工程机械液压系统可靠性设计分析

合集下载

从工程角度谈液压系统的可靠性问题

从工程角度谈液压系统的可靠性问题
品的设计 者 可以控制 的。而产 品使用 可靠性 则是 产 品 在 实 际使 用过 程 中表 现 出 的一种 性 能 能 力 的特 性 , 它
性强的突出特点 。在工程应用 中, 提高液压传动系统 的可靠性 , 主要有可靠性设计 、 维修可靠性和可靠性管
理 3方面 的问题 需要解 决 。 3 可 靠性 设计 液压 系统进 行 可靠 性 设计 , 主要 是 为 了在 设计 阶
厂关 系较 大 , 在选 型 时应充 分考 虑 品牌 、 造厂 的实力 制 和信 誉 。设 计 时元 件 的 选 型 主要 根 据 应用 对 象 要 求 ,
设计 有排 油管路 过 滤器 和 回油 管 路 过滤 器 , 可靠 性 要
求高 的 系统还有 离 线独 立 循 环 过 滤 器 , 滤 器精 度 一 过 般为 l m; 果 是 伺 服 系 统 , 伺 服 阀前 应 加 装 3 0 如 在 m或 5 m 的过 滤 器 。 而 油箱 现 在 一 般 都 采 用 全 封
干年 , 可 以是 短期 的 , 也 如几 十或 数百小 时 。通 常工作
时间越长 , 可靠性降低。
3 )可靠性 与产 品 的技 术指标 有关
产 品的主要 技术指 标包度 范 围、 用 温 度 范 额 适 介 适 围、 运动 速度等 指标 。 液压传 动 系统具有 理论 与实 际结合 、 工程性 、 实践
3 4
液 压 与 气动
21 0 0年第 l 0期
从 工 程 角 度 谈 液 压 系 统 的 可 靠 性 问题
彭 熙 伟
On t e r l b l y o y r u i y t m r m h n i e rn h ei i t fh d a l s se fo t e e g n e i g a i c

机械设计基础液压传动系统的设计与分析

机械设计基础液压传动系统的设计与分析

机械设计基础液压传动系统的设计与分析机械设计基础:液压传动系统的设计与分析1. 概述液压传动系统是一种广泛应用于工程机械、船舶、航空航天等领域的动力传输系统。

本文将重点探讨液压传动系统的设计原理与分析方法,旨在帮助读者更好地理解和应用液压传动技术。

2. 原理介绍液压传动系统基于流体力学原理,通过液体的传输和控制,实现动力传递和执行机构的运动控制。

系统主要由液压泵、液压缸、流体传输管路、阀门等组成。

液压泵将机械能转化为液压能,将液体推送到液压缸中,从而驱动执行机构完成工作。

3. 设计步骤液压传动系统的设计需要经过以下几个步骤:3.1 确定工作需求:根据具体的工作要求,确定所需的压力、流量以及工作环境等参数。

3.2 选择液压元件:根据工作需求和系统特点,选择合适的液压泵、液压缸、阀门等元件,并进行相应的功率计算。

3.3 确定系统布局:根据机械结构和空间限制,确定液压元件的布局方式,包括泵和液压缸的位置、管路的走向等。

3.4 绘制管路图:根据系统布局,绘制液压传动系统的管路图,包括液压泵到液压缸的流动路径、阀门和管路的连接方式等。

3.5 系统分析与优化:使用流体力学分析软件对液压传动系统进行性能分析和优化调整,确保系统在工作过程中的稳定性和效率。

4. 主要设计考虑因素在液压传动系统的设计过程中,需要考虑以下几个主要因素:4.1 动力需求:根据工作负载和工作环境确定系统的功率需求,合理选择液压元件以满足工作要求。

4.2 安全性:确保系统在设计工作压力范围内工作,并设置适当的过载保护装置。

4.3 效率优化:通过合理选择液压元件、减小管路阻力以及优化控制策略等手段,提高系统的工作效率。

4.4 可靠性:选择质量可靠、维护方便的液压元件,预防故障发生,并进行适当的维护保养。

5. 系统性能分析液压传动系统的性能主要包括静态性能和动态性能两个方面。

5.1 静态性能:包括系统的压力损失、泄漏以及稳态工作点的稳定性等。

液压系统动力学性能分析与优化

液压系统动力学性能分析与优化

液压系统动力学性能分析与优化引言液压系统是一种利用压力传递和液体流动来实现能量传递与控制的系统。

液压系统广泛应用于工业自动化、工程机械、航空航天等领域。

在设计和应用液压系统时,其动力学性能的分析和优化至关重要。

本文将对液压系统动力学性能进行分析,探讨优化策略,旨在提高液压系统的效率和可靠性。

一、液压系统动力学性能分析1.1 响应时间液压系统的响应时间是指系统对外界输入的快速响应能力。

它直接影响系统的控制精度和稳定性。

当液压系统受到外部输入信号时,液压元件会有一定的惯性延迟,导致系统响应时间增加。

因此,在设计液压系统时,应根据其所应用的工况和要求,适当选择液压元件的响应时间,以达到预期的控制效果。

1.2 动态特性液压系统的动态特性是指系统在动态变化下的控制特性。

液压系统的动态特性包括增益、相位和稳定性等。

增益决定了系统对输入信号的放大能力,相位反映了输出信号与输入信号之间的时间差,稳定性则表示系统抵抗干扰和振荡的能力。

通过对液压系统的动态特性进行分析,可以评估系统的控制质量,并为后续优化提供依据。

1.3 液压波动液压波动是液压系统中流体压力的波动现象。

液压波动会引起机械振动、噪声和能量损失等问题,严重影响系统的稳定性和工作效率。

液压波动的主要原因包括:(1)液压元件的内泄漏和密封不良;(2)流体的压力损失和能量损失;(3)系统中油液流动的不稳定性。

二、液压系统动力学性能优化2.1 提高液压元件的响应时间为了提高液压系统的响应时间,可以通过优化液压元件的结构和控制方式。

例如,采用更快的执行元件、提高油液的流动速度、优化阀门的设计等措施都可以有效缩短系统的响应时间。

此外,还可以采用先进的控制算法和电子调节技术,以提高系统的精度和稳定性。

2.2 优化液压系统的动态特性为了优化液压系统的动态特性,可以通过增加系统的滞后环节、调整液压元件的参数等方式来改善增益、相位等动态指标。

此外,还可以进行系统参数辨识和建模,通过MATLAB等软件进行仿真分析,找出系统动态响应中存在的问题,并采取相应措施进行优化。

液压系统的节能优化设计与性能分析

液压系统的节能优化设计与性能分析

液压系统的节能优化设计与性能分析随着节能环保意识的提高,各个行业对于能源的高效利用和节能减排的要求越来越高。

在工业领域中,液压系统作为一种常用的动力传动方式,其能耗一直是人们关注的焦点。

因此,液压系统的节能优化设计和性能分析变得尤为重要。

一、液压系统的节能优化设计1. 选用高效的液压元件:在液压系统中,液压元件是能耗的主要来源。

因此,在设计液压系统时,应尽量选用能耗低、效率高的液压元件,以减少能源的消耗。

例如,采用效率更高的液压泵和液压马达,可以提高系统的能量转换效率。

2. 降低系统损耗:在液压系统中,系统损耗是无法避免的,但可以通过一些措施进行降低。

例如,在管路设计时,尽量缩短管道长度,减小管道直径,以减少摩擦损失;采用高效的节流阀和溢流阀,减少能量损耗。

3. 优化系统控制策略:液压系统的控制策略对能耗有很大影响。

通过合理的控制策略设计,可以降低系统的能耗。

例如,采用变频控制技术,根据实际负载情况调节液压泵和液压马达的转速,减少能源浪费;采用电子梯级控制技术,实现多个执行元件的精确控制,提高系统的效率。

二、液压系统的性能分析1. 系统能量转换效率:液压系统的能量转换效率是衡量系统性能的重要指标。

能量转换效率高,说明系统能够更有效地将输入能量转化为输出能量,从而减少能源的消耗。

通过测量系统的输入功率和输出功率,可以计算出系统的能量转换效率。

2. 系统响应速度和精度:液压系统的响应速度和精度直接影响其应用性能。

响应速度快、精度高的液压系统能够更好地满足工业生产对于动力传动的需求。

通过实验测试和数据分析,可以评估系统的响应速度和精度,并根据需要进行相应的调整和优化。

3. 系统可靠性和稳定性:液压系统在长时间运行过程中,需要保持稳定的工作状态,以确保生产的连续性。

因此,分析系统的可靠性和稳定性是很重要的。

可以通过故障模式分析、可靠性预测等方法,评估系统的可靠性,并采取相应的措施提高系统的稳定性。

总之,液压系统的节能优化设计和性能分析是促进工业生产高效、环保的重要手段。

液压系统存在的各种问题和解决办法分析

液压系统存在的各种问题和解决办法分析

液压系统存在的问题和解决办法分析一.液压系统普遍存在的问题1.可靠性问题(寿命和稳定性)(1)国产元件质量差,不稳定;(2)设计水平低,系统不完善。

2.振动与噪音(1)系统中存在气体,没有排净。

(2)吸油管密封不好,吸进空气。

(3)系统压力高。

(4)管子管卡固定不合理。

(5)选用液压元件规格不合理,如小流量选用大通径的阀,产生低频振荡;系统压力在某一段产生共振。

3.效率问题液压系统的效率一般较低,只有80%左右或更低。

系统效率低的原因主要由于发热、漏油、回油背压大造成。

4.发热问题系统发热的原因主要由于节流调速、溢流阀溢流、系统中存在气体、回油背压大引起。

5.漏油问题(1)元件质量(包括液压件、密封件、管接头)不好,漏油。

(2)密封件形式是否合理,如单向密封、双向密封。

(3)管路的制作是否合理,管子憋劲。

(4)不正常振动引起管接头松动。

(5)液压元件连接螺钉的刚度不够,如国内叠加阀漏油。

(6)油路块、管接头加工精度不够,如密封槽尺寸不正确,光洁度、形位公差要求不合理,漏油。

6.维修问题维修难,主要原因:(1)设计考虑不周到,维修空间小,维修不便。

(2)要求维修工人技术水平高。

液压系统技术含量较高,要求工人技术水平高,出现故障,需要判断准确,不仅减少工作量,而且节约维修成本,因为液压系统充满了液压油,拆卸一次,必定要流出一些油,而这些油是不允许再加入系统中使用。

另外,拆卸过程有可能将脏东西带入系统,埋下事故隐患。

因此要求工人提高技术水平,判断正确非常必要。

7.液压系统的价格问题液压系统相对机械产品,元件制造精度高,因此成本高。

二.如何保证液压系统正常使用液压系统正常工作,需要满足以下条件:1.系统干净系统出现故障,70%都是由于系统中有脏东西如铁屑、焊渣、铁锈、漆皮等引起。

例如,这类污染物,如果堵住溢流阀中的小孔(0。

2mm)就建立不了压力;如果卡在方向阀阀芯,就导致不能换向,功能不对;如果堵住柱塞泵滑靴的小孔,就产生干摩擦,损坏泵。

液压系统的性能分析与优化设计

液压系统的性能分析与优化设计

液压系统的性能分析与优化设计第一章:引言液压系统是一种广泛应用于各种工程领域的动力传动系统,其性能的稳定与优化设计对于工程设备的高效运行起着至关重要的作用。

本章将介绍液压系统的基本概念和组成部分,并对液压系统性能分析与优化设计的重要性进行探讨。

第二章:液压系统性能分析2.1 压力性能分析液压系统的压力性能是指系统中流体的压力表现以及对外部负载的响应能力。

通过对液压系统的压力波动、系统稳态压力、压力传输损失等参数进行测试和监测,可以评估系统的压力性能,并对不足之处进行分析。

2.2 流量性能分析液压系统的流量性能是指系统中流体的流动能力和流量均衡能力。

通过测量系统的流量波动、系统流量损失、阀门开启时间等参数,可以分析系统的流量性能,判断是否需要进行优化设计。

2.3 效率性能分析液压系统的效率性能是指系统中能量的转换效率和功率输出的能力。

通过测量系统的泄漏流量、能量损失、功率输出等参数,并进行能量平衡计算,可以分析系统的效率性能,并提出优化设计的建议。

第三章:液压系统优化设计3.1 结构设计优化液压系统的结构设计是指通过调整液压元件的布置和连接方式,以及优化管道系统和液压容器的设计,来提高系统的稳定性和可靠性。

根据系统的工作特点和要求,采用合适的液压元件和元件组合,优化系统结构,可有效降低系统的能量损失和压力波动。

3.2 控制策略优化液压系统的控制策略是指通过调整液压阀门和控制元件的参数,以及优化控制算法和系统的反馈机制,来提高系统的响应速度和控制精度。

采用先进的控制技术,如模糊控制、PID控制等,可以实现对液压系统的精确控制,提高系统的性能和效率。

3.3 液压流体优化液压系统的流体是其正常运行所必需的介质,其性能直接影响着系统的稳定性和性能。

通过优化选用合适的液压油和添加剂,调整油的黏度和温度,可以提高液压系统的润滑效果和密封性能,延长系统的使用寿命。

第四章:案例分析本章将介绍一个实际的液压系统案例,通过对该系统的性能分析和优化设计,展示了如何提高液压系统的效率和性能,实现高效运行和节能减排的目标。

工程机械液压系统可靠性分析

工程机械液压系统可靠性分析

工 程 技 术50科技资讯 SC I EN C E & TE C HN O LO G Y I NF O R MA T IO N液压技术在工程机械中已经得到广泛的应用,但是在应用中除了会有更高的效率外,还会存在一些问题。

最主要的就是故障诊断难度大,降低系统运行可靠性,进而会对工程机械运行效果产生不良影响。

想要确保工程机械可以在特定条件下长期有效运行,减少故障出现的概率,就必须要做好对系统可靠性的研究,采取措施来提高系统运行综合效果。

1 工程机械液压系统故障分析工程机械液压系统在应用过程中,一旦出现故障在诊断方面会存在较大难度,这样以提高系统运行效果为目的,就需要从设计、生产、调试以及运行等环节进行研究,提高系统运行的可靠性,降低故障发生概率。

通过提高液压系统可靠性,便可以避免后期故障发生后的诊断与处理,减少工作量与管理难度。

工程机械液压系统常见故障按照发生方式不同主要可以分为4类,即先天性故障、后天性故障、突发故障以及渐发故障。

其中先天性故障即因为液压系统存在设计缺陷与结构缺陷;后天性故障即系统使用方式不对,或者实际不满足运行条件;突发故障则大多是因为元件损坏造成;渐发故障是因为构件服务寿命到期,而渐渐出现故障[1]。

从系统可靠性角度分析,对系统进行优化,来克服系统设计阶段存在的问题,然后通过规范操作,便可以确保工程机械液压系统的正常运行。

2 工程机械液压系统可靠性分析对于大多数工程机械液压系统来说,其均为可维修系统,因此在对其进行可靠性设计时,用从广义可靠性角度分析,即设计内容包括机械系统整个寿命期,包括可靠性与维修性。

有效度为衡量广义可靠性的尺度,即在规定条件内使用时,某时刻t具有或维持其功能的概率,记为A(t)或者A,为时间函数。

其中,又可以分为瞬时有效度、稳态有效度与平均有效度,一般提高液压系统可靠性,主要目的就是产品长时间使用有效度,则可用公式表达:A=t b /t b +t t ,其中t b 表示平均无故障工作时间,t t 表示平均修理时间[2]。

液压系统设计可行性分析

液压系统设计可行性分析

液压系统设计可行性分析引言液压系统在工业应用中广泛使用,其在机械、航空航天、冶金等领域起着重要的作用。

在液压系统设计阶段,进行可行性分析对于确保系统的性能、安全和可靠性至关重要。

本文将对液压系统设计的可行性进行分析。

设计目标在进行液压系统设计可行性分析之前,首先需要明确设计目标。

设计目标应包括系统的工作压力、流量要求、控制精度以及相应的安全性要求等。

明确设计目标对于后续的分析和评估工作至关重要。

技术可行性分析技术可行性分析是液压系统设计的重要环节。

该分析通过评估所选液压元件的适用性和可靠性,以确定系统是否能够满足设计要求。

技术可行性分析应包括以下几个方面:1. 液压元件的选型:根据设计要求和性能指标,在不同的厂家和型号中选择合适的液压元件,如泵、阀门、缸体等。

要考虑元件的工作压力、流量、密封性能、温度适应性等因素。

2. 系统的可控性:液压系统设计所要求的控制精度和响应速度,需要评估液压元件在不同工况下的动态特性,确保系统的可控性。

3. 安全性评估:液压系统在运行过程中,存在一定的安全风险,例如泄漏、冲击、爆炸等。

通过评估液压元件的安全性能,确定系统在正常和异常工况下是否满足安全要求。

经济可行性分析经济可行性分析是液压系统设计过程中不能忽视的一环。

液压系统的设计和制造需要一定的投入,因此需要评估设计与制造的成本是否可接受。

经济可行性分析主要包括以下几个方面:1. 设备成本评估:液压系统设计需要购买液压元件、管路、附件等,需要评估这些成本是否在预算范围内。

2. 运行成本评估:液压系统在运行过程中需要消耗液压油和能源,需要评估运行成本是否可接受。

3. 维护成本评估:液压系统需要定期维护和检修,需要评估维护成本是否可接受。

4. 寿命周期成本评估:液压系统的设计寿命需要评估和预测,通过计算寿命周期成本,评估系统投资回报率。

环境可行性分析环境可行性分析是对液压系统设计所涉及的环境因素进行评估和考虑。

液压系统在使用过程中可能会产生噪音、振动和污染等,对环境造成一定的影响。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
参数设计阶段的可靠性设计内容,主要有降额 设计、容差设计和热设计等。
降额设计就是有意识地降低某些元器件的使用 规范,令其在低于其额定工况的条件下工作,可有 效地降低其失效概率,从而使整个系统有更高的可 靠度。
容差设计是通过合理选择工作点等办法,使元 器件输出性能波动在允许范围之内,即通过控制影 响大的主要误差因素本身的波动来改善系统的工作 可靠性。
教研室

编:300161
—51—
万方数据
工程机械液压系统可靠性设计分析
作者: 作者单位: 刊名:
英文刊名: 年,卷(期): 被引用次数:
郭研, 王海兰, 陶新良 郭研(长安大学), 王海兰,陶新良(军事交通学院)
起重运输机械 HOISTING AND CONVEYING MACHINERY 2006(4) 1次
参考文献(2条)
1.鲁建平 液压系统广义可靠性设计[期刊论文]-机床与液压 2002(04) 2.张镇 军事装备系统可靠性设计分析[期刊论文]-后勤工程学院学报 2004(01)
引证文献(1条)
1.郭雄华.韩慧仙.曹显利 工程机械液压系统可靠性分析[期刊论文]-制造业自动化 2010(5)
本文链接:/Periodical_qzysjx200604017.aspx
具体措施。
关键词:液压系统;可靠性;工程机械
Abstract:Most of working attachments for construction machinery are controlled by hydraulic control technology,therefore
machinery.This reliability of hydraulic system is of utmost importance to reliabaity of whole
(7)维修安全陛设计。在系统中存在危险因素 的部位均应有安全保护装置和措施,并在相应位置 设明显的警告标志。比如汽车起重机;
(8)维修工具标准化、通用化。这一点对于提 高维修工作效率也有很重要的意义。
4结束语
(1)在工程机械液压系统设计中,采用串联方
式结构简单,但可靠性差。采用并联设计方式,可
靠性好,但结构复杂,费用高。而对可靠性模型进
方案设计是提高系统固有可靠性的关键阶段。 这是由于系统在满足功能要求的前提下,方案拟定 阶段最便于设计者充分发挥主观能动作用,使系统 组成最简单,其冗余、安全、抗干扰设计措施最完 善。这些都是保证系统可靠运行最敏感的决定性因 素。可从以下方面着手:
(1)设法用最少元器件、最简单的方法来实现 系统全部功能要求。
C,=1一Ⅱ11一Cei]
i=1
《起重运输机械》
2006(4)
誊摊 r_臣矿 卜[哥叫…。 L叫部件n卜一
图2并联模型
随着并联子系统的增多,各子系统对提高系统 可靠性的贡献程度下降,所以一般只采用2个并联 或3个并联来提高可靠性。
目前,大部分工程机械采用串并联设计方式, 在重要的子系统采用具有相同功能的几部分,避免 一部分失效而使整个系统失效。
重运输机械,1997(1)
《起重运输机械》 2006【4)
作 者:程相文
地 址:河北省唐山市新华西道46号河北理工大学机械
工程学院

编:063009
----——49·---——
万方数据
因此有效度亦可用下式表达
A=/羔1 十 A
由此可以看出,增大有效度的途径有二:降低 故障率或提高维修率,也就是要在提高产品的可靠 度和维修度两方面下功夫。
(1)多选用互换性好的标准化零部件; (2)系统拆装方便。各部件均应易于拆装,装 配配对处应易于识别; (3)进行可达性设计。易于出故障的部位附 近,应有足够的检测空间和维修空间;维修某一部 《起重运输机械》 2006(4)
件时,最好能不拆或少拆其他零部件; (4)提高系统故障的可检测性。设计时应进行
工程机械液压系统可靠性设计分析
长安大学 郭研军事交通学院王海兰陶新良
摘要:现代工程机械的主要工作装置大多采用液压控制技术实现,因此液压系统的可靠性往往对整机的
可靠性产生很大的影响。利用系统工程理论,分析了液压系统可靠性的几可靠性模型,为使系统具有高有效度,液压系统的可靠性设计和维修性设计应得以充分重视,并提出了
(2)人机工程设计。液压系统的失效有相当一 部分是人为差错造成的,而出现人为差错的主要原 因之一是系统设计不合理,因此进行人机工程设计 也是可靠性设计的重要内容之一。具体地说,就是 要根据人的生理、心理特点,合理设计液压系统的 信息显示器、控制器、作业空间及其他相关部位, 以保证所有的操作能迅速、准确地进行,尽可能减 小因人为差错而导致系统失效的概率。
—cycle efficiency and puts forward a practical step.
Keywords:hydraulic system;reliabihty;conslxuefion machinery
目前液压技术已在各类工程机械中广泛应用, 尤其出现了大量的全液压工程机械。因此液压系统 的可靠性往往对整机的可靠性产生很大的影响,要 求工程机械在特定的条件下长期存放和反复使用过 程中,不出故障或少出故障,处于正常的使用状 态,且能实现其预期效能。如何进一步提高工作装 置液压系统的可靠性水平是一个极具现实意义的课 题。
万方数据
排湿阀等,均为比较有效的措施。 (6)冗余设计。采用冗余设计,是为应付突发
故障,以延长系统工作寿命为目的的设计内容,对 于系统中薄弱环节和可靠度要求很高的环节,除考 虑增设冗余元器件或子系统的常规方法外,还可充 分发挥元件或回路本身的潜在功能,利用元件附属 功能储备或派生回路冗余储备的方法,保证系统在 1个或1个以上元器件失效时,仍能正常工作。 2.2参数设计
行合理拟合,可以看出,串并联设计方式是提高工
程机械液压系统可靠性的最优方式。
(2)影响工程机械液压系统有效度的关键环节
是广义可靠性设计,欲使系统具有高有效度,可靠
性设计和维修性设计都应得到充分重视。盲目追求
系统的高可靠度是不可行、不经济的。
(3)运用可靠性设计方法,在研发和生产中对
工程机械系统各子系统和零部件的结构进行调整优
由于我们最关心的是产品长时间使用的有效 度,故最为常用的是稳态有效度,可用下式表达

i瓦 .


式中 “——平均无故障工作时间 £。——平均修理时间
在很多情况下,产品的可靠度R(t)和维修 度M(t)服从指数分布,这时有以下2式成立
tb=1/2
tt=1/卢
式中A——故障率 肚——修复率
阶振型反映机房水平及扭转振型。第4阶振型反映 3张德文.大型装卸桥总体结构的有限元分析[J].起重
(4)多采用可靠性好的标准化液压元件。只有 高可靠度的元件,才能组成高可靠度的系统。
图1串联模型 (5)设法提高系统密封性能和自动净化介质的 能力。经研究发现,液压系统70%左右的故障是 由于介质污染而引起的,因此高可靠度的系统必有 较高的抗污染能力,选用密封性能好的元件、辅 件,采用先进介质过滤技术,安装油水分离装置、 一50一
由于受技术水平和成本等因素限制,任何产品 的可靠度都不可能无止境地提高,液压系统自不例 外。要提高系统的有效度,切不可忽视维修性设 计。工程机械液压系统维修性设计的目的是在系统 设计过程中充分考虑维修的难易问题,设法使系统 发生故障后,便于查找、易于修复。具体而言,液 压系统维修性设计应涵盖以下几方面的内容:
(1)尽可能简化系统结构 设一个机械液压系统的可靠性框图(图1)是 由n个子系统和部件组成的串联结构,第i个子 系统和部件的可靠性记为cei,则系统的可靠性为
_r¥
C,=【J(1一Cei)
i=1
串联系统的可靠性等于各子系统可靠性的乘 积,可见一个系统结构越简单,串联环节越少,其 可靠性必然越高。
设一个机械液压系统的可靠性框图(图2)是 由n个子系统和部件组成的并联结构,第i个子 系统和部件的可靠性记为cei,则系统的可靠性为
(3)安全设计。是指失电、过载、限压、限流 等等安全防范措施设计。
(4)抗干扰设计。是针对系统复杂的工作状态 和环境干扰而采取的防备措施设计。包括考虑负载 效应、环境防护等方面的外干扰,和考虑关联效 应、耦合效应影响的内干扰2个方面。尽量事先防 止它们的出现或影响,亦是抗干扰设计应包含的内 容。
3提高液压系统维修性设计方法
热设计。温升也是引起液压系统失效的重要原 因之一,在系统设计中,应采取控制系统温度的有 效措施,以防异常温升现象的出现,否则系统可靠 性难以达到较高水平。 2.3结构设计
系统的可靠性依赖于各子系统和各构成部分的 可靠性。因此,要根据工程机械系统的结构,基于 每个子系统和部件的可靠性,求出系统的可靠性系 数,液压系统是总系统可靠性系数之一。
(2)应用先进设计理论。如应用应力一强度分 布干涉理论来设计一些零件的相关参数,可有效地 延缓疲劳失效的出现;应用油膜理论,使摩擦副中 形成较为理想的油膜,可很好地改善摩擦副的润滑 性能提高液压元件的可靠度。
(3)零件设计合理选材。如摩擦副采用高强韧 的耐磨材料,过滤器采用过滤性能好的材料,均有 利于相关元件可靠性的改善。
paper analyzes several parameters of
reliability for hydraulic system and the reliability model for construction machinery by mealqs of systems engineering theory.Finally it comes to a conclusion that attention should be paid to both hydraulic system design and maintenance for the system having high
相关文档
最新文档