人教版九年级数学上概率问题教学课件
合集下载
人教版九年级上册数学《概率》概率初步PPT教学课件(第2课时)

P(没有中奖).
(1).
练习巩固
练习3 已知:在一个不透明的口袋中装有仅颜色不同的红、白 两种小球,其中红球3个,白球n个,若从袋中任取一个球,摸出白 球的概率为四分之三,求n 的值.
解:P(摸出白球).
根据题意得n=9.
经检验,n=9是原分式方程的解.
做一做
小明和小刚想通过抽取扑克牌的方式来决定谁去看电影, 现有一副扑克牌,请你设计对小明和小刚都公平的抽签方案.
解:(1)指向红色有1种结果, P(指向红色) =.
变式训练
例1变式 如图,是一个转盘,转盘被分成两个扇形,颜色分为红 黄两种,红色扇形的圆心角为120度,指针固定,转动转盘后任其自由 停止,指针会指向某个扇形,(指针指向交线时当作指向右边的扇形 )求下列事件的概率:(1)指向红色;(2)指向黄色.
各边相等的圆内接多边形是正多边形吗?
以四边形为例
A
已知:如图, O 中内接四边形
ABCD ,
AB=BC=CD=DA .
B
求证:四边形ABCD是正方形.
D O
C
思考
已知:如图, O 中内接四边形ABCDE,
AB=BC=CD=DA .
A
D
求证:四边形ABCD是正方形.
证明: AB BC CD DA ,
你能设计出几种方案?
课堂小结
(1)在计算简单随机事件的概率时需要满足两个前 提条件:
每一次试验中,可能出现的结果只有有限个; 每一次试验中,各种结果出现的可能性相等. (2)通过对概率知识的实际应用,体现了数学知识 在现实生活中的运用,体现了数学学科的基础性.
作业
1.一个质地均匀的小正方体,六个面分别标有数字 “1”“1”“2”“4”“5”“5”.掷小正方体后, 观察朝上一面的数字.
(1).
练习巩固
练习3 已知:在一个不透明的口袋中装有仅颜色不同的红、白 两种小球,其中红球3个,白球n个,若从袋中任取一个球,摸出白 球的概率为四分之三,求n 的值.
解:P(摸出白球).
根据题意得n=9.
经检验,n=9是原分式方程的解.
做一做
小明和小刚想通过抽取扑克牌的方式来决定谁去看电影, 现有一副扑克牌,请你设计对小明和小刚都公平的抽签方案.
解:(1)指向红色有1种结果, P(指向红色) =.
变式训练
例1变式 如图,是一个转盘,转盘被分成两个扇形,颜色分为红 黄两种,红色扇形的圆心角为120度,指针固定,转动转盘后任其自由 停止,指针会指向某个扇形,(指针指向交线时当作指向右边的扇形 )求下列事件的概率:(1)指向红色;(2)指向黄色.
各边相等的圆内接多边形是正多边形吗?
以四边形为例
A
已知:如图, O 中内接四边形
ABCD ,
AB=BC=CD=DA .
B
求证:四边形ABCD是正方形.
D O
C
思考
已知:如图, O 中内接四边形ABCDE,
AB=BC=CD=DA .
A
D
求证:四边形ABCD是正方形.
证明: AB BC CD DA ,
你能设计出几种方案?
课堂小结
(1)在计算简单随机事件的概率时需要满足两个前 提条件:
每一次试验中,可能出现的结果只有有限个; 每一次试验中,各种结果出现的可能性相等. (2)通过对概率知识的实际应用,体现了数学知识 在现实生活中的运用,体现了数学学科的基础性.
作业
1.一个质地均匀的小正方体,六个面分别标有数字 “1”“1”“2”“4”“5”“5”.掷小正方体后, 观察朝上一面的数字.
人教版九年级数学上册(课件)25.1.2概率

① P(点数为2)= 1 .
② 点数为奇数有 3 种6可能,分别为_1_,__3_,_5__,
P(点数为奇数)= ③点数大于2且小于5有
3 6
=
1 2
.
2 种可能,分别_
3,4___,
2 P(点数大于2且小于5)= 6
=
1 3
.
三、研学教材
抛掷一枚质地均匀的硬币,向上一面 有几种可能的结果?它们的可能性相等吗? 由此能得到“下面向上”的概率吗? 答:有2种可能;它们的可能性相等;
三、研学教材
知识点一 概率的意义与表示方法
1、①在问题1中,从分别标有1,2,3,4, 5的五个纸团中随机抽取一个,由于每个数 字1被抽到的可能性大小 相等 ,所以我们用
5 表示每个数字被抽到的可能性大小。 ②在问题2中,掷一枚骰子,向上一面的点 数大有 小6相个等可能,,所由以于我每们种用点1数出表现示的每可一能个性点 数出现的可能性大小。 6
九年级数学上册·R
第25章 概率初步
25.1.2概率
一、学习目标
1、理解概率的定义,掌握求事件A发
生的概率的方法P( A )= m ;
mn
2、理解并应用P(A)=
n
(在一次试验中有n种可能 的 结果,其中A包含m种)的意义。
二、新课引入
彩票广告上说2元中256万元, 某人买了100张彩票,那么他中奖 是 随机 事件.
分析:转动此转盘共有_7_种__等可能结果.
三、研学教材
解:(1)指针指向红色的结果有___3__个, 所以P(指针指向红色)=___3__ (2)指针指向红色或黄色的7结果有__5__个, 所以P(指针指向红色或黄色)=__5__ (3)指针不指向红色的结果有___47___个, 所以P(指针不指向红色)=__4___0
人教版数学九年级上册. 画树状图求概率课件ppt课件

2. (1) 1
27
(2)
1 9
(3)
7 27
解:画树形图如下: 人教版数学九年级上册. 画树状图求概率课件ppt课件
第
左
直
一
辆
第
二左 直 右 左直
辆
右
右 左直 右
第
三 左直右 左直右 左直右
左直右 左直右
辆
左直右
左直右 左直右 左直右
共有27种行驶方向 (1) P(全部继续直行) 1 27
人教版数学九年级上册. 画树状图求概率课件ppt课件
P(A)=
人教版数学九年级上册. 画树状图求概率课件ppt课件
②如果老师想从甲和乙两位同学中选择一位同 学回答,且由甲和乙两位同学以猜拳一次 (剪刀、锤子、布)的形式谁获胜就谁来回 答,那么你能用列表法求得甲同学获胜的概 率吗?
甲 乙
剪刀
剪刀 剪剪
锤子 锤剪
布 布剪
锤子
剪锤
锤锤
布锤
布
求概率课件ppt课件
3. 用数字1、2、3,组成三位数,求其中恰有2个相同的数
字的概率.
组数开始
百位
1
2
3
十位 1 2 3 1 2 3 1 2 3
个位 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
解: 由树形图可以看出,所有可能的结果有27种,它们出 现的可能性相等. 其中恰有2个数字相同的结果有18个.
人教版数学九年级上册. 画树状图求概率课件ppt课件
甲
A
B
乙C
DE
C
DE
丙H IH IH I H IH IH I
人教版九年级数学上册《用列举法求概率》概率初步PPT精品教学课件

板书设计
把两枚骰子分别记为第1枚和第2枚,这样就可以用下面的方形表格列举出
所有可能出现的结果.
解决问题
两枚骰子分别记为第1枚和第2枚,所有可能的结果列表如下:
(1)满足两枚骰子点数相同(记为事件A)的结果有6个
6
1
(表中斜体加粗部分),所以P(A)= 36 = 6.
(2)满足两枚骰子的和是9(记为事件B)的结果有4个
2.如图所示的扇形图给出的是地球上海洋、陆地的表面积约占地球表面积的
百分比. 若宇宙中有一块陨石落在地球上,则它落在海洋中的概率是
%.
达标检测
1.“同吋掷两枚质地均匀的骰子,至少有一枚骰子的点数是3”的概率为
(
)
1
A.
3
11
B.
36
5
C.
12
1
D.
4
2.不透明的袋子中装有红球1个、绿球1个、白球2个,这些球除颜色外无
出场,由于人为指定出场顺序不合规,要重新抽签确定出场顺序,则抽签后三个
运动员出场顺序都发生变化的概率是
.
达标检测
5.一个不透明的袋子中装有红、白两种颜色的小球,这些球除颜色外完全相同,
2
3
其中红球1个,若从中随机摸出一个球,这个球是白球的概率为 .
(1)求袋子中白球的个数;
(2)随机摸出一个球后放回并搅匀,再随机摸出一个球,请用画树状图
5
,全是辅音字母的结果有两个,
12
2
1
即BCH,BDH,所以P(三个辅音)= = .
12
6
P(一个元音)=
练习巩固
1.经过某十字路口的汽车,可能直行,也可能左转或右转. 如果这三种可能
人教版初中九年级上册数学《概率》精品课件

那么抽到数字1,2,3,4,5这五种可能的概
率都可以用
1 5
表示.
在上节课问题2中:
掷一枚骰子,向上一面的点数有6种可能,即
1,2,3,4,5,6.
因为骰子形状规则、质地均匀,又是随机掷
出,所以每种点数出现的可能性大小 相等 .我们
可以用
1 6
表示每一种点数出现的可能性大小.
一般地,对于一个随机事件A,我们把 刻画其发生可能性大小的数值,称为随机事 件A发生的概率.记作:P(A).
一个平面区域内的每个点,事件发生的 可能性都是相等的.如果所有可能发生的区域 面积为S,所求事件A发生的区域面积为S′, 则P(A)= s .
s
随堂演练
基础巩固
1.“明天降水的概率是15%”,下列说法中,正确的 是( A ) A.明天降水的可能性较小 B.明天将有15%的时间降水 C.明天将有15%的地区降水 D.明天肯定不降水
小红在游戏开始时首先随机地点击一个方格,该 方格中出现了数字“3”,其意义表示该格的外 围区域(图中阴影部分,记为A区域)有3颗地雷; 接着,小红又点击了左上角第一个方格,出现了 数字“1”,其外围区域(图中阴影部分)记为B区 域;“A区域与B区域以及出现数字‘1’和‘3’ 两格”以外的部分记为C区域.
25.1 随机事件与概率 25.1.2 概率
R·九年级上册
新课导入
在同样条件下,某一随机事件可能发生也 可能不发生.那么它发生的可能性有多大呢?能 否用数值进行刻画呢?
(1)理解概率的概念,知道概率的值与事件发生的可能 性大小的对应关系. (2)会运用列举法求一步实验和简单两步实验中事件发 生的概率. (3)会根据几何图形的面积求事件发生的概率.
小红在下一步点击时要尽可能地避开地雷,那么她应
人教版九年级数学上册《概率》课件

6、“教学的艺术不在于传授本领,而在于激励、唤醒、鼓舞”。2021年11月2021/11/72021/11/72021/11/711/7/2021
•7、“教师必须懂得什么该讲,什么该留着不讲,不该讲的东西就好比是学生思维的器,马上使学生在思维中出现问题。”“观察是 思考和识记之母。”2021/11/72021/11/7November 7, 2021
学.科.网
随
机
事
件
发
生
的
可
能
我可没我朋
性 究 竟 有
友那么粗心, 撞到树上去, 让他在那等 着吧,嘿嘿!
多
大
?
概率
在同样条件下,随机事件可能发生, 也可能不发生,那么它发生的可能性有多 大呢?能否用数值进行刻画呢?
请看以下两个试验:
学 科网
学.科.网
概率从数量上有刻画 了一个随机事件发生 的可能性的大小.
• (1)掷得点数为2 • (2)掷得点数为奇数 • (3)掷得的点数大于2且小于5;
例2.如图:是一个转盘,转盘分成7个相同的扇 形,颜色分为红黄绿三种,指针固定,转动转盘 后任其自由停止,某个扇形会停在指针所指的位 置,(指针指向交线时当作指向右边的扇形)求 下列事件的概率。 (1)指向红色; (2) 指向红色或黄色; (3) 不指向红色。
以上的两个试验中有两共同点: (1)每一次试验中,可能出现的结果只有有限个。 (2)每一次试验中,各种结果出现的可能性相等。
zxxkw
•1、“手和脑在一块干是创造教育的开始,手脑双全是创造教育的目的。” •2、一切真理要由学生自己获得,或由他们重新发现,至少由他们重建。 •3、反思自我时展示了勇气,自我反思是一切思想的源泉。 •4、好的教师是让学生发现真理,而不只是传授知识。 •5、数学教学要“淡化形式,注重实质.
•7、“教师必须懂得什么该讲,什么该留着不讲,不该讲的东西就好比是学生思维的器,马上使学生在思维中出现问题。”“观察是 思考和识记之母。”2021/11/72021/11/7November 7, 2021
学.科.网
随
机
事
件
发
生
的
可
能
我可没我朋
性 究 竟 有
友那么粗心, 撞到树上去, 让他在那等 着吧,嘿嘿!
多
大
?
概率
在同样条件下,随机事件可能发生, 也可能不发生,那么它发生的可能性有多 大呢?能否用数值进行刻画呢?
请看以下两个试验:
学 科网
学.科.网
概率从数量上有刻画 了一个随机事件发生 的可能性的大小.
• (1)掷得点数为2 • (2)掷得点数为奇数 • (3)掷得的点数大于2且小于5;
例2.如图:是一个转盘,转盘分成7个相同的扇 形,颜色分为红黄绿三种,指针固定,转动转盘 后任其自由停止,某个扇形会停在指针所指的位 置,(指针指向交线时当作指向右边的扇形)求 下列事件的概率。 (1)指向红色; (2) 指向红色或黄色; (3) 不指向红色。
以上的两个试验中有两共同点: (1)每一次试验中,可能出现的结果只有有限个。 (2)每一次试验中,各种结果出现的可能性相等。
zxxkw
•1、“手和脑在一块干是创造教育的开始,手脑双全是创造教育的目的。” •2、一切真理要由学生自己获得,或由他们重新发现,至少由他们重建。 •3、反思自我时展示了勇气,自我反思是一切思想的源泉。 •4、好的教师是让学生发现真理,而不只是传授知识。 •5、数学教学要“淡化形式,注重实质.
人教版九年级上册数学:概率(公开课课件)
经典事例 例1 掷一个骰子,观察向上的一面的点数,求下 列事件的概率:
(1)点数为2;(2)点数为奇数;(3)点数大于2小于5。
解:(1)点数为2有1种可能,因此P(点数为2)=1/6;
(2)点数为奇数有3种可能,即点数为1,3,5, 因此P(点数为奇数)= 3/6 =1/2;
(3)点数大于2且小于5有2种可能,即点数为3,4, 因此 P(点数大于2且小于5)= 2/6=1/3 。
第二十五章 概率初步
独山县第一中学 周燕明
25.1.2 概 率
学习目标: 1.理解一个事件概率的意义。 2.会在具体情境中求出一个事件的概率。(重点) 3.会进行简单的概率计算及应用。(难点)
知识回顾:
1.什么是必然事件,不可能事件和随机事件? 必然事件:在一定条件下,必然会发生的
事件
不可能事件:必然不会发生的事件
问题一
在第一个箱子有可能摸到一等奖吗?在第二 个箱子有可能摸到一等奖吗?它们属于什么事件?
问题二 我现在去摸奖,那么,请同学们告诉我要取得
一等奖,你们会建议我到哪个箱子去摸奖呢,为什 么?
由此,你有什么感悟?
讲授新课: 概率的定义及适用对象
思考:
在同样条件下,随机事件可能发生,也可能不发 生,那么它发生的可能性有多大呢?能否用数值果种数, n
n是试验总结果种数).
谈谈你本节课的收获?
作业: 教科书习题25.1第2,3题
事件A发生 的结果种数
试验的总共 结果种数
活动5 你能举出一些用数值刻画随机事件可能性大小的 例子吗?
想一想:对于 P( A) m 你能断定m的取值范围吗? n
归纳:
∵0 m n,0 m 1. n
∴ 0 P(A) 1, 特别的
人教版初中九年级上册数学课件 《随机事件》概率初步名师教学课件
在我们的生活中,有些事情一定会发生,有些事情可能 发生,有些事情一定不会发生.下面事情是否会发生.
姚明投篮一定会投中吗? 十字路口会遇到红灯吗? 剪刀石头布一定会赢吗?
新知探究 知识点1
掷一枚质地均匀的骰子,骰子的六个面上分别刻有1 到6的点数.请思考以下问题:掷一次骰子,在骰子向 上的一面:
(1) 可能出现哪些点数? 1点,2点,3点,4点,5点,6点,共6种 (2) 出现的点数是7,可能发生吗? 不可能发生
不可能事件
判断事件的类型,要从定义出发,同时还要 结合生活中的常识,看在一定条件下该事件 是一定发生、一定不发生还是可能发生.
2.下列事件中,哪些是必然事件,哪些是不可能事
件,哪些是随机事件.
(1)通常加热到100℃时,水沸腾; (2)篮球队员在罚线上投篮一次,未投必中然;事件
(3)掷一枚骰子,向上的一面是6点;
由于两种球的数量不等,所以“摸出黑球”和“摸出白 球”的可能性的大小是不一样的,且“摸出黑球”的可 能性大于“摸出白球”的可能性.
袋中装有4个黑球,2个白球,这些球的形状、大小、质 地等完全相同,随机地从袋子中摸出一个球. (3)能否通过改变袋子中某种颜色的球的数量,使“摸出 黑球”和“摸出白球”的可能性大小相同?
解:图中有14个白色方块,6个黑色 方块,所以小球停在白色方块上的 可能性大.
2.桌上倒扣着背面图案相同的5张扑克牌,其中3张黑桃, 2张红桃.从中随机抽取1张. (1)能够事先确定抽取的扑克牌的花色吗? (2)你认为抽到哪种花色的可能性大? (3)能否通过改变某种花色的扑克牌的数量,使“抽 到黑桃”和“抽到红桃”的可能性大小相同?
2.已知地球表面陆地面积与海洋面积的比约为3:7.如果 宇宙中飞来一块陨石落在地球上,“落在陆地上”与 “落在海洋里”哪种可能性大?
人教版九年级上册数学精品教学课件 第二十五章 概率初步 用列举法求概率 第1课时 用列表法求概率
1 A.12 C.16
B.110 D.25
课堂小结
硬币的 正反面
直接 列举法
掷骰子 的点数
在运用列表法求概率时,应注意各种结果出现的可能性 相等,要注意列表时事件(或数据)的顺序不能随意混淆.
用列表法求概率适用于事件中涉及两个因素, 并且可能出现的结果数目较多的概率问题.
列表法
Thank you!
知识点2 用列表法求概率
例2 同时掷两枚质地均匀的骰子,计算下列事件的概率:
(1)两枚骰子的点数相同;
(2)两枚骰子点数的和是9; (3)至少有一枚骰子的点数为2.
怎么列出所有可 能出现的结果?
解: 两枚骰子分别记为第1枚和第2枚,可以用表列举出所 有可能出现的结果.
第1枚 第2枚
1
2
3
4
5
6
1
(2)列表如下:
第一次 123
第二次
1
1,1 2,1 3,1
2
1,2 2,2 3,2
3
1,3 2,3 3,3
由表可知,共有 9 种等可能的结果,其中这两个数 字之和是 3 的倍数的有 3 种,所以这两个数字之和 是 3 的倍数的概率为 P=3 =1
93
4.如图,小颖在围棋盘上两个格子的格点上任意摆放 黑、白两个棋子,且两个棋子不在同一条网格线上, 其中,恰好摆放成如图所示位置的概率是( A )
在一次试验中,如果可能出现的结果只有有限个,且各 种结果出现的可能性大小相等,那么我们可以通过列举 试验结果的方法,求出随机事件发生的概率.
知识点1 用直接列举法求概率
例1 同时抛掷两枚质地均匀的硬币,求下列事件的概率: (1)两枚硬币全部正面向上; (2)两枚硬币全部反面向上; (3)一枚硬币正面向上、一枚硬币反面向上.
人教九年级数学上册 随机事件与概率 课件共张PPT演示文稿ppt
由于学生以前未接触过结果不确 但是由于九年级的学生已经有
定的数学问题,而随机事件的发生、 了较强的理解能力,思维活跃,
存在又有统计的规律性,同时还隐 含有偶然性寓于必然性之中的辩证 唯物主义思想,虽然来源于生活, 却也要深刻挖掘生活中的事例,所 以对随机事件概念的出现还一时难
乐于探究,我抓住这一有利契 机,通过大量生动、鲜活的例 子,让学生在充分感知的基础 上,达到准确理解和把握随机
经历体验、操作、观察、归纳、总结的过程,培养 学生抽象概括的能力。
情感态度与 价值观
学生通过亲身体验、亲自演示,感受数学就在身边, 使学生乐于亲 近数学,感受数学,喜欢数学,体会 数学的应用价值。
3、重点难点:
一、教材分析
教学重点:随机事件的特点。 教学难点:判断现实生活中哪些事件是随机 事件。
二、学情分析
我结合教材特点和初中生思维活跃,求知欲强,乐 于交流,乐于表达的学习特点。本节课我打算采用 以下几种教学方法:
情景教学法、直观演示法、联系生活实际法、课堂 讨论法、
阅读思 考法
游戏演 法
四、教学过程
小游戏 同学们,我们来做一个游戏,从一
堆牌中任意抽一张,一定能抽到红
牌吗?
从从学生熟悉情景出发,通过生动、 活泼的游戏,自然而然地引出必然发生 的事件、随机事件和不可能发生的事 件,不仅能够激发学生的学习兴趣,并 且有利于学生理解.能够巧妙地实现从 实践认识到理性认识的过渡,从而引 发他们的求知欲。
第一层、巩固基础,强化练习
判断下列事件中哪些是必然事件,哪些是不可能 事件,哪些是随机事件。 (!)一个星期为七天。 (2)人长生不老 。 (3)明天,你买一注彩票,得500万大奖。 (4)用长为1cm、2cm、3cm的三条线段首尾顺 次连结,构成一个三角形。 (5)掷一枚均匀的硬币,正面朝上。 (6)2017年5月11日当天我县下雨。 (7)明天,地球还会转动 (8) 拔苗助长