分子生物学绪论8546999

分子生物学绪论8546999
分子生物学绪论8546999

第一章绪论

一、分子生物学的基本含义

分子生物学是一门从分子水平研究生命现象、生命本质、生命活动及其规律的科学。

医学分子生物学作为分子生物学的重要分支,是从分子水平研究人体在正常和疾病状态下的生命活动及其规律,从分子水平开展人类疾病的预防、诊断和治疗研究的一门学科。研究对象

生物大分子的结构及在遗传信息和细胞信息传递中的作用

生物大分子:核酸携带遗传信息;

蛋白质在遗传信息传递,细胞内、细胞间通讯过程中发挥着重要作用

学科地位

是当前生命科学中发展最快的前沿领域

与其它学科广泛交叉与渗透的重要前沿领域

二、生命科学的发展历史

生命科学/分子生物学

主要包括三个不同层次的发展:

宏观论证

问题研究

技术手段

宏观论证

这一研究层次的兴趣点:只关心生命现象的最终结果。不研究生命现象的成因、过程、问题、机理

问题研究(有人称之为主题学科)

这一研究层次的兴趣点:对宏观论证的证实:研究生命现象中的各种问题和机理

研究历程: 分类学胚胎学生理学、生物化学、病理学

遗传学

技术手段(有人称之为方法学科)

这一研究层次的兴趣点:提供问题和机理研究的方法学。技术方法的领先,才有研究工作的深入和上台阶

技术方法研究的发展历程:形态解剖方法细胞学方法分子学方法

三、分子生物学的研究和发展轨迹

不断把本学科的理论和技术引向深入

目前分子生物学研究的前沿:

功能基因组研究、基因表达调控研究、结构分子生物学研究、信号转导研究

不断地与其他学科进行深入的横向联系和交叉融合

分子、细胞、整体水平的研究得到和谐统一

表型和基因型的关系得到客观准确解释

分子生物学与其他学科的结合

生理学、微生物学、免疫学、病理学、药理学、分子生物学、临床医学、广泛渗透到医学各学科领域,成为现代医学重要的基础

预防医学

分子细胞学分子药理学

分子免疫学分子病理学

分子病毒学分子神经学

分子细菌学分子遗传学

分子流行病学分子内分泌学

分子诊断学(基因诊断学)

分子治疗学(基因治疗学)

广泛的渗透到医学各学科领域,大大促进了医学的发展

四、分子生物学发展简史

准备和酝酿阶段

现代分子生物学的建立和发展阶段

初步认识生命本质并开始改造生命的深入发展阶段

准备和酝酿阶段( 19世纪后期到20世纪50年代初)

在这一阶段产生了两点对生命本质的认识上的重大突破:

确定了蛋白质是生命的主要基础物质

确定了生物遗传的物质基础是DNA

蛋白质是生命的主要基础物质

19世纪末Buchner 兄弟证明酵母细胞提取液能使糖发酵产生酒精,第一次提出酶(enzyme)的名称,酶是生物催化剂。

20世纪20--40年代提纯和结晶了一些酶(尿素酶、胃蛋白酶、胰蛋白酶等),证明酶的本质是蛋白质。

1902年,Emil Fisher 证明蛋白质结构是多肽。

40年代末,Sanger创立二硝基氟苯(DNFB)法分析肽链N端氨基酸的方法,

Edman 发展了异硫氰酸苯酯法分析肽链N端氨基酸的方法,为蛋白质测序奠定了基础。

1953年,Sanger和Thompson完成了第一个多肽分子------胰岛素A链和B链氨基酸全序列分析。

1950年,Pauling 和Corey 提出了α-角蛋白的α-螺旋结构模型。

这一阶段对蛋白质一级结构和空间结构都有了认识

生物遗传的物质基础是DNA

1868年, F.Miescher 就发现了核素(nuclein)

20世纪20-30年代, 确认自然界有DNA和RNA,并阐明了核苷酸的组成。

由于当时对核苷酸和碱基的定量分析不够精确,得出DNA中A、G、C、T含量是大致相等的结果,因而曾长期认为:DNA结构只是“四核苷酸”单位的重复,不具有多样性,不能携带更多的信息,当时对携带遗传信息的侯选分子更多的是考虑蛋白质。

40年代以后,人们对核酸的功能和结构两方面的认识都有了长足进步。

1944年,O.T.Avery 等证明了肺炎球菌转化因子是DNA

1952年,A.D.Hershey 和M.Chase 用35S 和32P 分别标记T2 噬菌体的蛋白质和核酸,感染大肠杆菌的实验进一步证明了核酸是遗传物质。

在对DNA结构的研究上

1949-1952年,Wilkins 等的X-线衍射分析阐明了核苷酸并非平面的空间构像,提出了DNA是螺旋结构

1948-1953年,Chargaff等用新的层析和电泳技术分析组成DNA的碱基和核苷酸量,

积累了大量的数据,提出了DNA碱基组成A=T、G=C的Chargaff 规则,为碱基配对的DNA 结构认识打下了基础。

现代分子生物学建立和发展阶段

(50年代初到70年代初)

1953年Watson和Crick提出DNA双螺旋结构模型,是生物学发展的里程碑。它开创了分子遗传学基本理论建立和发展的黄金时代,可以说是现代分子生物学的开始。

在此期间的主要进展包括:

遗传信息传递中心法则的建立

对蛋白质结构与功能的进一步认识

遗传信息传递中心法则的建立

在发现DNA双螺旋结构同时,Watson 和Crick 就提出DNA复制的可能模型

1956年,A.Kornberg首先发现DNA聚合酶(DNA polymerase)

1958年,Meselson及Stahl用同位素标记和超速离心分离实验证明了DNA半保留复制模型

1968年,Okazaki(冈崎)提出DNA的半不连续复制模型

1972年,证实了DNA复制开始需要RNA作为引物

70年代初,发现了DNA拓扑异构酶,并对真核DNA聚合酶特性做了分析研究逐渐完善了对DNA复制机理的认识

在研究DNA复制将遗传信息传给子代的同时,提出了RNA在遗传信息从DNA传到蛋白质过程中起着中介作用的假说

1958年,Weiss 及Hurwitz等发现依赖于DNA的RNA聚合酶

1961年,Hall和Spiegelman用RNA-DNA杂交证明mRNA与DNA序列互补,阐明了RNA转录合成的机理

在此同时认识到:蛋白质是接受RNA的遗传信息而合成的

50年代初,Zamecnik等在形态学和分离的亚细胞组分的实验中发现微粒体(microsome )是细胞内蛋白质合成的部位

1957年,Hoagland 等分离出tRNA;对tRNA 在合成蛋白质中转运氨基酸的功能提出了假设

1961年,Brenner及Gross等观察了在蛋白质合成过程中mRNA与核糖体的结合

1965年,Holley首次测出了酵母丙氨酸tRNA的一级结构

60年代,Nirenberg、Ochoa、Khorana等几组科学家的共同努力破译了mRNA上编码合成蛋白质的遗传密码

随后研究表明:这套遗传密码在生物界具有通用性,从而认识了蛋白质翻译合成的基本过程

上述重要发现共同建立了以中心法则为基础的分子遗传学基本理论体系

1970年,Temin和Baltimore从鸡肉瘤病毒颗粒中发现以RNA为模板合成DNA的反转录酶,补充和完善了遗传信息传递的中心法则

对蛋白质结构与功能的进一步认识

1956-58年,Anfinsen和White 提出了蛋白质的三维空间结构是由其氨基酸序列来确定的(牛胰核糖核酸酶的变性与复性实验)

1958年,Ingram证明正常的血红蛋白与镰刀状红细胞贫血症病人的血红蛋白之间,在亚基的肽链上仅有一个氨基酸残基的差别。

研究蛋白质的手段也有改进:

1969年,Weber开始应用SDS-聚丙烯酰胺凝胶电泳测定蛋白质分子量

60年代,先后分析了血红蛋白、核糖核酸酶A等一批蛋白质的一级结构

1973年氨基酸序列自动测定仪问世

中国科学家

1965年人工合成了牛胰岛素

1973年用1.8A X-线衍射法测定了牛胰岛素的空间结构

初步认识生命本质并开始改造生命的深入发展阶段(70年代—)

70年代后,以基因工程技术的出现作为新的里程碑,标志着人类开始了深入认识生命本质并能动改造生命的新时期

期间的重大成就包括:

重组DNA技术的建立和发展

基因组研究的发展

单克隆抗体及基因工程抗体的建立和发展

基因表达调控机理

细胞信号转导机理

重组DNA技术的建立和发展

1967-1970年,R Yuan和HO Smith等发现限制性核酸内切酶,为基因工程提供了有力工具

1972年,Berg等将SV40 病毒DNA与噬菌体P22 DNA 在体外重组成功,并转化了大肠杆菌,使本来在真核细胞中合成的蛋白质能在细菌中合成,打破了种属界限1977年,Boyer 等首先将人工合成的生长激素释放抑制因子14肽的基因重组入质粒,成功地在大肠杆菌中合成得到这14肽。

1978年,Itakura(板仓)等:人生长激素191肽在大肠杆菌中表达成功

1979年,美国基因技术公司用人工合成的人胰岛素基因重组转入大肠杆菌中合成人胰岛素

我国已有人干扰素、人白介素2、人集落刺激因子、重组人乙型肝炎疫苗、基因工程幼畜腹泻疫苗等多种基因工程药物和疫苗进入生产或临床试用。

世界上还有几百种基因工程药物及其它基因工程产品在研制中,成为当今农业和医药业发展的重要方向,将对医学和工农业发展作出新贡献

转基因动植物和基因剔除动植物的成功是基因工程技术发展的结果:

1982年,Palmiter等将克隆的生长激素基因导入小鼠受精卵细胞核内,培育得到比原小鼠个体大几倍的“巨鼠”,激起了人们创造优良品系家畜的热情。

我国水生生物研究所将生长激素基因转入鱼受精卵,得到的转基因鱼的生长显著加快、个体增大。

用转基因动物还能获取治疗人类疾病的重要蛋白质

例如:导入了凝血因子Ⅸ基因的转基因绵羊分泌的乳汁中含有丰富的凝血因子Ⅸ,能有效

地用于血友病的治疗。

在转基因植物方面

1994年,转基因西红柿投放市场

1996年,转基因玉米、转基因大豆相继投入商品生产

我国科学家将自己发现的蛋白酶抑制剂基因转入棉花获得抗棉铃虫的棉花株

1996年,全世界已有250万公顷土地种植转基因植物。

基因诊断与基因治疗是基因工程在医学领域发展的一个重要方面。

1990年,美国向一患先天性免疫缺陷病(遗传性腺苷脱氨酶ADA基因缺陷)的女孩体内导入重组的ADA基因,获得成功

我国也在1994年用导入人凝血因子Ⅸ基因的方法成功治疗了乙型血友病的患者

在我国,用作基因诊断的试剂盒已有近百种之多。基因诊断和基因治疗正在发展之中。

美国医学家W?F?安德森等人对腺甘脱氨酶缺乏症(ADA缺乏症)的基因治疗,是世界上第一个基因治疗成功的范例。

1990年9月14日,安德森对一例患ADA缺乏症的4岁女孩谢德尔进行基因治疗。这个4岁女孩由于遗传基因有缺陷,自身不能生产ADA,先天性免疫功能不全,只能生活在无菌的隔离帐里。他们将含有这个女孩自己的白血球的溶液输入她左臂的一条静脉血管中,这种白血球都已经过改造,有缺陷的基因已经被健康的基因所替代。在以后的10个月内她又接受了7次这样的治疗,同时也接受酶治疗。经治疗后,免疫功能日趋健全,能够走出隔离帐,过上了正常人的生活。

深圳市赛百诺基因技术有限公司研制开发的抗癌新药——“重组人p53腺病毒注射液”(商品名“今又生”),2003年10月16日获得国家食品药品监督管理局颁发的新药证书。

.基因工程的迅速进步得益于许多分子生物学新技术的不断涌现。

1975-1977年,Sanger、Maxam和Gilbert先后发明了三种DNA序列的快速测定法

90年代,全自动核酸序列测定仪的问世

1985年,Cetus公司Mullis等发明的聚合酶链反应(PCR)体外核酸序列扩增技术。基因组研究的发展

目前分子生物学已经从研究单个基因发展到研究生物整个基因组的结构与功能

1977年,Sanger测定了ΦX174-DNA全部5375个核苷酸的序列;

1978年,Fiers等测出SV40 DNA全部5224对碱基序列

80年代,λ噬菌体DNA序列全部测出(48,502 bp)

一些小的病毒包括乙型肝炎病毒、艾滋病毒等基因组的全序列也陆续被测定

1996年底,测出了大肠杆菌基因组DNA的全序列(4×10 6 bp )

测定一个生物基因组核酸的全序列无疑对理解这一生物的生命信息及其功能有极大的意义。

1990年,人类基因组计划(Human Genome Project,HGP)开始实施,这是生命科学领域有史以来全球性最庞大的研究计划

2001年2月,人类基因组(3.16 ×10 9 bp)全部DNA序列已完成。

后基因组(post-genome)计划、已经启动

1996年,许多科学家共同努力测出了大肠杆菌基因组DNA的全序列长4×10 6 碱基对测定一个生物基因组核酸的全序列无疑对理解这一生物的生命信息及其功能有极大的意义

转录组学(transcriptomics)研究细胞在某一功能状态下所含mRNA的类型和拷贝数。

RNA的生物学功能远超出遗传信息传递作用的范围,除mRNA、tRNA、rRNA外,一

类小分子RNA受到广泛重视,已发现小分子RNA可参与基因表达调控,所有小分子RNA 统称非mRNA小RNA(snmRNA),由此产生RNA组学的概念,主要研究snmRNA的种类、结构和功能等,探讨同一生物不同组织细胞或同一细胞在不同时空状态下snmRNA的表达谱,及其功能的变化。

代谢组学(metabolomics)研究的是生物体对外源性物质的刺激、环境变化或遗传修饰所做出的所有代谢应答的全貌和动态变化过程。

研究对象是完整的多细胞生物系统,包括生命个体与环境的相互作用。

代谢组学着重研究生物个体在疾病发生发展过程中和外源性物质如药物作用下代谢的整体变化。疾病代谢组学的研究着重于寻找疾病发生发展的生物标记与指纹信息。

糖组学(glycomics)主要研究单个生物体所包含的所有聚糖的结构、功能等生物学作用。糖组学的出现使人类可以更深刻理解第三类生物信息大分子——聚糖在生命活动中的作用。

单克隆抗体及基因工程抗体的建立和发展

1975年,Kohler和Milstein首次用B淋巴细胞杂交瘤技术制备出单克隆抗体以来,人们利用这一细胞工程技术研制出多种单克隆抗体

80年代以后,随着基因工程抗体技术而相继出现的单域抗体、单链抗体、嵌合抗体、重构抗体、双功能抗体等为广泛和有效的应用单克隆抗体提供了广阔的前景。

基因表达调控机理

1961年,Jacob 和Monod提出操纵子学说。

在分子遗传学基本理论建立的60年代,人们主要认识了原核生物基因表达调控的一些规律:操纵子机制。

70年代以后,才逐渐认识了真核基因组结构和调控的复杂性。

1977年,最先发现猴SV40和腺病毒中编码蛋白质的基因序列是不连续的。

基因内部的间隔区(内含子)在真核基因组中普遍存在,揭开了认识真核基因组结构和调控的序幕。

1981年,Cech等发现四膜虫rRNA的自我剪接功能,从而发现了核酶(ribozyme)80-90年代,人们逐步认识到真核基因的表达调控方式:

顺式作用元件(cis acting element)

反式作用因子(trans acting factor)

核酸与蛋白质间的分子识别与相互作用是基因表达调控根本所在。

细胞信号转导机理研究成为新的前沿领域

1957年,Sutherland 发现cAMP

1965年,提出第二信使学说

1977年Ross等证实G蛋白的存在和功能,将G蛋白与腺苷环化酶的作用相联系起来,深化了对G蛋白偶联信号转导途径的认识

70年代中期以后,癌基因和抑癌基因的发现、蛋白酪氨酸激酶的发现及其结构与功能的深入研究、各种受体蛋白基因的克隆和结构功能的探索等,使近10年来细胞信号转导的研究更有了长足的进步。

EH Fischer和EG Krebs发现可逆性的蛋白磷酸化过程是生物的自身调节机制,细胞内物质的不平衡可导致疾病的发生

可逆性的蛋白磷酸化过程是蛋白质相互作用的一个重要调节机制,该过程需要很多酶作催化剂。

一个细胞内有数千种蛋白质,它们是机体生命活动的基础。这些蛋白质之间是相互作用

的,其中一个重要的调节机制就是可逆性的蛋白磷酸化过程,而这个过程需要很多酶来作催化剂。Fischer and Krebs提纯出了第一种这种酶

在感染性疾病中,外来的感染因素成为抗原。这些抗原被巨噬细胞吞噬,吞噬了抗原的巨噬细胞通过一种特殊的表面蛋白与一些淋巴细胞连接,Fischer发现这种蛋白质就是磷酸酯酶,它可以使一种酶去磷酸化,进而这种去磷酸化的酶激活一系列生化反应,最后这些淋巴细胞就变成炎症细胞来对抗炎症。这就是机体的免疫防卫。但是有的时候,这种防卫并不是好事,如在器官移植中,受体的免疫应答导致受体排斥移植来的肝,肾,或胰腺。环孢子菌素能有效地抑制这种反应,而它就是通过影响酶的磷酸化过程来起作用的

在一些条件下,蛋白磷酸化过程也可以导致肿瘤的发生。一个正常细胞的细胞核中存在着上百种癌基因,通常情况下,这些基因产生的蛋白质调节细胞正常的生长。一旦这些基因发生突变,它们产生的蛋白质将导致细胞的异常生长,有一些疾病就是由错误基因所产生的激活酶(一种蛋白质)导致的,如慢性粒细胞白血病。

AG Gilman和M Rodbell发现G-蛋白及G-蛋白在细胞内信号传导中所起的作用,以及疾病的发生原理

目前,对于某些细胞中的一些信号转导途径已经有了初步的认识,形成了一些基本的概念,尤其是在:

免疫活性细胞对抗原的识别及其活化信号的传递途径方面

细胞增殖控制方面

分子生物学的最大弱点:

过于微观化,容易勿视整体。生物遗传受多种内外环境因素的影响,在获得大量微观资料后,必然要回到整体水平进行综合研究。

——个体与体系、体外与体内

五、分子生物学在医学上的应用

人体发育和功能调控的分子生物学基础

基因与疾病

生物工程与生物制药

预防医学

医学分子生物学

医学分子生物学 疾病和基因关系始终是医学领域关注的重大问题。在孟德尔遗传规律被重新认识的初期,就发现许多疾病受到遗传因素的控制,遵守孟德尔遗传因子的传递规律。遗传连锁定律的提出,现代经典遗传学理论体系的完善,极大地促进了对遗传性疾病的认识。上世纪40年代,L Pauling提出了”分子病”的概念,1956年,V Ingram发现血红蛋白β链第六位氨基酸从谷氨酸突变为缬氨酸是导致镰刀状贫血的原因。几乎同时,J.Lejeune发现Down综合症是由于21号染色体三陪体异常所致,系列染色体疾病病因。1976年,H Vanmus 和M Bishop在对肿瘤病毒学的研究中,发现了病毒癌基因,继而又无确定细胞癌基因的存在,此后抑癌基因也相继被发现,建立了肿瘤发生的基因理论,肿瘤被认为是体细胞的遗传病得到了普遍的认可。1983年,将亨廷顿病基因定位于第四号染色体上,1986年,克隆了慢性肉芽肿病的致病基因,同年杜氏肌营养不良和视网膜母细胞瘤的基因,也被定位克隆成功,掀起了单基因遗传病致病基因鉴定和克隆的热潮。世纪之交,人类基因组计划的完成,新的DNA标记的发现,为研究常见病的遗传因素成为了可能,2005年,首次用全基因组关联分析(GWAS),解析了视网膜黄斑变性病的相关基因,揭开了复杂性疾病易感基因确定的序幕,此后,一系列的常见多发疾病基因的GWAS研究,极大地丰富了人们对疾病发病机制的认识,加深了对疾病发生发展机制的认知。今天,疾病和基因关系仍是很长一段时间的重点工作,解析疾病基因,不但可以确定疾病的遗传易感性,有目的的开展预防、诊治,更

重要的是了解疾病新的致病机制,为分子诊断、分子靶向干预提供分子靶点。另一方面,药物作用靶点分子基因在人群的多态性,对药物作用的疗效影响;参与药物吸收、分布、代谢、排泄和毒性(admet)的基因多态性,也会影响药物的疗效,即药物基因组方面的研究,必将成为后基因组时代的重要研究内容。以疾病基因组学和药物基因组学为代表的组学研究进展,将为个体化医疗、精准医学提供理论和实践基础。

分子生物学实验思考题答案

分子生物学实验思考题答案 实验一、基因组DNA的提取 1、为什么构建DNA文库时,一定要用大分子DNA 答、的大小(即数目)取决于基因组的大小和片段的大小,片段大则文库数目小一些也可以包含99%甚至以上的基因组。而文库数目小则方便研究人员操作和文库的保存。所以构建文库要用携带能力大的载体尽量大的DNA片段. 2、如何检测和保证DNA的质量? 答、用看,有没有质白质和RNA等物质的污染,还可以测OD,用OD260/280来判断,当OD260/OD280< ,表示蛋白质含量较高当OD260/OD280> ,表示RNA含量较高当OD260/OD280=~,表示DNA较纯。 实验二、植物总RNA的提取 1、RNA酶的变性和失活剂有哪些?其中在总RNA的抽提中主要可用哪几种? 答、有DEPC,Trizol,氧钒核糖核苷复合物,RNA酶的蛋白抑制剂以及SDS,尿素,硅藻土等;在总RNA提取中用PEPC,Trizol 2、怎样从总RNA中进行mRNA的分离和纯化。 答、、利用成熟的mRNA的末端具有polyA尾的特点合成一段oligo(dT)的引物,根据碱基互补配对原则,可将mRNA从总RNA中分离出来 实验四、大肠杆菌感受态细胞的制备 1、感受态细胞制备过程中应该注意什么? 答、A)细菌的生长状态:不要用经过多次转接或储于4℃的培养菌,最好从-80℃甘油保存的菌种中直接转接用于制备的菌液。细胞生长密度以刚进入时为宜,可通过监测培养液的OD600 来控制。DH5α菌株的OD600为时,细胞密度在5×107 个/mL左右,这时比较合适。密度过高或不足均会影响转化效率。 B)所有操作均应在无菌条件和冰上进行;实验操作时要格外小心,悬浮细胞时要轻柔,以免造成菌体破裂,影响转化。 C)经CaCl2处理的细胞,在低温条件下,一定的时间内转化率随时间的推移而增加,24小时达到最高,之后转化率再下降(这是由于总的活菌数随时间延长而减少造成的);D)化合物及的影响:在Ca2+的基础上联合其他二价金属离子(如Mn2+或Co2+)、DMSO或等物质处理细菌,可使转化效率大大提高(100-1000倍); E)所使用的器皿必须干净。少量的或其它化学物质的存在可能大大降低细菌的转化效率; 2、感受态细胞制备可用在哪些研究和应用领域? 答、在中将导入受体细胞是如果受体细胞是细菌则将它用Ca2+处理变为质粒进入。 实验五、质粒在大肠杆菌中的转化和鉴定 1、在热激以后进行活化培养,这时的培养基中为什么不加入抗生素? 答、活化培养用的一般是SOC培养基,这种培养基比LB培养基营养,此时进行的活化培养只是为了让迅速复苏,恢复分裂活性,此时的细胞还不具抗性,加入会细胞会死亡。 2、什么是质粒?根据在细菌中的复制,质粒有几种类型?用于基因重组的主要用到哪些质粒? 答、是细菌体内的环状。

生物学概论

生物技术概论复习题及答案 一、名词解释 1、生物技术:是指人们以现代生命科学为基础,结合先进的工程技术手段和其他基础学科的科学原理,利用生物得体或其体系或它们的衍生物来制造人类所需要的各种产品或达到某种目的的一门新兴的、综合性的学科。 2、基因工程:是指在基因水平上的操作并改变生物遗传特性的技术。即按照人们的需要,用类似工程设计的方法将不同来源的基因(DNA分子)在体外构建成杂种DNA分子,然后导入受体细胞,并在受体细胞内复制、转录和表达的操作,也称DNA重组技术。 3、细胞工程:是指在细胞为基本单位,在体外条件下进行培养、繁殖或人为地使细胞某些生物学特性按人们的意愿发生改变,从而达到改良生物品种和创造新品种的目的,加速繁育动植物个体,或获得某种有用物质的技术。 4、食品添加剂:是指为改善食品的品质(色、香、味)以及有防腐和加工工艺的需要而加入到食品中的化学合成物或天然物质。 5、湖泊的富营养化:由于环境的污染,象农业上的化肥、工业废水等大量排放使水中含有大量的营养元素象氮磷钾等非常丰富,使微生物生长迅速,造成富营养化。 6、生物反应器(bioreactor):主要包括微生物反应器、植物细胞培养反应器,动物细胞培养反应器以及新发展起来的有活体生物反应器之称的转基因植物生物反应器,转基因动物生物反应器等。 7、转基因植物:是指通过体外重组DNA技术将外源基因转入到植物细胞或组织,从而获得新遗传特性的再生植物。 8、细胞融合:是指促融因子的作用下,将两个或多个细胞融合为一个细胞的过程。 9、抗原:凡能刺激机体免疫系统发生免疫应答的物质均称为抗原。 10、组织培养:指在无菌和人为控制外因(营养成分、光、温、湿)的条件下,培养研究植物组织、器官,甚至进而从中分化发育出整个植株的技术。 11、原生质体培养:是关于原生质体分离,原生质体纯化、原生质体培养、原生质体胞壁再生,细胞团形成和器官发生,等技术。 12、有益微生物:指对人类有帮助,能满足人们需求的某些微生物。 13、供体:提供一些手续操作需要的东西地生物体或器官等总供体。

中南大学_医学分子生物学试题库答案.pdf

医学分子生物学习题集 (参考答案) 第二章基因与基因组 一、名词解释 1.基因(gene):是核酸中储存有功能的蛋白质多肽链或RNA序列信息及表达这些信息 所必需的全部核苷酸序列。 2.断裂基因(split gene):真核生物基因在编码区内含有非编码的插入序列,结构基因 不连续,称为断裂基因。 3.结构基因(structural gene):基因中用于编码RNA或蛋白质的DNA序列为结构基因。 4.非结构基因(non-structural gene):结构基因两侧一段不编码的DNA片段,含有基 因调控序列。 5.内含子(intron):真核生物结构基因内非编码的插入序列。 6.外显子(exon):真核生物基因内的编码序列。 7. 基因间DNA (intergenic DNA):基因之间不具有编码功能及调控作用的序列。 8. GT-AG 法则 (GT-AG law):真核生物基因的内含子5′端大多数是以GT开始,3′ 端大多数是以 AG 结束,构成 RNA 剪接的识别信号。 9.启动子(promoter):RNA聚合酶特异识别结合和启动转录的DNA序列。 10.上游启动子元件(upstream promoter element ):TATA合上游的一些特定的DNA序 列,反式作用因子,可与这些元件结合,调控基因转录的效率。 11.反应元件(response element):与被激活的信息分子受体结合,并能调控基因表达的 特异DNA序列。 12.poly(A)加尾信号 (poly(A) signal) :结构基因末端保守的 AATAAA 顺序及下游 GT 或T富含区,被多聚腺苷酸化特异因子识别,在mRNA 3′端加约200个A。 13.基因组(genome):细胞或生物体一套完整单倍体的遗传物质的总称。 14.操纵子(operon):多个功能相关的结构基因成簇串联排列,与上游共同的调控区和下 游转录终止信号组成的基因表达单位。 15.单顺反子(monocistron):一个结构基因转录生成一个mRNA分子。 16.多顺反子(polycistron):原核生物的一个mRNA分子带有几个结构基因的遗传信息,

(完整版)分子生物学总结完整版

分子生物学 第一章绪论 分子生物学研究内容有哪些方面? 1、结构分子生物学; 2、基因表达的调节与控制; 3、DNA重组技术及其应用; 4、结构基因组学、功能基因组学、生物信息学、系统生物学 第二章DNA and Chromosome 1、DNA的变性:在某些理化因素作用下,DNA双链解开成两条单链的过程。 2、DNA复性:变性DNA在适当条件下,分开的两条单链分子按照碱基互补原则重新恢复天然的双螺旋构象的现象。 3、Tm(熔链温度):DNA加热变性时,紫外吸收达到最大值的一半时的温度,即DNA分子内50%的双链结构被解开成单链分子时的温度) 4、退火:热变性的DNA经缓慢冷却后即可复性,称为退火 5、假基因:基因组中存在的一段与正常基因非常相似但不能表达的DNA序列。以Ψ来表示。 6、C值矛盾或C值悖论:C值的大小与生物的复杂度和进化的地位并不一致,称为C值矛盾或C值悖论(C-Value Paradox)。 7、转座:可移动因子介导的遗传物质的重排现象。 8、转座子:染色体、质粒或噬菌体上可以转移位置的遗传成分 9、DNA二级结构的特点:1)DNA分子是由两条相互平行的脱氧核苷酸长链盘绕而成;2)DNA分子中的脱氧核苷酸和磷酸交替连接,排在外侧,构成基本骨架,碱基排列在外侧;3)DNA分子表面有大沟和小沟;4)两条链间存在碱基互补,通过氢键连系,且A=T、G ≡ C(碱基互补原则);5)螺旋的螺距为3.4nm,直径为2nm,相邻两个碱基对之间的垂直距离为0.34nm,每圈螺旋包含10个碱基对;6)碱基平面与螺旋纵轴接近垂直,糖环平面接近平行 10、真核生物基因组结构:编码蛋白质或RNA的编码序列和非编码序列,包括编码区两侧的调控序列和编码序列间的间隔序列。 特点:1)真核基因组结构庞大哺乳类生物大于2X109bp;2)单顺反子(单顺反子:一个基因单独转录,一个基因一条mRNA,翻译成一条多肽链;)3)基因不连续性断裂基因(interrupted gene)、内含子(intron)、外显子(exon);4)非编码区较多,多于编码序列(9:1) 5)含有大量重复序列 11、Histon(组蛋白)特点:极端保守性、无组织特异性、氨基酸分布的不对称性、可修饰作用、富含Lys的H5 12、核小体组成:由组蛋白和200bp DNA组成 13、转座的机制:转座时发生的插入作用有一个普遍的特征,那就是受体分子中有一段很短的被称为靶序列的DNA会被复制,使插入的转座子位于两个重复的靶序列之间。 复制型转座:整个转座子被复制,所移动和转位的仅为原转座子的拷贝。 非复制型转座:原始转座子作为一个可移动的实体直接被移位。 第三章DNA Replication and repair 1、半保留复制:DNA生物合成时,母链DNA解开为两股单链,各自作为模板(template)按碱

医学分子生物学复习总结学习资料.doc

医学分子生物学复习资料

蛋白质、糖蛋白与蛋白聚糖、脂蛋白、细胞信号传导 名词解释: 1、构型:指一个有机分子中各个原子特有的固定的空间排列。这种排列不经过 共价键的断裂和重新形成是不会改变的。不同构型之间相互转化会涉及化学键 的断裂,构型的改变往往使分子的光学活性发生变化。 2、构象:构成分子的原子和基团因为化学键的旋转而形成在三维空间的不同的 排布、走向。不同的构象之间可以相互转化而不涉及化学键的破裂。构象改变 不会改变分子的光学活性。 3、肽平面:肽键具有部分双键性质而不能自由旋转,这样C、N 原子同它们连接的 O、H和两个 Cα共六个原子就被约束在一个刚性平面上,这个平面被称为肽平面。 4、基序或模体:相邻的几个二级结构相互作用形成有规则的组合体称为超二级 结构,是特殊的序列或结构的基本组成单元,又称为基序或模体。 5、结构域:蛋白质的超二级结构进一步组合折叠成半独立紧密的球状结构域。 6、糖蛋白:在分子组成中以蛋白质为主,其一定部位以共价键与若干糖链(约4%)相连所构成的分子。 7、蛋白聚糖:蛋白聚糖是一类由蛋白质和糖胺聚糖通过共价键相连而成的化合物,其分子中的含糖量通常为50%~90%。 8、血脂:血浆所含的脂类统称为血脂,它包括甘油三酯、磷脂、胆固醇及游离 脂酸。 9、血浆脂蛋白:在血浆中血脂与蛋白质结合,形成血浆脂蛋白。 10、载脂蛋白:血浆脂蛋白中蛋白质部分称为载脂蛋白。 11、脂蛋白受体:脂蛋白受体是一类位于细胞膜上的糖蛋白,它们能以高亲和 性的方式与其相应的脂蛋白配体相互作用,介导细胞对脂蛋白的摄取和代谢, 从而进一步调节血浆脂蛋白和血脂的水平。 12、细胞通讯( cell communication):指一个细胞发出的信息通过介质传递 到另一个细胞产生相应反应的过程。

遗传病试题及答案

1.遗传病的最基本特征是:A. 家族性 B. 先天性 C. 终身性 D. 遗传物质的改变 E. 染色体畸变2.根据遗传因素和环境因素在不同疾病发生中作用不同,对疾病分类下列哪项是错误的?A.完全由遗传因素决定发病B.基本由遗传因素决定发病C.遗传因素和环境因素对发病都有作用D.遗传因素和环境因素对发病作用同等 E. 完全由环境因素决定发病*3.揭示生物性状的分离律和自由组合律的两个遗传学基本规律的科学家是A.Mendel B. Morgan C.Garrod D.Hardy.Wenberg E.Watson,Crick4. 关于人类遗传病的发病率,下列哪个说法是错误的?A. 人群中约有3%~5%的人受单基因病所累B.人群中约有0.5%~1%的人受染色体病所累C.人群中约有15%~20%的人受多基因病所累 D. 人群中约有20%~25%的人患有某种遗传病 E. 女性人群中红绿色盲的发病率约为5%*5.研究染色体的结构、行为及其与遗传效应关系的遗传学的一个重要支柱学科称为:A.细胞遗传学B.体细胞遗传学 C. 细胞病理学D.细胞形态学E.细胞生理学6.研究基因表达与蛋白质(酶)的合成,基因突变所致蛋白质(酶)合成异常与遗传病关系的医学遗传学的一个支柱学科为:A. 人类细胞遗传学B.人类生化遗传学 C. 医学分子生物学D. 医学分子遗传学E.医学生物化学 7.细胞遗传学的创始人是:A.Mendel B.Morgan C.Darwin D.Schleiden,Schwann E.Boveri,Sutton8.在1944年首次证实DNA分子是遗传物质的学者是;A.Feulgen B.Morgan C.Watson,Crick D.Avery E.Garrod9.1902年首次提出“先天性代谢缺陷”概念的学者是:A.Feulgen B.Morgan C.Watson,Crick D.Avery E.Garrod 10.1949年首先提出“分子病”概念的学者是:A.Mendel B.Morgan C.Darwin D.Paullng E.Boveri,Sutton*11.1956年首次证明人的体细胞染色体为46条的学者是: A. Feulgen B.Morgan C.蒋有兴(JH.Tjio)和Levan D.Avery E.Garrod 12.1966年编撰被誉为医学遗传学的“圣经”--《人类盂德尔遗传》一书的学者是:A.McKusick B.Morgan C.Darwin D.Schleiden,Schwann E.Boveri,Sutton*13.婴儿出生时就表现出来的疾病称为:A.遗传病B.先天性疾病 C. 先天畸形 D. 家族性疾病 E. 后天性疾病*14.一个家庭中有两个以上成员罹患的疾病一般称为:A.遗传病B.先天性疾病C先天畸形 D.家族性疾病 E.后天性疾病15.婴儿出生时正常,在以后的发育过程中逐渐形成的疾病称为:A.遗传病B.先天性疾病 C. 先天畸形 D. 家族性疾病 E. 后天性疾病16. 人体细胞内的遗传物质发生突变所引起的一类疾病称为:A遗传病B.先天性疾病 C. 先天畸形 D. 家族性疾病 E. 后天性疾病*17.遗传病特指:A.先天性疾病B.家族性疾病C.遗传物质改变引起的疾病D.不可医治的疾病E.既是先天的,也是家族性的疾病18.环境因素诱导发病的单基因病为:A.Huntington舞蹈病B.蚕豆病C.白化病D.血友病A E.镰状细胞贫血19.传染病发病:A.仅受遗传因素控制B.主要受遗传因素影响,但需要环境因素的调节C.以遗传因素影响为主和环境因素为辅D.以环境因素影响为主和遗传因素为辅E.仅受环境因素影响20.Down 综合征是:A.单基因病B.多基因病C.染色体病D.线粒体病E.体细胞病21.脆性X综合征是:A.单基因病B.多基因病C.染色体病D.线粒体病E.体细胞病22.Leber视神经病是:A.单基因病B.多基因病C.染色体病D.线粒体病E.体细胞病23.高血压是: A.单基因病B.多基因病C.染色体病D.线粒体病E.体细胞病 1.下列哪些疾病不属于多基因遗传病?A.精神分裂症 B. 血友病A C.唇裂和腭裂D.开放性脊柱裂E.多指症2.人类遗传病包括下列哪些类型? A.单基因病 B. 多基因病C.染色体病 D. 线粒体病 E. 体细胞遗传病 *3.遗传病的特征多表现为:A.家族性B.先天性C.传染性 D.不累及非血缘关系者E.同卵双生率高于异卵双生率4.判断是否是遗传病的指

医学分子生物学试题答案

名词解释: 基因是核酸中贮存遗传信息的遗传单位,是贮存有功能的蛋白质多肽链或RNA序列信息及表达这些信息所必需的全部核苷酸序列。 基因组(gencme):细胞或生物中,一套完整单倍体遗传物质的总和(包括一种生物所需的全套基因及间隔序列)称为基因组。基因组的功能是贮存和表达遗传信息。 SD序列(Shine-Dalgarno sequence,SD sequence) 是mRNA能在细菌核糖体上产生有效结合和转译所需要的序列。SD序列与16S rRNA的3’末端碱基(AUUCCUCCAC-UAG-5’)互补,以控制转译的起始 分子克隆:克隆(clone):是指单细胞纯系无性繁殖,现代概念是将实验得到的人们所需的微量基因结构,引入适当的宿主细胞中去,在合适的生理环境中进行无性繁殖,从而利用宿主的生理机制繁衍人们所需要的基因结构,并进行表达。由于整个操作在分子水平上进行,所以称为分子克隆(molecular cloning)。 动物克隆(Animal cloning)就是不经过受精过程而获得动物新个体的方法. 基因诊断:就是利用现代分子生物学和分子遗传学的技术方法,直接检测基因结构 (DNA水平)及其表达水平(RNA水平)是否正常,从而对疾病做出诊断的方法。 基因治疗就是将有功能的基因转移到病人的细胞中以纠正或置换致病基因的一种治疗方法,是指有功能的目的基因导入靶细胞后有的可与宿主细胞内的基因发生整合,成为宿主细胞遗传物质的一部分,目的基因的表达产物起到对疾病的治疗作用。 转基因动物就是把外源性目的基因导入动物的受精卵或其囊胚细胞中,并在细胞基因组中稳定整合,再将合格的重组受精卵或囊胚细胞筛选出来,采用借腹怀孕法寄养在雌性动物(foster mother)的子宫内,使之发育成具有表达目的基因的胚胎动物,并能传给下一代。这样,生育的动物为转基因动物。 探针:在核酸杂交分析过程中,常将已知顺序的核酸片段用放射性同位素或生物素进行标记。这种带有一定标记的已知顺序的核酸片段称为探针。 限制性核酸内切酶:限制性核酸内切酶(restriction endonuclease)是一类专门切割DNA 的酶,它们能特异结合一段被称为限制酶识别顺序的特殊DNA序列并切割dsDNA。 载体:要把一个有用的基因(目的基因-研究或应用基因)通过基因工程手段送到生物细胞(受体细胞),需要运载工具携带外源基因进入受体细胞,这种运载工具就叫做载体(vector)。 限制性片段长度多肽性分析(RFLP):DNA片段长度多态性分析(restriction fragment length polymer-phism,RFLP)基因突变导致的基因碱基组成或(和)顺序发生改变,会在基因结构中产生新的限制性内切酶位点或使原有的位点消失. 用限制酶对不同个体基因组进行消化时,其电泳条带的数目和大小就会产生改变,根据这些改变可以判断出突变是否存在。 简答题: 1.蛋白质的生物合成过程中的成分参与,参与因子,作用? mRNA是合成蛋白质的“蓝图(或模板)” tRNA是原料氨基酸的“搬运工” rRNA与多种蛋白质结合成核糖体作为合成多肽链的装配机(操作台) tRNA mRNA是合成蛋白质的蓝图,核糖体是合成蛋白质的工厂,但是,合成蛋白质的原料——20种氨基酸与mRNA的碱基之间缺乏特殊的亲和力。因此,需要转运RNA把氨基酸搬运到核糖体中的mRNA上 rRNA 核糖体RNA(rRNA)和蛋白质共同组成的复合体就是核糖体,核糖体是蛋白质合成的场所。

(珍贵)浙江大学05-12年博士医学分子生物学真题

2012浙江大学医学分子生物学(乙)回忆版: 一.名词解释(3分*5) 1.The Central Dogma 2.Telomere 3.nuclear localization signal, NLS 4.Protein Motif 5.Splicesome 二.简答题:(5分*9) 1.一个基因有哪些结构组成? 2.基因、染色体、基因组的关系? 3.表观遗传机制改变染色质结果的机制? 4.内含子的生物学意义? 5.什么是蛋白质泛素化?其生物学意义是什么? 6.蛋白质纯化的方法? 7.MicroRNA是什么?它如何发挥作用? 8.什么是全基因组关联研究(Genome Wide Association Studies,GWAS)?其研究目的是什么? 9.分子生物学研究为什么需要模式生物? 三.问答题:(10分*4) 1.人体不同部位的细胞其基因组相同,为什么表达蛋白质的种类和数量不同? 2.用分子生物学知识,谈谈疾病发生机制? 3.有一块肿瘤组织及癌旁组织,设计一个实验证明细胞内蛋白质在肿瘤发生发展中的作用? 4.目前,基因靶点研究已成为新药开发的用药部分,结合目前药物靶点在新药开发中的应用,谈谈你的建议和观点?

2011浙江大学博士入学考试医学分子生物学试题回忆 一、英文名解 1、冈崎片段: 2、反式作用因子: 3、多克隆位点: 4、micro RNA: 5、分子伴侣: 二、简答 1、蛋白质四级结构。 2、真核转录调控点。 3、表观遗传学调控染色质。 4、真核RNA聚合酶类型及作用。 5、基因突变。 6、组学概念及举例。 7、简述兔源多克隆抗体的制备。

医学微生物学考试试卷(附答案)

医学微生物学考试试卷(A) (临床医学本科、影像医学本科、中医药学本科、实验技术本科、预防医学本科) 班级学号姓名 注意事项: 1.在试卷上写上姓名、班级。在答题卡上填上学号,将相应的数字涂黑,并写上班级、姓名和试卷类型(A卷/B卷)。交卷时必须将答题卡与试卷一起上交,否则以零分计算! 2.本份试卷由基础知识题和病例分析题组成,共150个选择题,请按题目要求,在备选答案中选择一个最佳答案,并在答题卡上将相应的字母涂黑,做在试卷上无效。 3.考试时请严格遵守考场纪律,原则上不允许上厕所。 第一部分、A型选择题 (由一题干和5个备选答案组成,请选出一个最佳答案。共90个选择题) 1.哪种疾病的病原体属于非细胞型微生物: A.疯牛病 B.梅毒 C.结核病 D.沙眼 E.体癣 2.细菌属于原核细胞型微生物的主要依据是: A.单细胞 B.二分裂方式繁殖 C.对抗生素敏感 D.有由肽聚糖组成的细胞壁 E.仅有原始核结构,无核膜 3.革兰阳性菌细胞壁: A.肽聚糖含量少 B.缺乏五肽交联桥 C.对溶菌酶敏感 D.所含脂多糖与致病性有关 E.有蛋白糖脂外膜 4.青霉素杀菌机制是: A.干扰细胞壁的合成 B.与核糖体50S亚基结合,干扰蛋白质合成 C.影响核酸复制 D.与核糖体30S亚基结合,干扰蛋白质合成 E.损伤细胞膜 5.有关“细菌鞭毛”的叙述,哪一项是错误的: A.与细菌的运动能力有关 B.许多革兰阳性菌和阴性菌均有鞭毛 C.在普通光学显微镜下不能直接观察到 D.可用于细菌的鉴定 E.将细菌接种在固体培养中有助于鉴别细菌有无鞭毛(半固体) 6.有关“芽胞”的叙述,错误的是: A.革兰阳性菌和阴性菌均可产生(都是阳性) B.不直接引起疾病 C.对热有强大的抵抗力 D.代谢不活跃 E.通常在细菌处于不利环境下形成 7.用普通光学显微镜油镜观察细菌形态时,总放大倍数为: A.10倍 B.100倍 C.400倍 D.900~1000倍 E.10000倍 8.脑膜炎奈瑟菌和肺炎链球菌经结晶紫初染、碘液媒染、95%乙醇脱色后,菌体分别呈: A.红色和紫色 B.紫色和紫色

(完整word版)医学分子生物学思考题作业答案.

《医学分子生物学》作业 (供“专升本”中西医临床医学专业学生使用 成人教育学院 《医学分子生物学》思考题 1、述 DNA的右手双螺旋模型结构要点。 (1两股反向平行的 DNA 链绕成同轴右手双螺旋,双螺旋表面有大沟和小沟。 (2脱氧核糖和磷酸通过3’,5’-磷酸二酯键相连,构成 DNA 主链,位于双螺旋的外表面,糖基平面与螺旋轴平行;碱基则位于双螺旋的内部,碱基平面与螺旋轴垂直。(3两股 DNA 链通过 Watson-Crick 碱基对结合,即 A 与 T 通过两个氢键结合,G 与 C 通过三个氢键结合,称为碱基互补原则。这样,一股 DNA 的碱基序列决定了另一股DNA 的碱基序列,两股 DNA 链互相称为互补链。(4双螺旋直径为 2cm 2、真核生物基因组结构与功能的特点。 1.真核生物基因组 DNA 是线性分子,其末端序列特殊,由寡核苷酸短串联重复序列构成,称为端粒。 2.真核生物基因组 DNA 有多个复制起点。 3.真核生物有完整的细胞核,核 DNA 与组蛋白、非组蛋白及 RNA 形成染色体结构。 4.每一种真核生物的染色体数目都是一定的,除了配子(精子和卵子是单倍体以外,体细胞一般是二倍体。 5.真核生物基因组序列中仅有不到 10%是编码序列。编码序列在基因组序列中的比例是真核生物、原核生物和病毒基因组的重要区别,而且在一定程度上是生物进化的标尺。

6.真核生物基因组含大量重复序列,包括高度重复序列和中度重复序列。 7.真核生物基冈是断裂基因,即基因是不连续的,由外显子和内含子交替构成。 8.真核生物基因的转录产物是单顺反子 mRNA。 9.真核生物基因组中存在各种基因家族,基因家族成员可以串联在一起,也可以相距很远,但即使串联在一起的基因也是分别表达的。 3、论述参与 DNA 复制的酶和蛋白质及其作用。 原核生物 DNA 的复制过程需要 30 多种酶和蛋白质参加。主要有 DNA 聚合酶、解旋酶、拓扑异构酶、引物酶和 DNA 连接酶等:(1DNA 聚合酶 DNA 聚酶的作用是催化 dNTP 按5'→3'方向合成 DNA。反应只消耗 dNTP,但还有两种成分必不可少:①模板:DNA 聚合酶催化的反应是 DNA 的复制,即合成单链 DNA 的互补链,所以必须为其提供单链 DNA,这就是模板;②引物:有了底物和模板,DNA聚合酶还是不能合成 DNA,因为它不能从无到有合成 DNA 链,只能把脱 氧核苷酸连接在已有核酸的 3'-羟基上,而且该核酸的序列必须与 DNA 模板的3'端序列互补,并形成结合,这已有的核酸就是引物。(2解链、解旋酶类 DNA 具有超螺旋、双螺旋等结构,在复制时,作为模板的亲代 DNA 分子需松弛螺旋,解开双链,暴露碱基,才能按碱基互补原则合成子代 DNA。参与亲代 DNA 双链解链、并将基维持在解链状态的酶和蛋白质主要有解旋酶、拓扑异构酶和单链 DNA 结合蛋白。(3引物酶 DNA 复制需要 RNA 引物,RNA 引物由引物酶催化合成。(4连接酶环状DNA 或冈崎片段合成之后都留下切口,需要一种酶,能催化切口处的 5'-磷酸基与 3'-羟基连接形成磷酸二酯键,这种酶就是 DNA 连接酶。 4、转录与复制的不同点。 ①目的不同,所使用的酶、原料及其它辅助因子不同,转录是合成 RNA,复制是合成 DNA;②方式不同:转录是不对称的,只在双链 DNA 的一条链上进行,只以 DNA 的一条链为模板,复制为半不连续的,分别以 DNA 的两条链为模板,在 DNA 的两条

分子生物学

1.介绍一种新的DNA序列改造的分子生物学技术原理。 提示(Cre/crop、Golden gate、Gibson assembly、Omega PCR) 答:Cre/crop:

Golden gate

2.介绍一基因沉默或敲除的分子生物学技术原理? 提示:iRNA、TALEN、CRISPR-Cas9等 答:RNAI: RNA干扰(RNA interference, RNAi)是指在进化过程中高度保守的、由双链RNA (double-stranded RNA,dsRNA)诱发的、同源mRNA高效特异性降解的现象。由于使用RNAi技术可以特异性剔除或关闭特定基因的表达,(长度超过三十的dsRNA会引起干扰素毒性)所以该技术已被广泛用于探索基因功能和传染性疾病及恶性肿瘤的基因治疗领域。 作用机制:病毒基因、人工转入基因、转座子等外源性基因随机整合到宿主细胞基因组内,并利用宿主细胞进行转录时,常产生一些dsRNA。宿主细胞对这些dsRNA迅即产生反应, 其胞质中的核酸内切酶Dicer将dsRNA切割成多个具有特定长度和结构的小片段RNA (大约21~23 bp),即siRNA。siRNA在细胞内RNA解旋酶的作用下解链成正义链和反义链,继之由反义siRNA再与体内一些酶(包括内切酶、外切酶、解旋酶等)结合形成RNA诱导的沉默复合物(RNA-induced silencing complex,RISC)。RISC与外源性基因表达的mRNA的同源区进行特异性结合,RISC具有核酸酶的功能,在结合部位切割mRNA,切割位点即是与siRNA中反义链互补结合的两端。被切割后的断裂mRNA随即降解,从而诱发宿主细胞针对这些mRNA的降解反应。siRNA不仅能引导RISC切割同源单链mRNA,而且可作为引物与靶RNA结合并在RNA聚合酶(RNA-dependent RNA polymerase,RdRP)作用下合成更多新的dsRNA,新合成的dsRNA再由Dicer切割产生大量的次级siRNA,从而使RNAi的作用进一步放大,最终将靶mRNA完全降解。 RNAi发生于除原核生物以外的所有真核生物细胞内。需要说明的是,由于dsRNA抑制

医学分子生物学简答题

四、简答题 1.碱基对间在生化和信息方面有什么区别? 2.在何种情况下有可能预测某一给定的核苷酸链中“G”的百分含量? 3.真核基因组的哪些参数影响Cot1/2值? 4.请问哪些条件可促使DNA复性(退火)? 5.为什么DNA双螺旋中维持特定的沟很重要? 6.大肠杆菌染色体的分子量大约是2.5×109Da1),核苷酸的平均分子量是330Da,两个邻近核苷酸对之间的距离是0.34mn;双螺旋每一转的高度(即螺距)是3.4nm,请问: (l)该分子有多长? (2)该DNA有多少转? 7.曾经有一段时间认为,DNA无论来源如何,都是4个核甘酸的规则重复排列(如, A TCG.A TCG.A TCG.A TCG…),所以DNA缺乏作为遗传物质的特异性。第一个直接推翻该四核苷酸定理的证据是什么? 8.为什么在DNA中通常只发现A—T和C—G碱基配对? 9.列出最先证实是DNA(或RNA)而不是蛋白质是遗传物质的一些证据。 10.为什么只有DNA适合作为遗传物质? ll.什么是连锁群?举一个属于连锁基因座的例子。 12.什么是顺反子?用“互补”和“等位基因”说明“基因”这个概念。 13.对于所有具有催化能力的内含子,金属离子很重要。请举例说明金属离子是如何作用的。 14.列出真核生物mRNA与原核生物mRNA的区别。 15.列出各种tRNA所有相同的反应及个别tRNA的特有反应。 16.在体内,rRNA和tRNA都具有代谢的稳定性,而mRNA的寿命却很短,原因何在? 17.为什么真核生物核糖体RNA基因具有很多拷贝? 18.为什么说信使RNA的命名源自对真核基因表达的研究,比说源自对原核基因表达的研究更为恰当?

(完整word版)医学分子生物学

医学分子生物学 名词解释: 结构基因(structural genes): 可被转录形成 mRNA,并转译成多肽链,构成各种结构蛋白质,催化各种生化反应的酶和激素等。 ORF 开放阅读框架( open reading frame,ORF ): 是指DNA链上,由蛋白质合成的起始密码开始,到终止密码为止的一个连续编码。 C值(C-value): 一种生物体单倍体基因组DNA的总量,用以衡量基因组的大小。 C值矛盾/ C值悖论: C值和生物结构或组成的复杂性不一致的现象。 基因组(genome): 是指生物体全套遗传信息,包括所有基因和基因间的区域 重叠基因 是指同一段DNA片段能够参与编码两种甚至两种以上的蛋白质分子。 SNP单核苷酸多态性(singl e nucleotid e polymorphism) 是由基因组DNA上的单个碱基的变异引起的DNA序列多态性。是人群中个体差异最具代表性的DNA多态性,相当一部分还直接或间接与个体的表型差异、对疾病的易感性或抵抗能力、对药物的反应性等相关。SNP被认为是一种能稳定遗传的早期突变 蛋白质组(proteomics): 指应用各种技术手段来研究蛋白质组的一门新兴科学,其目的是从整体的角度分析细胞内动态变化的蛋白质组成成份、表达水平与修饰状态,了解蛋白质之间的相互作用与联系,揭示蛋白质功能与细胞生命活动规律. 质谱技术mass spectrometry,MS 样品分子离子化后,根据不同离子间质核比(m/z)的差异来分离并确定分子量 开放阅读框=ORF 基因工程

又称为重组DNA技术,是指将外源基因通过体外重组后导入受体细胞,并使其能在受体细胞内复制和表达的技术。 限制性核酸内切酶(restriction endonuclease, RE) 是一类能识别和切割双链DNA特定核苷酸序列的核酸水解酶。 逆转录酶 依赖RNA的DNA聚合酶,它以RNA为模板、4种dNTP为底物,催化合成DNA,其功能主要有:1)逆转录作用;2)核酸酶H的水解作用;3)依赖DNA的DNA聚合酶作用。 粘性末端 被限制酶切割后突出的部分就是粘性末端(来自360问答) 载体vector 指能携带外源DNA片段导入宿主细胞进行扩增或表达的工具。载体的本质为DNA。多克隆位点 载体上具有多个限制酶的单一切点(即在载体的其他部位无这些酶的相同切点)称为多克隆位点 报告基因(reporter gene): 是指处于待测基因下游并通过转录和表达水平来反映上游待测基因功能的基因,又称报道基因。 转化 以质粒DNA或以它为载体构建的重组子导入细菌的过程称为转化(transformation) 感受态细胞 细胞膜结构改变、通透性增加并具有摄取外源DNA能力的细胞称谓感受态细胞(competent cell)。 碱裂解法 在NaOH提供的高pH(12.0~12.6)条件下,用强阳离子去垢剂SDS破坏细胞壁,裂解细胞,与NaOH共同使宿主细胞的蛋白质与染色体DNA发生变性,释放出质粒DNA。 核酸变性 变性(denaturation):在某些理化因素的作用下,维系DNA分子二级结构的氢键和碱基堆积力受到破坏,DNA由双螺旋变成单链过程。 核酸复性

医学分子生物学习题

第八章细胞信号转导 自测题 (一)选择题 A型题 1.通过胞内受体发挥作用的信息物质为 A.乙酰胆碱 B.γ-氨基丁酸 C.胰岛素 D.甲状腺素 E.表皮生长因子 2.绝大多数膜受体的化学本质为 A.糖脂 B.磷脂 C.脂蛋白 D.糖蛋白 E.类固醇

3.细胞内传递信息的第二信使是 A.受体 B.载体 C.无机物 D.有机物 E.小分子物质 4.下列哪项不是受体与配体结合的特点 A.高度专一性 B.高度亲和力 C.可饱和性 D.不可逆性 E.非共价键结合 5.通过膜受体起调节作用的激素是A.性激素 B.糖皮质激素 C.甲状腺素

D.肾上腺素 E.活性维生素D 3 6.下列哪项是旁分泌信息物质的特点A.维持时间长 B.作用距离短 C.效率低 D.不需要第二信使 E.以上均不是 7.胞内受体的化学本质为 A.DNA结合蛋白 B.G蛋白 C.糖蛋白 D.脂蛋白 E.糖脂 8.下列哪种受体是催化型受体 A.胰岛素受体

B.生长激素受体 C.干扰素受体 D.甲状腺素受体 受体 E.活性维生素D 3 9.IP 与相应受体结合后,可使胞浆内哪种离子浓度升高 3 A.K+ B.Na+ - C.HCO 3 D.Ca2+ E.Mg2+ 10.在细胞内传递激素信息的小分子物质称为 A.递质 B.载体 C.第一信使 D.第二信使 E.第三信使

11.影响离子通道开放的配体主要是A.神经递质 B.类固醇激素 C.生长因子 D.无机离子 E.甲状腺素 12.cGMP能激活 A.磷脂酶C B.蛋白激酶A C.蛋白激酶G D.酪氨酸蛋白激酶 E.蛋白激酶C 13.cAMP能别构激活 A.磷脂酶A B.蛋白激酶A C.蛋白激酶C

医学分子生物学-整理笔记

第2章基因、基因组和基因组学 基因(gene):携带有遗传信息的DNA或RNA序列,也称为遗传因子。基因是合成有功能的蛋白质或RNA所必 需的全部DNA,包括编码蛋白质或RNA的核酸序列,也包括为保证转录所必需的调控序列。基因的功能:传递遗 传信息,控制个体性状表现。结构基因(structural genes):可被转录形成mRNA,并转译成多肽链,构成各种结构 蛋白质,催化各种生化反应的酶和激素等。调节基因(regulatory genes) :某些可调节控制结构基因表达的基因。 其突变可影响一个或多个结构基因的功能,或导致一个或多个蛋白质(或酶)量的改变。eg. miRNA, siRNA, piRNA 核糖体RNA 基因(ribosomal RNA genes) 与转运RNA 基因(transfer RNA genes):只转录产生相应的RNA而不翻 译成多肽链。真核生物的RNA聚合酶( 3种):RNA 聚Array合酶I, II, III. 开放阅读框架(open reading frame,ORF):在DNA 链上,由蛋白质合成的起始密码开始,到终止密码为 止的一个连续编码序列。断裂基(split gene):真核生物 结构基因,由若干个编码区和非编码区互相间隔开但又连续镶嵌而成,去除非编码区再连接后,可翻译出由连续氨 基酸组成的完整蛋白质。 基因组(genome):一个细胞内的全部遗传信息,包括染色体基因组和染色体外基因组。基因组中的DNA包括 编码序列和非编码序列。部分病毒基因组--RNA。 C值(C-value):一种生物体单倍体基因组DNA的总量,用以衡量基因组的大小。通常,进化程度越高的生物其基因组越大,但从总体上说,生物基因组的大小同生物在进化上所处地位的高低无关。存在C-value paradox (C值悖理)。生物复杂性越高,其基因的密度越低。 病毒基因组的大小: 与细菌或真核细胞相比,病毒的基因组很小。不同的病毒之间基因组大小相差很大。乙肝病 毒DNA:3kb,编码4种蛋白质;痘病毒的基因组:300kb,编码几百种蛋白质。病毒基因组的大小通常与其对宿主 的依赖程度有关,基因组越大,依赖性越小。RNA 病毒基因组编码序列具有节段性:有些病毒的基因组RNA由 不连续的几条核酸链组成(如流感病毒,轮状病毒等)。分段基因组的病毒一般感染效率较低;分段基因组容易 发生重组,故病毒容易变异。目前未发现DNA病毒有此状况。 病毒基因存在基因重叠:基因重叠:同一段DNA片段能够参与编码两种甚至两种以上的蛋白质分子。这种现象在 其它的生物细胞中仅见于线粒体和质粒DNA。此结构意义在于使较小的基因组能够携带较多的遗传信息。基因重 叠的方式:1)一个基因完全在另一个基因里面。2)几个基因部分重叠。3)两个基因之间只有一个碱基重叠。重 叠基因的DNA序列可能大部分相同,但由于翻译时的读码框架不同、或起始部位不同而产生不同的蛋白质。有些 真核病毒的部分序列,对某一个基因来说是内含子,而对另一个基因而言却是外显子。病毒基因组的大部分序列 具有编码功能:病毒基因组的大部分是用来编码蛋白质的,只有非常小的一部份没有编码翻译功能。ΦX174基因 组中不编码的序列只占217/5375。乳头瘤病毒基因组约8.0Kb,其中不编码的部分约为1.0kb。少数真核生物病毒 的基因组也存在内含子结构。 病毒基因组的转录单元是多顺反子:多顺反子mRNA (polycistronie mRNA) :病毒基因组DNA序列中功能上相关 的蛋白质的基因或rRNA的基因往往丛集在基因组的一个或几个特定的部位,形成一个功能单位或转录单元。它们 可被一起转录成含有多个mRNA 的分子。 病毒基因组都是单倍体:除了逆转录病毒以外,一切病毒基因组都是单倍体,每个基因在病毒颗粒中只出现一次。 逆转录病毒带有逆转录酶,能使RNA反向转录生成DNA,因此其基因组可拥有两个拷贝。噬菌体基因具有连续性: 噬菌体的基因是连续的,而真核细胞病毒的基因是不连续的,具有内含子。 原核生物基因组通常比较简单,其基因组大小在106bp~107bp之间,所包含的基因数目几百个到数千个之间。原 核生物基因组通常由一条环状的双链DNA分子组成,在细胞中与蛋白质结合成染色体的形式,在细胞内形成一个

医学分子生物学

问答题: 1.上游启动子元件是什么 上游启动原件(upstream promoter element)是TATA盒上游的一些特定的DNA序列,反式作用因子可与这些原件结合,它通过调节TATA因子与TATA盒的结合、RNA聚合酶与启动子结合及转录起始复合物的形成来调控基因的转录效率。 2.什么是转座 细菌、病毒和真核细胞的染色体上含有一段可在基因组中移动的DNA片段,这种转移称之为转座 3.什么是高度重复序列 4.GT-AG法则是什么 5.病毒基因组有哪些特点 6.原核生物基因组有哪些特点 7.真核生物基因组有哪些特点 8.人类基因组有哪些特点 9.基因重叠有什么意义 10.质粒有哪些特性 11.什么是基因多态性 12.什么是中度重复序列 名词解释: 1. gene 2. split gene 3. interrrupted gene 4. structure gene 5. promoter 6. response elements 7. enhancer 8 .silencer 9. genome 10.plasmid 11.operon 12.transposable element 13.transposon 14.monocistron 15.polycistron 16.gene family

17.gene superfamily 18.pseudogene 19.selfish DNA 20.inverted repeat 21.tandem repeat 22.satellite DNA 23.microsatellite DNA 24.DNA fingerprint 25.genomics 26.intron 27.exon 28.short tandem repeat 29.genotype 30.overlapping gene 31.segmented genome 32.retrovirus 33.isogene 34.covalent closed circular DNA 35.ori 36. 基因 37. 断裂基因 38. 结构基因 39. 非结构基因 40. 内含子 41. 外显子 42. 启动子 43. 增强子 44. 沉默子 45. 反应元件 46. 基因组 47. 质粒 48. 操纵子 49. 单顺反子 50. 多顺反子 51. 转座因子 52. 转座子 53. 基因家族 54. 基因超家族 55. 假基因 56. 自私DNA

相关文档
最新文档