窦房结的细胞内存在着不同浓度的阳离子和阴离子,导致细胞膜内外电位的不平衡。
当细胞内电位达到一定阈值时,窦房结细胞内的钠离子通道会打开,钠离子从细胞外流入细胞内,使细胞内电位逐渐升高,形成快速的上升阶段。
随着电位的上升,窦房结细胞内的钠离子通道关闭,而钾离子通道逐渐打开,钾离子从细胞内流出,使细胞内电位逐渐下降,形成缓慢的下降阶段。
当细胞内电位下降到一定程度时,钾离子通道关闭,而钠离子通道再次打开,钠离子再次从细胞外流入,使细胞内电位快速上升,进而产生新的动作电位。
这个过程不断地循环发生,形成了窦房结细胞内自主产生的动作电位,从而调节了心房肌的收缩和舒张。
通过窦房结传导的激动,心脏能够以一定的节律性地收缩和舒张,维持正常的心脏功能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
内容安排
心肌的生物电活动 心脏的泵血功能
血管生理
心血管活动的调节 器官循环
第一节 心肌的生物电活动
自律细胞:浦肯野细胞
快反应细胞
非自律细胞:心房肌、心室肌细胞 自律细胞:窦房结细胞、房结区、结
慢反应细胞
按去极化速度
希区细胞 非自律细胞:结区细胞
一、心肌的生物电现象
心脏各部分心肌细胞的跨膜电位
2.兴奋过程中兴奋性的周期性变化
有效不应期 • 绝对不应期:0期~3期-55mV,兴奋性为0,心肌对 任何刺激不发生任何反应,Na+通道失活; • 局部反应期: 3 期 -55 ~ -60mV ,心肌可产生局部电 位,但绝不会产生动作电位, 其原因是膜电位 太低,N a通道 刚开始复活。
2.兴奋过程中兴奋性的周期性变化
(三)自律细胞的跨膜电位及其形成机制
机制:4期自动去极化 1.浦肯野细胞:
0-3期机制相同
4期:
增强的内向电流(If) 外向电流(IK)逐渐减弱
IK If 0.02V/s
2.窦房结细胞
窦房结细胞跨膜电位特点:
最大复极电位(-70mV)和 阈电位(-40mV)的绝对 值小; 0期去极化速度慢,幅度小
2. 动作电位
心室肌动作电位
神经,骨骼肌细胞动作电位
0期,去极化期: Na+通道激活,大量Na+快速内流(INa)
1期,快速复极初期:
INa失活,K+一过性外流(Ito)
2期,平台期: K+缓慢外流及缓慢的Ca2+内流, 早期二者跨膜电荷基本平衡, 随后IC a-L失活,K+外流 (Ik1,Ik )增强,并逐渐延续为3期。
钾通道:
一过性外向电流,Ito (KA): 去极化达-20mV激活, 激活失活快, 阻断剂4-AP,
Ito
内向整流钾通道,IK1: 背景K+电流,内向整流 阻断剂Ba2+、Cs+,
窦房结P细胞无此通道,
IK1
[K+]o影响通道的通透性。
延迟整流钾通道,IK: 去极化明显时激活,内向整流 激活、失活慢, 阻断剂Ba2+ E-4031 。 Ach激活钾通道,IK(Ach): Ach通过M受体激活,K+外流。 ATP敏感钾通道,IK(ATP) : ATP缺乏开放,阻断剂格列本 脲。
3.兴奋性周期性变化与收缩活动的关系
心肌的有效不应期特别长,一直持续到舒张早期之后,在此之前,不会第二个 兴奋和收缩,这使得心肌不会象骨骼肌那样发生强直收缩,而始终作收缩和始 终相交替的运动,心脏有舒张充盈的时间,有利于心脏的泵血功能。
期前收缩
代偿间歇
(二)自动节律性:
1.心脏的起搏点: 正常起搏点: 窦房结
窦房结以外的自律组织正常不表现其自律 潜在起搏点: 性,为潜在起搏点。
异位起搏点: 某些情况下,潜在起搏点自律性表现出来, 控制部分心肌的兴奋跳动,称为异位起搏 点。
窦房结对于潜在起搏点的控制方式:
① 抢先占领
② 超速驱动压抑
Na+-K+泵活动增强,膜超极化 人工起搏器
2.影响自律性的因素:
(三)传导性:
有效不应期 相对不应期 3期-60mV~-80mV,兴奋性低于正常并逐渐升高,阈 上刺激可引起动作电位。原因是Na+通道正在逐渐复 活,此期产生的动作 电位的速度与幅度低 于正常。
2.兴奋过程中兴奋性的周期性变化
有效不应期 相对不应期 超常期 3期-80mV~-90mV,兴奋性高于正常。动作电位的速度 与幅度仍低于正常。
(一)心肌细胞膜的离子通道
钠通道: 快钠通道,INa :
去极化-70mV激活,
失活快 阻断剂河豚毒TTX, 参与快反应细胞去极化。
INa
钙通道:
L型钙通道,ICa-L
:
慢通道,去极化-40mV激活, 阻断剂Mn2+、维拉帕米,
参与慢反应细胞去极化。
ICa-L
T型钙通道, ICa-T: 去极化- 50mV激活,失活快, 阻断剂Ni2+,
IK
(二)工作细胞的跨膜电位及其形成机制
1.静息电位
表4-1 心肌细胞中各种主要离子的浓度及平衡电位值 离子 Na+ K+ Ca2+ CI浓度(mmo1/L) 细胞内液 细胞外液 10 140 10-4 9 140 4 2 104 内/外比值 1:9.7 35:1 1:20,000 1:11.5 平衡电位(mV) (由Nernst公式 计算) +70 -94 +132 -65
生理学
第四章
血液循环
李建国
山西医科大学生理教研室
血液循环: 血液在心血管系统中按一定方向流动的过程。 心血管系统由心脏和血管组成
循环的生理功能
完成体内的物质运输,使新陈代谢不断 进行。 运输内分泌的激素和体液因素,实现体 液调节。 参与机体内环境的稳定,防卫功能。 有内分泌功能,分泌心房钠尿肽、内皮 素等。
无明显复极1、2期;
110mv 400V/s
4期自动去极化速度快。
70mv 10V/s 0.1V/s
窦房结细胞跨膜电位形成机制:
0期:L型钙通道开放,钙离子内流; 3期:钙通道失活,K+外流,IK; 4期:自动去极化 • IK进行性减弱:复极化到-60mV,IK开始逐渐关闭,主要 • If:次要 • T型钙通道:4期去极化到-50mV时开放,Ca2+内流。
传导原理――局部电流
缝隙连接
1.心脏内兴奋传播的途径和特点:
2.影响传导性的因素 : ⑴结构因素: 细胞直径,直径越大,纵向电阻越小,传导
速度越快; ⑵生理因素: 0期去极化的速度和幅度 邻近膜的兴奋性
四、体表心电图
3期,快速复极末期: K+外流(Ik1,Ik ),且具正反馈性质,使膜电 位越来越快地接近钾平衡电位。
动作电位时程: 0期-3期 200ms~300ms
4期,静息期: Na+-K+交换,Na+-Ca2+交换, Ca2+泵
(三)自律细胞的跨膜电位及其形成机制
最大复极电位 机制:4期出现净内向电流导致自动去极化
二、心肌的电生理特性
(一)兴奋性:
1、影响兴奋性的因素:
静息电位水平:ACh使之下移,兴奋性下降 阈电位水平:奎尼丁可使阈电位上移,兴奋性下降。
钠通道性状:
三种功能状态:备用、激活、失活。 钠通道处在正常备用状态是细胞具有兴奋性的前提, 钠通道处于何种状态是电压依赖性和时间依赖性的。