特殊角的三角函数试题汇编

合集下载

人教版初中数学锐角三角函数的全集汇编含答案解析

人教版初中数学锐角三角函数的全集汇编含答案解析

人教版初中数学锐角三角函数的全集汇编含答案解析一、选择题1.如图,在菱形ABCD 中,按以下步骤作图:①分别以点C 和点D 为圆心,大于12CD 为半径作弧,两弧交于点M ,N ;②作直线MN ,且MN 恰好经过点A ,与CD 交于点E ,连接BE ,则下列说法错误的是( )A .60ABC ∠=︒B .2ABE ADE S S ∆=VC .若AB=4,则7BE =D .21sin 14CBE ∠= 【答案】C【解析】【分析】 由作法得AE 垂直平分CD ,则∠AED=90°,CE=DE ,于是可判断∠DAE=30°,∠D=60°,从而得到∠ABC=60°;利用AB=2DE 得到S △ABE =2S △ADE ;作EH ⊥BC 于H ,如图,若AB=4,则可计算出CH=12CE=1,337 ;利用正弦的定义得sin ∠CBE=21EH BE =. 【详解】解:由作法得AE 垂直平分CD ,∴∠AED=90°,CE=DE ,∵四边形ABCD 为菱形,∴AD=2DE ,∴∠DAE=30°,∠D=60°,∴∠ABC=60°,所以A 选项的说法正确;∵AB=2DE ,∴S △ABE =2S △ADE ,所以B 选项的说法正确;作EH ⊥BC 于H ,如图,若AB=4,在Rt△ECH中,∵∠ECH=60°,CH=12CE=1,EH=3CH=3,在Rt△BEH中,BE=22(3)527+=,所以C选项的说法错误;sin∠CBE=3211427EHBE==,所以D选项的说法正确.故选C.【点睛】本题考查了基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了菱形的性质和解直角三角形.2.如图,4个形状、大小完全相同的菱形组成网格,菱形的顶点称为格点,己知菱形的一个内角为60°,A、B、C都是格点,则tan ABC∠=()A 3B3C3D3【答案】A【解析】【分析】直接利用菱形的对角线平分每组对角,结合锐角三角函数关系得出EF,的长,进而利用ECtan ABCBE∠=得出答案.【详解】解:连接DC ,交AB 于点E .由题意可得:∠AFC=30°, DC ⊥AF,设EC=x,则EF=x =3x tan 30︒, ∴BF AF 2EF 23x ===EC 3tan ABC BE 923x 3x 33====+∠,故选:A【点睛】此题主要考查了菱形的性质以及解直角三角形,正确得出EF 的长是解题关键.3.在半径为1的O e 中,弦AB 、AC 的长度分别是3,2,则BAC ∠为( )度. A .75 B .15或30 C .75或15 D .15或45【答案】C【解析】【分析】根据题意画出草图,因为C 点位置待定,所以分情况讨论求解.【详解】利用垂径定理可知:AD=32AE =, .sin ∠AOD=32,∴∠AOD=60°;sin ∠AOE=22,∴∠AOE=45°;∴∠BAC=75°.当两弦共弧的时候就是15°.故选:C .【点睛】此题考查垂径定理,特殊三角函数的值,解题关键在于画出图形.4.如图,对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平,再一次折叠纸片,使点A落在EF上的点A′处,并使折痕经过点B,得到折痕BM,若矩形纸片的宽AB=4,则折痕BM的长为( )A.833B.433C.8 D.83【答案】A 【解析】【分析】根据折叠性质可得BE=12AB,A′B=AB=4,∠BA′M=∠A=90°,∠ABM=∠MBA′,可得∠EA′B=30°,根据直角三角形两锐角互余可得∠EBA′=60°,进而可得∠ABM=30°,在Rt△ABM 中,利用∠ABM的余弦求出BM的长即可.【详解】∵对折矩形纸片ABCD,使AD与BC重合,AB=4,∴BE=12AB=2,∠BEF=90°,∵把纸片展平,再一次折叠纸片,使点A落在EF上的点A’处,并使折痕经过点B,∴A′B=AB=4,∠BA′M=∠A=90°,∠ABM=∠MBA′,∴∠EA′B=30°,∴∠EBA′=60°,∴∠ABM=30°,∴在Rt△ABM中,AB=BM⋅cos∠ABM,即4=BM⋅cos30°,解得:BM=833,故选A.【点睛】本题考查了折叠的性质及三角函数的定义,折叠前后,对应边相等,对应角相等;在直角三角形中,锐角的正弦是角的对边比斜边;余弦是角的邻边比斜边;正切是角的对边比邻边;余切是角的邻边比对边;熟练掌握相关知识是解题关键.5.如图,在等腰直角△ABC中,∠C=90°,D为BC的中点,将△ABC折叠,使点A与点D重合,EF 为折痕,则sin ∠BED 的值是( )A 5B .35C .22D .23【答案】B【解析】【分析】先根据翻折变换的性质得到DEF AEF ∆≅∆,再根据等腰三角形的性质及三角形外角的性质可得到BED CDF ∠=,设1CD =,CF x =,则2CA CB ==,再根据勾股定理即可求解.【详解】解:∵△DEF 是△AEF 翻折而成,∴△DEF ≌△AEF ,∠A =∠EDF ,∵△ABC 是等腰直角三角形,∴∠EDF =45°,由三角形外角性质得∠CDF +45°=∠BED +45°,∴∠BED =∠CDF ,设CD =1,CF =x ,则CA =CB =2,∴DF =FA =2﹣x ,∴在Rt △CDF 中,由勾股定理得,CF 2+CD 2=DF 2,即x 2+1=(2﹣x )2, 解得:34x =, 3sin sin 5CF BED CDF DF ∴∠=∠==. 故选:B .【点睛】本题考查的是图形翻折变换的性质、等腰直角三角形的性质、勾股定理、三角形外角的性质,涉及面较广,但难易适中.6.如图,为了测量某建筑物MN 的高度,在平地上A 处测得建筑物顶端M 的仰角为30°,向N 点方向前进16m 到达B 处,在B 处测得建筑物顶端M 的仰角为45°,则建筑物MN 的高度等于( )A .8(31)+mB .8(31)-mC .16(31)+mD .16(31)-m 【答案】A【解析】设MN=xm ,在Rt △BMN 中,∵∠MBN=45∘,∴BN=MN=x ,在Rt △AMN 中,tan ∠MAN=MN AN , ∴tan30∘=16x x+ =3√3, 解得:x=8(3 +1),则建筑物MN 的高度等于8(3 +1)m ;故选A.点睛:本题是解直角三角形的应用,考查了仰角和俯角的问题,要明确哪个角是仰角,哪个角是俯角,知道仰角是向上看的视线与水平线的夹角,俯角是向下看的视线与水平线的夹角,并与三角函数相结合求边的长.7.如图,已知圆O 的内接六边形ABCDEF 的边心距2OM =,则该圆的内接正三角形ACE 的面积为( )A .2B .4C .63D .43【答案】D【解析】【分析】 连接,OC OB ,过O 作ON CE ⊥于N ,证出COB ∆是等边三角形,根据锐角三角函数的定义求解即可.【详解】解:如图所示,连接,OC OB ,过O 作ON CE ⊥于N ,∵多边形ABCDEF 是正六边形,∴60COB ∠=o ,∵OC OB =,∴COB ∆是等边三角形,∴60OCM ∠=o ,∴sin OM OC OCM =•∠, ∴43()sin 603OM OC cm ︒==. ∵30OCN ∠=o , ∴123,223ON OC CN ===, ∴24CE CN ==, ∴该圆的内接正三角形ACE 的面积12334432=⨯⨯⨯=, 故选:D .【点睛】本题考查的是正六边形的性质、等边三角形的判定与性质、三角函数;熟练掌握正六边形的性质,由三角函数求出OC 是解决问题的关键.8.如图,ABC ∆是一张顶角是120︒的三角形纸片,,6AB AC BC ==现将ABC ∆折叠,使点B 与点A 重合,折痕DE ,则DE 的长为( )A .1B .2C 2D 3【答案】A【解析】【分析】 作AH ⊥BC 于H ,根据等腰三角形的性质求出BH ,根据翻折变换的性质求出BD ,根据正切的定义解答即可.【详解】解:作AH ⊥BC 于H ,∵AB=AC ,AH ⊥BC ,BH=12BC=3, ∵∠BAC=120°,AB=AC ,∴∠B=30°,∴AB=30BH cos ︒=23, 由翻折变换的性质可知,DB=DA=3,∴DE=BD •tan30°=1,故选:A .【点睛】此题考查翻折变换的性质、勾股定理的应用,解题关键在于掌握翻折变换是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.9.在△ABC 中,a 、b 、c 分别为角A 、B 、C 的对边,若∠B=60°,则c a a b c b+++的值为( )A .12B 2C .1D 2【答案】C【解析】【分析】先过点A 作AD ⊥BC 于D ,构造直角三角形,结合∠B=60°,利用3sin60︒=cos60°=12,可求13,,22DB c AD c ==把这两个表达式代入到另一个Rt △ADC 的勾股定理表达式中,化简可得即a 2+c 2=b 2+ac ,再把此式代入通分后所求的分式中,可求其值等于1.【详解】解:过A 点作AD ⊥BC 于D ,在Rt △BDA 中,由于∠B=60°, ∴13,,22DB c AD c == 在Rt △ADC 中,DC 2=AC 2﹣AD 2, ∴2221324a c b c ⎛⎫-=- ⎪⎝⎭, 即a 2+c 2=b 2+ac ,∴()()2222222 1.c a c cb a ab a c ab bc b ac ab bc a b c b a b c b ac ab bc b ac ab bc b ++++++++++====++++++++++ 故选C .【点睛】本题考查了特殊角的三角函数值、勾股定理的内容.在直角三角形中,两直角边的平方和等于斜边的平方.注意作辅助线构造直角三角形是解题的好方法.10.cos60tan45+o o 的值等于( )A .32B .22C .3D .1【答案】A【解析】【分析】根据特殊角的三角函数值计算即可.【详解】解:原式13122=+=. 故选A .【点睛】本题考查了特殊角的三角函数值,解题的关键是熟练掌握特殊角的三角函数值.11.如图,一架飞机在点A 处测得水平地面上一个标志物P 的俯角为α,水平飞行m 千米后到达点B 处,又测得标志物P 的俯角为β,那么此时飞机离地面的高度为( )A .cot cot m αβ-千米B .cot cot m βα-千米C .tan tan m αβ-千米 D .tan tan m βα-千米 【答案】A【解析】【分析】根据锐角三角函数的概念进行作答.【详解】在P 点做一条直线垂直于直线AB 且交于点O ,由锐角三角函数知,AO=PO cot α,BO=PO cot β,又AB=m=AO-BO= PO cot α- PO cot β=cot cot m αβ-. 所以答案选A. 【点睛】本题考查了锐角三角函数的概念,熟练掌握锐角三角函数是本题解题关键.12.将一副直角三角板如图放置,点C 在FD 的延长上,AB ∥CF ,∠F =∠ACB =90°,∠E =30°,∠A =45°,AC =122,则CD 的长为( )A .3B .12﹣3C .12﹣3D .3【答案】B【解析】【分析】 过点B 作BM ⊥FD 于点M ,根据题意可求出BC 的长度,然后在△EFD 中可求出∠EDF =60°,进而可得出答案.【详解】解:过点B 作BM ⊥FD 于点M ,在△ACB 中,∠ACB =90°,∠A =45°,AC =2,∴BC =AC =2.∵AB ∥CF ,∴BM =BC ×sin45°=2122122= CM =BM =12,在△EFD 中,∠F =90°,∠E =30°,∴∠EDF =60°,∴MD =BM ÷tan60°=43∴CD =CM ﹣MD =12﹣43.故选B .【点睛】本题考查了解直角三角形,难度较大,解答此类题目的关键根据题意建立直角三角形利用所学的三角函数的关系进行解答.13.如图,已知△A 1B 1C 1的顶点C 1与平面直角坐标系的原点O 重合,顶点A 1、B 1分别位于x 轴与y 轴上,且C 1A 1=1,∠C 1A 1B 1=60°,将△A 1B 1C 1沿着x 轴做翻转运动,依次可得到△A 2B 2C 2,△A 3B 3C 3等等,则C 2019的坐标为( )A .(30)B .(3,0)C .(4035233D .(30) 【答案】B【解析】【分析】根据题意可知三角形在x 轴上的位置每三次为一个循环,又因为20193673÷=,那么2019C 相当于第一个循环体的3673C 个即可算出.【详解】由题意知,111C A =,11160C A B ︒∠=,则11130C B A ︒∠=,11222A B A B ==,1122333C B C B C B ===结合图形可知,三角形在x 轴上的位置每三次为一个循环,Q 20193673÷=, ∴2019673(123)20196733OC =+=+,∴2019C (20196733,0)+,故选B .【点睛】考查解直角三角形,平面直角坐标系中点的特征,结合找规律.理解题目中每三次是一个循环是解题关键.14.已知圆锥的底面半径为5cm ,侧面积为60πcm 2,设圆锥的母线与高的夹角为θ,则sinθ的值为( )A .313B .513C .512D .1213 【答案】C【解析】【分析】先求出圆锥底面周长可得到圆锥侧面展开图扇形的弧长,再利用扇形面积公式12S lr =可求出母线的长,最后利用三角函数即可求出答案.【详解】解:∵圆锥底面周长为2510ππ⨯=,且圆锥的侧面积为60π,∴圆锥的母线长为2601210ππ⨯=, ∴sin θ=512. 故选C.【点睛】本题考查了圆锥和三角函数的相关知识.利用所学知识求出圆锥母线的长是解题的关键.15.如图,在平面直角坐标系中,AOB ∆的顶点B 在第一象限,点A 在y 轴的正半轴上,2AO AB ==,120OAB ∠=o ,将AOB ∠绕点O 逆时针旋转90o ,点B 的对应点'B 的坐标是( )A .3(23)2--B .33(2222---C .3(3,22--D .(3,3)- 【答案】D 【解析】 【分析】 过点'B 作x 轴的垂线,垂足为M ,通过条件求出'B M ,MO 的长即可得到'B 的坐标.【详解】解:过点'B 作x 轴的垂线,垂足为M ,∵2AO AB ==,120OAB ∠=︒,∴'''2A O A B ==,''120OA B ∠=︒,∴'0'6M B A ∠=︒,在直角△''A B M 中,3==2=B'M B'M 'sin B A M B '''A ∠ , 1==22=A'M A'M 'cos B A M B '''A ∠, ∴'3B M =,'1A M =,∴OM=2+1=3,∴'B 的坐标为(3,3)-.故选:D.【点睛】本题考查坐标与图形变化-旋转,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.16.如图,将一个小球从斜坡的点O 处抛出,小球的抛出路线可以用二次函数y =4x -12x 2刻画,斜坡可以用一次函数y =12x 刻画,下列结论错误的是( )A .斜坡的坡度为1: 2B .小球距O 点水平距离超过4米呈下降趋势C .小球落地点距O 点水平距离为7米D .当小球抛出高度达到7.5m 时,小球距O 点水平距离为3m【答案】D【解析】【分析】求出抛物线与直线的交点,判断A 、C ;根据二次函数的性质求出对称轴,根据二次函数性质判断B ;求出当7.5y =时,x 的值,判定D .【详解】 解:214212y x x y x ⎧=-+⎪⎪⎨⎪=⎪⎩, 解得,1100x y =⎧⎨=⎩,22772x y =⎧⎪⎨=⎪⎩, 72∶7=1∶2,∴A 正确; 小球落地点距O 点水平距离为7米,C 正确;2142y x x =- 21(4)82x =--+, 则抛物线的对称轴为4x =,∴当4x >时,y 随x 的增大而减小,即小球距O 点水平距离超过4米呈下降趋势,B 正确,当7.5y =时,217.542x x =-, 整理得28150x x -+=,解得,13x =,25x =,∴当小球抛出高度达到7.5m 时,小球水平距O 点水平距离为3m 或5m ,D 错误,符合题意;故选:D【点睛】本题考查的是解直角三角形的-坡度问题、二次函数的性质,掌握坡度的概念、二次函数的性质是解题的关键.17.如图,△ABC 的顶点是正方形网格的格点,则cos A =( )A.12B.22C.3D.5【答案】B【解析】【分析】构造全等三角形,证明△ABD是等腰直角三角形,进行作答.【详解】过A作AE⊥BE,连接BD,过D作DF⊥BF于F.∵AE=BF,∠AEB=∠DFB,BE=DF,∴△AEB≌△BFD,∴AB=DB.∠ABD=90°,∴△ABD是等腰直角三角形,∴cos∠DAB=2 2.答案选B.【点睛】本题考查了不规则图形求余弦函数的方法,熟练掌握不规则图形求余弦函数的方法是本题解题关键.18.如图,基灯塔AB建在陡峭的山坡上,该山坡的坡度i=1:0.75.小明为了测得灯塔的高度,他首先测得BC=20m,然后在C处水平向前走了34m到达一建筑物底部E处,他在该建筑物顶端F处测得灯塔顶端A的仰角为43°.若该建筑物EF=20m,则灯塔AB的高度约为(精确到0.1m,参考数据:sin43°=0.68,cos43°=0.73,tan43°=0.93)()A .46.7mB .46.8mC .53.5mD .67.8m【答案】B【解析】【分析】 根据山坡的坡度i =1:0.75,可得BD CD =43,设BD =4x ,CD =3x ,然后利用勾股定理求得BD =4x =16m ,CD =3x =12m ;再利用矩形的性质求出FG =DE =46m ,BG =DG ﹣DB =4m ,最后利用三角函数解直角三角形即可.【详解】解:如图,∵∠ADC =90°,i =1:0.75,即BD CD =43, ∴设BD =4x ,CD =3x ,则BC =22(4)(3)x x =5x =20m ,解得:x =4,∴BD =4x =16m ,CD =3x =12m ,易得四边形DEFG 是矩形,则EF =DG =20m ,FG =DE =DC+CE =12+34=46(m ),∴BG =DG ﹣DB =4m ,在Rt △AFG 中,AG =FG·tan ∠AFG =46·tan43°≈46×0.93=42.78(m ), ∴AB =AG+BG =42.78+4≈46.8(m ),故选:B .【点睛】本题考查了解直角三角形的应用—仰角和俯角问题、坡度坡比问题,灵活运用三角函数是解答本题的关键..19.如图,点E 是矩形ABCD 的边AD 的中点,且BE ⊥AC 于点F ,则下列结论中错误的是( )A.AF=12 CFB.∠DCF=∠DFCC.图中与△AEF相似的三角形共有5个D.tan∠CAD【答案】D【解析】【分析】由AE=12AD=12BC,又AD∥BC,所以12AE AFBC FC==,故A正确,不符合题意;过D作DM∥BE交AC于N,得到四边形BMDE是平行四边形,求出BM=DE=12BC,得到CN=NF,根据线段的垂直平分线的性质可得结论,故B正确,不符合题意;根据相似三角形的判定即可求解,故C正确,不符合题意;由△BAE∽△ADC,得到CD与AD的大小关系,根据正切函数可求tan∠CAD的值,故D错误,符合题意.【详解】解:A、∵AD∥BC,∴△AEF∽△CBF,∴AEBC=AFFC,∵AE=12AD=12BC,∴AFFC=12,故A正确,不符合题意;B、过D作DM∥BE交AC于N,∵DE∥BM,BE∥DM,∴四边形BMDE是平行四边形,∴BM=DE=12 BC,∴BM=CM,∴CN=NF,∵BE⊥AC于点F,DM∥BE,∴DN⊥CF,∴DF=DC,∴∠DCF=∠DFC,故B正确,不符合题意;C、图中与△AEF相似的三角形有△ACD,△BAF,△CBF,△CAB,△ABE共有5个,故C正确,不符合题意.D、设AD=a,AB=b由△BAE∽△ADC,有ba=2a.∵tan∠CAD=CDAD=ba=22,故D错误,符合题意.故选:D.【点睛】本题考查了相似三角形的判定和性质,矩形的性质,图形面积的计算,正确的作出辅助线是解题的关键.20.如图,△ABC的外接圆是⊙O,半径AO=5,sinB=25,则线段AC的长为()A.1 B.2 C.4 D.5【答案】C【解析】【分析】首先连接CO并延长交⊙O于点D,连接AD,由CD是⊙O的直径,可得∠CAD=90°,又由⊙O的半径是5,sinB=25,即可求得答案.【详解】解:连接CO并延长交⊙O于点D,连接AD,由CD是⊙O的直径,可得∠CAD=90°,∵∠B和∠D所对的弧都为弧AC,∴∠B=∠D,即sinB=sinD=25,∵半径AO=5,∴CD=10,∴2 sin105AC ACDCD===,∴AC=4,故选:C.【点睛】本题考查了同弧所对的圆周角相等,以及三角函数的内容,注意到直径所对的圆周角是直角是解题的关键.。

三角函数历年高考题汇编(附答案)yidayin

三角函数历年高考题汇编(附答案)yidayin

三角函数历年高考题汇编(附答案)yidayin考点 三角函数的概念、同角三角函数的基本关系式和诱导公式1.(2018北京支,7,5分)在平面直角坐标系中,AB,CD,CA 是圆 x ³+y ²=1 上的四段弧(如图),点P 在其中一段A.ABB. CD c.即 D.参考答案 C 本题主要考查三角函数的概念,同角三角函数的基本关系式. 若点P 在 AB ⃗⃗⃗⃗⃗ 或 CD ⃗⃗⃗⃗⃗ 矛盾,故排除A,B.若点P 在CH(不包含端点G)上,则角α在第三象限。

此时tan α>0, cos α<0,与tan α<cos α矛盾,故排除 D,故选C.A. ming:0B.QOE ρ≥0C. ain 2a>0D. cos 2α>0参考答案 C 由AanaPO 得α是第一或第三象限角,若α是第三象限角,则A,B 错;由 sin 2a=2sin acos α知sin 2a>0,C 正确;α取¹/₂时.cos2α=2cos2α−1=2×(12)2−1=−12<0,D错.故选 C.分析本题考查三角图数值的符号,判定时可运用基本知识,程等变形及特殊值等多种方法,具有一定的灵活性..A.45B. 35C.35D.÷45参考答案 D 由三角函数的定义知cosα=√(−4)2+32=45故选D.4.(2011课标,理5,文7,5分)已知角θ的顶点与原点置合,始边与x轴的正半轴重合,终边在直线y=2x上,则00s 20=( )A.4/5B. 35C.35D.54参考答案 B 解法一:由三角函数定义知,tanθ=2,则cos2θ=cos2θ−sin2θcos2B+sin2θ=1−tan2θ1+tan2B=35.cos2θ=15故cos2θ=2cos2θ−1=35.5.(2015福建文,6,5分)若sinα=513,A.125B.−125C.512D.−512参考答案 D 'sin α=513,a为露四象限角,cosα=√1−sin2α=1213,∴tanα=sinαcosα=512故选 D.6.(2014课标1理,8,5分)设α∈(0,π2),β∈(0,π2),且tanα=1+sinβcosβ则( )A.30−β=π2B.3α+β=π2C.2α−β=π2D.2ca∗βa=112参考答案 C 由tanα=1+sinβcosβ得sinαcosα=1+sinβcosβ即sin acosβ=cosα+sin βcos α,所以sin(α-β)=cos α,又cos α=sin (π2−α)所以:sin (α−β)=sin (π2−α),又因为 cos (0,π2),β∈(0,π2)所以 −π2<α−β<π2,0<π2<α<π2因此 cos −β=π37a 所以 2a +b =π2.故选C.参考答案 C . b=00855°=sin 35°>sin 33°±0, b=a. 又 ∴c =tan35∘=sin35∘cos35∘>sin35∘=cos55∘=b,∴c >b.∴c >b ”.故选C.9.(2013 大纲全国文,2,5分)已知a 是第二象限角, sinα=513,则cos α=( )A.1213B.513C.513D.1 236∴cosα=√1×sin 2α=−1213故选A.分析 本题考查三角图数值在各象限的符号,同角三角函数关系,属容易题。

第四章《三角函数》题目汇编及详解

第四章《三角函数》题目汇编及详解

普通高等学校招生全国统一测试数学 第四章?三角函数?题目汇编及详解一、选择题〔共21题〕1.〔安徽卷〕将函数sin (0)y x ωω=>的图象按向量,06a π⎛⎫=- ⎪⎝⎭平移,平移后的图象如下图,那么平移后的图象所对应函数的解析式是 A .sin()6y x π=+ B .sin()6y x π=- C .sin(2)3y x π=+D .sin(2)3y x π=- 解:将函数sin (0)y x ωω=>的图象按向量,06a π⎛⎫=- ⎪⎝⎭平移,平移后的图象所对应的解析式为sin ()6y x πω=+,由图象知,73()1262πππω+=,所以2ω=,因此选C. 2.〔安徽卷〕设0a >,对于函数()sin (0)sin x af x x xπ+=<<,以下结论正确的选项是A .有最大值而无最小值B .有最小值而无最大值C .有最大值且有最小值D .既无最大值又无最小值 解:令sin ,(0,1]t x t =∈,那么函数()sin (0)sin x af x x xπ+=<<的值域为函数1,(0,1]a y t t =+∈的值域,又0a >,所以1,(0,1]ay t t=+∈是一个减函减,应选B.3.〔北京卷〕函数y =1+cos x 的图象 〔A 〕关于x 轴对称 〔B 〕关于y 轴对称 〔C 〕关于原点对称〔D 〕关于直线x =2π对称 解:函数y =1+cos 是偶函数,应选B 4.〔福建卷〕α∈(2π,π),sin α=53,那么tan(4πα+)等于A.71 B.7 C.- 71D.-7 解:由3(,),sin ,25παπα∈=那么3tan 4α=-,tan()4πα+=1tan 11tan 7αα+=-,选A.5.〔福建卷〕函数f (x )=2sin ϖx(ϖ>0)在区间[3π-,4π]上的最小值是-2,那么ϖ的最小值等于A.32B.23C.2D.3 解:函数()2sin (0)f x x ωω=>在区间,34ππ⎡⎤-⎢⎥⎣⎦上的最小值是2-,那么ωx 的取值范围是,34ωπωπ⎡⎤-⎢⎥⎣⎦, ∴ 32ωππ--≤或342ωππ≥,∴ ω的最小值等于32,选B. 6.〔湖北卷〕假设ABC ∆的内角A 满足2sin 23A =,那么sin cos A A +=A.3 B .3- C .53 D .53- 解:由sin2A =2sinAcosA >0,可知A这锐角,所以sinA +cosA >0,又25(sin cos )1sin 23A A A +=+=,应选A7.〔湖南卷〕设点P 是函数x x f ωsin )(=的图象C 的一个对称中央,假设点P 到图象C 的对称轴上的距离的最小值4π,那么)(x f 的最小正周期是 A .2π B . π C.2π D . 4π 解析:设点P 是函数x x f ωsin )(=的图象C 的一个对称中央,假设点P 到图象C 的对称轴上的距离的最小值4π,∴ 最小正周期为π,选B. 8.〔江苏卷〕R a ∈,函数R x a x x f ∈-=|,|sin )(为奇函数,那么a =〔A 〕0 〔B 〕1 〔C 〕-1 〔D 〕±1【思路点拨】此题考查函数的奇偶性,三角函数sin x 的奇偶性的判断,此题是一道送分的概念题 【正确解答】解法1由题意可知,()()f x f x =--得a=0解法2:函数的定义域为R ,又f (x )为奇函数,故其图象必过原点即f (0)=0,所以得a =0, 解法3由f (x )是奇函数图象法函数画出()R x a x x f ∈-=,sin 的图象选A【解后反思】对数学概念及定理公式的深刻理解是解数学问题的关健,讨论函数的奇偶性,其前提条件是函数的定义域必须关于原点对称.假设函数f(x)为奇函数()()()f x f x y f x ⇔-=-⇔=的图象关于原点对称. 假设函数f(x)为偶函数()()()f x f x y f x ⇔-=⇔=的图象关于y 轴对称.9〔江苏卷〕为了得到函数R x x y ∈+=),63sin(2π的图像,只需把函数R x x y ∈=,sin 2的图像上所有的点〔A 〕向左平移6π个单位长度,再把所得各点的横坐标缩短到原来的31倍〔纵坐标不变〕〔B 〕向右平移6π个单位长度,再把所得各点的横坐标缩短到原来的31倍〔纵坐标不变〕〔C 〕向左平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍〔纵坐标不变〕 〔D 〕向右平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍〔纵坐标不变〕【思路点拨】此题主要考三角函数的图象变换,这是一道平时练习的比拟多的一种类型. 【正确解答】先将R x x y ∈=,sin 2的图象向左平移6π个单位长度, 得到函数2sin(),6y x x R π=+∈的图象,再把所得图象上各点的横坐标伸长到原来的3倍〔纵坐标不变〕得到函数R x x y ∈+=),63sin(2π的图像,选择C. 【解后反思】由函数sin ,y x x R =∈的图象经过变换得到函数sin(),y A x x R ωφ=+∈ 〔1〕.y=Asinx,x ∈R(A>0且A ≠1)的图象可以看作把正弦曲线上的所有点的纵坐标伸长(A>1)或缩短(0<A<1)到原来的A 倍得到的〔2〕函数y=sin ωx, x ∈R (ω>0且ω≠1)的图象,可看作把正弦曲线上所有点的横坐标缩短(ω>1)或伸长(0<ω<1)到原来的ω1倍〔纵坐标不变〕 〔3〕函数y =sin(x +ϕ),x ∈R (其中ϕ≠0)的图象,可以看作把正弦曲线上所有点向左(当ϕ>0时)或向右(当ϕ<0时=平行移动|ϕ|个单位长度而得到(用平移法注意讲清方向:“加左〞“减右〞),可以先平移变换后伸缩变换,也可以先伸缩变换后平移变换,但注意:先伸缩时,平移的单位把x 前面的系数提取出来.10.〔江西卷〕函数4sin 21y x π⎛⎫=++ ⎪3⎝⎭的最小正周期为〔 〕 A.π2 B.πC.2πD.4π解:T =22ππ=,应选B11.〔辽宁卷〕函数11()(sin cos )sin cos 22f x x x x x =+--,那么()f x 的值域是 (A)[]1,1-(B) 2⎡⎤-⎢⎥⎣⎦(C) 1,2⎡-⎢⎣⎦(D)1,2⎡--⎢⎣⎦【解析】cos (sin cos )11()(sin cos )sin cos sin (sin cos )22x x x f x x x x x x x x ≥⎧=+--=⎨<⎩即等价于min {sin ,cos }x x ,应选择答案C.【点评】此题考查绝对值的定义、分段函数、三角函数等知识,同时考查了简单的转化和估算水平.12.〔辽宁卷〕函数1sin 32y x ⎛⎫=+⎪⎝⎭的最小正周期是〔 〕 A.π2 B.π C.2πD.4π解:2412T ππ==,选D13.〔全国卷I 〕函数()tan 4f x x π⎛⎫=+⎪⎝⎭的单调增区间为 A .,,22k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭B .()(),1,k k k Z ππ+∈C .3,,44k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭ D .3,,44k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭解:函数()tan 4f x x π⎛⎫=+⎪⎝⎭的单调增区间满足242k x k πππππ-<+<+,∴ 单调增区间为3,,44k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭,选C. 14.〔全国II 〕函数y =sin2x cos2x 的最小正周期是〔A 〕2π 〔B 〕4π 〔C 〕π4 〔D 〕π2解析: 1sin 2cos 2sin 42y x x x ==所以最小正周期为242T ππ==,应选D 考察知识点有二倍角公式,最小正周期公式 此题比拟容易. 15.〔全国II 〕假设f (sin x )=3-cos2x ,那么f (cos x )=〔A 〕3-cos2x 〔B 〕3-sin2x 〔C 〕3+cos2x 〔D 〕3+sin2x 解析:22(sin )3cos 23(12sin )2sin 2f x x x x =-=--=+所以2()22f x x =+,因此22(cos )2cos 2(2cos 1)33cos 2f x x x x =+=-+=+应选C 此题主要考察函数解析式的变换和三角函数的二倍角公式,记忆的成分较重,难度一般 16.(陕西卷)"等式sin(α+γ)=sin2β成立"是"α、β、γ成等差数列"的( )A.必要而不充分条件B.充分而不必要条件C.充分必要条件D.既不充分又不必要条件 解析:假设等式sin(α+γ)=sin2β成立,那么α+γ=k π+(-1)k ·2β,此时α、β、γ不一定成等差数列,假设α、β、γ成等差数列,那么2β=α+γ,等式sin(α+γ)=sin2β成立,所以“等式sin(α+γ)=sin2β成立〞是“α、β、γ成等差数列〞的.必要而不充分条件.选A . 17.〔四川卷〕以下函数中,图象的一局部如右图所示的是 〔A 〕sin 6y x π⎛⎫=+⎪⎝⎭〔B 〕sin 26y x π⎛⎫=-⎪⎝⎭〔C 〕cos 43y x π⎛⎫=- ⎪⎝⎭〔D 〕cos 26y x π⎛⎫=-⎪⎝⎭解析:从图象看出,41T=1264πππ+=,所以函数的最小正周期为π,函数应为y=sin 2x 向左平移了6π个单位,即sin 2()6y x π=+=sin(2)cos(2)cos(2)3236x x x ππππ+=-++=-,选D. 18.〔天津卷〕函数x b x a x f cos sin )(-=〔a 、b 为常数,0≠a ,R x ∈〕在4π=x 处取得最小值,那么函数)43(x f y -=π是〔 〕A .偶函数且它的图象关于点)0,(π对称B .偶函数且它的图象关于点)0,23(π对称 C .奇函数且它的图象关于点)0,23(π对称 D .奇函数且它的图象关于点)0,(π对称解析:函数()sin cos f x a x b x =-(a 、b 为常数,0,)a x R ≠∈,∴ ())f x x ϕ-的周期为2π,假设函数在4π=x 处取得最小值,不妨设3()sin()4f x x π=-,那么函数3()4y f x π=-=33sin()sin 44x x ππ-+=,所以3()4y f x π=-是奇函数且它的图象关于点(,0)π对称,选D.19.〔天津卷〕设ππ22αβ⎛⎫∈- ⎪⎝⎭,,,那么“αβ<〞是“tan tan αβ<〞的〔 〕 A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件D.既不充分也不必要条件解析:在开区间(,)22ππ-中,函数tan y x =为单调增函数,所以设,(,),22ππαβ∈-那么""αβ<是"tan tan "αβ<的充分必要条件,选C. 20.〔浙江卷〕函数y=21sin2+4sin 2x,x R ∈的值域是 (A)[-21,23] (B)[-23,21] (C)[2122,2122++-] (D)[2122,2122---] 【考点分析】此题考查三角函数的性质,根底题. 解析:2142sin 22212cos 212sin 21sin 2sin 212+⎪⎭⎫ ⎝⎛-=+-=+=πx x x x x y ,应选择C. 【名师点拔】此题是求有关三角函数的值域的一种通法,即将函数化为()b x A y ++=ϕωsin 或()b x A y ++=ϕωcos 的模式.21.(重庆卷)假设,(0,)2παβ∈,cos()2βα-=1sin()22αβ-=-,那么cos()αβ+的值等于〔A 〕2-〔B 〕12- 〔C 〕12〔D 〕2解:由,(0,)2παβ∈,那么242βππα∈-(-,),224αππβ∈-(-,),又cos()2βα-=,1sin()22αβ-=-,所以26βπα±-=,26απβ-=- 解得3παβ==,所以 cos()αβ+=12-,应选B 二、填空题〔共10题〕22.〔福建卷〕函数()2sin (0)f x x ωω=>在区间,34ππ⎡⎤-⎢⎥⎣⎦上的最小值是2-,那么ω的最小值是____.解:函数()2sin (0)f x x ωω=>在区间,34ππ⎡⎤-⎢⎥⎣⎦上的最小值是2-,那么ωx 的取值范围是,34ωπωπ⎡⎤-⎢⎥⎣⎦, ∴ 32ωππ--≤或342ωππ≥,∴ ω的最小值等于32. 23.〔湖南卷〕假设()sin()sin()(0)44f x a x b x ab ππ=++-≠是偶函数,那么有序实数对(,a b )可以是 .(注:只要填满足0a b +=的一组数即可)(写出你认为正确的一组数即可).解析.ab ≠0,()sin()sin()(cos )()442222f x a x b x a x x b x x ππ=++-=++-是偶函数,只要a +b =0即可,可以取a =1,b =-1.24.〔湖南卷〕假设)4sin(3)4sin()(ππ-++=x x a x f 是偶函数,那么a = .解析:()sin()3sin()()3(cos )442222f x a x x a x x x x ππ=++-=++-是偶函数,取a =-3,可得()f x x =-为偶函数.25.〔江苏卷〕︒-︒︒+︒︒40cos 270tan 10sin 310cos 20cot = 【思路点拨】此题考查三角公式的记忆及熟练运用三角公式计算求值 【正确解答】:cot20°cos10°+3sin10°tan70°-2cos40°=︒︒︒︒+︒︒︒40cos 2cos70sin7010sin 320sin 1020cos -=︒︒︒︒︒︒2cos40sin20cos10sin103cos1020cos -+=︒︒︒︒︒2cos40sin20sin103cos1020cos -)+(=︒︒︒︒︒︒︒2cos40sin2030cos sin1030sin cos1020cos 2-)+(︒︒︒︒︒sin2040cos 2sin20sin4020cos 2-=2【解后反思】方法不拘泥,要注意灵活运用,在求三角的问题中,要注意这样的口决“三看〞即(1)看角,把角尽量向特殊角或可计算角转化,(2)看名称,把一道等式尽量化成同一名称或相近的名称,例如把所有的切都转化为相应的弦,或把所有的弦转化为相应的切,(3)看式子,看式子是否满足三角函数的公式.如果满足直接使用,如果不满足转化一下角或转换一下名称,就可以使用.26.〔全国卷I 〕设函数())()cos0f x ϕϕπ=+<<.假设()()/f x f x +是奇函数,那么ϕ=__________.解析:'())f x ϕ=+,那么()()/f x f x +=))2sin()6πϕϕϕ++=--为奇函数,∴ φ=6π.27.(陕西卷)cos43°cos77°+sin43°cos167°的值为解析:cos43°cos77°+sin43°cos167°=cos43cos77sin 43sin77cos120︒︒-︒︒=︒=-21. 28.(上海卷)如果αcos =51,且α是第四象限的角,那么)2cos(πα+= 解:cos()sin (2παα⇒+=-=-29.(上海卷)函数sin cos y x x =的最小正周期是_________. 解:函数sin cos y x x ==21sin2x,它的最小正周期是π.30.(重庆卷)βα,⎪⎭⎫⎝⎛∈ππ,43,sin(βα+)=-,53 sin ,13124=⎪⎭⎫ ⎝⎛-πβ那么cos ⎪⎭⎫ ⎝⎛+4πα=________.解: ()33,,,sin ,45παβπαβ⎛⎫∈+=-⎪⎝⎭12sin()413πβ-=,3(,2)2παβπ+∈,3(,)424πππβ-∈,∴ 4cos()5αβ+=,5cos()413πβ-=-, 那么cos()4πα+=cos[()()]4παββ+--=cos()cos()sin()sin()44ππαββαββ+-++- =4531256()()51351365⋅-+-⋅=- 31.(重庆卷)sin α=2παπ≤≤,那么tan α= .解:由sin α=,2παπ≤≤⇒cos α所以tan α=-2 三、解做题〔共16题〕 32.〔安徽卷〕310,tan cot 43παπαα<<+=- 〔Ⅰ〕求tan α的值;〔Ⅱ〕求225sin 8sincos11cos 822222ααααπα++-⎛⎫- ⎪⎝⎭的值.解:(Ⅰ)由10tan cot 3αα+=-得23tan 10tan 30αα++=,即1tan 3tan 3αα=-=-或,又34παπ<<,所以1tan 3α=-为所求.〔Ⅱ〕225sin 8sincos11cos 822222ααααπα++-⎛⎫- ⎪⎝⎭1-cos 1+cos 54sin 118ααα++-==6-.33.〔安徽卷〕40,sin 25παα<<=〔Ⅰ〕求22sin sin 2cos cos 2αααα++的值; 〔Ⅱ〕求5tan()4πα-的值. 解:(Ⅰ)由40,sin 25παα<<=,得3cos 5α=,所以22sin sin 2cos cos 2αααα++=22sin 2sin cos 203cos 1αααα+=-. 〔Ⅱ〕∵sin 4tan cos 3ααα==,∴5tan 11tan()41tan 7πααα--==+. 34.〔北京卷〕函数1)4()cos x f x xπ-=, 〔Ⅰ〕求()f x 的定义域;〔Ⅱ〕设α是第四象限的角,且4tan 3α=-,求()f α的值. 解:〔1〕依题意,有cosx ≠0,解得x ≠k π+2π, 即()f x 的定义域为{x|x ∈R,且x ≠k π+2π,k ∈Z }〔2〕1)4()cos x f x xπ-==-2sinx +2cosx ∴()f α=-2sin α+2cos α 由α是第四象限的角,且4tan 3α=-可得sin α=-45,cos α=35∴()f α=-2sin α+2cos α=14535.〔北京卷〕函数f (x )=xxcos 2sin 1-(Ⅰ)求f (x )的定义域;(Ⅱ)设α是第四象限的角,且tan α=34-,求f (α)的值. 解:(Ⅰ)由cos x ≠0得x ≠k π+2π〔k ∈Z ), 故f (x )的定义域为{|x |x ≠k π+2π,k ∈Z }.(Ⅱ)由于tan α=34-,且α是第四象限的角, 所以sin α=54-,cos α=53, 故f(α)=ααcos 2sin 1- =12sin cos cos ααα- =43125535⎛⎫-⨯-⨯⎪⎝⎭ =1549.36.〔福建卷〕函数f (x )=sin 2x +3x cos x +2cos 2x ,x ∈R. 〔I 〕求函数f (x )的最小正周期和单调增区间;〔Ⅱ〕函数f (x )的图象可以由函数y =sin2x (x ∈R )的图象经过怎样的变换得到?本小题主要考查三角函数的根本公式、三角恒等变换、三角函数的图象和性质等根本知识,以及推理和运算水平.总分值12分.解:〔I〕1cos 2()2(1cos 2)2x f x x x -=+++132cos 22223sin(2).62x x x π=++=++ ()f x ∴的最小正周期2.2T ππ==由题意得222,,262k x k k Z πππππ-≤+≤+∈ 即 ,.36k x k k Z ππππ-≤≤+∈()f x ∴的单调增区间为,,.36k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦〔II 〕方法一:先把sin 2y x =图象上所有点向左平移12π个单位长度,得到sin(2)6y x π=+的图象,再把所得图象上所有的点向上平移32个单位长度,就得到3sin(2)62y x π=++的图象.方法二:把sin 2y x =图象上所有的点按向量3(,)122a π=-平移,就得到3sin(2)62y x π=++的图象.37.〔广东卷〕函数()sin sin(),2f x x x x R π=++∈.(I)求()f x 的最小正周期; (II)求()f x 的的最大值和最小值; (III)假设3()4f α=,求sin2α的值. 解:)4sin(2cos sin )2sin(sin )(ππ+=+=++=x x x x x x f〔Ⅰ〕)(x f 的最小正周期为ππ212==T ; 〔Ⅱ〕)(x f 的最大值为2和最小值2-;〔Ⅲ〕由于43)(=αf ,即167cos sin 2①43cos sin -=⇒⋅⋅⋅=+αααα,即 1672sin -=α 38.〔湖南卷〕),,0(,1cos )cos()22sin(sin 3πθθθπθπθ∈=⋅+--求θ的值. 解析: 由条件得1cos cos 2cos sin 3=⋅--θθθθ. 即0sin 2sin 32=-θθ. 解得0sin 23sin ==θθ或. 由0<θ<π知23sin =θ,从而323πθπθ==或. 39.〔辽宁卷〕函数22()sin 2sin cos 3cos f x x x x x =++,x R ∈.求: (I) 函数()f x 的最大值及取得最大值的自变量x 的集合; (II) 函数()f x 的单调增区间. 【解析】(I) 解法一:1cos 23(1cos 2)()sin 21sin 2cos 22)224x x f x x x x x π-+=++=++=++∴当2242x k πππ+=+,即()8x k k Z ππ=+∈时, ()f x 取得最大值2函数()f x 的取得最大值的自变量x 的集合为{/,()}8x x R x k k Z ππ∈=+∈.解法二:2222()(sin cos )2sin cos 2cos 2sin cos 12cos sin 2cos 22f x x x x x x x x x x x =+++=++=++2)4x π=++∴当2242x k πππ+=+,即()8x k k Z ππ=+∈时, ()f x 取得最大值2函数()f x 的取得最大值的自变量x 的集合为{/,()}8x x R x k k Z ππ∈=+∈.(II)解: ()2)4f x x π=++由题意得: 222()242k x k k Z πππππ-≤+≤+∈即: 3()88k x k k Z ππππ-≤≤+∈因此函数()f x 的单调增区间为3[,]()88k k k Z ππππ-+∈. 【点评】本小题考查三角公式,三角函数的性质及三角函数值求角等根底知识,考查综合运用三角有关知识的水平.40.〔山东卷〕函数f (x )=A 2sin ()x ωϕ+(A >0,ω>0,0<ϕ<2π函数,且y =f (x )的最大值为2,其图象相邻两对称轴间的距离为2,并过点〔1,2〕. 〔1〕求ϕ;〔2〕计算f (1)+f (2)+… +f (2 008).解:〔I 〕2sin ()cos(22).22A Ay A x x ωϕωϕ=+=-+ ()y f x =的最大值为2,0A >.2, 2.22A AA ∴+==又其图象相邻两对称轴间的距离为2,0ω>,12()2,.224ππωω∴==22()cos(2)1cos(2)2222f x x x ππϕϕ∴=-+=-+.()y f x =过(1,2)点,cos(2) 1.2πϕ∴+=-22,,2k k Z πϕππ∴+=+∈22,,2k k Z πϕπ∴=+∈,,4k k Z πϕπ∴=+∈又0,2πϕ<<4πϕ∴=.〔II 〕解法一:4πϕ=,1cos()1sin .222y x x πππ∴=-+=+ (1)(2)(3)(4)21014f f f f ∴+++=+++=.又()y f x =的周期为4,20084502=⨯,(1)(2)(2008)45022008.f f f ∴++⋅⋅⋅+=⨯=解法二:2()2sin ()4f x x πϕ=+223(1)(3)2sin ()2sin ()2,44f f ππϕϕ∴+=+++=22(2)(4)2sin ()2sin ()2,2f f πϕπϕ+=+++=(1)(2)(3)(4) 4.f f f f ∴+++= 又()y f x =的周期为4,20084502=⨯,(1)(2)(2008)45022008.f f f ∴++⋅⋅⋅+=⨯= 41(陕西卷)函数f(x)=3sin(2x -π6)+2sin 2(x -π12) (x ∈R) (Ⅰ)求函数f(x)的最小正周期 ; (2)求使函数f(x)取得最大值的x 的集合. 解:(Ⅰ) f (x )=3sin(2x -π6)+1-cos2(x -π12)= 2[32sin2(x -π12)-12 cos2(x -π12)]+1 =2sin[2(x -π12)-π6]+1= 2sin(2x -π3) +1∴ T =2π2=π(Ⅱ)当f (x )取最大值时, sin(2x -π3)=1,有 2x -π3 =2k π+π2即x =k π+5π12 (k ∈Z ) ∴所求x 的集合为{x ∈R |x = k π+ 5π12, (k ∈Z )}. 42.(上海卷)求函数y =2)4cos()4cos(ππ-+x x +x 2sin 3的值域和最小正周期.[解]2cos()cos()44y x x x ππ=+-22112(cos sin )22cos22sin(2)6x x xx x x π=-==+∴函数2cos()cos()44y x x x ππ=+-的值域是[2,2]-,最小正周期是π; 43.(上海卷)α是第一象限的角,且5cos 13α=,求()sin 4cos 24πααπ⎛⎫+ ⎪⎝⎭+的值.解:)42cos()4sin(παπα++=αααααααααsin cos 122sin cos )sin (cos 222cos )sin (cos 2222-⋅=-+=+ 由可得sin 1312=α, ∴原式=142131312135122-=-⨯. 44. 〔天津卷〕5tan cot 2αα+=,ππ42α⎛⎫∈ ⎪⎝⎭,.求cos2α和πsin(2)4α+的值. 本小题考查同角三角函数关系、两角和公式、倍角公式等根底知识,考查根本运算水平. 解法一:由5tan cot ,2αα+=得sin cos 5,cos sin 2αααα+=那么254,sin 2.sin 25αα==由于(,),42ππα∈所以2(,),2παπ∈ 23cos 21sin 2,5αα=--=sin(2)sin 2.cos cos 2.sin 444πππααα+=+ 4232255== 解法二:由5tan cot ,2αα+=得15tan ,tan 2αα+=解得tan 2α=或1tan .2α=由(,),42ππα∈故舍去1tan ,2α=得tan 2.α=因此,255sin αα==那么223cos 2cos sin ,5ααα=-=-且4sin 22sin cos ,5ααα==故sin(2)sin 2.coscos 2.sin444πππααα+=+42322525210=⨯-⨯=45.〔浙江卷〕如图,函数y=2sin(πx φ),x ∈R,(其中0≤φ≤2π) 的图象与y 轴交于点〔0,1〕.(Ⅰ)求φ的值;(Ⅱ)设P 是图象上的最高点,M 、N 是图象与x 轴的交点,求.的夹角与PN PM此题主要考查三角函数的图像,三角函数求角,向量夹角的计算等根底知识和根本的运算水平.解:〔I 〕由于函数图像过点(0,1),所以2sin 1,ϕ=即1sin .2ϕ=由于02πϕ≤≤,所以6πϕ=. 〔II 〕由函数2sin()6y x ππ=+及其图像,得115(,0),(,2),(,0),636M P N --所以11(,2),(,2),22PM PN =-=-从而cos ,||||PM PNPM PN PM PN ⋅<>=⋅ 1517=, 故,PM PN <>=15arccos17. 46.(重庆卷)设函数f (x )=3cos 2cos+sin ωrcos ωx+a(其中ω>0,a ∈R ),且f (x )的图象在y 轴右侧的第一个高点的横坐标为6x . 〔Ⅰ〕求ω的值; 〔Ⅱ〕如果f (x )在区间⎥⎦⎤⎢⎣⎡-65,3ππ上的最小值为3,求a的值.1()cos 2sin 22sin 23 2,6321.2f x x x x ωωαπωαπππωω=+++⎛⎫=+++ ⎪⎝⎭⋅+==解:(I )依题意得解之得)57 ,0,,36361 sin()1,2351 (),36212x x x f x παπππππππαα++⎡⎤⎡⎤∈-+∈⎢⎥⎢⎥⎣⎦⎣⎦-≤+≤⎡⎤--++⎢⎥⎣⎦-++=(II)由(I)知,f(x)=sin(x+3又当时,故从而在上取得最小值因此,由题设知α=47.〔上海春〕函数⎥⎦⎤⎢⎣⎡∈-⎪⎭⎫ ⎝⎛+=πππ,2,cos 26sin 2)(x x x x f .〔1〕假设54sin =x ,求函数)(x f 的值; 〔2〕求函数)(x f 的值域. 19. 解:〔1〕53cos ,,2,54sin -=∴⎥⎦⎤⎢⎣⎡∈=x x x ππ , ……2分x x x x f cos 2cos 21sin 232)(-⎪⎪⎭⎫ ⎝⎛+= ……4分x x cos sin 3-=53354+=. ……8分 〔2〕⎪⎭⎫ ⎝⎛-=6sin 2)(πx x f , ……10分ππ≤≤x 2, 6563πππ≤-≤∴x , 16sin 21≤⎪⎭⎫ ⎝⎛-≤πx ,∴ 函数)(x f 的值域为]2,1[. ……14分。

2024年10月三角函数、解三角形大题汇编(解析版)

2024年10月三角函数、解三角形大题汇编(解析版)

2024年9~10月三角函数、解三角形大题汇编知识点一:基本定理公式(1)正余弦定理:在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,R 为△ABC 外接圆半径,则定理正弦定理余弦定理公式a sin A=b sin B =csin C =2R a 2=b 2+c 2-2bc cos A ;b 2=c 2+a 2-2ac cos B ;c 2=a 2+b 2-2ab cos C .常见变形(1)a =2R sin A ,b =2R sin B ,c =2R sin C ;(2)sin A =a 2R ,sin B =b 2R ,sin C =c2R;cos A =b 2+c 2-a 22bc ;cos B =c 2+a 2-b 22ac ;cos C =a 2+b 2-c 22ab.(2)面积公式:S ΔABC =12ab sin C =12bc sin A =12ac sin BS ΔABC =abc 4R=12(a +b +c )⋅r (r 是三角形内切圆的半径,并可由此计算R ,r .)知识点二:相关应用(1)正弦定理的应用①边化角,角化边⇔a :b :c =sin A :sin B :sin C ②大边对大角大角对大边a >b ⇔A >B ⇔sin A >sin B ⇔cos A <cos B③合分比:a +b +csin A +sin B +sin C =a +b sin A +sin B =b +c sin B +sin C =a +c sin A +sin C =a sin A=b sin B =csin C =2R(2)△ABC 内角和定理:A +B +C =π①sin C =sin (A +B )=sin A cos B +cos A sin B ⇔c =a cos B +b cos A 同理有:a =b cos C +c cos B ,b =c cos A +a cos C .②-cos C =cos (A +B )=cos A cos B -sin A sin B ;③斜三角形中,-tan C =tan (A +B )=tan A +tan B1-tan A ⋅tan B⇔tan A +tan B +tan C =tan A ⋅tan B ⋅tan C④sin A +B 2 =cos C 2;cos A +B 2 =sin C2⑤在ΔABC 中,内角A ,B ,C 成等差数列⇔B =π3,A +C =2π3.知识点三:实际应用(1)仰角和俯角在视线和水平线所成的角中,视线在水平线上方的角叫仰角,在水平线下方的角叫俯角(如图①).【解题方法总结】1、方法技巧:解三角形多解情况在△ABC 中,已知a ,b 和A 时,解的情况如下:A 为锐角A 为钝角或直角图形关系式a =b sin A b sin A <a <b a ≥b a >b a ≤b解的个数一解两解一解一解无解2、在解三角形题目中,若已知条件同时含有边和角,但不能直接使用正弦定理或余弦定理得到答案,要选择“边化角”或“角化边”,变换原则常用:(1)若式子含有sin x 的齐次式,优先考虑正弦定理,“角化边”;(2)若式子含有a ,b ,c 的齐次式,优先考虑正弦定理,“边化角”;(3)若式子含有cos x 的齐次式,优先考虑余弦定理,“角化边”;(4)代数变形或者三角恒等变换前置;(5)含有面积公式的问题,要考虑结合余弦定理使用;(6)同时出现两个自由角(或三个自由角)时,要用到A +B +C =π.3、三角形中的射影定理在△ABC 中,a =b cos C +c cos B ;b =a cos C +c cos A ;c =b cos A +a cos B .【题型分类汇编】1.(湖南省长沙市2025届高三六校九月大联考解析第15题)记ΔABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知(3b -a )sin A =(b +c )(sin B -sin C ).(1)求角C ;(2)若ΔABC 外接圆的半径为2,求ΔABC 面积的最大值.方法提供与解析:(1)解析:由已知及正弦定理可得(3b -a )a =(b +c )(b -c ),整理得a 2+b 2-c 2=3ab ,∴cos C =a 2+b 2-c 22ab=32,∵C ∈(0,π),∴C =π6.(2)解析:∵ΔABC 外接圆的半径为2,∴csin C=4,得c =2,∴a 2+b 2=4+3ab ,又a 2+b 2≥2ab ,∴ab ≤4(2+3),当且仅当a =b =6+2时,等号成立,∴S ΔABC =12ab sin C ≤12×4(2+3)×12=2+3,即ΔABC 面积的最大值为2+ 3.2.(辽宁省沈阳市郊联体2024年高三上学期开学联考解析第16题)已知函数f (x )=23cos 2x -2025π2+2sin (x -2024π)cos x - 3.(1)求曲线y =f (x )的对称轴;(2)已知25f m -π6=14,m ∈2π3,5π6,求sin2m 的值.解析:(1)f (x )=23cos 2x -2025π2+2sin (x -2024π)cos x -3,=23sin 2x +2sin x cos x -3=2sin x cos x -31-2sin 2x ,=sin2x -3cos2x =2sin 2x -π3,由2x -π3=π2+k π(k ∈Z ),得曲线y =f (x )的对称轴为x =5π12+k π2(k ∈Z );(2)由题意可得f m -π6 =1425,即sin 2m -2π3 =725,又m ∈2π3,5π6 ,则2m -2π3∈2π3,π ,即cos 2m -2π3<0,所以cos 2m -2π3 =-1-sin 22m -2π3 =-2425,故sin2m =sin 2m -2π3 +2π3 =sin 2m -2π3 cos 2π3+cos 2m -2π3 sin 2π3=725×-12 +-2425 ×32=-7+24350.3.(福建泉州市2025届高中毕业班模拟检测(一)解析第15题)记ΔABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知a cos 2C 2+c cos 2A 2=32b .(1)证明:sin A +sin C =2sin B ;(2)若b =2,AB ⋅AC=3,求ΔABC 的面积.方法提供与解析:(1)解析:因为a cos 2C 2+c cos 2A 2=32b ,则a (1+cos C )+c (1+cos A )2=32b ,即a +c +a cos C +c cos A =3b ,由正弦定理可得3sin B =sin A +sin C +(sin A cos C +cos A sin C )=sin A +sin C +sin (A +C )=sin A +sin C +sin (π-B )=sin A +sin C +sin B ,因此sin A +sin C =2sin B .(2)解析:因为sin A +sin C =2sin B ,由正弦定理可得a +c =2b =4,由平面向量数量积的定义可得AB ⋅AC =cb cos A =3,所以2c ⋅b 2+c 2-a 22bc=4+c 2-a 22=3,可得c 2-a 2=2,即(c -a )(c +a )=4(c -a )=2,所以c -a =12,则c =94,a =74,所以cos A =3bc =32×94=23,则A 为锐角,得sin A =1-cos 2A =1-23 2=53,因此S ΔABC =12bc sin A =12=12×2×94×53=354.4.(长沙市雅礼中学2025届高三上学期(9月)综合自主测试解析第16题)在ΔABC 中,角A ,B ,C 的对边分别为a ,b ,c ,ΔABC 的面积为S ,433S =b 2sin (2A +B )sin B+1 .(1)求角A ;(2)若ΔABC 的面积为33,a =13,D 为边BC 的中点,求AD 的长.方法提供与解析:(1)解析:由题意得433S =sin2A cos B +cos2A sin Bsin B+1 ⋅b 2=2sin A cos A cos B +2cos 2A sin B sin B ⋅b 2=2cos A sin (A +B )sin B b 2=2cos A sin C sin B b 2,由正弦定理,得433S =2c cos A b⋅b 2,即433×12bc sin A =2bc cos A ,所以tan A = 3.又A ∈(0,π),所以A =π3.(2)解析:因为ΔABC 的面积为33,所以12bc sin π3=33,所以bc =12.因为a =13,所以b 2+c 2-2bc cos π3=13,即b 2+c 2-bc =13,所以b 2+c 2=25.因为D 是边BC 的中点,所以AD =12(AC +AB),所以|AD |2=14b 2+c 2+2bc cos A =14b 2+c 2+bc =374,所以|AD |=372,所以AD 的长为372.5.(山东省日照市2024-2025学年高三上学期开学校际联考解析第16题)记ΔABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知A =π3,a =2.(1)若sin B -sin C =12,求b ;(2)若sin B +sin C =2sin A ,求ΔABC 的面积.方法提供与解析:(1)解析:(正余弦定理)由正弦定理可得,b sin B =c sin C =a sin A =2sin π3=433,则sin B =34b ,sin C =34c ,由sin B -sin C =12,可得34b -34c =12,即b -c =233由余弦定理可得,a 2=b 2+c 2-2bc cos A ,即4=b 2+c 2-bc ,即4=(b -c )2+bc ,解得bc =83,联立bc =83b -c =233,解得b =433c =233 .(2)解析:(正余弦定理)因为sin B +sin C =2sin A ,由正弦定理的边角互化可得,b +c =2a =4,由余弦定理可得,a 2=b 2+c 2-2bc cos A ,即4=b 2+c 2-bc ,所以4=(b +c )2-3bc ,解得bc =4,则S ΔABC =12bc sin A =12×4×32= 3.6.(黄冈市2024年高三年级9月调研考试解析第16题)函数f (x )=sin ωx ⋅cos ωx +cos 2ωx ,ω>0,函数的最小正周期为π.(1)求函数f (x )的单调递增区间以及对称中心;(2)将函数f (x )的图象先向右平移π8个单位,再向下平移12个单位,得到函数g (x )的图象,在函数g (x )图象上从左到右依次取点A 1,A 2,⋯,A 2024,该点列的横坐标依次为x 1,x 2,⋯,x 2024,其中x 1=π4,x n +1-x n =πn ∈N * ,求g x 1 +g x 2 +⋯+g x 2024 .方法提供与解析:(1)解析:f(x)=12sin2ωx+1+cos2ωx2=12+22sin2ωx+π4,因为f(x)的最小正周期为π,故2π2ω=π,即ω=1,所以f(x)=12+22sin2x+π4,令2kπ-π2≤2x+π4≤2kπ+π2,k∈Z,故kπ-3π8≤x≤kπ+π8,k∈Z,故f(x)的增区间为kπ-3π8,kπ+π8,k∈Z.令2x+π4=lπ,l∈Z,则x=lπ2-π8,l∈Z,故f(x)图象的对称中心为lπ2-π8,12,l∈Z.(2)解析:由题设有g(x)=12-12+22sin2x-π4+π4=22sin2x,则g(x)的周期为π,而x n+3-x n=π3×3=π,故g x n+3=g x n,而g x1=22,g x2=gπ4+π3=22sinπ2+2π3=-24,g x3 =gπ4+2π3=22sinπ2+4π3=-24,故g x1+g x2+⋯+g x2024=g x1+g x2+674g x1+g x2+g x3=22-24+67422-24-24=24.7.(黄冈市2024年高三年级9月调研考试解析第18题)在ΔABC中,角A,B,C所对的边分别为a,b,c.(1)证明:tan A2=1-cos Asin A=sin A1+cos A;(2)若a,b,c成等比数列.(i)设ba=q,求q的取值范围;(ii)求tan A2tan C2的取值范围.方法提供与解析:(1)解析:1-cos Asin A =1-1-2sin2A22sin A2cos A2=2sin2A22sin A2cos A2=tan A2,sin A 1+cos A =2sin A2cos A21+2cos2A2-1=2sin A2cos A22cos2A2=tan A2,故tan A2=1-cos Asin A=sin A1+cos A.(2)解析:(i)由题意设b=aq,c=aq2,由三角形三边关系知q>0a+aq>aq2a+aq2>aqaq+aq2>a,解之得:q∈5-12,5+12.(ii)由(1)的结论可知:tan A2tan C2=sin A1+cos A⋅1-cos Csin C=sin Asin C⋅1-cos C1+cos A=ac⋅1-a2+b2-c22ab1+b2+c2-a22bc=a+c-b a+c+b =a+aq2-aqa+aq2+aq=1+q2-q1+q2+q=1+q2+q-2q1+q2+q=1-2q1+q2+q=1-2q+1q+1∈13,3-52,故tan A2tan C2的取值范围为13,3-52.8.(福建省漳州市2025届高三毕业班第一次教学质量检测解析第15题)在ΔABC 中,A ,B ,C 的对边分别为a ,b ,c ,且满足.请在①(a -b )sin (A +C )=(a -c )(sin A +sin C );②sin π6-C cos C +π3=14,这两个中任选一个作为条件,补充在横线上,并解答问题.(1)求C ;(2)若ΔABC 的面积为53,D 为AC 的中点,求BD 的最小值.方法提供与解析:(1)解析:选择条件①,(a -b )sin (A +C )=(a -c )(sin A +sin C ),则(a -b )sin B =(a -c )(sin A +sin C ),由正弦定理可得(a -b )b =(a -c )(a +c ),即a 2+b 2-c 2=ab ,所以cos C =a 2+b 2-c 22ab=12,由C ∈(0,π),所以C =π3.选择条件②,sin π6-C cos C +π3 =14,即sin π2-π3+C cos C +π3 =14,所以cos 2C +π3 =14,由C ∈(0,π),π3<C +π3<4π3,则cos C +π3 =-12,所以C +π3=2π3,则C =π3.(2)解析:由S =12ab sin C =12ab ×32=53,解得ab =20.又BD =BC +CD ,所以BD 2=(BC +CD )2=BC 2+2BC ⋅CD +CD2=a 2+2a ×12b ×-12 +12b 2=a 2+b 24-12ab ≥ab -12ab =12ab =10,所以|BD|≥10,当且仅当a =10,b =210时等式成立,所以BD 的最小值是10.9.(唐山市2024-2025学年度高三年级摸底考试解析第15题)已知ΔABC 的内角A ,B ,C 的对边分别为a ,b ,c ,3sin2A +cos2A =2,b =2a .(1)求B ;(2)若B 为锐角,AC 边上的高为2+6,求ΔABC 的周长.方法提供与解析:(1)解析:易知3sin2A +cos2A =2sin 2A +π6=2⇒sin 2A +π6=1,所以2A +π6=π2+2k π⇒A =π6+k π(k ∈Z ),因为ΔABC 中A ,B ,C ∈(0,π),所以A =π6,而b =2a ⇒sin B =2sin A =22,则B =π4或B =3π4.(2)解析:由上可知A =π6,B =π4,则C =π-π6-π4=7π12,如图BD ⊥AC ,则BD =2+6,∠BCD =5π12,∠CBD =π12,所以sin A =BD AB⇒AB =22+26,cos ∠CBD =cos π4-π6 =22×32+22×12=6+24=BDBC,则BC =4,AC =42,所以ΔABC 的周长为C ΔABC =AB +BC +AC =22+26+4+42=62+26+4.10.(山东百师联盟2025届高三开学摸底联考解析第15题)已知ΔABC的内角A,B,C的对边分别为a,b,c,C=π3,6b=ab+6c cos A.(1)求b的值;(2)若c=19,求ΔABC的面积.方法提供与解析:(1)解析:因为6b=ab+6c cos A,由正弦定理得6sin B=b sin A+6sin C cos A,即6sin(A+C)=b sin A+6sin C cos A,可得6sin A cos C+6cos A sin C=b sin A+6sin C cos A,整理得6sin A cos C=b sin A,因为A∈(0,π),可得sin A≠0,所以b=6cos C,又因为C=π3,所以b=3.(2)解析:由余弦定理,可得c2=b2+a2-2ab cosπ3,因为b=3,c=19,代入得a2-3a-10=0,解得a=5或a=-2(舍),所以ΔABC的面积S=12ab sin C=12×3×5×sinπ3=1534.11.(2024年9月嘉兴市高三基础测试解析第15题)已知ΔABC的内角A,B,C的对边分别为a,b,c,已知(b+c-a)(b+c+a)=bc.(1)求A;(2)若D为BC边上一点,∠BAD=3∠CAD,AC=4,AD=3,求sin B.方法提供与解析:(1)解析:(b+c-a)(b+c+a)=(b+c)2-a2=b2+2bc+c2-a2=bc,则b2+c2-a2=-bc,所以cos A=b2+c2-a22bc=-12,因为0<A<π,所以A=2π3.(2)解析::由(1)得,A=2π3,因为∠BAD=3∠CAD,所以∠CAD=π6,在ΔACD中,由余弦定理CD2=AD2+AC2-2AD⋅AC cos∠DAC=3+16-23×4×32=7,即CD=7,在ΔACD中由正弦定理CDsin∠DAC=ADsin C,即712=3sin C,所以sin C=327,因为0<C<π3,故cos C=1-sin2C=527,在ΔABC中sin B=sin(A+C)=sin A cos C+cos A sin C=32×527-12×327=217.12.(江西省红色十校2025届高三上学期第一次联考解析第15题)已知ΔABC中,内角A,B,C所对的边分别为a,b,c,且a(1-3cos C)=3c cos A.(1)求ba的值;(2)若c=2,求B最大时ΔABC的面积.方法提供与解析:(1)解析:因为a(1-3cos C)=3c cos A,由正弦定理得sin A(1-3cos C)=3sin C cos A,得sin A=3sin A cos C+3cos A sin C=3sin(A+C)=3sin B,由正弦定理得a=3b,所以ba=13.(2)解析:由余弦定理得cos B=a2+c2-b22ac =9b2+4-b212b=2b3+13b≥22b3⋅13b=223,当且仅当2b3=1,即b =22时取等号,当cos B 取最小值时,B 最大,此时a =3b =322,c =2,sin B =1-cos 2B =13,ΔABC 的面积为12ac sin B =12×322×2×13=22.13.(河北省邯郸市2024-2025学年高三第一次调研解析第15题)设ΔABC 的内角A 、B 、C 的对边分别为a 、b 、c ,且(b +a )(sin ∠ABC -sin ∠BAC )=c (sin ∠ABC -sin C ),BC 、AC 边上的两条中线AD 、BE 相交于点P .(1)求∠BAC ;(2)若AD =7,BE =2,cos ∠DPE =714,求ΔABC 的面积.方法提供与解析:解析:(1)因为(b +a )(sin ∠ABC -sin ∠BAC )=c (sin ∠ABC -sin C ),所以由正弦定理得b 2+c 2-a 2=bc ,由余弦定理得cos ∠BAC =b 2+c 2-a 22bc=12,又0<∠BAC <π,所以∠BAC =π3.(2)因为P 是BC ,AC 边上的两条中线AD ,BE 的交点,所以点P 是ΔABC 的重心.又AD =7,BE =2,∠APB =∠DPE ,所以在ΔABP 中,由余弦定理c 2=AB 2=P A 2+PB 2-2P A ⋅PB cos ∠APB=273 2+43 2-2×273×43×714=4,所以c =2,又BE =2,∠BAC =π3,所以AE =BE =2,所以b =2AE =4,所以ΔABC 的面积为12×4×2×sin π3=2 3.14.(湘豫名校联考2024-2025学年新高考适应性调研考试解析第15题)在ΔABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知c =2,a 2+c 2-b 2=23-2cos A bc .(1)求b 的值;(2)设∠BAC 的平分线交BC 于点D ,若ΔABC 的面积为33,求线段AD 的长.方法提供与解析:(1)解析:在ΔABC 中,由余弦定理得2bc cos A =b 2+c 2-a 2,代入已知条件,得a 2+c 2-b 2=23bc -b 2+c 2-a 2 .整理,得2c 2=23bc ,所以b =3c =6.(2)解析:由于S ΔABC =12bc sin ∠BAC .所以sin ∠BAC =2S ΔABC bc=32.又∠BAC ∈(0,π),所以∠BAC =π3或2π3.所以sin 12∠BAC =12或32,由点D 在∠BAC 的平分线上,知点D 到边AB 和边AC 的距离相等.设这个距离为d ,则S ΔABC =12(b +c )d ,所以d =2S ΔABC b +c =2×332+6=334,所以AD =d sin 12∠BAC=332或32.15.(山东省2024年9月高三七校联考解析第15题)已知锐角ΔABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若a -c =2c cos B .(1)证明:B =2C ;(2)若a=2,求cos Cb +1c的取值范围.方法提供与解析:(1)解析:因为a-c=2c cos B,由正弦定理得sin A-sin C=2sin C cos B,所以sin B cos C+sin C cos B-sin C=2sin C cos B,所以sin B cos C-sin C cos B=sin C⇔sin(B-C)=sin C,而0<B<π,0<C<π,则B-C=C或B-C+C=π,即B=2C或B=π(舍去),故B=2C.(2)解析:因为ΔABC是锐角三角形,所以0<C<π20<2C<π20<π-3C<π2,解得π6<C<π4,所以cos C的取值范围是22<cos C<32,由正弦定理可得:bc=sin Bsin C,则b=sin Bsin C⋅c=sin2Csin C⋅c=2cos C⋅c,所以cos Cb=12c,所以cos Cb+1c=32c,因为a-c=2c cos B,所以2-c=2c cos2C,所以2-c=2c cos2C,所以c=22cos2C+1,所以cos Cb+1c=32c=342cos2C+1=3(2cos2C+1)4=34cos2C-14,因为cos C∈22,32,所以4cos2C-1∈(1,2),所以cos Cb+1c=34cos2C-14的取值范围是34,32.16.(T8联考解析第16题)在ΔABC中,三个内角A,B,C所对的边分别为a,b,c,4cos C+cos(A-B)=3,c=3.(1)求证:a+b=2c;(2)若点M是边AB上靠近点B的三等分点,求CM的最小值.方法提供与解析:(1)解析:由题意得1+cos(A-B)=4[1+cos(A+B)],即2cos2A-B2=4⋅2cos2A+B2,即cos A-B2=2cos A+B2=2sin C2,∵sin A+sin B=sin A+B2+A-B2+sin A+B2-A-B2,即sin A+sin B=2sin A+B2cos A-B2=2sinπ-C2⋅2sin C2=4sin C2cos C2=2sin C,由正弦定理可得a+b=2c.(2)解析:设CM=x,∠CMB=θ,由题可知AM=2,BM=1,在ΔACM中,由余弦定理,得cos(π-θ)=x2+4-b24x,在ΔBCM中,由余弦定理,得cosθ=x2+1-a22x,两式相加得3x2+6=2a2+b2=2a2+(6-a)2=3(a-2)2+24≥24,解得x≥6,∴CM的最小值是6,当且仅当a=2,b=4,c=3时取等号.17.(重庆市南开中学校2025届高三上学期第一次质量检测解析第15题)在ΔABC中,角A,B,C的对边分别为a,b,c,a sin A=b-c 2sin B+c-b2sin C.(1)求A;(2)若ΔABC的面积为3,周长为8,求a.方法提供与解析:(1)解析:(正弦定理)由正弦定理可得:a2=b-c 2b+c-b2c,整理得a2=b2+c2-bc∴cos A=b2+c2-a22bc=bc2bc=12,∴A=π3(2)解析:(余弦定理)由SΔABC=12bc sin A=3可得bc=4,∴a2=b2+c2-bc=(b+c)2-12又a+b+c=8,∴a2=(8-a)2-12,解得a=13 4.。

“三角函数”中考试题分类汇编(含答案)

“三角函数”中考试题分类汇编(含答案)

1、锐角三角函数要点一:锐角三角函数的基本概念 一、选择题1.(2009·漳州中考)三角形在方格纸中的位置如图所示,则tan α的值是( )A .35B .43 C .34 D .452.(2008·威海中考)在△ABC 中,∠C =90°,tan A =13,则sin B =( )A .1010 B .23C .34D .310103.(2009·齐齐哈尔中考)如图,O ⊙是ABC △的外接圆,AD 是O ⊙的直径,若O ⊙的半径为32,2AC =,则sin B 的值是( )A .23 B .32 C .34 D .434.(2009·湖州中考)如图,在Rt ABC △中,ACB ∠=Rt ∠,1BC =,2AB =,则下列结论正确的是( ) A .3sin A =B .1tan 2A = C .3cosB = D .tan 3B =5.(2008·温州中考)如图,在Rt ABC △中,CD 是斜边AB 上的中线,已知2CD =,3AC =,则sin B 的值是( )A .23B .32C .34D .436.(2007·泰安中考)如图,在ABC △中,90ACB ∠=,CD AB ⊥于D ,若23AC =,32AB =,则tan BCD ∠的值为( )(A )2 (B )22 (C )63(D )33二、填空题7.(2009·梧州中考)在△ABC 中,∠C =90°, BC =6 cm ,53sin =A ,则AB 的长是 cm . .(2009·孝感中考)如图,角α的顶点为O ,它的一边在x 轴的正半轴上,另一边OA 上有一点P (3,4),则 sin α= .9.(2009·庆阳中考)如图,菱形ABCD 的边长为10cm ,DE ⊥AB ,3sin 5A =,则这个菱形ACBD的面积= cm 2.答案:60 三、解答题10.(2009·河北中考) 如图是一个半圆形桥洞截面示意图,圆心为O ,直径AB 是河底线,弦CD 是水位线,CD ∥AB ,且CD = 24 m ,OE ⊥CD 于点E .已测得sin ∠DOE =1213.(1)求半径OD ;(2)根据需要,水面要以每小时0.5 m 的速度下降, 则经过多长时间才能将水排干? 【11.(2009·綦江中考)如图,在矩形ABCD 中,E 是BC 边上的点,AE BC =,DF AE ⊥,垂足为F ,连接DE .(1)求证:ABE △DFA ≌△;(2)如果10AD AB =,=6,求sin EDF ∠的值.12.(2008·宁夏中考)如图,在△ABC 中,∠C =90°,sin A =54,AB =15,求△ABC 的周长和tan A 的值.DABCEFOEC D14.(2007·芜湖中考)如图,在△ABC 中,AD 是BC 上的高,tan cos B DAC =∠,(1) 求证:AC=BD ; (2)若12sin 13C =,BC =12,求AD 的长.要点二、特殊角的三角函数值 一、选择题1.(2009·钦州中考)sin30°的值为( )A .32B .22C .12D .33答案:C2.(2009·长春中考).菱形OABC 在平面直角坐标系中的位置如图所示,452AOC OC ∠==°,,则点B 的坐标为( )A .2,B .2),C .211),D .(121),答案:C3.(2009·定西中考)某人想沿着梯子爬上高4米的房顶,梯子的倾斜角(梯子与地面的夹角)不能大于60°,否则就有危险,那么梯子的长至少为( ) A .8米 B .3 C 83米 D 43米4.(2008·宿迁中考)已知α为锐角,且23)10sin(=︒-α,则α等于( ) A.︒50 B.︒60 C.︒70 D.︒805.(2008·毕节中考) A (cos60°,-tan30°)关于原点对称的点A 1的坐标是( )A .1323⎛⎫- ⎪ ⎪⎝⎭,B .3323⎛⎫- ⎪ ⎪⎝⎭,C .1323⎛⎫-- ⎪ ⎪⎝⎭, D .1322⎛⎫- ⎪ ⎪⎝⎭, 6.(2007·襄樊中考)计算:2cos 45tan 60cos30+等于( )(A )1 (B )2 (C )2 (D )3 二、填空题7. (2009·荆门中考)104cos30sin 60(2)(20092008)-︒︒+---=______.答案:238.(2009·百色中考)如图,在一次数学课外活动中,测得电线杆底部B 与钢缆固定点C 的距离为4米,钢缆与地面的夹角为60º,则这条钢缆在电线杆上的固定点A 到地面的距离AB 是 米.(结果保留根号).答案:439.(2008·江西中考)计算:(1)1sin 60cos302-= . 答案:1410.(2007·济宁中考)计算sin 60tan 45cos30︒-︒︒的值是 。

-三角函数中考题汇编含答案

-三角函数中考题汇编含答案

锐角三角函数与特殊角4、(2013四川宜宾)如图,AB是⊙O的直径,弦CD⊥AB于点G,点F是CD上一点,且满足=,连接AF并延长交⊙O于点E,连接AD、DE,若CF=2,AF=3.给出下列结论:①△ADF∽△AED;②FG=2;③tan∠E=;④S△DEF=4.其中正确的是①②④(写出所有正确结论的序号).考点:相似三角形的判定与性质;垂径定理;圆周角定理.分析:①由AB是⊙O的直径,弦CD⊥AB,根据垂径定理可得:=,DG=CG,继而证得△ADF∽△AED;②由=,CF=2,可求得DF的长,继而求得CG=DG=4,则可求得FG=2;③由勾股定理可求得AG的长,即可求得tan∠ADF的值,继而求得tan∠E=;④首先求得△ADF的面积,由相似三角形面积的比等于相似比,即可求得△ADE的面积,继而求得S△DEF=4.解答:解:①∵AB是⊙O的直径,弦CD⊥AB,∴=,DG=CG,∴∠ADF=∠AED,∵∠F AD=∠DAE(公共角),∴△ADF∽△AED;故①正确;②∵=,CF=2,∴FD=6,∴CD=DF+CF=8,∴CG=DG=4,∴FG =CG ﹣CF =2; 故②正确; ③∵AF =3,FG =2, ∴AG ==,∴在Rt △AGD 中,tan ∠ADG ==,∴tan ∠E =;故③错误;④∵DF =DG +FG =6,AD ==,∴S △ADF =DF •AG =×6×=3,∵△ADF ∽△AED , ∴=()2,∴=,∴S △AED =7,∴S △DEF =S △AED ﹣S △ADF =4;故④正确. 故答案为:①②④.点评:此题考查了相似三角形的判定与性质、圆周角定理、垂径定理、勾股定理以及三角函数等知识.此题综合性较强,难度适中,注意掌握数形结合思想的应用.5、(2013年武汉)如图,在平面直角坐标系中,△ABC 是⊙O 的内接三角形,AB =AC ,点P 是⋂AB 的中点,连接P A ,PB ,PC .(1)如图①,若∠BPC =60°,求证:AP AC 3=; (2)如图②,若2524sin =∠BPC ,求PAB ∠tan 的值.第22题图①第22题图②解析:(1)证明:∵弧BC =弧BC ,∴∠BAC =∠BPC =60°.又∵AB =AC ,∴△ABC 为等边三角形∴∠ACB =60°,∵点P 是弧AB 的中点,∴∠ACP =30°,又∠APC =∠ABC =60°,∴AC =3AP .(2)解:连接AO 并延长交PC 于F ,过点E 作EG ⊥AC 于G ,连接OC . ∵AB =AC ,∴AF ⊥BC ,BF =CF .∵点P 是弧AB 中点,∴∠ACP =∠PCB ,∴EG =EF . ∵∠BPC =∠FOC ,∴sin ∠FOC =sin ∠BPC=2524. 设FC =24a ,则OC =OA =25a , ∴OF =7a ,AF =32a .在Rt △AFC 中,AC 2=AF 2+FC 2,∴AC =40a .在Rt △AGE 和Rt △AFC 中,sin ∠FAC =ACFCAE EG =, ∴aaEG a EG 402432=-,∴EG =12a . ∴tan ∠PAB =tan ∠PCB=212412==a a CF EF .一.选择题1.(2013兰州,9,3分)△ABC 中,a 、b 、c 分别是∠A .∠B 、∠C 的对边,如果a 2+b 2=c 2,那么下列结论正确的是( )A .csinA =aB .bcosB =cC .atanA =bD .ctanB =b 考点:勾股定理的逆定理;锐角三角函数的定义.分析:由于a 2+b 2=c 2,根据勾股定理的逆定理得到△ABC 是直角三角形,且∠C =90°,再根据锐角三角函数的定义即可得到正确选项. 解答:解:∵a 2+b 2=c 2,∴△ABC 是直角三角形,且∠C =90°.A .sinA =,则csinA =a .故本选项正确;B .cosB =,则cosBc =a .故本选项错误;C .tanA =,则=b .故本选项错误;第22(2)题图D .tanB =,则atanB =b .故本选项错误.故选A .点评:本题考查了锐角三角函数的定义和勾股定理的逆定理.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可. 2.(2013湖北孝感,8,3分)式子的值是﹣﹣(+1点3 .[2013湖南邵阳,9,3分]在△ABC 中,若⎪⎪⎪⎪⎪⎪sin A - 12 +(cos B - 12 )2=0,则∠C 的度数是( )A .30°B .45°C .60°D .90°知识考点:特殊角的三角函数值,绝对值,非负数的性质.审题要津:根据两个非负数相加和为0,这两个非负数的值都为0可分别求出∠A 、∠B 的角度数,从而求出∠C 的度数.满分解答:解:由题意知⎪⎪⎪⎪⎪⎪sin A - 12 =0,cos B - 12 =0所以∠A =45°,∠B=45°.故∠C=180°-∠A -∠B=180°-45°-45°=90°.故选C.名师点评:本题是常见的计算型试题,考查考生的综合运算能力,熟练掌握特殊角的三角函数值,绝对值,非负数的性质是解题的关键.4.(2013•东营,5,3分)将等腰直角三角形AOB 按如图所示放置,然后绕点O 逆时针旋转90︒至A OB ''∆的位置,点B 的横坐标为2,则点A '的坐标为( )A .(1,1)B .C .(-1,1)D .(答案:C解析:在Rt AOB ∆中,2OB =,45AOB ∠=︒,OAAOB OB∠=,所以2cos 22OA OB AOB =∠==,所以OA '=,过A '作A C y '⊥轴于点C ,在Rt A OC '∆,45A OC '∠=︒,OA '=,sin A CA OC A O''∠=',2sin 21A C A O A OC '''=∠==,又因为⊙O 1A C '==,且点A '在第二象限,所以点A '的坐标为(-1,1). 5. (2013杭州3分)在Rt △ABC 中,∠C =90°,若AB =4,sinA =,则斜边上的高等于( ) A .B .C .D .【答案】B .【解析】根据题意画出图形,如图所示, 在Rt △ABC 中,AB =4,sinA =, ∴BC =ABsinA =2.4, 根据勾股定理得:AC ==3.2,∵S △ABC =AC •BC =AB •CD , ∴CD ==【方法指导】此题考查了解直角三角形,涉及的知识有:锐角三角函数定义,勾股定理,以及三角形的面积求法,熟练掌握定理及法则是解本题的关键6. (2013•衢州3分)如图,小敏同学想测量一棵大树的高度.她站在B 处仰望树顶,测得仰角为30°,再往大树的方向前进4m ,测得仰角为60°,已知小敏同学身高(AB )为1.6m ,则这棵树的高度为( )(结果精确到0.1m ,≈1.73).3.5m【解析】设CD=x ,在Rt △ACD 中,CD=x ,∠CAD=30°, 则AD=x ,在Rt △CED 中,CD=x ,∠CED=60°, 则ED=x ,由题意得,AD ﹣ED=x ﹣x=4,解得:x=2,则这棵树的高度=2+1.6≈5.1m.【方法指导】本题考查了解直角三角形的应用,解答本题关键是构造直角三角形,利用三角函数的知识表示出相关线段的长度.7.(2013四川乐山,6,3分)如图,已知第一象限内的点A 在反比例函数2y x=上,第二象限的点B 在反比例函数k y x=上,且OA ⊥OB ,,则k 的值为【 】A .-3B .-6C .-4D .-8.(2013重庆市,6,4分)计算6tan 45°-2cos 60°的结果是( )A .B .4C .D .5【解析】6tan 45°-2cos 60°=6³1-2³12=5. 【方法指导】本题考查特殊锐角三角函数值.熟练记忆特殊锐角三角函数值,并掌握实数运算法则是准确求解的前提. 10.(2013重庆,9,4分)如图,在△ABC 中,∠A =45°,∠B =30°,CD ⊥AB ,垂足为D ,CD =1,则AB 的长为( )A .2B .32C .133+ D .13+ 【答案】D【解析】在Rt△ACD 中,∠ADC =90°,∠A =45°,∴∠ACD =∠A =45°,∴AD = CD =1. 在Rt△BCD 中,∠BDC =90°,∠B =30°,∴BD =330tan 1tan =︒=B CD ,∴AB =AD +BD =31+,故选D .【方法指导】本题考查了对锐角三角函数的识记,以及用三角函数的知识解直角三角形.求一般三角形边的长度,可以通过求作高,转化为直角三角形解答;在含有特殊角的直角三角形中,已知两个元素(至少有一条边),可以用三角函数的定义、勾股定理、直角三角形两内角互余的关系,求出所有未知的边或角;锐角三角函数,表示的是直角三角形中边、角之间的关系,三者之间可以相互转化:c a A =sin ,则a =c ²sinA ,c =A a sin ;cb A =cos ,则b =c ²cosA ,c =A b cos ;b a A =tan ,则a =btanA ;Aab tan =.11.(2013湖北荆门,11,3分)如图,在半径为1的⊙O 中,∠AOB =45°,则sin C 的值为( )A【答案】B【解析】如图2,过点B 作BD ⊥AC 于D ,∵OB =1,∠AOB =45°,∴BD =ODADADBC(第9题图)(第11题) 图2=1Rt △ABD 中,AB .∴sin C =AB ACB .【方法指导】∵∠AOB =2∠C ,∴∠C =22.5°.此题说明sin22.5cos22.5tan22.51. 二.填空题2.(2013湖北孝感,15,3分)如图,两建筑物的水平距离BC 为18m ,从A 点测得D 点的俯角α为30°,测得C 点的俯角β为60°.则建筑物CD 的高度为 12 m (结果不作近似计算).BCD E CD=BE (中,AE=DE•tan∠ADE=18³tan30°=6(AE=18=12.3.(2013²鞍山,13,2分)△ABC中,∠C=90°,AB=8,cosA=,则BC的长.考点:锐角三角函数的定义;勾股定理.分析:首先利用余弦函数的定义求得AC的长,然后利用勾股定理即可求得BC的长.解答:解:∵cosA=,∴AC=AB•cosA=8³=6,∴BC===2.故答案是:2.点评:本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.4. 2013杭州4分)在Rt△ABC中,∠C=90°,AB=2BC,现给出下列结论:①sinA=;②cosB=;③tanA=;④tanB=,其中正确的结论是(只需填上正确结论的序号【答案】.②③④【解析】如图所示:∵在Rt△ABC中,∠C=90°,AB=2BC,∴sinA==,故①错误;∴∠A=30°,∴∠B=60°,∴cosB=cos60°=,故②正确;∵∠A=30°,∴tanA=tan30°=,故③正确;∵∠B=60°,∴tanB=tan60°=,故④正确.【方法指导】本题考查的是特殊角的三角函数值,熟记各特殊角度的三角函数值是解答此题的关键.5(2013四川内江,22,6分)在△ABC 中,已知∠C=90°,sinA+sinB =,则sinA ﹣sinB= ± . A+2sinAcosA=,∴2sinAcosA=,=6. (2013浙江台州,14,5分)如图,在⊙O 中,过直径AB 延长线上的点C 作⊙O 的一条切线,切点为D ,若AC=7,AB=4,则sinC 的值为 .【答案】:52. 【解析】连结OD ,∵AB=4,则OA=OB=OC=2,OC=5,由于CD 为⊙O 的切线,则∠ODC=90°,∴sinC=25OD OC 。

锐角三角函数与特殊角试题与答案

锐角三角函数与特殊角一、选择题1. (2016·四川达州·3分)如图,半径为3的⊙A 经过原点O 和点C (0,2),B 是y 轴左侧⊙A 优弧上一点,则tan ∠OBC 为( )A .B .2C .D .【考点】圆周角定理;锐角三角函数的定义.【分析】作直径CD ,根据勾股定理求出OD ,根据正切的定义求出tan ∠CDO ,根据圆周角定理得到∠OBC=∠CDO ,等量代换即可.【解答】解:作直径CD ,在Rt △OCD 中,CD=6,OC=2,则OD==4,tan ∠CDO==, 由圆周角定理得,∠OBC=∠CDO ,则tan ∠OBC=,故选:C .2. (2016·四川乐山·3分)如图3,在Rt ABC ∆中,90BAC ∠=o ,AD BC ⊥于点D ,则下列结论不正确...的是 ()A sin AD B AB=()B sin AC B BC =()C sin AD B AC = ()D sin CD B AC =答案:C解析:考查正弦函数的概念。

由正弦函数的定义,知:A 、B 正确,又∠CAD =∠B , 所以,sin sin CD B CAD AC =∠=,D 也正确,故不正确的是C 。

3.(2016广东,8,3分)如图,在平面直角坐标系中,点A 坐标为(4,3),那么cos α的值是( )A 、34B 、43C 、35D 、45 答案:D考点:三角函数,勾股定理。

解析:过点A 作AB 垂直x 轴与B ,则AB =3,OB =4, 由勾股定理,得OA =5,所以,4cos 5OB OA α==,选D 。

4. (2016年浙江省衢州市)如图,AB 是⊙O 的直径,C 是⊙O 上的点,过点C 作⊙O 的切线交AB 的延长线于点E ,若∠A=30°,则sin∠E 的值为( )A .B .C .D .【考点】切线的性质.【分析】首先连接OC ,由CE 是⊙O 切线,可证得OC⊥CE,又由圆周角定理,求得∠BOC 的度数,继而求得∠E 的度数,然后由特殊角的三角函数值,求得答案.【解答】解:连接OC ,∵CE 是⊙O 切线,∴OC⊥CE,∵∠A=30°,∴∠BOC=2∠A=60°,∴∠E=90°﹣∠BOC=30°,∴sin∠E=sin30°=.故选A .αo xyA5.(2016·山东烟台)如图,是我们数学课本上采用的科学计算器面板,利用该型号计算器计算cos55°,按键顺序正确的是()A.B.C.D.【考点】计算器—三角函数;计算器—数的开方.【分析】简单的电子计算器工作顺序是先输入者先算,其中R﹣CM表示存储、读出键,M+为存储加键,M﹣为存储减键,根据按键顺序写出式子,再根据开方运算即可求出显示的结果.【解答】解:利用该型号计算器计算cos55°,按键顺序正确的是.故选:C.6.(2016·山东烟台)如图,○O的半径为1,AD,BC是⊙O的两条互相垂直的直径,点P 从点O出发(P点与O点不重合),沿O→C→D的路线运动,设AP=x,sin∠APB=y,那么y 与x之间的关系图象大致是()A.B.C.D.【考点】动点问题的函数图象.【分析】根据题意确定出y与x的关系式,即可确定出图象.【解答】解:根据题意得:sin∠APB=,∵OA=1,AP=x,sin∠APB=y,∴xy=1,即y=(1<x<2),图象为:,故选B.7.(2016•辽宁沈阳)如图,在Rt△ABC中,∠C=90°,∠B=30°,AB=8,则BC的长是()A. B.4 C.8D.4【考点】解直角三角形.【分析】根据cosB=及特殊角的三角函数值解题即可.【解答】解:∵在Rt△ABC中,∠C=90°,∠B=30°,AB=8,cosB=,即cos30°=,∴BC=8×=4;故选:D.8. (2016兰州,4,4分)在Rt △ ABC中,∠C=90°,sinA=3/5,BC=6,则 AB=()。

九年级数学下册第二十八章锐角三角函数28.1锐角三角函数28.1.3特殊角的三角函数值练习新人教版

2018-2019学年九年级数学下册第二十八章锐角三角函数28.1 锐角三角函数28.1.3 特殊角的三角函数值同步练习(新版)新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018-2019学年九年级数学下册第二十八章锐角三角函数28.1 锐角三角函数28.1.3 特殊角的三角函数值同步练习(新版)新人教版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018-2019学年九年级数学下册第二十八章锐角三角函数28.1 锐角三角函数28.1.3 特殊角的三角函数值同步练习(新版)新人教版的全部内容。

课时作业(十八)[28.1 第3课时特殊角的三角函数值]一、选择题1.2018·大庆计算2cos60°的结果为()A.1 B.错误! C。

错误! D。

错误!2.化简:错误!=()A.1-错误! B。

错误!-1C.0 D.1-33.用计算器计算cos44°的结果(精确到0.01)是()A.0.90 B.0.72 C.0.69 D.0。

664.已知cosθ=0.7415926,则∠θ约为()A.40° B.41° C.42° D.43°5.如图K-18-1,在△ABC中,∠ACB=90°,∠ABC=26°,BC=5.若用科学计算器求边AC的长,则下列按键顺序正确的是( )图K-18-1A。

错误!错误!错误!错误!错误!错误! B.错误!错误!错误!错误!错误!错误!C.错误!错误!错误!错误!错误!错误!D.错误!错误!错误!错误!错误!错误!6.如图K-18-2,以点O为圆心,任意长为半径画弧,与射线OM交于点A,再以点A为圆心,OA长为半径画弧,两弧交于点B,画射线OB,则sin∠AOB的值为( )图K-18-2A.错误!B.错误!C.错误! D。

2019年全国各地中考数学试题分类汇编(第一期)专题27锐角三角函数与特殊角(含解析)

.选择题【解析】【解答】解:A. •••矩形 ABCD ••• AB=DC / ABC / DCB 90°, 又••• BC=CB • △ ABC^A DCB( SAS , .•/ BDC / BA(= a , 故正确,A 不符合题意; B. •••矩形 ABCD • / AB(=90°, 在 Rt △ ABC 中,I / BAC a , AB=mBC AB• BC=AB- tan a =mtan a ,D. v 矩形 ABCD • BD=AC=故正确,D 不符合题意; 故答案为:C.【分析】A.由矩形性质和全等三角形判定 SAS 可得△ ABC^A DCB 根据全等三角形性质可得/ BDC / BAC a ,故 A 正确;B.由矩形性质得/ ABC 90。

,在Rt A ABC 中,根据正切函数定义可得 BC=AB- tan a =mtan a ,锐角三角函数与特殊角 如图,矩形ABCD 勺对角线交于点 )O,已知 AB=m / BA(=Z a ,B. BC=m- tan aC.AGD.BD=玄• tan a••• AC =BD 由C 知AG =1. (2019?浙江金华? 3分)则下列结论错误的是(A. / BDC / a "I 2sinn【答案】 C【考点】锐角三角函数的定义故正确,B 不符合题意; C. v 矩形 ABCD • / ABC 90。

, 在 Rt △ ABC 中,v/ BAC a , AB=m故错误,C 符合题意;故正确;C. 由矩形性质得/ ABC 90。

,在Rt △ ABC 中,根据余弦函数定义可得 AC=-丄空= ,cosc 1 cose 1再由A (= AC 即可求得AO 长,故错误;D. 由矩形性质得 AC=BD 由C 知AC =丄址<=二里玉,从而可得BD 长,故正确;co 必 cos^2.(2019?湖北孝感? 3分)如图,正方形 ABCD 中,点E.F 分别在边 CD AD 上, BE 与CFBCE PA CDF(SAS ,得/ CBE =Z DCF 所以/ CG = 90°,根据等角的余弦可得CG 的长,可得结论.【解答】解:正方形 ABCDK : BC = 4,••• BC= CD= AD= 4,Z BC =Z CD = 90°, •/ AF = DE = 1, •••DF = CE = 3,• BE = CF = 5, 在^ BCE^ CDF 中, BOCD ” ZBCE=ZOT , I.CE=DFBd CDF(SAS ,:丄 CBE =Z DCF•••/ CBE +/ CEB=Z ECG /CEB= 90°=/ CGEcos / CB = cos / ECG=,;,BE CE• - \ CG=「,535• GF = CF- CG= 5-L = \5 5DE= AF = 1,则GF 的长为( )12C.【分析】证明△交于点G.若BG= 4,A. 13故选:A.【点评】此题主要考查了正方形的性质,全等三角形的判定和性质,勾股定理,锐角三角函数,证明△ BCE^A CDF是解本题的关键.3. (2019?湖南怀化?4分)已知/ a为锐角,且sin a =,则Z a=()2A. 30°B. 45°C. 60°D. 90°【分析】根据特殊角的三角函数值解答.【解答】解:T Z a为锐角,且sin a = 1 ,2:丄 a = 30 ° .故选:A.【点评】此题考查的是特殊角的三角函数值,属较简单题目.4. (2019?湖南湘西州?4分)如图,在△ ABC中,Z C= 90°, AC= 12, AB的垂直平分线EF交AC于点D,连接BD若cos Z BDC=3,贝U BC的长是()A. 10B. 8C. 4 二D. 2 7【分析】设CD= 5x, BD= 7x,贝U BC= 2 7x,由AC= 12即可求x,进而求出BC【解答】解:•••/ C= 90°, cosZ BDC=,设CD= 5x, BD= 7x,BC= 2 x,••• AB的垂直平分线EF交AC于点D,AD= BD= 7x,••• AC= 12x ,•/ AC= 12 ,•- x = 1 ,• BC= 2 ■■;故选:D.【点评】本题考查直角三角形的性质;熟练掌握直角三角形函数的三角函数值,线段垂直平分线的性质是解题的关键.二.填空题1. (2019?湖北孝感?3分)如图,在P处利用测角仪测得某建筑物AB的顶端B点的仰角为60°,点C的仰角为45。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1页(共10页) 2016年12月14日特殊角的三角函数 一.填空题(共30小题) 1.计算cos60°= . 2.tan60°= . 3.求值:sin60°﹣tan30°= . 4.2cos30°= . 5.如图,在直角三角形ABC中,∠C=90°,AC=5,AB=10,则∠A= 度.

6.计算:sin60°﹣cot30°= 7.若tan(x+10°)=1,则锐角x的度数为 . 8.在等腰Rt△ABC中,AB=AC,则tanB= . 9.计算:sin45°+cos45°﹣tan30°sin60°= . 10.计算:sin245°+cot30°•tan60°= . 11.计算cos245°+tan60°cos30°的值为 . 12.计算:|sin60°•tan30°﹣1|= . 13.计算:1﹣2sin30°= . 14.计算sin30°+cos245°= .

15.∠A是锐角,若cosA=,则∠A的余角度数为 . 16.若2cosα=1,则锐角α= 度. 17.计算:sin230°+cos60°•sin30°= .

18.计算sin230°﹣cos45°tan60°+﹣tan45°. 19.已知锐角A满足关系式4sin2A﹣1=0,则sinA的值为 . 20.若θ为三角形的一个锐角,且2sinθ﹣=0,则tanθ= . 21.计算:sin245°+cot60°•cos30°= . 22.计算:cot30°+cot45°= . 23.计算:2sin60°+tan45°= . 24.已知α是锐角,且tan(90°﹣α)=,则α= . 25.已知a为锐角,tan(90°﹣a)=,则a的度数为 .

26.°= . 27.如果锐角α满足2cosα=,那么α= . 28.sin60°的值为 . 29.计算:cos30°﹣sin60°= . 30.∠A的余角为60°,则∠A的补角为 °,tanA= . 第2页(共10页) 第3页(共10页)

2016年12月14日特殊角的三角函数 参考答案与试题解析 一.填空题(共30小题) 1.(2016•湘潭)计算cos60°= .

【分析】根据记忆的内容,cos60°=即可得出答案. 【解答】解:cos60°=. 故答案为:. 【点评】此题考查了特殊角的三角函数值,属于基础题,注意掌握特殊角的三角函数值,这是需要我们熟练记忆的内容.

2.(2016•黔东南州)tan60°= . 【分析】根据特殊角的三角函数值直接得出答案即可. 【解答】解:tan60°的值为. 故答案为:. 【点评】本题考查的是特殊角的三角函数值,熟记各特殊角的三角函数值是解答此题的关键.

3.(2016•闸北区一模)求值:sin60°﹣tan30°= . 【分析】根据sin60°=,tan30°=得到原式=﹣,然后通分合并即可. 【解答】解:原式=﹣ =﹣ =. 故答案为. 【点评】本题考查了特殊角的三角函数值:sin60°=,tan30°=.也考查了二次根式的运算.

4.(2016•淮阴区校级二模)2cos30°= . 【分析】根据cos30°=,继而代入可得出答案. 【解答】解:原式=. 第4页(共10页)

故答案为:. 【点评】此题考查了特殊角的三角函数值,属于基础题,解答本题的关键是掌握一些特殊角的三角函数值,需要我们熟练记忆,难度一般.

5.(2016•厦门校级一模)如图,在直角三角形ABC中,∠C=90°,AC=5,AB=10,则∠A= 30 度.

【分析】根据条件求出,即可得到cos∠A的值,再根据特殊角的三角函数值求出∠A的度数. 【解答】解:∵∠C=90°,AC=5,AB=10,

∴cosA===, ∴∠A=30°, 故答案为:30°. 【点评】此题主要考查了锐角三角函数定义,以及特殊角的三角函数值,解决此题的关键是求出cosA.

6.(2016•杨浦区一模)计算:sin60°﹣cot30°= 【分析】根据特殊角的三角函数值计算. 【解答】解:原式=﹣=﹣. 【点评】本题考查特殊角三角函数值的计算,特殊角三角函数值计算在中考中经常出现,题型以选择题、填空题为主. 【相关链接】特殊角三角函数值:

sin30°=,cos30°=,tan30°=,cot30°=;

sin45°=,cos45°=,tan45°=1,cot45°=1; sin60°=,cos60°=,tan60°=,cot60°=.

7.(2016•富顺县校级一模)若tan(x+10°)=1,则锐角x的度数为 20° . 【分析】利用特殊角的三角函数值得出x+10°的值进而求出即可. 【解答】解:∵tan(x+10°)=1,

∴tan(x+10°)==, ∴x+10°=30°, 第5页(共10页)

∴x=20°. 故答案为:20°. 【点评】此题主要考查了特殊角的三角函数值,正确记忆相关角对应的函数值是解题关键.

8.(2016•洪泽县一模)在等腰Rt△ABC中,AB=AC,则tanB= 1 . 【分析】根据等腰直角三角形的性质,可得∠B,根据特殊角三角函数值,可得答案. 【解答】解:由等腰Rt△ABC中,AB=AC,得 ∠B=45°. tanB=tan45°=1, 故答案为:1. 【点评】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.

9.(2016•抚顺县一模)计算:sin45°+cos45°﹣tan30°sin60°= ﹣ . 【分析】把特殊角是三角函数值代入计算即可. 【解答】解:原式=+﹣×

=﹣. 故答案为:﹣. 【点评】本题考查的是特殊角是三角函数值的计算,熟记30°、45°、60°角的各种三角函数值是解题的关键.

10.(2016•普陀区一模)计算:sin245°+cot30°•tan60°= . 【分析】直接利用特殊角的三角函数值代入求出答案. 【解答】解:原式=sin245°+cot30°•tan60°

=()2+×

=. 故答案为:. 【点评】此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.

11.(2016•河西区模拟)计算cos245°+tan60°cos30°的值为 2 . 【分析】直接利用特殊角的三角函数值代入求出答案. 【解答】解:cos245°+tan60°cos30°

=()2+×

=+ =2. 第6页(共10页)

故答案为:2. 【点评】此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.

12.(2016•江西模拟)计算:|sin60°•tan30°﹣1|= 0.5 . 【分析】结合特殊角的三角函数值求解即可.

【解答】解:原式=|•﹣1|

=|﹣1| =|﹣0.5| =0.5. 故答案为:0.5. 【点评】本题考查了特殊角的三角函数值,解答本题的关键在于熟练掌握各特殊角的三角函数值.

13.(2016•封开县二模)计算:1﹣2sin30°= 0 . 【分析】根据特殊角的三角函数值进行计算即可.

【解答】解:原式=1﹣2× =1﹣1 =0, 故答案为0. 【点评】本题考查了特殊角的三角函数值,掌握特殊角的三角函数值是解题的关键.

14.(2016春•沂源县期中)计算sin30°+cos245°= 1 . 【分析】把特殊角的三角函数值代入计算即可.

【解答】解:原式=+()2

=+ =1, 故答案为:1. 【点评】本题考查的是特殊角是三角函数值的计算,熟记30°、45°、60°角的各种三角函数值是解题的关键.

15.(2016春•淮安校级期中)∠A是锐角,若cosA=,则∠A的余角度数为 60° . 【分析】结合特殊角的三角函数值进行求解即可. 【解答】解:∵∠A是锐角,

且cosA=, ∴∠A=30°, ∴∠A的余角的度数为:90°﹣30°=60°. 故答案为:60°. 第7页(共10页)

【点评】本题考查了特殊角的三角函数值,解答本题的关键在于熟练掌握各特殊角的三角函数值.

16.(2016春•会宁县校级月考)若2cosα=1,则锐角α= 60 度. 【分析】根据特殊角的三角函数值求解. 【解答】解:∵2cosα=1,

∴cosα=, ∴α=60°. 故答案为:60. 【点评】本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.

17.(2016秋•道外区校级月考)计算:sin230°+cos60°•sin30°= . 【分析】直接利用特殊角的三角函数值进而代入数据得出答案. 【解答】解:sin230°+cos60°•sin30°

=+×

=. 故答案为:. 【点评】此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.

18.(2016秋•安丘市校级月考)计算sin230°﹣cos45°tan60°+﹣tan45°. 【分析】首先代入特殊角的三角函数值,然后进行二次根式的运算即可.

【解答】解:原式=()2﹣×+﹣1 =﹣+﹣1 = 【点评】本题考查了特殊角的三角函数值,正确进行二次根式的运算是关键.

19.(2016秋•江阴市校级月考)已知锐角A满足关系式4sin2A﹣1=0,则sinA的值为 . 【分析】利用直接开平方法求得sinA=±,结合A是锐角可以推知sinA=. 【解答】解:4sin2A﹣1=0, sin2A=,

相关文档
最新文档