高考物理曲线运动试题类型及其解题技巧
高考物理高考物理曲线运动技巧和方法完整版及练习题

高考物理高考物理曲线运动技巧和方法完整版及练习题一、高中物理精讲专题测试曲线运动1.有一水平放置的圆盘,上面放一劲度系数为k的弹簧,如图所示,弹簧的一端固定于轴O上,另一端系一质量为m的物体A,物体与盘面间的动摩擦因数为μ,开始时弹簧未发生形变,长度为l.设最大静摩擦力大小等于滑动摩擦力.求:(1)盘的转速ω0多大时,物体A开始滑动?(2)当转速缓慢增大到2ω0时,A仍随圆盘做匀速圆周运动,弹簧的伸长量△x是多少?【答案】(1)glμ(2)34mglkl mgμμ-【解析】【分析】(1)物体A随圆盘转动的过程中,若圆盘转速较小,由静摩擦力提供向心力;当圆盘转速较大时,弹力与摩擦力的合力提供向心力.物体A刚开始滑动时,弹簧的弹力为零,静摩擦力达到最大值,由静摩擦力提供向心力,根据牛顿第二定律求解角速度ω0.(2)当角速度达到2ω0时,由弹力与摩擦力的合力提供向心力,由牛顿第二定律和胡克定律求解弹簧的伸长量△x.【详解】若圆盘转速较小,则静摩擦力提供向心力,当圆盘转速较大时,弹力与静摩擦力的合力提供向心力.(1)当圆盘转速为n0时,A即将开始滑动,此时它所受的最大静摩擦力提供向心力,则有:μmg=mlω02,解得:ω0=g l μ即当ω0=glμA开始滑动.(2)当圆盘转速达到2ω0时,物体受到的最大静摩擦力已不足以提供向心力,需要弹簧的弹力来补充,即:μmg+k△x=mrω12,r=l+△x解得:34mgl xkl mgμμ-V=【点睛】当物体相对于接触物体刚要滑动时,静摩擦力达到最大,这是经常用到的临界条件.本题关键是分析物体的受力情况.2.如图所示,倾角为45α=︒的粗糙平直导轨与半径为r 的光滑圆环轨道相切,切点为b ,整个轨道处在竖直平面内. 一质量为m 的小滑块从导轨上离地面高为H =3r 的d 处无初速下滑进入圆环轨道,接着小滑块从最高点a 水平飞出,恰好击中导轨上与圆心O 等高的c 点. 已知圆环最低点为e 点,重力加速度为g ,不计空气阻力. 求: (1)小滑块在a 点飞出的动能; ()小滑块在e 点对圆环轨道压力的大小;(3)小滑块与斜轨之间的动摩擦因数. (计算结果可以保留根号)【答案】(1)12k E mgr =;(2)F ′=6mg ;(3)4214μ-= 【解析】 【分析】 【详解】(1)小滑块从a 点飞出后做平拋运动: 2a r v t = 竖直方向:212r gt = 解得:a v gr =小滑块在a 点飞出的动能21122k a E mv mgr == (2)设小滑块在e 点时速度为m v ,由机械能守恒定律得:2211222m a mv mv mg r =+⋅ 在最低点由牛顿第二定律:2m mv F mg r-= 由牛顿第三定律得:F ′=F 解得:F ′=6mg(3)bd 之间长度为L ,由几何关系得:()221L r = 从d 到最低点e 过程中,由动能定理21cos 2m mgH mg L mv μα-⋅= 解得42μ-=3.如图所示,在水平桌面上离桌面右边缘3.2m 处放着一质量为0.1kg 的小铁球(可看作质点),铁球与水平桌面间的动摩擦因数μ=0.2.现用水平向右推力F =1.0N 作用于铁球,作用一段时间后撤去。
高考物理曲线运动题20套(带答案)及解析

高考物理曲线运动题20套(带答案)及解析一、高中物理精讲专题测试曲线运动1.一宇航员登上某星球表面,在高为2m 处,以水平初速度5m/s 抛出一物体,物体水平射程为5m ,且物体只受该星球引力作用求: (1)该星球表面重力加速度(2)已知该星球的半径为为地球半径的一半,那么该星球质量为地球质量的多少倍. 【答案】(1)4m/s 2;(2)110; 【解析】(1)根据平抛运动的规律:x=v 0t 得0515x t s s v === 由h =12gt 2 得:2222222/4/1h g m s m s t ⨯=== (2)根据星球表面物体重力等于万有引力:2G M mmg R 星星= 地球表面物体重力等于万有引力:2G M mmg R '地地=则222411=()10210M gR M g R '⨯=星星地地= 点睛:此题是平抛运动与万有引力定律的综合题,重力加速度是联系这两个问题的桥梁;知道平抛运动的研究方法和星球表面的物体的重力等于万有引力.2.水平面上有一竖直放置长H =1.3m 的杆PO ,一长L =0.9m 的轻细绳两端系在杆上P 、Q 两点,PQ 间距离为d =0.3m ,一质量为m =1.0kg 的小环套在绳上。
杆静止时,小环靠在杆上,细绳方向竖直;当杆绕竖直轴以角速度ω旋转时,如图所示,小环与Q 点等高,细绳恰好被绷断。
重力加速度g =10m /s 2,忽略一切摩擦。
求:(1)杆静止时细绳受到的拉力大小T ;(2)细绳断裂时杆旋转的角速度大小ω; (3)小环着地点与O 点的距离D 。
【答案】(1)5N (2)53/rad s (3)1.6m 【解析】 【详解】(1)杆静止时环受力平衡,有2T =mg 得:T =5N(2)绳断裂前瞬间,环与Q 点间距离为r ,有r 2+d 2=(L -r )2 环到两系点连线的夹角为θ,有d sin L r θ=-,rcos L rθ=- 绳的弹力为T 1,有T 1sinθ=mg T 1cosθ+T 1=m ω2r 得53/rad s ω=(3)绳断裂后,环做平抛运动,水平方向s =vt竖直方向:212H d gt -=环做平抛的初速度:v =ωr小环着地点与杆的距离:D 2=r 2+s 2 得D =1.6m 【点睛】本题主要是考查平抛运动和向心力的知识,解答本题的关键是掌握向心力的计算公式,能清楚向心力的来源即可。
高考物理曲线运动技巧和方法完整版及练习题

高考物理曲线运动技巧和方法完整版及练习题一、高中物理精讲专题测试曲线运动1.儿童乐园里的弹珠游戏不仅具有娱乐性还可以锻炼儿童的眼手合一能力。
某弹珠游戏可简化成如图所示的竖直平面内OABCD 透明玻璃管道,管道的半径较小。
为研究方便建立平面直角坐标系,O 点为抛物口,下方接一满足方程y 59=x 2的光滑抛物线形状管道OA ;AB 、BC 是半径相同的光滑圆弧管道,CD 是动摩擦因数μ=0.8的粗糙直管道;各部分管道在连接处均相切。
A 、B 、C 、D 的横坐标分别为x A =1.20m 、x B =2.00m 、x C =2.65m 、x D =3.40m 。
已知,弹珠质量m =100g ,直径略小于管道内径。
E 为BC 管道的最高点,在D 处有一反弹膜能无能量损失的反弹弹珠,sin37°=0.6,sin53°=0.8,g =10m/s 2,求:(1)若要使弹珠不与管道OA 触碰,在O 点抛射速度ν0应该多大;(2)若要使弹珠第一次到达E 点时对轨道压力等于弹珠重力的3倍,在O 点抛射速度v 0应该多大;(3)游戏设置3次通过E 点获得最高分,若要获得最高分在O 点抛射速度ν0的范围。
【答案】(1)3m/s (2)2m/s (3)3m/s <ν0<6m/s 【解析】 【详解】 (1)由y 59=x 2得:A 点坐标(1.20m ,0.80m ) 由平抛运动规律得:x A =v 0t ,y A 212gt =代入数据,求得 t =0.4s ,v 0=3m/s ; (2)由速度关系,可得 θ=53° 求得AB 、BC 圆弧的半径 R =0.5m OE 过程由动能定理得: mgy A ﹣mgR (1﹣cos53°)2201122E mv mv =- 解得 v 0=2m/s ;(3)sinα 2.65 2.000.400.5--==0.5,α=30°CD 与水平面的夹角也为α=30°设3次通过E 点的速度最小值为v 1.由动能定理得mgy A ﹣mgR (1﹣cos53°)﹣2μmgx CD cos30°=02112mv - 解得 v 1=23m/s设3次通过E 点的速度最大值为v 2.由动能定理得 mgy A ﹣mgR (1﹣cos53°)﹣4μmgx CD cos30°=02212mv - 解得 v 2=6m/s考虑2次经过E 点后不从O 点离开,有﹣2μmgx CD cos30°=02312mv -解得 v 3=26m/s 故 23m/s <ν0<26m/s2.高台滑雪以其惊险刺激而闻名,运动员在空中的飞跃姿势具有很强的观赏性。
高考物理全国卷专题04 曲线运动常考模型(原卷版)

2020年高考物理二轮复习热点题型与提分秘籍专题04 曲线运动常考模型题型一曲线运动和运动的合成与分解【题型解码】1.曲线运动的理解(1)曲线运动是变速运动,速度方向沿切线方向;(2)合力方向与轨迹的关系:物体做曲线运动的轨迹一定夹在速度方向与合力方向之间,合力的方向指向曲线的“凹”侧.2.曲线运动的分析(1)物体的实际运动是合运动,明确是在哪两个方向上的分运动的合成.(2)根据合外力与合初速度的方向关系判断合运动的性质.(3)运动的合成与分解就是速度、位移、加速度等的合成与分解,遵守平行四边形定则.【典例分析1】(多选)如图所示,质量为m的物块A和质量为M的重物B由跨过定滑轮O的轻绳连接,A 可在竖直杆上自由滑动。
当A从与定滑轮O等高的位置无初速释放,下落至最低点时,轻绳与杆夹角为37°。
已知sin37°=0.6,cos37°=0.8,不计一切摩擦,下列说法正确的是()A.物块A下落过程中,A与B速率始终相同B.物块A释放时的加速度为gC.M=2m D.A下落过程中,轻绳上的拉力大小始终等于Mg【典例分析2】(2019·江西宜春市第一学期期末)如图所示是物体在相互垂直的x方向和y方向运动的v-t 图象.以下判断正确的是()A.在0~1 s内,物体做匀速直线运动B.在0~1 s内,物体做匀变速直线运动C.在1~2 s内,物体做匀变速直线运动D.在1~2 s内,物体做匀变速曲线运动【提分秘籍】1.解决运动的合成和分解的一般思路(1)明确合运动和分运动的运动性质。
(2)明确是在哪两个方向上的合成或分解。
(3)找出各个方向上已知的物理量(速度、位移、加速度)。
(4)运用力与速度的方向关系或矢量的运算法则进行分析求解。
2.关联速度问题的解题方法把物体的实际速度分解为垂直于绳(杆)和平行于绳(杆)两个分量,根据沿绳(杆)方向的分速度大小相等求解。
常见的模型如图所示。
高考物理曲线运动解题技巧讲解及练习题(含答案)

高考物理曲线运动解题技巧讲解及练习题(含答案)一、高中物理精讲专题测试曲线运动1.如图所示,粗糙水平地面与半径为R =0.4m 的粗糙半圆轨道BCD 相连接,且在同一竖直平面内,O 是BCD 的圆心,BOD 在同一竖直线上.质量为m =1kg 的小物块在水平恒力F =15N 的作用下,从A 点由静止开始做匀加速直线运动,当小物块运动到B 点时撤去F ,小物块沿半圆轨道运动恰好能通过D 点,已知A 、B 间的距离为3m ,小物块与地面间的动摩擦因数为0.5,重力加速度g 取10m/s 2.求: (1)小物块运动到B 点时对圆轨道B 点的压力大小. (2)小物块离开D 点后落到地面上的点与D 点之间的距离【答案】(1)160N (2)2 【解析】 【详解】(1)小物块在水平面上从A 运动到B 过程中,根据动能定理,有: (F -μmg )x AB =12mv B 2-0 在B 点,以物块为研究对象,根据牛顿第二定律得:2Bv N mg m R-=联立解得小物块运动到B 点时轨道对物块的支持力为:N =160N由牛顿第三定律可得,小物块运动到B 点时对圆轨道B 点的压力大小为:N ′=N =160N (2)因为小物块恰能通过D 点,所以在D 点小物块所受的重力等于向心力,即:2Dv mg m R=可得:v D =2m/s设小物块落地点距B 点之间的距离为x ,下落时间为t ,根据平抛运动的规律有: x =v D t ,2R =12gt 2解得:x =0.8m则小物块离开D 点后落到地面上的点与D 点之间的距离20.82m l x ==2.如图所示,水平桌面上有一轻弹簧,左端固定在A 点,自然状态时其右端位于B 点.D 点位于水平桌面最右端,水平桌面右侧有一竖直放置的光滑轨道MNP ,其形状为半径R =0.45m 的圆环剪去左上角127°的圆弧,MN 为其竖直直径,P 点到桌面的竖直距离为R ,P 点到桌面右侧边缘的水平距离为1.5R .若用质量m 1=0.4kg 的物块将弹簧缓慢压缩到C 点,释放后弹簧恢复原长时物块恰停止在B 点,用同种材料、质量为m 2=0.2kg 的物块将弹簧缓慢压缩到C 点释放,物块过B 点后其位移与时间的关系为x =4t ﹣2t 2,物块从D 点飞离桌面后恰好由P 点沿切线落入圆轨道.g =10m/s 2,求:(1)质量为m 2的物块在D 点的速度;(2)判断质量为m 2=0.2kg 的物块能否沿圆轨道到达M 点:(3)质量为m 2=0.2kg 的物块释放后在桌面上运动的过程中克服摩擦力做的功. 【答案】(1)2.25m/s (2)不能沿圆轨道到达M 点 (3)2.7J 【解析】 【详解】(1)设物块由D 点以初速度v D 做平抛运动,落到P 点时其竖直方向分速度为:v y 22100.45gR =⨯⨯m/s =3m/sy Dv v =tan53°43=所以:v D =2.25m/s(2)物块在内轨道做圆周运动,在最高点有临界速度,则mg =m 2v R,解得:v 32gR ==m/s 物块到达P 的速度:22223 2.25P D y v v v =+=+=3.75m/s若物块能沿圆弧轨道到达M 点,其速度为v M ,由D 到M 的机械能守恒定律得:()22222111cos5322M P m v m v m g R =-⋅+︒ 可得:20.3375M v =-,这显然是不可能的,所以物块不能到达M 点(3)由题意知x =4t -2t 2,物块在桌面上过B 点后初速度v B =4m/s ,加速度为:24m/s a =则物块和桌面的摩擦力:22m g m a μ= 可得物块和桌面的摩擦系数: 0.4μ=质量m 1=0.4kg 的物块将弹簧缓慢压缩到C 点,释放后弹簧恢复原长时物块恰停止在B 点,由能量守恒可弹簧压缩到C 点具有的弹性势能为:p 10BC E m gx μ-=质量为m 2=0.2kg 的物块将弹簧缓慢压缩到C 点释放,物块过B 点时,由动能定理可得:2p 2212BC B E m gx m v μ-=可得,2m BC x = 在这过程中摩擦力做功:12 1.6J BC W m gx μ=-=-由动能定理,B 到D 的过程中摩擦力做的功:W 2222201122D m v m v =- 代入数据可得:W 2=-1.1J质量为m 2=0.2kg 的物块释放后在桌面上运动的过程中摩擦力做的功12 2.7J W W W =+=-即克服摩擦力做功为2.7 J .3.如图所示,固定的光滑平台上固定有光滑的半圆轨道,轨道半径R =0.6m,平台上静止放置着两个滑块A 、B ,m A =0.1kg,m B =0.2kg,两滑块间夹有少量炸药,平台右侧有一带挡板的小车,静止在光滑的水平地面上.小车质量为M =0.3kg,车面与平台的台面等高,小车的上表面的右侧固定一根轻弹簧,弹簧的自由端在Q 点,小车的上表面左端点P 与Q 点之间是粗糙的,PQ 间距离为L 滑块B 与PQ 之间的动摩擦因数为μ=0.2,Q 点右侧表面是光滑的.点燃炸药后,A 、B 分离瞬间A 滑块获得向左的速度v A =6m/s,而滑块B 则冲向小车.两滑块都可以看作质点,炸药的质量忽略不计,爆炸的时间极短,爆炸后两个物块的速度方向在同一水平直线上,且g=10m/s 2.求:(1)滑块A 在半圆轨道最高点对轨道的压力;(2)若L =0.8m,滑块B 滑上小车后的运动过程中弹簧的最大弹性势能;(3)要使滑块B 既能挤压弹簧,又最终没有滑离小车,则小车上PQ 之间的距离L 应在什么范围内【答案】(1)1N ,方向竖直向上(2)0.22P E J =(3)0.675m <L <1.35m 【解析】 【详解】(1)A 从轨道最低点到轨道最高点由机械能守恒定律得:2211222A A A A m v m v m g R -=⨯ 在最高点由牛顿第二定律:2A N A v m g F m R+=滑块在半圆轨道最高点受到的压力为:F N =1N由牛顿第三定律得:滑块对轨道的压力大小为1N ,方向向上 (2)爆炸过程由动量守恒定律:A AB B m v m v =解得:v B =3m/s滑块B 冲上小车后将弹簧压缩到最短时,弹簧具有最大弹性势能,由动量守恒定律可知:)B B B m v m M v =+共(由能量关系:2211()-22P B B B B E m v m M v m gL μ=-+共 解得E P =0.22J(3)滑块最终没有离开小车,滑块和小车具有共同的末速度,设为u ,滑块与小车组成的系统动量守恒,有:)B B B m v m M v =+(若小车PQ 之间的距离L 足够大,则滑块还没与弹簧接触就已经与小车相对静止, 设滑块恰好滑到Q 点,由能量守恒定律得:22111()22B B B B m gL m v m M v μ=-+联立解得:L 1=1.35m若小车PQ 之间的距离L 不是很大,则滑块必然挤压弹簧,由于Q 点右侧是光滑的,滑块必然被弹回到PQ 之间,设滑块恰好回到小车的左端P 点处,由能量守恒定律得:222112()22B B B B m gL m v m M v μ=-+ 联立解得:L 2=0.675m综上所述,要使滑块既能挤压弹簧,又最终没有离开小车,PQ 之间的距离L 应满足的范围是0.675m <L <1.35m4.如图所示,BC 为半径r =m 竖直放置的细圆管,O 为细圆管的圆心,在圆管的末端C 连接倾斜角为45°、动摩擦因数μ=0.6的足够长粗糙斜面,一质量为m =0.5kg 的小球从O 点正上方某处A 点以v 0水平抛出,恰好能垂直OB 从B 点进入细圆管,小球过C 点时速度大小不变,小球冲出C点后经过98s 再次回到C 点。
高考物理高考物理曲线运动(一)解题方法和技巧及练习题

高考物理高考物理曲线运动(一)解题方法和技巧及练习题一、高中物理精讲专题测试曲线运动1.如图所示,水平桌面上有一轻弹簧,左端固定在A 点,自然状态时其右端位于B 点.D 点位于水平桌面最右端,水平桌面右侧有一竖直放置的光滑轨道MNP ,其形状为半径R =0.45m 的圆环剪去左上角127°的圆弧,MN 为其竖直直径,P 点到桌面的竖直距离为R ,P 点到桌面右侧边缘的水平距离为1.5R .若用质量m 1=0.4kg 的物块将弹簧缓慢压缩到C 点,释放后弹簧恢复原长时物块恰停止在B 点,用同种材料、质量为m 2=0.2kg 的物块将弹簧缓慢压缩到C 点释放,物块过B 点后其位移与时间的关系为x =4t ﹣2t 2,物块从D 点飞离桌面后恰好由P 点沿切线落入圆轨道.g =10m/s 2,求:(1)质量为m 2的物块在D 点的速度;(2)判断质量为m 2=0.2kg 的物块能否沿圆轨道到达M 点:(3)质量为m 2=0.2kg 的物块释放后在桌面上运动的过程中克服摩擦力做的功. 【答案】(1)2.25m/s (2)不能沿圆轨道到达M 点 (3)2.7J 【解析】 【详解】(1)设物块由D 点以初速度v D 做平抛运动,落到P 点时其竖直方向分速度为:v y 22100.45gR =⨯⨯m/s =3m/sy Dv v =tan53°43=所以:v D =2.25m/s(2)物块在内轨道做圆周运动,在最高点有临界速度,则mg =m 2v R,解得:v 322gR ==m/s 物块到达P 的速度:22223 2.25P D y v v v =+=+=3.75m/s若物块能沿圆弧轨道到达M 点,其速度为v M ,由D 到M 的机械能守恒定律得:()22222111cos5322M P m v m v m g R =-⋅+︒ 可得:20.3375M v =-,这显然是不可能的,所以物块不能到达M 点(3)由题意知x =4t -2t 2,物块在桌面上过B 点后初速度v B =4m/s ,加速度为:24m/s a =则物块和桌面的摩擦力:22m g m a μ= 可得物块和桌面的摩擦系数: 0.4μ=质量m 1=0.4kg 的物块将弹簧缓慢压缩到C 点,释放后弹簧恢复原长时物块恰停止在B 点,由能量守恒可弹簧压缩到C 点具有的弹性势能为:p 10BC E m gx μ-=质量为m 2=0.2kg 的物块将弹簧缓慢压缩到C 点释放,物块过B 点时,由动能定理可得:2p 2212BC B E m gx m v μ-=可得,2m BC x = 在这过程中摩擦力做功:12 1.6J BC W m gx μ=-=-由动能定理,B 到D 的过程中摩擦力做的功:W 2222201122D m v m v =- 代入数据可得:W 2=-1.1J质量为m 2=0.2kg 的物块释放后在桌面上运动的过程中摩擦力做的功12 2.7J W W W =+=-即克服摩擦力做功为2.7 J .2.如图所示,质量为4kg M =的平板车P 的上表面离地面高0.2m h =,质量为1kg m =的小物块Q (大小不计,可视为质点)位于平板车的左端,系统原来静止在光滑水平地面上,一不可伸长的轻质细绳长为0.9m R =,一端悬于Q 正上方高为R 处,另一端系一质量也为m 的小球(大小不计,可视为质点)。
高考物理曲线运动技巧和方法完整版及练习题及解析
高考物理曲线运动技巧和方法完整版及练习题及解析一、高中物理精讲专题测试曲线运动1.如图所示,在水平桌面上离桌面右边缘3.2m 处放着一质量为0.1kg 的小铁球(可看作质点),铁球与水平桌面间的动摩擦因数μ=0.2.现用水平向右推力F =1.0N 作用于铁球,作用一段时间后撤去。
铁球继续运动,到达水平桌面边缘A 点飞出,恰好落到竖直圆弧轨道BCD 的B 端沿切线进入圆弧轨道,碰撞过程速度不变,且铁球恰好能通过圆弧轨道的最高点D .已知∠BOC =37°,A 、B 、C 、D 四点在同一竖直平面内,水平桌面离B 端的竖直高度H =0.45m ,圆弧轨道半径R =0.5m ,C 点为圆弧轨道的最低点,求:(取sin37°=0.6,cos37°=0.8)(1)铁球运动到圆弧轨道最高点D 点时的速度大小v D ;(2)若铁球以v C =5.15m/s 的速度经过圆弧轨道最低点C ,求此时铁球对圆弧轨道的压力大小F C ;(计算结果保留两位有效数字) (3)铁球运动到B 点时的速度大小v B ; (4)水平推力F 作用的时间t 。
【答案】(1)铁球运动到圆弧轨道最高点D 5;(2)若铁球以v C =5.15m/s 的速度经过圆弧轨道最低点C ,求此时铁球对圆弧轨道的压力大小为6.3N ;(3)铁球运动到B 点时的速度大小是5m/s ; (4)水平推力F 作用的时间是0.6s 。
【解析】 【详解】(1)小球恰好通过D 点时,重力提供向心力,由牛顿第二定律可得:2Dmv mg R=可得:D 5m /s v =(2)小球在C 点受到的支持力与重力的合力提供向心力,则:2Cmv F mg R-=代入数据可得:F =6.3N由牛顿第三定律可知,小球对轨道的压力:F C =F =6.3N(3)小球从A 点到B 点的过程中做平抛运动,根据平抛运动规律有:2y 2gh v = 得:v y =3m/s小球沿切线进入圆弧轨道,则:35m/s 370.6y B v v sin ===︒(4)小球从A 点到B 点的过程中做平抛运动,水平方向的分速度不变,可得:3750.84/A B v v cos m s =︒=⨯=小球在水平面上做加速运动时:1F mg ma μ-=可得:218/a m s =小球做减速运动时:2mg ma μ=可得:222/a m s =-由运动学的公式可知最大速度:1m v a t =;22A m v v a t -= 又:222m m A v v vx t t +=⋅+⋅ 联立可得:0.6t s =2.如图所示,一根长为0.1 m 的细线,一端系着一个质量是0.18kg 的小球,拉住线的另一端,使球在光滑的水平桌面上做匀速圆周运动,当小球的转速增加到原转速的3倍时,细线断裂,这时测得线的拉力比原来大40 N .求: (1)线断裂的瞬间,线的拉力; (2)这时小球运动的线速度;(3)如果桌面高出地面0.8 m ,线断裂后小球沿垂直于桌子边缘的方向水平飞出去落在离桌面的水平距离.【答案】(1)线断裂的瞬间,线的拉力为45N ; (2)线断裂时小球运动的线速度为5m/s ; (3)落地点离桌面边缘的水平距离2m . 【解析】 【分析】 【详解】(1)小球在光滑桌面上做匀速圆周运动时受三个力作用;重力mg 、桌面弹力F N 和细线的拉力F ,重力mg 和弹力F N 平衡,线的拉力提供向心力,有: F N =F =mω2R ,设原来的角速度为ω0,线上的拉力是F 0,加快后的角速度为ω,线断时的拉力是F 1,则有: F 1:F 0=ω2: 20ω=9:1, 又F 1=F 0+40N ,所以F 0=5N ,线断时有:F 1=45N .(2)设线断时小球的线速度大小为v ,由F 1=2v m R,代入数据得:v =5m /s .(3)由平抛运动规律得小球在空中运动的时间为:t =220.810h s g ⨯==0.4s , 则落地点离桌面的水平距离为:x =vt =5×0.4=2m .3.水平面上有一竖直放置长H =1.3m 的杆PO ,一长L =0.9m 的轻细绳两端系在杆上P 、Q 两点,PQ 间距离为d =0.3m ,一质量为m =1.0kg 的小环套在绳上。
专题04 曲线运动-2024物理高考真题及模考题分类汇编精编
专题04曲线运动B.线速度大小相等D.角速度大小相等两点转动时属于同轴转动,故角速度大小相等,故C.荷叶c【解析】青蛙做平抛运动,水平方向匀速直线,竖直方向自由落体则有因此水平位移越小,竖直高度越大初速度越小,因此跳到荷叶c上面。
B.初速度相同D.在空中的时间相同C.2k rmC.【答案】AD【解析】小鱼在运动过程中只受重力作用,则小鱼在水平方向上做匀速直线运动,即x v 为定值,则有水平位x v t ,故A 正确,C 错误;21)22Dg h+02h x v g=B.22gSl ghH hhρη⎛++⎝D.2224 gSl gh lHh h ρη⎛+⎝【解析】设水从出水口射出的初速度为0v,取t时间内的水为研究对象,该部分水的质量为B.落地速度与水平方向夹角为10m D.轨迹最高点与落点的高度差为v v()2sin cos sin sin cos g r μθβθβμθ+(1)转椅做匀速圆周运动,设此时轻绳拉力为T ,转椅质量为m ,受力分析可知轻绳拉力沿切线方向的分量与转椅受到地面的滑动摩擦力平衡,沿径向方向的分量提供圆周运动的向心力,故可得sin mg T μα=,沿A B 和垂直A B 竖直向上的分力分别为:sin T T '=后停止。
A、B 均视为质点,取重力加速度210m/s g =。
求:(1)脱离弹簧时A、B 的速度大小A v 和B v ;(2)物块与桌面间的动摩擦因数μ;(3)整个过程中,弹簧释放的弹性势能p E ∆。
【答案】(1)1m/s,1m/s;(2)0.2;(3)0.12J 【解析】(1)对A 物块由平抛运动知识得212h gt =A A x v t=代入数据解得,脱离弹簧时A 的速度大小为A /s1m v =对AB 物块整体由动量守恒定律A A B B m v m v =解得脱离弹簧时B 的速度大小为B 1m/sv =(2)对物块B 由动能定理2B B B B102m gx m v μ-=-代入数据解得,物块与桌面的动摩擦因数为0.2μ=(3)由能量守恒定律22p A A B B A A B B 1122E m v m v m g x m g x μμ∆=++∆+∆其中A B m m =,A Bx x x ∆=∆+∆解得整个过程中,弹簧释放的弹性势能p 0.12JE ∆=一、单选题1.(2024·浙江·二模)随着“第十四届全国冬季运动会”的开展,各类冰雪运动绽放出冬日激情,下列说法正确的是()A.评委给花样滑冰选手评分时可以将运动员看作质点B.滑雪比赛中运动员做空中技巧时,处于失重状态C.22+d lhD.d d【解析】设甲此次奔跑的平均加速度大小为a,当地重力加速度大小为C.小钢球经过光电门时所需向心力为FD.在误差允许的范围内,本实验需要验证小钢球经过光电门时所受合力和所需向心力相等,即小球做圆周运动,设在最低点时(即通过光电门)速度为v,有d vt=t t>D.C.12段做斜抛运动,看成反方向的平抛运动,则有t t=,故C错误;D,联立,解得12B.所受绳子的拉力指向圆周运动的圆心D.所需向心力大小为400NB.排球做平抛运动的时间为d ggd D.排球着地时的速度大小为2gd排球做平抛运动的轨迹在地面上的投影为O E ',显然O F CQ EF EQ '==所以排球在左、右场地运动的时间之比为1∶2,设排球做平抛运动的时间为()2122g t -10dg选项A 正确、B 错误;53gdE =,选项C 错误;20331290gdv gH +=,选项D 错误。
高考物理高考物理曲线运动技巧和方法完整版及练习题
高考物理高考物理曲线运动技巧和方法完整版及练习题一、高中物理精讲专题测试曲线运动1.已知某半径与地球相等的星球的第一宇宙速度是地球的12倍.地球表面的重力加速度为g .在这个星球上用细线把小球悬挂在墙壁上的钉子O 上,小球绕悬点O 在竖直平面内做圆周运动.小球质量为m ,绳长为L ,悬点距地面高度为H .小球运动至最低点时,绳恰被拉断,小球着地时水平位移为S 求:(1)星球表面的重力加速度?(2)细线刚被拉断时,小球抛出的速度多大? (3)细线所能承受的最大拉力?【答案】(1)01=4g g 星 (2)0024g sv H L=-201[1]42()s T mg H L L =+- 【解析】 【分析】 【详解】(1)由万有引力等于向心力可知22Mm v G m R R =2MmGmg R= 可得2v g R=则014g g 星=(2)由平抛运动的规律:212H L g t -=星 0s v t =解得0024g s v H L=- (3)由牛顿定律,在最低点时:2v T mg m L-星=解得:20 1142()sT mgH L L⎡⎤=+⎢⎥-⎣⎦【点睛】本题考查了万有引力定律、圆周运动和平抛运动的综合,联系三个问题的物理量是重力加速度g0;知道平抛运动在水平方向和竖直方向上的运动规律和圆周运动向心力的来源是解决本题的关键.2.如图所示,一箱子高为H.底边长为L,一小球从一壁上沿口A垂直于箱壁以某一初速度向对面水平抛出,空气阻力不计。
设小球与箱壁碰撞前后的速度大小不变,且速度方向与箱壁的夹角相等。
(1)若小球与箱壁一次碰撞后落到箱底处离C点距离为,求小球抛出时的初速度v0;(2)若小球正好落在箱子的B点,求初速度的可能值。
【答案】(1)(2)【解析】【分析】(1)将整个过程等效为完整的平抛运动,结合水平位移和竖直位移求解初速度;(2)若小球正好落在箱子的B点,则水平位移应该是2L的整数倍,通过平抛运动公式列式求解初速度可能值。
高考物理一轮复习 主题三 曲线运动 321 平抛运动的常见题型课件
[解析] b质点做类平抛运动,a=gcosα,hb=ha/cosα,则tb
=
2ha g
1 ·cosα
,而ta=
2ha g
,故A、B错;vyb=
2ahb =
2gcosα·ha/cosα = 2gha =vya,故C对;a、b落地时速度大小相 同,但方向不同,故D错.
[答案] C
类平抛运动是平抛运动的变形形式,同样具有合外力恒定 且合外力垂直于初速度的特征.此类问题的解题思路仍然是平抛 运动的解题思路,即将物体的运动分解为沿初速度方向上的匀 速直线运动和垂直于初速度方向上的初速度为零的匀变速直线 运动,然后运用相关物理规律进行处理.类平抛运动模型在带电 粒子在匀强电场中的偏转问题中最为常见.
[变式训练] 2.如图所示,两个足够大的倾角分别为30°、45°的光滑斜 面放在同一水平面上,两斜面间距大于小球直径,斜面高度相 等,有三个完全相同的a、b、c小球,开始均静止于斜面同一高 度处,其中b小球在两斜面之间.若同时静止释放a、b、c小球 到达该水平面的时间分别为t1、t2、t3.若同时沿水平方向抛出, 初速度方向如图所示,到达水平面的时间分别为t1′、t2′、t3′. 下列关于时间的关系不正确的是( )
1 2
4L21+L22 6h
g
.即速度v的最
大取值范围为 L1 4
A、B、C错误.
g h
<v<
1 2
4L21+L22g 6h
,选项D正确,选项
[答案] D
本题要确定发射机发射乒乓球落到球网右侧台面上v的取值 范围,即对应两个临界状态.分析和确定临界条件即为求解问题 的关键所在.当发射速度较小时,对应恰好过网的临界状态;当 发射速度较大时,对应平抛水平位移最远,即到达右侧台面的 最角上.解决此类问题时要注意画出示意图,它既可以使抽象的 物理情境变得直观,也可以使隐藏于问题深处的条件显露无遗.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)①滑块与轨道组成的系统在水平方向动量守恒,以向右为正方向,由动量守恒定律
得:
mv1-2mv2=0
m R x1 -2m x1 =0,
t
t
解得:x1= R ; 3
②滑块 P 离开轨道 AB 时的速度大小为 vB,P 与轨道 AB 组成的系统在水平方向动量守恒, 以向右为正方向,由动量守恒定律得:mvB-2mv=0,
设在 B 点物块受到的支持力为 N,由牛顿第二定律有:
滑块对圆弧管道的压力,由牛顿第三定律有:
联立以上方程,解得: =106N,方向向下;
(3) 滑块从 A 到 B 的过程中因摩擦产生的热量:
12J
滑块从 B 到 C 的过程中,由能量守恒定律有: 又: 综上解得:Q=38J。 点睛:本题是一道力学综合题,分析清楚滑块运动过程是解题的前提与关键,应用牛顿第 二定律、动能定理与能量守恒定律即可解题。
两式联立,得
y cot vBt
y 2vB2 4gR 4R gg
对小球下落由机械能守恒定律,有
1 2
mvB2
mgy
1 2
mv2
解得
v vB2 2gy 2gR 8gR 10gR
(3)设小球恰好能通过 B 点,过 B 点时速度为 v1,由牛顿第二定律及向心力公式,有
mg m v12 R
【解析】
【分析】
(1)由牛顿第二定律求得在 A 点的速度,然后通过机械能守恒求得在 B 点的速度,进而由牛 顿第二定律求得支持力,即可由牛顿第三定律求得压力;
(2)通过动能定理求得在 C 点的速度,即可由平抛运动的位移公式求得距离; (3)求得不飞出垫子弹珠在 C 点的速度范围,再通过动能定理求得初速度范围,即可得到最 大初速度.
(1)滑块在 C 点的速度大小; (2)滑块经过 B 点时对管道的压力; (3)滑块从 A 到 C 的过程中因摩擦而产生的热量。 【答案】(1) 2m/s(2) 106N,方向向下(3) 38J
【解析】(1)滑块从 C 离开后做平抛运动,由题意知: 又: 解得: vC=2m/s
(2)滑块从 A 到 B 的过程中,由动能定理得:
由机械能守恒定律得:mg(R+h)=
1 2
mvB2
1 2
2mv2
,
解得:h= R ; 2
P
向右运动运动的时间:t1=
x1 vB
,
P 减速运动的时间为 t2,对滑片,由动量定理得:-μmgt2=0-mvB,
运动时间:t=t1+t2,
解得:t= 13 2R ; 6g
5.如图所示,竖直平面内的光滑 3/4 的圆周轨道半径为 R,A 点与圆心 O 等高,B 点在 O
着光滑的半圆形轨道 OA 和 AB 进入水平桌面 BC,从 C 点水平抛出.已知半圆型轨道 OA 和
AB 的半径分别为 r 0.2m , R 0.4m ,BC 为一段长为 L 2.0m 的粗糙水平桌面,小弹 珠与桌面间的动摩擦因数为 0.4 ,放在水平地面的矩形垫子 DEFG 的 DE 边与 BC 垂 直,C 点离垫子的高度为 h 0.8m ,C 点离 DE 的水平距离为 x 0.6m ,垫子的长度 EF 为 1m, g 10m / s2. 求:
g=10m/s2,现要使物体刚好能经过 D 点,求: (1)物体到达 D 点速度大小; (2)则弹射器初始时具有的弹性势能至少为多少.
【答案】(1)2 5 m/s;(2)62J
【解析】 【分析】 【详解】 (1)由题知,物体刚好能经过 D 点,则有:
mg m vD2 R
解得: vD gR 2 5 m/s
的正上方,AD 为与水平方向成 θ=45°角的斜面,AD 长为 7 2 R.一个质量为 m 的小球
(视为质点)在 A 点正上方 h 处由静止释放,自由下落至 A 点后进入圆形轨道,并能沿圆 形轨道到达 B 点,且到达 B 处时小球对圆轨道的压力大小为 mg,重力加速度为 g,求:
(1)小球到 B 点时的速度大小 vB (2)小球第一次落到斜面上 C 点时的速度大小 v (3)改变 h,为了保证小球通过 B 点后落到斜面上,h 应满足的条件
【答案】(1) 2gR (2) 10gR (3) 3 R h 3R
2
【解析】 【分析】 【详解】 (1)小球经过 B 点时,由牛顿第二定律及向心力公式,有
mg mg m vB2 R
解得
vB 2gR
(2)设小球离开 B 点做平抛运动,经时间 t,下落高度 y,落到 C 点,则
y 1 gt2 2
2R= gt2 从 B 到 C 由动能定理得
联立知,S= 4 R (3)假设弹簧弹性势能为EP,要使物块在半圆轨道上运动时不脱离轨道,则物块可能在 圆轨道的上升高度不超过半圆轨道的中点,则由机械能守恒定律知 EP≤mgR 若物块刚好通过 C 点,则物块从 B 到 C 由动能定理得
物块在 C 点时 mg=m
则
联立知:EP≥ mgR. 综上所述,要使物块在半圆轨道上运动时不脱离轨道,则弹簧弹性势能的取值范围为
EP≤mgR 或 EP≥ mgR.
3.如图所示,光滑的水平地面上停有一质量
,长度
的平板车,平板车左
端紧靠一个平台,平台与平板车的高度均为
,一质量
的滑块以水平速度
从平板车的左端滑上平板车,并从右端滑离,滑块落地时与平板车的右端的水平
【答案】(1) vD 2m / s (2)45N (3)2m
【解析】
【分析】
【详解】
(1)小球恰好过最高点 D,有:
mg m vD2 r
解得: vD 2m/s (2)从 B 到 D,由动能定理:
mg(R
r)
1 2
mvD2
1 2
mvB2
设小球在 B 点受到轨道支持力为 N,由牛顿定律有:
N mg m vB2 R
7.如图所示,P 为弹射器,PA、BC 为光滑水平面分别与传送带 AB 水平相连,CD 为光滑 半圆轨道,其半径 R=2m,传送带 AB 长为 L=6m,并沿逆时针方向匀速转动.现有一质量 m=1kg 的物体(可视为质点)由弹射器 P 弹出后滑向传送带经 BC 紧贴圆弧面到达 D 点,
已知弹射器的弹性势能全部转化为物体的动能,物体与传送带的动摩擦因数为 =0.2.取
1 若小弹珠恰好不脱离圆弧轨道,在 B 位置小弹珠对半圆轨道的压力;
2 若小弹珠恰好不脱离圆弧轨道,小弹珠从 C 点水平抛出后落入垫子时距左边缘 DE 的距
离;
3 若小弹珠从 C 点水平抛出后不飞出垫子,小弹珠被弹射装置弹出时的最大初速度.
【答案】(1)6N(2)0.2m(3) 2 6m / s
又
mg(h
R)
1 2
mv12
得
h 3R 2
可以证明小球经过 B 点后一定能落到斜面上
设小球恰好落到 D 点,小球通过 B 点时速度为 v2,飞行时间为 t , (7 2R 2R) sin 1 gt2 2
(7 2R 2R)cos v2t
解得
v2 2 gR
又
mg(h
R)
1 2
mv22
可得
h 3R
NB=N 联解③④⑤得:N=45N
(3)小球从 A 到 B,由动能定理:
F
x 2
mgx
1 2
mvB2
解得: x 2m
故本题答案是:(1) vD 2m / s (2)45N (3)2m
【点睛】 利用牛顿第二定律求出速度,在利用动能定理求出加速阶段的位移,
2.光滑水平面 AB 与一光滑半圆形轨道在 B 点相连,轨道位于竖直面内,其半径为 R,一 个质量为 m 的物块静止在水平面上,现向左推物块使其压紧弹簧,然后放手,物块在弹力 作用下获得一速度,当它经 B 点进入半圆形轨道瞬间,对轨道的压力为其重力的 9 倍,之 后向上运动经 C 点再落回到水平面,重力加速度为 g.求:
距离
。不计空气阻力,重力加速度
求:
滑块刚滑离平板车时,车和滑块的速度大小;
滑块与平板车间的动摩擦因数。
【答案】(1)
,
(2)
【解析】 【详解】
设滑块刚滑到平板车右端时,滑块的速度大小为 ,平板车的速度大小为 ,
由动量守恒可知:
滑块滑离平板车后做平抛运动,则有:
解得:
,
;
由功能关系可知: 解得:
【点睛】 本题主要是考查了动量守恒定律;对于动量守恒定律,其守恒条件是:系统不受外力作用 或某一方向不受外力作用;解答时要首先确定一个正方向,利用碰撞前系统的动量和碰撞 后系统的动量相等列方程进行解答。
3
2
t 为 13 2R 。 6g
【解析】 【详解】
(1)滑块从
A
到
B
过程机械能守恒,应用机械能守恒定律得:mgR=
1 2
mvB2
,
在 B 点,由牛顿第二定律得:N-mg=m vB2 , R
解得:vB= 2gR ,N=3mg,
滑块在
BC
上滑行过程,由动能定理得:-μmg•2R=0-
1 2
mvB2
,
代入数据解得:μ=0.5;
【答案】(1)P 刚滑到圆弧轨道的底端 B 点时所受轨道的支持力大小 N 为 3mg,P 与 B 点
右侧地面间的动摩擦因数 μ 为 0.5;(2)若将 AB 解锁,让 P 从 A 点正上方某处 Q 由静止
释放,P 从 A 点竖直向下落入轨道,最后恰好停在 C 点,①当 P 刚滑到地面时,轨道 AB
的位移大小 x1 为 R ;②Q 与 A 点的高度差 h 为 R ,P 离开轨道 AB 后到达 C 点所用的时间
故 h 应满足的条件为 3 R h 3R 2
【点睛】
小球的运动过程可以分为三部分,第一段是自由落体运动,第二段是圆周运动,此时机械 能守恒,第三段是平抛运动,分析清楚各部分的运动特点,采用相应的规律求解即可.