统计学课件(第六章)

合集下载

统计学课件 第六章 统计量及其抽样分布

统计学课件 第六章 统计量及其抽样分布

张占贞 张占贞
统计学
STATISTICS (第三版 第三版)
充分统计量(略)
充分统计量: 能把总体中包含的信息一点都不损失的提 取出来的统计量,称为充分统计量。
作者:青岛科技大学经济与管理学院 作者:青岛科技大学经济与管理学院
张占贞 张占贞
统计学
STATISTICS (第三版 第三版)
§6.2 抽样分布 及几个重要分布
作者:青岛科技大学经济与管理学院 作者:青岛科技大学经济与管理学院
张占贞 张占贞
统计学
STATISTICS (第三版 第三版) 总体
抽样分布
(sampling distribution)
计算样本统计量 计算样本统计量
样 本
例如:样本均值 例如:样本均值 、比例、方差 、比例、方差
作者:青岛科技大学经济与管理学院 作者:青岛科技大学经济与管理学院 张占贞 张占贞
张占贞 张占贞
统计学
STATISTICS (第三版 第三版)
F分布
(F distribution)
1.
由统计学家费希尔(R.A.Fisher) 提出的,以其姓 氏的第一个字母来命名 设 若 U 为 服 从 自 由 度 为 n1 的 χ 2 分 布 , 即 U~χ2(n1) , V 为服从自由度为 n2 的 χ 2 分布,即 V~χ2(n2), 且 U 和 V 相互独立,则称 F 为服从 自由 度n1和n2的F分布,记为
µ=
∑x
i =1
N
i
N
N i =1
= 2 .5
σ2 =
2 ( − ) x µ ∑ i
N
= 1.25
张占贞 张占贞
作者:青岛科技大学经济与管理学院 作者:青岛科技大学经济与管理学院

卫生统计学第八版第六章统计推断 PPT

卫生统计学第八版第六章统计推断 PPT

第二节 假设检验(二Fra bibliotek基本步骤第二节 假设检验
(二)基本步骤
第二节 假设检验
(二)基本步骤
第二节 假设检验
(三)假设检验与置信区间
第二节 假设检验
(三)假设检验与置信区间
置信区间(a)~(c)均不包含原假设 ,意 味着相应的差异具有统计学意义: (a)提示差异具有实际意义; (b)提示可能具有实际意义; (c)提示实际意义不大; 置信区间(d)与(e)均无统计学意义: (d)提示可能样本量不足; (e)属于可以接受零假设的情况。
第一节 置信区间的估计
x
第一节 置信区间的估计
(一)统计信心
统计推断
定义 统计推断是基于样本统计量对总体参数给出统计学结论
常用方法 置信区间估计和假设检验 注:为避免繁杂的计算而掩盖统计推断的基本逻辑和核心思想,本 章以总体方差已知的情形为例,叙述推断总体均数的过程
第一节 置信区间的估计
(一)统计信心
第二节 假设检验
第二节 假设检验
(一)基本思想
假设检验:假设是指我们对总体特征(如参数、分布)的 某种推测,进而用概率来判断样本数据所提供的信息和我 们对总体特征猜想的一致性,从而结合专业知识判断这一 猜想的正确性。
第二节 假设检验
(一)基本思想
例2 为了解某高校在校大学生2015年平均网上购物花费情况: 随机抽取该校500名大一和500名大四的学生,算得大一平均
第一节 置信区间的估计
(一)统计信心
第一节 置信区间的估计
(一)统计信心
第一节 置信区间的估计
(二)置信区间
来自同一总体的25次抽样及其95%置信区间
Cz
第一节 置信区间的估计

新教材高中数学第6章统计学初步3统计图表课件湘教版必修第一册

新教材高中数学第6章统计学初步3统计图表课件湘教版必修第一册

解析 (1)因为总数是100,区间[0.5,1)内的频率为0.08,区间[4,4.5]内的频率为0.02, 所以区间[0.5,1)内的频数为8,区间[4,4.5]内的频数为2,
则x=100-(4+8+15+22+14+6+4+2)=25,y= 6 =0.06.
100
(2)因为从左往右数第4个矩形对应的频率为0.22,且表中的数据组距为0.5, 所以它的高度为0.22÷0.5=0.44.
6.3 统计图表
1 |基本的统计图表
统计图表 条形统计图
扇形统计图 折线统计图
特点 主要用于直观描述不同类别或分组数据的频数 和频率,适用于描述离散型的数据 主要用于直观描述各类数据占总数的比例 主要反映数据的发展变化趋势
2 |频率分布表和频率分布直方图
绘制频率分布表和频率分布直方图的步骤:
1.计算极差.一组数据中① 最大值 与② 最小值 的差.
如果将频率分布直方图中的左边和右边各延长一个分组,取各相邻小矩形⑤ 上底边 的中点,用线段顺次连接各点,就得到频率分布折线图.
判断正误,正确的画“ √” ,错误的画“ ✕” . 1.从频率分布直方图中得不出原始的数据信息. ( √ ) 2.在频率分布直方图中,各个小矩形的面积和为1. ( √ ) 3.频率分布直方图中小矩形的面积表示该组数据的个数.( ✕ ) 提示:频率分布直方图中小矩形的面积表示该组数据的频率. 4.画频率分布直方图时,分组越多越好. ( ✕ ) 5.频率分布折线图反映数据频率分布的规律. ( √ )
|频率分布直方图
1.频率分布直方图的优缺点:频率分布直方图能够直观地表明数据分布的形状,一 般呈中间高、两端低的“峰”状结构.但是从直方图本身得不到具体的数据内

统计学课件--第六章 变异指标-精选文档60页

统计学课件--第六章  变异指标-精选文档60页

04.12.2019
课件
8
第六章 变异指标
第一节 变异指标的基本理论
二、变异指标的种类
以标志值之间相互比较说明变异情况
全距 分位差
以平均数为比较标准来说明标志的变异情况 平均差 方差 标准差
平均差系数
标准差系数
以正态分布为标准说明分配数列偏离情况的指标
峰度 偏度
04.12.2019
课件
9
第六章 变异指标
课件
27
第六章 变异指标
第三节 标准差和标准差系数
标准差的简捷计算 目的: 避免离差平方和计算过程的出现
变量值平方 的平均数
X2X2
变量值平均 数的平方
简单标准差

X2
N
NX
2

加权标准差

X2 f f
Xf f2
04.12.2019
第一节 变异指标的基本理论 第二节 全距、分位差和平均差
第三节 标准差和标准差系数
第四节 偏度和峰度
第五节 变异指标的应用
04.12.2019
课件
2
第六章 变异指标
第一节 变异指标的基本理论
一、离种趋势的涵义 指总体中各单位标志值背离
离中趋势 分布中心的规模或程度,用 标志变异指标来反映。
反映统计数据差异程度的综
三、平均差
【例B】计算下表中某公司职工月工资的平均差。
月工资 (元)
组中值(元)
X
职工人数(人)
f
300以下
250
208
300~400
350
314
400~500
450
382
500~600

应用统计学第6章参数估计(置信区间)ppt课件

应用统计学第6章参数估计(置信区间)ppt课件
从中解得
P{(n1)S2 2(n1)S2 }1
22(n1)
(n1) 2
p1 p t精选版2
20
于是 所求置信区间为:
(n1)S2 (n1)S2
[2
, 2(n1)
2 1
] 2(n 的 95% 置
信解区:间由。例1,S2 =196.52,n =10,
(1)实用中应在保证足够可靠的前提 下,尽量使得区间的长度短一些 .
(2)增大样本容量n,可在保证足够可 靠的前提下,提高估计的精度.
n
n
L 2 z /2
n
ppt精选版
31
估计均值μ时的样本容量n确定
1.指定估计的精度:
dX dL2z/2
n
2.指定估计的可靠度1-α;
3.确定σ:
(1)由历史资料确定;
对给定的置信水平1,
查正态分布表得 z 2 ,
使 P{|Xn|z2}1
ppt精选版
6
从中解得:
P{X nz2
Xnz2}
1
于是所求的 置信区间为
[X nz2, X nz2]
也可简记为
X n z 2
ppt精选版
7
求置信区间的一般步骤(1-2):
给定置信水平1:
1. 寻找参数的一个良好的点估计
T (X1,X2,…Xn)
实用中应在保证足够可靠的前提下,尽
量使得区间的长度短一些 .
ppt精选版
28
置信度与置信区间长度的关系
考虑单个正态总体μ的置信区间: 当σ已知时,
Z X n
~N(0, 1)
例如,由 P(-1.96≤U≤1.96)=0.95
我们得到 均值 的置信水平为 1 的

卫生统计学课件_第六章_假设检验

卫生统计学课件_第六章_假设检验
16
公式:t
自由度:对子数 - 1
适用条件:两组配对计量资料。 例题:p. 34, 例8
三、两个小样本均数比较的 t 检验
▲目的:由两个样本均数的差别推断两样本
所代表的总体均数间有无差别。 ▲计算公式及意义: t 统计量: 自由度:n1 + n2 –2
18
▲ 适用条件:
(1)已知/可计算两个样本均数及它们的标准差 ;
38
(2)当不能拒绝
II 类错误的概率 β 值的两个规律:
1. 当样本量一定时, α 愈小, 则 β 愈大,反之…; 2.当 α 一定时, 样本量增加, β 减少.
39
4. 正确理解P值的意义, P值很小时“拒绝H0 ”,P值的
大小不要误解为总体参数间差异的大小; 拒绝H0 只是说 差异不为零。 统计学中的差异显著或不显著,和日常生活中所说的差 异大小概念不同. (不仅区别于均数差异的大小,还区别 于均数变异的大小)
统计推断
用样本信息推论总体特征的过程。
包括:
参数估计: 运用统计学原理,用从样本计算出来的统计
指标量,对总体统计指标量进行估计。
假设检验:又称显著性检验,是指由样本间存在的差
别对样本所代表的总体间是否存在着差别做出判断。
第一节
▲显著性检验;
假设检验
▲科研数据处理的重要工具;
▲某事发生了:
是由于碰巧?还是由于必然的原 因?统计学家运用显著性检验来 处理这类问题。
45
41
是非判断: ( )1.标准误是一种特殊的标准差,其 表示抽样误差的大小。 ( )2.N一定时,测量值的离散程度越 小,用样本均数估计总体均数的抽样误差 就越小。 ( )3.假设检验的目的是要判断两个样 本均数的差别有多大。

统计学课件第六章抽样调查PPT课件


特点
每个样本被选中的机会都 相等,样本的代表性相对 较好。
分层抽样
定义
先将总体按一定标准分成 若干层次或群,然后从各 层或群中按随机原则抽取 样本。
方法
分类抽样、比例抽样、类 型抽样。
特点
能够提高样本的代表性, 降低误差,减少资源浪费。
系统抽样
定义
先将总体中的所有个体按某种顺序排列,然后按 照固定的间隔或系统选取样本。
改进抽样方法
采用更科学的抽样方法和技术,如分层抽样、系统抽样等,以提 高样本的代表性。
提高样本代表性
在抽样过程中尽量减少非随机误差,如无回答、不完整数据等, 以提高样本对总体的代表性。
05 抽样调查的组织与实施
抽样调查的设计
确定调查目的
明确调查的目标和意图,为后 续的抽样设计提供指导。
确定调查对象
合理安排问题的顺序、布局和格式,以提高 问卷的易用性和回答率。
确定调查方式
选择合适的调查方式,如自填式、面访式等, 并确定数据收集的途径。
测试与修正
对问卷进行测试和修正,确保问卷的准确性 和可靠性。
调查的实施与质量控制
培训调查员
对调查员进行培训,确保他们了解调 查目的、问卷内容、调查方法等。
现场实施
将总体分成若干个群集或组,然后从每个 群集或组中抽取一定数量的样本,也称为 簇抽样或组抽样。
抽样调查的应用场景
01
02
03
04
市场调查
通过对目标市场的部分消费者 进行调查,了解市场需求、消 费者行为和产品反馈等信息。
社会调查
通过对一定范围内的社会成员 进行调查,了解社会现象、人 口状况和社会问题等信息。
统计学课件第六章抽样调查ppt课 件

第六章 时间序列分析 《应用统计学——以Excel为分析工具》PPT课件

节变动中的“季节”一词是广义的,它不仅是指一年中的 四季,而是泛指任何一种有规律的、按一定周期(季、月 、旬、周、日)重复出现的变化。
• (3)每个周期变化强度大体相同。
• 二、季节变动的分析方法
• 季节变动是一种各年变化强度大体相同且每年重现的有规 律的变动。测定现象季节变动的主要方法是计算季节比率 。季节比率,又称季节指数,是各月(季)平均数与全年 总月(季)平均数的比值,它以全期的总平均水平为基准 (100%),用百分比形式来反映各月(季)平均水平相 对于总平均水平的高低程度。季节比率高说明“旺”,反 之说明“淡”。
剔除法。
• 第一步:根据各年的月份(或季度)数据,计算12个月( 或4个季度)移动平均趋势值T;
• 第二步:将各实际观察值Y除以相应趋势值T,即TY S I , 记为Y
• 第三步:将S×I重新按月(季)排列,求得同月(或同
• 第三,如果对同一时间序列有几种趋势线可供选择,可通过参 数估计的若干统计量指标比较选择。
第四节 时间序列的季节变动分析
• 一、季节变动的含义 • 季节变动是指客观现象因受自然因素或社会经济因素影响
,在一年内形成的有规律的周期性变动。它是时间序列的 又一个主要构成要素。
• 季节变动有三个主要特点: • (1)季节变动每年重复进行; • (2)季节变动按照一定的周期进行;需要注意的是,季
• 二、水平分析
• 时间序列的水平分析是指利用一系列的水平指标对现象在 某一时期或时点上发展变化的水平进行分析,以揭示社会 经济现象的发展变化过程和规律。
• 1、发展水平分析
• 时间序列中,每个统计指标的数值就是发展水平。它一般
是总量指标 。
• 常将所研究的那个时期的指标数值叫做报告期水平,用来 进行比较的基础时期水平叫做基期水平。通常,报告期是 指离分析者比较近的那个时期,基期是指离分析者较远的 那个时期。报告期和基期的划分是相对的,而是随着研究 的问题不同而变化的。

统计学基础课件 第6章 指数分析


2020年11月27日/下午5时46分
【例 6-4】根据表 6-6 所示的资料,计算商品价格总指数。
产品类别 1
计量单位 万件
表 6-6 价格平均指数计算表
价格指数 kp
p1 p0
报告期销售额 q1 p1
1.10
3850
q1 p1 k
3500
2
万件
1.00
1820
1820
3

1.10
1188
1080
指数。下面分别加以阐述。
2020年11月27日/下午5时46分
6.2 总指数
2. 加权算术平均指数 加权算术平均指数,是以个体数量指标指数以及基期的总量指标为基础编制 而成的。其计算公式为:
kq
kq q0 p0 q0 p0
q1 q0
q0 p0
q0 p0
式中: kq ——加权算术平均指数;
kq
2020年11月27日/下午5时46分
6.2 总指数
3. 质量指标综合指数的编制 编制质量指标综合指数采用报告期的数量指标作同度量因素,计算公式为:
kp
q1 p1 q1 p0
式中, k p 为质量指标综合指数。
通过以上的介绍可以看出,无论是数量指标综合指数还是质量指标综合指数, 其编制的关键是合理确定同度量因素。在确定同度量因素时,应特别注意以下两 点:一是同度量因素的确定要符合指标之间的经济联系;二是为了起到同度量的 作用,计算某一综合指数时分于和分母的同度量因素,必须固定在同一时期。
建立指数体系的依据是现象之间客观存在的经济联系,并且这种经济联系可 以通过相应的指标关系式表现出来。如:
总产值=产品产量×价格 总成本=产品产量×单住成本

统计学赛课获奖课件


K q q1 p0 48000 114.29%

q0 p0 42000
统 计
二、质量指标综合指数


理 质量指标指数是阐明总体内涵数量变动情况旳比较指标指数。
例如:价格指数、成本指数
例:建立商品价格指数
商品销售量和商品价格资料
商品名称 计量单位
销售量
价格
基期q0 报告期q1 基期q0 报告期q1
• 从区别看:一是在处理复杂总体不能直接加总问题上旳思 绪不同。综合指数是经过引进同度量原因,先计算出总体旳
统 计算商品价格指数,同度量原因为商品销售量,一样

学 有个问题就是将销售量固定在什么时期。
原 理
假如固定在基期,称为拉式公式,计算公式为:
K p q0 p1
q0 p0
假如固定在报告期,称为派式公式,计算公式为:
第 六
K p q1 p1
q1 p0


计 学
按照前面旳解释,先有物,后有价, q1p0表达报告
例:试建立商品销售量综合指数。
商品销售量和商品价格资料
商品名称 计量单位
销售量
价格
基期q0 报告期q1 基期p0 报告期p1




千克
六 章


480
600
25
25
500
600
40
36
200
180
50
70


学 原
计算个体指数如下:

k甲
q1 q0
600件 480件
125%
k乙
q1 q0
600千克 500千克
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档