matlab实现插值法和曲线拟合

合集下载

MATLAB软件中软件拟合与插值运算的方法

MATLAB软件中软件拟合与插值运算的方法

MATLAB软件中软件拟合与插值运算的方法内容目录
1MATLAB中软件拟合与插值运算的方法1
1.1拟合函数的选择1
1.1.1线性拟合1
1.1.2非线性拟合2
1.2拟合函数的求解2
1.2.1直接法2
1.2.2迭代法3
1.3MATLAB插值函数4
1.3.1样条插值函数4
1.3.2拉格朗日插值函数5
1.3.3指数插值函数5
结论6
近来,随着科学技术的进步,数据采集技术的发展,大量的实验数据和实验结果越来越多,如何合理地分析处理数据,描绘实际趋势,就变得十分重要,MATLAB中的软件拟合与插值是目前应用最多的数据处理技术之一、本文介绍了MATLAB中软件拟合与插值运算的方法及其具体实现。

1.1拟合函数的选择
1.1.1线性拟合
线性拟合是指拟合函数可以用一元线性方程描述,MATLAB中的拟合
函数有polyfit、polyval和 polyconf等。

其中,polyfit函数用来根据
输入的拟合数据拟出一元多项式,polyval函数用来求出拟合后的拟合值,polyconf函数用来计算拟合的参数的置信范围。

例如,用polyfit函数
拟合下面的数据,输入x = [1 2 3 4 5]和y = [4.3 7.3 11.1 14.1
18.4],拟出的拟合函数为y = 4.1 + 2.3x,即拟合函数为y = 4.1 +
2.3x。

1.1.2非线性拟合。

第六章 Matlab插值、拟合与回归

第六章 Matlab插值、拟合与回归

[x,y,z]=meshgrid(-1:0.2:1); [x0,y0,z0]=meshgrid(-1:0.05:1); V=exp(x.^2.*z+y.^2.*x+z.^2.*y).*cos(x.^2.*y.*z+z.^2.*y.*x); V0=exp(x0.^2.*z0+y0.^2.*x0+z0.^2.*y0).*cos(x0.^2.*y0.*z0+z0.^2.*y0.*x0); V1=interp3(x,y,z,V,x0,y0,z0,'spline'); err=V1-V0; max(err(:)) slice(x0,y0,z0,V1,[-0.5,0.3, 0.9],[0.6,-0.1],[-1,-0.5,0.5,1]) title('Slives for Four Dim Figures');
一般多项式拟合的目标是寻找一组多项式系数ai,使得多项式 f(x)=a1xn+a2xn-1 +…+anx+an+1 能够较好的拟合原始数据,使整体拟合误差较 小,在Matlab中使用polyfit()函数实现,调用格式为:p=polyfit(x,y,n),n为选 定的多项式的次数,p是多项式按降幂排列得出的行向量,可以使用 poly2sym转换为多项式,使用polyval()计算多项式的值。
还有三维插值运算函数interp3,n维网格插值interpn,其调用格式同 interp1和interp2,对应的三维网格生成函数为[x,y,z]=meshgrid(x1,y1,z1) 和非网格生成函数griddata3(),griddatan(),他们同g;6*rand(199,1);y=-2+4*rand(199,1); z=(x.^2-2*x).*exp(-x.^2-y.^2-x.*y); plot(x,y,'*');figure;plot3(x,y,z,'*');figure; [x1,y1]=meshgrid(-3:0.2:3,-2:0.2:2); z1=griddata(x,y,z,x1,y1,'cubic'); surf(x1,y1,z1);figure; z2=griddata(x,y,z,x1,y1,'v4');surf(x1,y1,z2); %误差比较 z0=(x1.^2-2*x1).*exp(-x1.^2-y1.^2-x1.*y1); surf(x1,y1,abs(z0-z1));axis([-3,3,-2,2,0,0.15]) figure; surf(x1,y1,abs(z0-z2));axis([-3,3,-2,2,0,0.15])

(完整版)Matlab学习系列13.数据插值与拟合

(完整版)Matlab学习系列13.数据插值与拟合

13. 数据插值与拟合实际中,通常需要处理实验或测量得到的离散数据(点)。

插值与拟合方法就是要通过离散数据去确定一个近似函数(曲线或曲面),使其与已知数据有较高的拟合精度。

1.如果要求近似函数经过所已知的所有数据点,此时称为插值问题(不需要函数表达式)。

2.如果不要求近似函数经过所有数据点,而是要求它能较好地反映数据变化规律,称为数据拟合(必须有函数表达式)。

插值与拟合都是根据实际中一组已知数据来构造一个能够反映数据变化规律的近似函数。

区别是:【插值】不一定得到近似函数的表达形式,仅通过插值方法找到未知点对应的值。

【拟合】要求得到一个具体的近似函数的表达式。

因此,当数据量不够,但已知已有数据可信,需要补充数据,此时用【插值】。

当数据基本够用,需要寻找因果变量之间的数量关系(推断出表达式),进而对未知的情形作预测,此时用【拟合】。

一、数据插值根据选用不同类型的插值函数,逼近的效果就不同,一般有:(1)拉格朗日插值(lagrange插值)(2)分段线性插值(3)Hermite(4)三次样条插值Matlab 插值函数实现:(1)interp1( ) 一维插值(2)intep2( ) 二维插值(3)interp3( ) 三维插值(4)intern( ) n维插值1.一维插值(自变量是1维数据)语法:yi = interp1(x0, y0, xi, ‘method’)其中,x0, y0为原离散数据(x0为自变量,y0为因变量);xi为需要插值的节点,method为插值方法。

注:(1)要求x0是单调的,xi不超过x0的范围;(2)插值方法有‘nearest’——最邻近插值;‘linear’——线性插值;‘spline’——三次样条插值;‘cubic’——三次插值;默认为分段线性插值。

例1 从1点12点的11小时内,每隔1小时测量一次温度,测得的温度的数值依次为:5,8,9,15,25,29,31,30,22,25,27,24.试估计每隔1/10小时的温度值。

Matlab__数据处理函数(插值,拟合,回归分析)

Matlab__数据处理函数(插值,拟合,回归分析)

Matlab曲线拟合工具箱zy搜集整理1 插值 (1)1.1 一维插值interp1 (1)1.2 二维数据内插值interp2 (3)1.3 三维插值interp3 (4)1.4 快速Fourier 算法作一维插值interpft (5)1.5 命令5 griddata (5)1.6 三次样条数据插值spline (6)1.7 n 维数据插值interpn (7)1.8 生成三位图形矩阵数据meshgrid (8)1.9 多维函数数据产生函数ndgrid (8)2 拟合 (9)2.1 多项式曲线拟合ployfit (9)2.2 多项式曲线求值函数polyval (10)2.3 多项式曲线拟合的评价和置信区间函数polyconf (10)2.4 稳健回归函数robust (11)2.5 向自定义函数拟合nlinfit (12)2.6 拟合工具cftool (13)3 回归分析 (14)3.1 多元线性回归分析函数regress (15)1插值Matlab中插值函数汇总和使用说明1.1 一维插值interp1MATLAB中的插值函数为interp1,其调用格式为:yi= interp1(x,y,xi,'method') 其中x,y为插值点,yi为在被插值点xi处的插值结果;x,y为向量,'method'表示采用的插值方法,MATLAB提供的插值方法有几种:'method'是最邻近插值,'linear'线性插值;'spline'三次样条插值;'cubic'立方插值.缺省时表示线性插值注意:所有的插值方法都要求x是单调的,并且xi不能够超过x的范围。

例如:在一天24小时内,从零点开始每间隔2小时测得的环境温度数据分别为12,9,9,10,18 ,24,28,27,25,20,18,15,13,推测中午12点(即13点)时的温度.x=0:2:24;y=[12 9 9 10 18 24 28 27 25 20 18 15 13];a=13;y1=interp1(x,y,a,'spline')结果为:27.8725若要得到一天24小时的温度曲线,则:xi=0:1/3600:24;yi=interp1(x,y,xi, 'spline');plot(x,y,'o' ,xi,yi)命令1 interp1功能一维数据插值(表格查找)。

matlab曲线拟合

matlab曲线拟合

函数插值与曲线拟合1、函数插值一维插值:interp1(x,y,cx,‟method‟)一维插值:interp1(x,y,z,cx,cy,‟method‟)method:nearest、linear、spline、cubic例:clearecho onx=-2:0.4:2;y=[2.8 2.96 2.54 3.44 3.565.46.0 8.7 10.1 13.3 14.0];t=-2:0.01:2;nst=interp1(x,y,t,'nearest');plot(x,y,'r*',t,nst)title('最临近点插值')lnr=interp1(x,y,t,'linear');figure(2)plot(x,y,'r*',t,lnr,'b:')title('线性插值')spl=interp1(x,y,t,'spline');figure(3)plot(x,y,'r*',t,spl)title('样条插值')cbc=interp1(x,y,t,'cubic');figure(4)plot(x,y,'r*',t,cbc,'k-')title('三次插值')2、曲线拟合多项式拟合:polyfit(x,y,m) 线性:m=1,二次:m=2, …例:x=0:0.1:1;y=[-0.447 1.978 3.28 6.16 7.08 7.347.66 9.56 9.48 9.30 11.2];A=polyfit(x,y,2)Z=polyval(A,x);Plot(x,y,‟r*‟,x,z,‟b‟)matalb 曲线拟合的问题%多项式拟合函数polyfit示例x=[0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1];y=[-0.4471 0.978 3.28 6.16 7.08 7.34 7.66 9.56 9.48 9.30 11.2]; n=2;%polynomial orderp=polyfit(x, y, n);%polyfit 的输出是一个多项式系数的行向量。

Matlab数据插值与拟合

Matlab数据插值与拟合

分段线性插值方法在速度和误差之间取得 了比较好的均衡,其插值函数具有连续性, 但在已知数据点处的斜率一般不会改变, 因此不是光滑的。分段线性插值方法是 MATLAB一维插值默认的方法。 MATLAB一维插值默认的方法。
2.Spline(样条插值) 2.Spline(样条插值)
样条插值是用分段低次多项式去逼近函数。样条函 样条插值是用分段低次多项式去逼近函数。样条函 数可以给出光滑 的插值曲线,只要在插值区间端 点提供某些导数信息,样条插值可以适应不同光滑 需求。三次样条是使用最为广泛的样条插值,它在 需求。三次样条是使用最为广泛的样条插值,它在 每个子区间[x 每个子区间[xi,xi+1]上都是有二阶连续导数的三次多 项式,即
4.1.1 一元插值函数
MATLAB中的一元插值函数为interp1( ),它的功能是一维 MATLAB中的一元插值函数为interp1( ),它的功能是一维 数据插值(表格查找)。该命令对数据点之间进行计算内 插值,它出一元函数f(x)在中间点的数值,其中函数f(x)由 插值,它出一元函数f(x)在中间点的数值,其中函数f(x)由 所给数据决定。 一元插值函数interp1( )的几种调用格式如表4 一元插值函数interp1( )的几种调用格式如表4-1所示。 表4-1 一维插值插值函数interp1的语法格式 一维插值插值函数interp1的语法格式
例4-1 用interp1对sin函数进行分段线性插值。 interp1对sin函数进行分段线性插值 函数进行分段线性插值。
解:在MATLAB命令窗口中输入以下命令: 解:在MATLAB命令窗口中输入以下命令: >> x=0:2*pi; >> y=sin(x); >> xx=0:0.5:2*pi >> yy=interp1(x,y,xx); >> plot(x,y,'s',xx,yy) 注:例 注:例4-1中用默认的 (分段线性插值的linear) 分段线性插值的linear) 对已知的7 sin函数的 对已知的7个sin函数的 数据点进行插值,用 plot画出插值结果。从图中可以看出分段线性就是联结两个 plot画出插值结果。从图中可以看出分段线性就是联结两个 邻近的已知点的线性函数插值计算该区间内插值点上的函数 值。

Matlab中的插值与拟合技术

Matlab中的插值与拟合技术

Matlab中的插值与拟合技术在科学研究和工程领域中,数据的插值和拟合技术在数值计算和数据处理中具有重要意义。

Matlab作为一款强大的科学计算软件,提供了丰富的插值和拟合函数和工具箱,能够满足不同场景下的需求。

插值是一种通过已知数据点构建新数据点的技术。

在实际问题中,我们经常会遇到仅有少量已知数据点,但需要了解未知数据点的情况。

插值技术就可以帮助我们填补数据之间的空缺,以便更好地分析和理解数据。

Matlab中提供了多种插值函数,包括线性插值、多项式插值、样条插值等。

这些函数能够根据已知数据点的特征,推测出未知数据点的可能取值。

通过合理选择插值方法和参数,我们可以得到较为准确的结果。

以线性插值为例,其原理是根据已知数据点的直线特征,推测出未知数据点的取值。

在Matlab中,我们可以使用interp1函数实现线性插值。

该函数的基本用法是给定一组x和对应的y值,以及待插值的点xq,函数将计算出对应的插值点yq。

通过指定xq的形式,我们可以实现不仅仅是单个点的插值,还可以实现多点插值和插值曲线绘制。

这种灵活性使得插值操作更加方便快捷。

拟合技术则是通过一定数学函数的近似表示,来描述已知数据的特征。

它可以帮助我们找到数据背后的规律和趋势,从而更好地预测未知数据。

在Matlab中,拟合问题可以通过polyfit和polyval函数来解决。

polyfit函数可以根据一组已知数据点,拟合出最优的多项式曲线。

该函数的输入参数包括x和y,代表已知数据的横纵坐标值;以及n,代表拟合的多项式次数。

polyfit函数将返回拟合得到的多项式系数。

通过polyval函数,我们可以使用这些系数来求解拟合曲线的纵坐标值。

这样,我们就能够利用拟合曲线来预测未知数据点。

插值和拟合技术在实际问题中都有广泛的应用,尤其在数据处理和信号处理方面。

例如,当我们在实验中测量一组数据时,可能会存在测量误差或者数据缺失的情况。

此时,通过插值技术我们可以填补数据之间的空白,并得到一个更加完整的数据集。

曲线拟合和插值运算原理和方法

曲线拟合和插值运算原理和方法

实验10 曲线拟合和插值运算一. 实验目的学会MATLAB 软件中软件拟合与插值运算的方法。

二. 实验内容与要求在生产和科学实验中,自变量x 与因变量y=f(x)的关系式有时不能直接写出表达式,而只能得到函数在若干个点的函数值或导数值。

当要求知道观测点之外的函数值时,需要估计函数值在该点的值。

要根据观测点的值,构造一个比较简单的函数y=t (x),使函数在观测点的值等于已知的数值或导数值,寻找这样的函数t(x),办法是很多的。

根据测量数据的类型有如下两种处理观测数据的方法。

(1) 测量值是准确的,没有误差,一般用插值。

(2) 测量值与真实值有误差,一般用曲线拟合。

MATLAB 中提供了众多的数据处理命令,有插值命令,拟合命令。

1.曲线拟合已知离散点上的数据集[(1x ,1y ),………(n x ,n y )],求得一解析函数y=f (x),使f(x)在原离散点i x 上尽可能接近给定i y 的值,之一过程叫曲线拟合。

最常用的的曲线拟合是最小二乘法曲线拟合,拟合结果可使误差的平方和最小,即使求使21|()|n i ii f x y =-∑ 最小的f(x).格式:p=polyfit(x,Y ,n).说明:求出已知数据x,Y 的n 阶拟合多项式f(x)的系数p ,x 必须是单调的。

[例 1.9]>>x=[0.5,1.0,1.5,2.0,2.5,3.0]; %给出数据点的x 值>>y=[1.75,2.45,3.81,4.80,7.00,8.60]; %给出数据点的y 值>>p=polyfit (x,y,2); %求出二阶拟合多项式f(x)的系数>>x1=0.5:0.05:3.0; %给出x 在0.5~3.0之间的离散值>>y1=polyval(p,1x ); %求出f(x)在1x 的值>>plot(x,y,‟*r ‟, 11,x y ‟-b ‟) %比较拟合曲线效果计算结果为:p=0.5614 0.8287 1.1560即用f(x)=0.56142x +0.8287x+1.1560拟合已知数据,拟合曲线效果如图所示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

插值法和曲线拟合电子科技大学摘要:理解拉格朗日多项式插值、分段线性插值、牛顿前插,曲线拟合,用matlab编程求解函数,用插值法和分段线性插值求解同一函数,比较插值余项;用牛顿前插公式计算函数,计算函数值;对于曲线拟合,用不同曲线拟合数据。

关键字:拉格朗日插值多项式;分段线性插值;牛顿前插;曲线拟合引言:在数学物理方程中,当给定数据是不同散点时,无法确定函数表达式,求解函数就需要很大的计算量,我们有多种方法对给定的表格函数进行求解,我们这里,利用插值法和曲线拟合对函数进行求解,进一步了解函数性质,两种方法各有利弊,适合我们进行不同的散点函数求解。

正文:一、插值法和分段线性插值1拉格朗日多项式原理对某个多项式函数,已知有给定的k + 1个取值点:其中对应着自变量的位置,而对应着函数在这个位置的取值。

假设任意两个不同的x j都互不相同,那么应用拉格朗日插值公式所得到的拉格朗日插值多项式为:其中每个为拉格朗日基本多项式(或称插值基函数),其表达式为:[3]拉格朗日基本多项式的特点是在上取值为1,在其它的点上取值为0。

2分段线性插值原理给定区间[a,b], 将其分割成a=x0<x1<…<xn=b, 已知函数y= f(x) 在这些插值结点的函数值为y k =f(xk)(k=0,1,…,n)求一个分段函数Ih(x), 使其满足:(1) I h (x k )=y k ,(k=0,1,…,n) ;(2) 在每个区间[x k ,x k+1 ] 上,I h (x)是个一次函数。

易知,I h (x)是个折线函数, 在每个区间[x k ,x k+1 ]上,(k=0,1,…,n) k1k k 1k 1k k 1k k k ,1)()()(x x x x x f x x x x x f x L --+--=++++,于是, I h (x)在[a,b]上是连续的,但其一阶导数是不连续的。

3拉格朗日插值多项式算法○1输入,(0,1,2,,)i i x y i n = ,令0)(=x L n 。

○2对0,1,2,,i n = ,计算 0,()()/()ni j i j j j il x x x x x -≠=--∏()()()n n i iL x L x l x y ←−−+4分段线性插值算法○1输入(x k ,y k ),k=0,1,…,n;○2计算k1k k 1k 1k k 1k k k ,1)()()(x x x x x f x x x x x f x L --+--=++++5插值法和分段线性插值程序按下列数据分别作五次插值和分段线性插值,画出两条插值曲线以及给定数据点。

求x 1=0.32,functionlagrintxi=[0.32,0.55,0.68];%xi=[0.2:0.001:0.8];x=[0.3,0.42,0.50,0.58,0.66,0.72];y=[1.04403,1.08462,1.11803,1.15603,1.19817,1.23223]; L=zeros(size(y)); m=length(xi); fori=1:mdxi=xi(i)-x;L(1)=prod(dxi(2:6))/prod(x(1)-x(2:6));L(6)=prod(dxi(1:6-1))/prod(x(6)-x(1:6-1)); for j=2:6-1num=prod(dxi(1:j-1))*prod(dxi(j+1:6));den=prod(x(j)-x(1:j-1))*prod(x(j)-x(j+1:6));L(j)=num/den;endyi(i)=sum(y.*L);fprintf('x=%f,y=%f\n',xi(i),yi(i));endplot(xi,yi,'r');axis([0.2 0.8 1.03 1.24]);hold onplot(x,y,'b.','markersize',20)grid on分段线性插值算法程序:function [y]=div%xi=[0.3:0.001:0.72];x0=[0.3,0.42,0.50,0.58,0.66,0.72];y0=[1.04403,1.08462,1.11803,1.15603,1.19817,1.23223]; k=1;xi=[0.32,0.55,0.68];for j=1:3fori=1:5if xi(j)>=x0(i) && xi(j)<=x0(i+1) && k<=3lx(1)=(xi(j)-x0(i+1))/(x0(i)-x0(i+1));lx(2)=(xi(j)-x0(i))/(x0(i+1)-x0(i));y(k)=lx(1)*y0(i)+lx(2)*y0(i+1);k=k+1;endendendplot(xi,y,'r');axis([0.2 0.8 1.03 1.24]);hold onplot(x0,y0,'b.','markersize',20)grid on6运算结果拉格朗日插值结果x=0.320000,y=1.049958 x=0.550000,y=1.141271 x=0.680000,y=1.209300 拉格朗日插值余项:)72.0)(66.0)(58.0)(5.0)(42.0)(3.0(!6)()()()(655------=-=x x x x x x f x L x f x R ξ分段插值结果ans =1.0508 1.1418 1.2095 分段线性插值余项:)(max8))((2)(max)()(max11121,1x f h x x x x f x L x f R i i i i i i x x x ii i i x x x i x x x ''≤--''≤-=+++≤≤+≤≤≤≤ξ由于拉格朗日插值的余项比分段线性插值的余项要求更为严格,点少、区间小的时候,拉格朗日插值要更好。

但在区间较大、节点较多的时候,分段线性插值要更好。

二、牛顿前插 1牛顿前插原理n 次牛顿前插公式:)1()1(!)1(!2!1)(!)(00200100+--∆++-∆+∆+=-∏∆=+-==∑n t t t n f t t f t f f j t k f th x N nk j nk kn 插值余项:)()!1()()1()()1(10ξ+++--=+n n n fhn n t t t th x R ,),(0n x x ∈ξm 阶差分记作i m i m i mf f f 111-+-∆-∆=∆。

[]i f x k 阶差商是[]∑∏=≠=-=km kmi i i mm k x xx f x x x f 0010)()(,,,差分和差商之间的关系是[]ki kk i i i hk f x x x f !,,,1∆=++2牛顿前插算法○1输入),2,1,0(,,n i y x n ii =。

○2对n k ,,3,2,1 =,k i ,,2,1 =计算各阶差分i m i m i m f f f 111-+-∆-∆=∆ ○3计算函数值)1()1(!)1(!2!1)(!)(00200100+--∆++-∆+∆+=-∏∆=+-==∑n t t t n f t t f t f f j t k f th x N nk j nk kn 3牛顿前插程序:编写一个用牛顿前插公式计算函数值的程序,要求先输出差分表,再计算x 点的函数值分别求x =0.158和x =0.636的三次插值的值,并比较二者的插值余项。

这里以x=0.636为例 function [P]=newtoncha x0=0.636;X=[0.125 0.250 0.375 0.500 0.625 0.750]; Y=[0.796 0.773 0.744 0.704 0.656 0.602]; h=abs(X(2)-X(1)); n=find(abs(x0-X)<3*h); X=X(n(1):n(end)); Y=Y(n(1):n(end));w=length(X);R=zeros(w,w);R(:,1)=Y(:);for k=2:wfor j=k:wR(j,k)=R(j,k-1)-R(j-1,k-1);endendt=(x0-X(1))/h;T=1;for m=1:w-1T=T*(t-m+1);N(m)=R(m+1,m+1)*T/factorial(m); endP=R(1,1)+sum(N);4运行结果:差分表X=0.636时ans =0.651459661824000 x=0,158时ans =0.790229818880000 三、曲线拟合 1曲线拟合原理: 给定数据(,),1,2,,j j x y j n= 。

记拟合函数的形式为0011()()()()m m p x a x a x a x ϕϕϕ=+++ (1.1),其中{}0()mkk x ϕ=为已知的线性无关函数。

求系数***01,,,ma a a 使得220111(,,,)[()][()]nnmm jj kkj j j j k a a a p xy a x y ϕϕ====-=-∑∑∑ (1.2)取最小值。

称**0()()mkk k p x ax ϕ==∑(1.3)为拟合函数或经验公式。

如果),,1,0()(m k x x kk ==ϕ,则(1.3)为m 次最小二乘拟合多项式2曲线拟合算法:已知数据对),,2,1)(,(n j y x i i =,求多项式)()(0n m xa x P mi ii<=∑=,使得∑∑==-=Φnj j mi i jim y xa a a a 12010)(),,,( 为最小。

注意到此时kk xx =)(ϕ,多项式系数ma a a ,,,10 满足下面的线性方程组: ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡++m m m m mm m T T T a a a S S S S S S S S S10102112110其中)2,,2,1,0(1m k xS nj k jk ==∑=,),,2,1,0(1m k x y T nj kjj k ==∑=然后只要调用线性方程组的函数程序即可 3曲线拟合程序:试分别用抛物线y =a +bx 2和指数曲线y =ae bx拟合下列数据画出数据点和两条拟合曲线,并通过计算2个拟合函数残差向量的2范数来比较拟合优劣。

用抛物线y=a+bx 拟合程序: function ZXEx=[1 2.5^2 3.5^2 4^2];y=[3.8 1.50 26.0 33.0];m=1;S=zeros(1,2*m+1);T=zeros(m+1,1); for k=1:2*m+1S(k)=sum(x.^(k-1));endfor k=1:m+1T(k)=sum(x.^(k-1).*y);endA=zeros(m+1,m+1);a=zeros(m+1,1); fori=1:m+1for j=1:m+1A(i,j)=S(i+j-1);endenda=A\T;for k=1:m+1fprintf('a[%d]=%f\n',k,a(k)); endp=polyfit(x,y,1);u=polyval(p,x);plot(sqrt(x),u,'b')hold onplot(sqrt(x),y,'b.')grid on指数曲线y=aebx拟合程序:function ZXE2x=[1 2.5 3.5 4];y=[3.8 1.50 26.0 33.0];y=log(y);m=1;S=zeros(1,2*m+1);T=zeros(m+1,1); for k=1:2*m+1S(k)=sum(x.^(k-1));endfor k=1:m+1T(k)=sum(x.^(k-1).*y);endA=zeros(m+1,m+1);a=zeros(m+1,1); fori=1:m+1for j=1:m+1A(i,j)=S(i+j-1);endenda=A\T;for k=1:m+1fprintf('a[%d]=%f\n',k,a(k)); endp=polyfit(x,y,1);u=polyval(p,x);plot(x,exp(u),'r')hold onplot(x,exp(y),'b.')grid on4运行结果:拟合曲线:a[1]=-0.168731a[2]=0.833636结论:求解散点函数的时候,点少、区间小的时候,拉格朗日插值要更好。

相关文档
最新文档