江苏省常州市2018-2019学年最新八年级上学期数学期中调研试卷(含答案)

合集下载

2018-2019学年八年级上册期中数学试卷含答案(人教版)

2018-2019学年八年级上册期中数学试卷含答案(人教版)

2018-2019学年八年级(上册)期中数学试卷一、选择题(本大题共14小题,每小题3分,共42分)在每小题锁给出的四个选项中,只有一项是符合题目要求的.1.(3分)下列亚运会会徽中的图案,不是轴对称图形的是()A.B.C.D.2.(3分)小芳有两根长度为5cm和11cm的木条,她想钉一个三角形木框,桌上有下列长度的几根木条,她应该选择长度为()的木条.A.5cm B.3cm C.17cm D.12cm3.(3分)如果n边形的内角和是它外角和的4倍,则n等于()A.7B.8C.10D.94.(3分)若等腰三角形的一边长等于6,另一边长等于4,则它的周长等于()A.15B.16C.14D.14或165.(3分)在△ABC中,∠B=∠C,与△ABC全等的三角形有一个角是100°,那么在△ABC中,与这100°角对应相等的角是()A.∠A B.∠B C.∠C D.∠B或∠C6.(3分)如图,在等腰△ABC中,AB=AC,BD⊥AC,∠ABC=72°,则∠ABD等于()A.18°B.36°C.54°D.64°7.(3分)如图,CE是△ABC的外角∠ACD的平分线,若∠B=35°,∠ACE=60°,则∠A=()A.35°B.95°C.85°D.75°8.(3分)如图,已知D为△ABC边AB的中点,E在边AC上,将△ABC折叠,使A点落在BC上的F 处,若∠B=75°,则∠BDF等于()A.30°B.50°C.60°D.37.5°9.(3分)如图所示,小华从A点出发,沿直线前进10米后左转24°,再沿直线前进10米,又向左转24°,…,照这样走下去,他第一次回到出发地A点时,一共走的路程是()A.140米B.150米C.160米D.240米10.(3分)如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是()A.BC=EC,∠B=∠E B.BC=EC,AC=DCC.BC=DC,∠A=∠D D.AC=DC,∠A=∠D11.(3分)如图,锐角三角形ABC中,直线L为BC的中垂线,直线M为∠ABC的角平分线,L与M相交于P点.若∠A=60°,∠ACP=24°,则∠ABP的度数为何?()A.24°B.30°C.32°D.36°12.(3分)如图所示的正方形网格中,网格的交点称为格点,已知A,B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形,则符合条件的点C的个数是()A.6B.7C.8D.913.(3分)如图,点P是∠AOB外的一点,点M,N分别是∠AOB两边上的点,点P关于OA的对称点Q恰好落在线段MN上,点P关于OB的对称点R落在MN的延长线上.若PM=2.5cm,PN=3cm,MN =4cm,则线段QR的长为()A.4.5cm B.5.5cm C.6.5cm D.7cm14.(3分)如图所示,△ABC为等边三角形,AQ=PQ,PR=PS,PR⊥AB于R,PS⊥AC于S,则四个结论①点P在∠A的平分线上;②AS=AR;③QP∥AR;④△BRP≌△QSP.其中正确的是()A.①②B.①②④C.①②③D.①②③④二、填空题:(本题共5小题,每小题3分,共15分)15.(3分)点P(﹣3,5)关于x轴的对称点的坐标是.16.(3分)如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,DF⊥AC于点F,S=7,DE△ABC =2,AB=4,则AC长是.17.(3分)如图,△ABC中,AC=8,BC=5,AB的垂直平分线DE交AB于点D,交边AC于点E,则△BCE的周长为.18.(3分)如图,AB、CD相交于点O,AD=CB,请你补充一个条件,使得△AOD≌△COB,你补充的条件是.19.(3分)如图,已知∠MON=30°,点A1,A2,A3,…在射线ON上,点B1,B2,B3,…在射线OM 上.△A1B1A2,△A2B2A3,△A3B3A4,…均为等边三角形,若OA1=4,则△A6B6A7的边长为.三、解答题(本大题共7个小题,共计63分)20.(6分)用尺规作图,在△ABC中作一点P,使点P到AB,AC两边的距离相等,且PA=PB.21.(7分)如图,△ABC三个顶点的坐标分别为A(﹣4,1),B(﹣3,3),C(﹣1,2).(1)作出△ABC关于y轴对称的△A′B′C′,并写出△A′B′C′三个顶点的坐标.(2)在x轴上画出点P,使PA+PC最小.(不写作法,保留作图痕迹).22.(8分)如图,在△ABC中,∠B=40°,AE是∠BAC的平分线,∠ACD=106°,求∠AEC的度数.23.(8分)如图,在△ABC和△DCB中,∠A=∠D=90°,OA=OD,AC与BD相交于点O.(1)求证:AB=CD;(2)请判断△OBC的形状,并证明你的结论.24.(10分)如图,已知港口A东偏南10°方向有一处小岛B,一艘货轮从港口A沿南偏东40°航线出发,行驶80海里到达C处,此时观测小岛B在北偏东60°方向.(1)求此时货轮到小岛B的距离.(2)在小岛周围36海里范围内是暗礁区,此时轮船向正东方向航行有没有触礁危险?请作出判断并说明理由.25.(12分)如图,△ABC和△EBD中,∠ABC=∠DBE=90°,AB=CB,BE=BD,连接AE,CD,AE 与CD交于点M,AE与BC交于点N.(1)求证:AE=CD;(2)求证:AE⊥CD;(3)连接BM,有以下两个结论:①BM平分∠CBE;②MB平分∠AMD.其中正确的有(请写序号,少选、错选均不得分).26.(12分)如图1,点P、Q分别是边长为4cm的等边△ABC边AB、BC上的动点,点P从顶点A,点Q从顶点B同时出发,且它们的速度都为1cm/s.(1)连接AQ、CP交于点M,则在P、Q运动的过程中,∠CMQ变化吗?若变化,则说明理由,若不变,则求出它的度数;(2)试求何时△PBQ是直角三角形?(3)如图2,若点P、Q在运动到终点后继续在射线AB、BC上运动,直线AQ、CP交点为M,则∠CMQ 变化吗?若变化,则说明理由,若不变,则求出它的度数.2018-2019学年八年级(上册)期中数学试卷参考答案与试题解析一、选择题(本大题共14小题,每小题3分,共42分)在每小题锁给出的四个选项中,只有一项是符合题目要求的.1.(3分)下列亚运会会徽中的图案,不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的定义求解.【解答】解:A、不是轴对称图形,故本选项正确;B、是轴对称图形,故本选项错误;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.故选:A.【点评】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.(3分)小芳有两根长度为5cm和11cm的木条,她想钉一个三角形木框,桌上有下列长度的几根木条,她应该选择长度为()的木条.A.5cm B.3cm C.17cm D.12cm【分析】设木条的长度为xcm,再由三角形的三边关系即可得出结论.【解答】解:设木条的长度为xcm,则11﹣5<x<11+5,即6<x<16.故选:D.【点评】本题考查的是三角形的三边关系,熟知三角形任意两边之和大于第三边,任意两边之差小于第三边是解答此题的关键.3.(3分)如果n边形的内角和是它外角和的4倍,则n等于()A.7B.8C.10D.9【分析】利用多边形的内角和公式和外角和公式,根据一个n边形的内角和是其外角和的4倍列出方程求解即可.【解答】解:多边形的外角和是360°,根据题意得:180°•(n﹣2)=360°×4,解得n=10.故选:C.【点评】本题主要考查了多边形内角和公式及外角的特征.求多边形的边数,可以转化为方程的问题来解决.4.(3分)若等腰三角形的一边长等于6,另一边长等于4,则它的周长等于()A.15B.16C.14D.14或16【分析】由于等腰三角形的底边与腰不能确定,故应分4为底边与6为底边两种情况进行讨论.【解答】解:当4为底边时,腰长为6,则这个等腰三角形的周长=4+6+6=16;当6为底边时,腰长为4,则这个等腰三角形的周长=4+4+6=14;故选:D.【点评】本题考查的是等腰三角形的性质,在解答此题时要注意进行分类讨论,不要漏解是解题关键.5.(3分)在△ABC中,∠B=∠C,与△ABC全等的三角形有一个角是100°,那么在△ABC中,与这100°角对应相等的角是()A.∠A B.∠B C.∠C D.∠B或∠C【分析】根据三角形的内角和等于180°可知,相等的两个角∠B与∠C不能是100°,再根据全等三角形的对应角相等解答.【解答】解:在△ABC中,∵∠B=∠C,∴∠B、∠C不能等于100°,∴与△ABC全等的三角形的100°的角的对应角是∠A.故选:A.【点评】本题主要考查了全等三角形的对应角相等的性质,三角形的内角和等于180°,根据∠A=∠C判断出这两个角都不能是100°是解题的关键.6.(3分)如图,在等腰△ABC中,AB=AC,BD⊥AC,∠ABC=72°,则∠ABD等于()A.18°B.36°C.54°D.64°【分析】根据等腰三角形的性质由已知可求得∠A的度数,再根据垂直的定义和三角形内角和定理不难求得∠ABD的度数.【解答】解:∵AB=AC,∠ABC=72°,∴∠ABC=∠ACB=72°,∴∠A=36°,∵BD⊥AC,∴∠ABD=90°﹣36°=54°.故选:C.【点评】本题主要考查等腰三角形的性质,解答本题的关键是会综合运用等腰三角形的性质和三角形的内角和定理进行答题,此题难度一般.7.(3分)如图,CE是△ABC的外角∠ACD的平分线,若∠B=35°,∠ACE=60°,则∠A=()A.35°B.95°C.85°D.75°【分析】根据三角形角平分线的性质求出∠ACD,根据三角形外角性质求出∠A即可.【解答】解:∵CE是△ABC的外角∠ACD的平分线,∠ACE=60°,∴∠ACD=2∠ACE=120°,∵∠ACD=∠B+∠A,∴∠A=∠ACD﹣∠B=120°﹣35°=85°,故选:C.【点评】本题考查了三角形外角性质,角平分线定义的应用,注意:三角形的一个外角等于和它不相邻的两个内角的和.8.(3分)如图,已知D为△ABC边AB的中点,E在边AC上,将△ABC折叠,使A点落在BC上的F 处,若∠B=75°,则∠BDF等于()A.30°B.50°C.60°D.37.5°【分析】由题意可得AD=BD=DF,即可求∠B=∠DFB=75°,根据三角形内角和定理可求∠BDF的度数.【解答】解:∵点D是AB的中点∴AD=BD∵折叠∴AD=DF∴BD=AD=DF∴∠B=∠DFB=75°∴∠BDF=30°故选:A.【点评】本题考查了翻折变换,三角形内角和定理,熟练运用折叠性质解决问题是本题的关键.9.(3分)如图所示,小华从A点出发,沿直线前进10米后左转24°,再沿直线前进10米,又向左转24°,…,照这样走下去,他第一次回到出发地A点时,一共走的路程是()A.140米B.150米C.160米D.240米【分析】多边形的外角和为360°每一个外角都为24°,依此可求边数,再求多边形的周长.【解答】解:∵多边形的外角和为360°,而每一个外角为24°,∴多边形的边数为360°÷24°=15,∴小华一共走了:15×10=150米.故选:B.【点评】本题考查多边形的内角和计算公式,多边形的外角和.关键是根据多边形的外角和及每一个外角都为24°求边数.10.(3分)如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是()A.BC=EC,∠B=∠E B.BC=EC,AC=DCC.BC=DC,∠A=∠D D.AC=DC,∠A=∠D【分析】根据全等三角形的判定方法逐项判断即可.【解答】解:∵AB=DE,∴当BC=EC,∠B=∠E时,满足SAS,可证明△ABC≌△DEC,故A可以;当BC=EC,AC=DC时,满足SSS,可证明△ABC≌△DEC,故B可以;当BC=DC,∠A=∠D时,在△ABC中是ASS,在△DEC中是SAS,故不能证明△ABC≌△DEC,故C不可以;当AC=DC,∠A=∠D时,满足SAS,可证明△ABC≌△DEC,故D可以;故选:C.【点评】本题主要考查全等三角形的判定,掌握全等三角形的判定方法是解题的关键,即SSS、SAS、ASA、AAS和HL.11.(3分)如图,锐角三角形ABC中,直线L为BC的中垂线,直线M为∠ABC的角平分线,L与M相交于P点.若∠A=60°,∠ACP=24°,则∠ABP的度数为何?()A.24°B.30°C.32°D.36°【分析】根据角平分线的定义可得∠ABP=∠CBP,根据线段垂直平分线上的点到两端点的距离相等可得BP=CP,再根据等边对等角可得∠CBP=∠BCP,然后利用三角形的内角和等于180°列出方程求解即可.【解答】解:∵直线M为∠ABC的角平分线,∴∠ABP=∠CBP.∵直线L为BC的中垂线,∴BP=CP,∴∠CBP=∠BCP,∴∠ABP=∠CBP=∠BCP,在△ABC中,3∠ABP+∠A+∠ACP=180°,即3∠ABP+60°+24°=180°,解得∠ABP=32°.故选:C.【点评】本题考查了线段垂直平分线上的点到两端点的距离相等的性质,角平分线的定义,三角形的内角和定理,熟记各性质并列出关于∠ABP的方程是解题的关键.12.(3分)如图所示的正方形网格中,网格的交点称为格点,已知A,B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形,则符合条件的点C的个数是()A.6B.7C.8D.9【分析】分AB是腰长时,根据网格结构,找出一个小正方形与A、B顶点相对的顶点,连接即可得到等腰三角形,AB是底边时,根据线段垂直平分线上的点到线段两端点的距离相等,AB垂直平分线上的格点都可以作为点C,然后相加即可得解.【解答】解:①AB为等腰△ABC底边时,符合条件的C点有4个;②AB为等腰△ABC其中的一条腰时,符合条件的C点有4个.故选:C.【点评】本题考查了等腰三角形的判定,熟练掌握网格结构的特点是解题的关键,要注意分AB是腰长与底边两种情况讨论求解.13.(3分)如图,点P是∠AOB外的一点,点M,N分别是∠AOB两边上的点,点P关于OA的对称点Q恰好落在线段MN上,点P关于OB的对称点R落在MN的延长线上.若PM=2.5cm,PN=3cm,MN=4cm,则线段QR的长为()A.4.5cm B.5.5cm C.6.5cm D.7cm【分析】利用轴对称图形的性质得出PM=MQ,PN=NR,进而利用MN=4cm,得出NQ的长,即可得出QR的长.【解答】解:∵点P关于OA的对称点Q恰好落在线段MN上,点P关于OB的对称点R落在MN的延长线上,∴PM=MQ,PN=NR,∵PM=2.5cm,PN=3cm,MN=4cm,∴RN=3cm,MQ=2.5cm,即NQ=MN﹣MQ=4﹣2.5=1.5(cm),则线段QR的长为:RN+NQ=3+1.5=4.5(cm).故选:A.【点评】此题主要考查了轴对称图形的性质,得出PM=MQ,PN=NR是解题关键.14.(3分)如图所示,△ABC为等边三角形,AQ=PQ,PR=PS,PR⊥AB于R,PS⊥AC于S,则四个结论①点P在∠A的平分线上;②AS=AR;③QP∥AR;④△BRP≌△QSP.其中正确的是()A.①②B.①②④C.①②③D.①②③④【分析】因为△ABC为等边三角形,根据已知条件可推出Rt△ARP≌Rt△ASP,则AR=AS,故(2)正确,∠BAP=∠CAP,所以AP是等边三角形的顶角的平分线,故(1)正确,根据等腰三角形的三线合一的性质知,AP也是BC边上的高和中线,即点P是BC的中点,因为AQ=PQ,所以点Q是AC的中点,所以PQ是边AB对的中位线,有PQ∥AB,故(3)正确,又可推出△BRP≌△QSP,故(4)正确.【解答】解:∵PR⊥AB于R,PS⊥AC于S∴∠ARP=∠ASP=90°∵PR=PS,AP=AP∴Rt△ARP≌Rt△ASP∴AR=AS,故(2)正确,∠BAP=∠CAP∴AP是等边三角形的顶角的平分线,故(1)正确∴AP是BC边上的高和中线,即点P是BC的中点∵AQ=PQ∴点Q是AC的中点∴PQ是边AB对的中位线∴PQ∥AB,故(3)正确∵∠B=∠C=60°,∠BRP=∠CSP=90°,BP=CP∴△BRP≌△QSP,故(4)正确∴全部正确.故选:D.【点评】本题利用了等边三角形的性质:三线合一,全等三角形的判定和性质,中位线的性质求解.二、填空题:(本题共5小题,每小题3分,共15分)15.(3分)点P(﹣3,5)关于x轴的对称点的坐标是(﹣3,﹣5).【分析】利用平面内两点关于x轴对称时:横坐标不变,纵坐标互为相反数,进行求解.【解答】解:P(﹣3,5)关于x轴的对称点的坐标是(﹣3,﹣5),故答案为:(﹣3,﹣5).【点评】本题考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.16.(3分)如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,DF⊥AC于点F,S=7,DE△ABC =2,AB=4,则AC长是3.【分析】根据角平分线上的点到角的两边距离相等可得DE=DF,再根据三角形的面积公式列式计算即可得解.【解答】解:∵AD是△ABC中∠BAC的角平分线,DE⊥AB,DF⊥AC,∴DE=DF,∴S=×4×2+AC•2=7,△ABC解得AC=3.故答案为:3.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,熟记性质是解题的关键.17.(3分)如图,△ABC中,AC=8,BC=5,AB的垂直平分线DE交AB于点D,交边AC于点E,则△BCE的周长为13.【分析】根据线段的垂直平分线的性质得到EA=EB,根据三角形的周长公式计算即可.【解答】解:∵DE是AB的垂直平分线,∴EA=EB,则△BCE的周长=BC+EC+EB=BC+EC+EA=BC+AC=13,故答案为:13.【点评】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.18.(3分)如图,AB、CD相交于点O,AD=CB,请你补充一个条件,使得△AOD≌△COB,你补充的条件是∠A=∠C或∠ADO=∠CBO.【分析】本题证明两三角形全等的三个条件中已经具备一边和一角,所以只要再添加一组对应角或边相等即可.【解答】解:添加条件可以是:∠A=∠C或∠ADC=∠ABC.∵添加∠A=∠C根据AAS判定△AOD≌△COB,添加∠ADC=∠ABC根据ASA判定△AOD≌△COB,故填空答案:∠A=∠C或∠ADC=∠ABC.【点评】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关键.19.(3分)如图,已知∠MON=30°,点A1,A2,A3,…在射线ON上,点B1,B2,B3,…在射线OM 上.△A1B1A2,△A2B2A3,△A3B3A4,…均为等边三角形,若OA1=4,则△A6B6A7的边长为128.【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及A2B2=2B1A2,得出A3B3=4B1A2=16,A4B4=8B1A2=32,A5B5=16B1A2…进而得出答案.【解答】解:∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°﹣120°﹣30°=30°,又∵∠3=60°,∴∠5=180°﹣60°﹣30°=90°,∵∠MON=∠1=30°,∴OA1=A1B1=4,∴A2B1=4,∵△A2B2A3、△A3B3A4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴A2B2=2B1A2,B3A3=2B2A3,∴A3B3=4B1A2=16=24,A4B4=8B1A2=32=25,A5B5=16B1A2=64=26,以此类推:△A n B n A n+1的边长为2n+1,∴△A6B6A7的边长为:26+1=128.故答案为:128.【点评】此题主要考查了等边三角形的性质以及直角三角形30度角的性质,根据已知得出A3B3=4B1A2,A4B4=8B1A2,A5B5=16B1A2进而发现规律是解题关键.三、解答题(本大题共7个小题,共计63分)20.(6分)用尺规作图,在△ABC中作一点P,使点P到AB,AC两边的距离相等,且PA=PB.【分析】分别作∠BAC的平分线和线段AB的中垂线,它们的交点即为所求点P.【解答】解:如图所示,点P即为所求.【点评】此题主要考查了线段垂直平分线的性质与作法以及角平分线的性质与作法,正确掌握相关性质是解题关键.21.(7分)如图,△ABC三个顶点的坐标分别为A(﹣4,1),B(﹣3,3),C(﹣1,2).(1)作出△ABC关于y轴对称的△A′B′C′,并写出△A′B′C′三个顶点的坐标.(2)在x轴上画出点P,使PA+PC最小.(不写作法,保留作图痕迹).【分析】(1)写出点A、B、C关于y轴对称的对应点A′、B′、C′的坐标,然后描点即可;(2)作A点关于x轴的对应点A″,连接A″C交x轴于点P,利用两点之间线段最短可判断此时PA+PC 最小.【解答】解:(1)如图,△A′B′C′为所作,△A′B′C′三个顶点的坐标分别为A'(4,1),B'(3,3),C'(1,2);(2)如图,点P为所作..【点评】本题考查了作图﹣轴对称变换:在画一个图形的轴对称图形时,也是先从确定一些特殊的对称点开始的,一般的方法是:由已知点出发向所给直线作垂线,并确定垂足;直线的另一侧,以垂足为一端点,作一条线段使之等于已知点和垂足之间的线段的长,得到线段的另一端点,即为对称点;连接这些对称点,就得到原图形的轴对称图形.22.(8分)如图,在△ABC中,∠B=40°,AE是∠BAC的平分线,∠ACD=106°,求∠AEC的度数.【分析】先由三角形外角的性质,求出∠BAC的度数,然后由角平分线的定义即可求出∠BAE的度数,然后再根据外角的性质,即可求∠AEC的度数.【解答】解:∵∠ACD是△ABC的外角,∴∠ACD=∠B+∠BAC,∵∠B=40°,∠ACD=106°,∴∠BAC=66°,∵AE平分∠BAC,∴∠BAE=∠BAC=33°,∵∠AEC是△ABE的外角,∴∠AEC=∠B+∠BAE=73°.【点评】此题考查了三角形外角的性质及角平分线的定义,熟记三角形的外角等于与它不相邻的两个内角之和.23.(8分)如图,在△ABC和△DCB中,∠A=∠D=90°,OA=OD,AC与BD相交于点O.(1)求证:AB=CD;(2)请判断△OBC的形状,并证明你的结论.【分析】(1)根据已知条件,用HL公理证:Rt△ABC≌Rt△DCB,从而得证;(2)利用Rt△ABC≌Rt△DCB的对应角相等,即可证明△OBC是等腰三角形.【解答】证明:(1)在Rt△ABC与Rt△DCB中,∠A=∠D=90°,,∴Rt△ABC≌Rt△DCB(HL),∴AB=CD;(2)△OBC是等腰三角形,理由如下:∵△ABC≌△DCB,则∠ACB=∠DBC,在△OBC中,即∠OCB=∠OBC∴△OBC是等腰三角形.【点评】此题主要考查全等三角形的判定和性质,关键是学生对直角三角形全等的判定和等腰三角形的判定与性质的理解和掌握.24.(10分)如图,已知港口A东偏南10°方向有一处小岛B,一艘货轮从港口A沿南偏东40°航线出发,行驶80海里到达C处,此时观测小岛B在北偏东60°方向.(1)求此时货轮到小岛B的距离.(2)在小岛周围36海里范围内是暗礁区,此时轮船向正东方向航行有没有触礁危险?请作出判断并说明理由.【分析】(1)根据题意得到∠CAB=∠B,根据等腰三角形的性质得到CB=CA=80,得到答案;(2)作BD⊥CD于点D,求出∠BCD=30°,根据直角三角形的性质计算即可.【解答】解:(1)由题意得,∠CAB=90°﹣40°﹣10°=40°,∠ACB=40°+60°=100°,∴∠B=180°﹣100°﹣40°=40°,∴∠CAB=∠B,∴CB=CA=80(海里),答:此时货轮到小岛B的距离为80海里;(2)轮船向正东方向航行没有触礁危险.理由如下:如图,作BD⊥CD于点D,∵∠BCD=90°﹣60°=30°,∴BD=BC=40,∵40>36,∴轮船向正东方向航行没有触礁危险.【点评】本题考查的是解直角三角形的应用﹣方向角问题,掌握直角三角形的性质、方向角的概念是解题的关键.25.(12分)如图,△ABC和△EBD中,∠ABC=∠DBE=90°,AB=CB,BE=BD,连接AE,CD,AE 与CD交于点M,AE与BC交于点N.(1)求证:AE=CD;(2)求证:AE⊥CD;(3)连接BM,有以下两个结论:①BM平分∠CBE;②MB平分∠AMD.其中正确的有②(请写序号,少选、错选均不得分).【分析】(1)欲证明AE=CD,只要证明△ABE≌△CBD;(2)由△ABE≌△CBD,推出BAE=∠BCD,由∠NMC=180°﹣∠BCD﹣∠CNM,∠ABC=180°﹣∠BAE ﹣∠ANB,又∠CNM=∠ABC,∠ABC=90°,可得∠NMC=90°;(3)结论:②;作BK⊥AE于K,BJ⊥CD于J.理由角平分线的判定定理证明即可;【解答】(1)证明:∵∠ABC=∠DBE,∴∠ABC+∠CBE=∠DBE+∠CBE,即∠ABE=∠CBD,在△ABE和△CBD中,,∴△ABE≌△CBD,∴AE=CD.(2)∵△ABE≌△CBD,∴∠BAE=∠BCD,∵∠NMC=180°﹣∠BCD﹣∠CNM,∠ABC=180°﹣∠BAE﹣∠ANB,又∠CNM=∠ABC,∵∠ABC=90°,∴∠NMC=90°,∴AE⊥CD.(3)结论:②理由:作BK ⊥AE 于K ,BJ ⊥CD 于J .∵△ABE ≌△CBD ,∴AE =CD ,S △ABE =S △CDB ,∴•AE •BK =•CD •BJ ,∴BK =BJ ,∵作BK ⊥AE 于K ,BJ ⊥CD 于J ,∴BM 平分∠AMD .不妨设①成立,则△ABM ≌△DBM ,则AB =BD ,显然可不能,故①错误.故答案为②.【点评】本题考查全等三角形的判定和性质、等腰直角三角形的性质、角平分线的性质定理等知识,解题的关键是正确寻找全等三角形解决问题,学会添加常用辅助线解决问题.26.(12分)如图1,点P 、Q 分别是边长为4cm 的等边△ABC 边AB 、BC 上的动点,点P 从顶点A ,点Q 从顶点B 同时出发,且它们的速度都为1cm /s .(1)连接AQ 、CP 交于点M ,则在P 、Q 运动的过程中,∠CMQ 变化吗?若变化,则说明理由,若不变,则求出它的度数;(2)试求何时△PBQ 是直角三角形?(3)如图2,若点P 、Q 在运动到终点后继续在射线AB 、BC 上运动,直线AQ 、CP 交点为M ,则∠CMQ 变化吗?若变化,则说明理由,若不变,则求出它的度数.【分析】(1)利用等边三角形的性质可证明△APC ≌△BQA ,则可求得∠BAQ =∠ACP ,再利用三角形外角的性质可证得∠CMQ =60°;(2)可用t分别表示出BP和BQ,分∠BPQ=90°和∠BPQ=90°两种情况,分别利用直角三角形的性质可得到关于t的方程,则可求得t的值;(3)同(1)可证得△PBC≌△QCA,再利用三角形外角的性质可求得∠CMQ=120°.【解答】解:(1)∵△ABC为等边三角形,∴AB=AC,∠B=∠PAC=60°,∵点P从顶点A,点Q从顶点B同时出发,且它们的速度都为1cm/s,∴AP=BQ,在△APC和△BQA中,∴△APC≌△BQA(SAS),∴∠BAQ=∠ACP,∴∠CMQ=∠CAQ+∠ACP=∠BAQ+∠CAQ=∠BAC=60°,∴在P、Q运动的过程中,∠CMQ不变,∠CMQ=60°;(2)∵运动时间为ts,则AP=BQ=t,∴PB=4﹣t,当∠PQB=90°时,∵∠B=60°,∴PB=2BQ,∴4﹣t=2t,解得t=,当∠BPQ=90°时,∵∠B=60°,∴BQ=2PB,∴t=2(4﹣t),解得t=,∴当t为s或s时,△PBQ为直角三角形;(3)在等边三角形ABC中,AC=BC,∠ABC=∠BCA=60°,∴∠PBC=∠QCA=120°,且BP=CQ,在△PBC和△QCA中,∴△PBC≌△QCA(SAS),∴∠BPC=∠MQC,又∵∠PCB=∠MCQ,∴∠CMQ=∠PBC=120°,∴在P、Q运动的过程中,∠CMQ的大小不变,∠CMQ=120°.【点评】本题为三角形的综合应用、等边三角形的性质、直角三角形的性质、勾股定理、全等三角形的判定和性质、解题的关键是正确寻找全等三角形解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.。

18—19学年上学期八年级期中考试数学试题(附答案)(2)

18—19学年上学期八年级期中考试数学试题(附答案)(2)

2018~2019学年度上学期期中阶段质量检测试题八年级数学2018.11注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共6页,满分100分,考试时间90分钟.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、准考证号、座号填写在答题纸规定的位置.考试结束后,将本试卷和答题纸一并交回. 2.答题注意事项见答题纸,答在本试卷上不得分.第Ⅰ卷(选择题共36分)一、选择题(每小题3分,共12小题;共36分)在每小题所给的四个选项中,只有一项是符合题目要求的,请把正确答案涂在答题卡中.1.在以下回收、绿色食品、节能、中国民生银行四个标志中,是轴对称图形的是A .B .C .D .2.下列各式计算正确的是A .729()a a = B .7214a a a =C .235235a a a +=D .333()ab a b =3.在平面直角坐标系中,点(3,-2)关于y 轴对称的点的坐标是 A .(3,2) B .(3,-2) C .(-3,2) D .(-3,-2) 4.以下列各组长度的三条线段为边,能组成三角形的是 A .1cm ,2cm ,3cm B .8cm ,6cm ,4cm C .12cm ,5cm ,6cm D .2cm , 3cm ,6cm5.能把一个三角形分成面积相等的两部分的是该三角形的 A .角平分线 B .中线C .高D .一边的垂直平分线6.如图是跷跷板的示意图,支柱OC 与地面垂直,点O 是AB 的中点,AB 绕着点O 上下转动.当A 端落地时,∠OAC =20°,跷跷板上下可转动的最大角度(即'A OA ∠)是A .20°B .40°C .60°D .80°7.如图,△ABC 与'''A B C ∆关于直线MN 对称,P 为MN 上任一点(P 不与'AA 共线),下列结论中错误的是A .'AA P ∆是等腰三角形B .MN 垂直平分'AA ,'CC C .△ABC 与'''A B C ∆面积相等D .直线AB ,''A B 的交点不一定在MN 上8.如图,已知太阳光线AC 和DE 是平行的,在同一时刻两根高度相同的木杆竖直插在地面上,在太阳光照射下,其影子一样长.这里判断影长相等利用了全等图形的性质,其中判断ABC DFE ∆≅∆的依据是A .SASB .AASC.HL D.ASA9.如图,以点O为圆心,任意长为半径画弧,与射线OM交于点A,再以点A为圆心,AO 长为半径画弧,两弧交于点B,画出射线OB,则∠AOB=A.30°B.45°C.60°D.90°10.如图,在△ABC中,BE,CE分别是∠ABC和∠ACB的平分线,过点E作DF∥BC交AB于D,交AC于F,若AB=4,AC=3,则△ADF周长为A.6 B.7C.8 D.1011.如图,在等腰△ABC中,AB=AC,BD⊥AC,∠ABC=72°,则∠ABD等于A.18°B.36°C .54°D .64°12.如图,将正方形OABC 放在平面直角坐标系中,O 是原点,A 的坐标为(1,则点C 的坐标为A .(1)B .(-1C .1)D .(-1)第Ⅱ卷(非选择题 共64分)注意事项:1.第Ⅱ卷分填空题和解答题.2.第Ⅱ卷所有题目的答案,考生须用0.5毫米黑色签字笔答在答题纸规定的区域内,在试卷上答题不得分.二、填空题(每小题4分,共6小题;共24分) 13.计算:323()a a =________.14.已知一个多边形的内角和为540°,则这个多边形是________边形.15.如图1是一把园林剪刀,把它抽象为图2,其中OA =OB ,若剪刀张开的角为30°,则∠A =________度.16.如图,已知点A,D,C,F在同一条直线上,AB=DE,∠B=∠E,要使△ABC≌△DEF,还需要添加一个条件是________.17.如图,在Rt△ABC中,∠C=90°,AD是△ABC的角平分线,DC=3,则点D到AB的距离是________.18.如图,在△ABC中,∠C=90°,∠ABC=60°,BD平分∠ABC,若AD=6,则AC=________.三、解答题(共5小题;共40分)19.(本题满分5分)用圆规、直尺作图,不写作法,但要保留作图痕迹.如图所示,某汽车探险队要从A城穿越沙漠到B城,途中需要到河边为汽车加水,则汽车在河边哪一点加水,才能使行驶的总路程最短?请你在图上画出这一点.20.(本题满分7分)如图,点A,F,C,D在同一条直线上,已知AF=DC,∠A=∠D,BC∥EF.求证:AB=DE.21.(本题满分8分)如图,在△ABC中,AD,AE分别是△ABC的高和角平分线,若∠B=30°,∠C=50°,求∠DAE的度数.22.(本题满分9分)如图,△ABC是等腰三角形,AB=AC,∠A=36°.(1)尺规作图:作∠B的平分线BD,交AC于点D(保留作图痕迹,不写作法);(2)判断△DBC是否为等腰三角形,并说明理由.23.(本题满分11分)如图,△ABE和△ACD都是等边三角形,BD与CE相交于点O.(1)求证:△AEC≌△ABD;(2)求∠BOC的度数.参考答案一、选择题1.B2.D3.D4.B5.B6.B7.D8.B9.C10.B 11.C 12.A 二、填空题 13.9a 14.五 15.15.7516.BC =EF (答案不唯一) 17.3 18.9 三、解答题19.如下图所示,本题可以进行数学建模,即在直线l 上作一点C ,使它到同侧点A ,B 的距离之和最小.作法:作点A 关于直线l 的对称点A 1,连接A 1B ,则A 1B 与直线l 的交点C 即为所求的点.…………………………………………………………5分20.∵AF =CD ,∴AC =DF ,…………………………………………………………………………1分 ∵BC ∥EF ,∴∠ACB =∠DFE ,……………………………………………………………………3分 在△ABC 和△DEF 中,,,,A D AC DF ACB DFE ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABC ≌△DEF (ASA),……………………………………………………………………6分∴AB=DE.……………………………………………………………………………………7分21.∵∠B=30°,∠C=50°,…………………………………………………………1分∴∠BAC=180°-∠B-∠C=100°,……………………………………………………2分∵AE是△ABC的角平分线,∴111005022BAE BAC∠=∠=⨯︒=︒………………………………………………4分∵AD是△ABC的高,∴∠BAD=90°-∠B=90°-30°=60°,………………………………………………6分∴∠DAE=∠BAD-∠BAE=60°-50°=10°.………………………………………………8分22.(1)如图所示:BD即为所求.……………………………………………………………………3分(2)是等腰三角形,理由如下:∵AB=AC,∴∠ABC=∠C,…………………………………………………………4分∵∠A=36°,∴∠ABC=∠ACB=(180°-36°)÷2=72°,…………………………………………5分∵BD平分∠ABC,∴∠ABD=∠DBC=36°,…………………………………………………………6分∴∠BDC=36°+36°=72°,…………………………………………………………7分∴BD=BC,…………………………………………………………………………8分∴△DBC是等腰三角形.…………………………………………………………9分23.(1)∵△ABE和△ACD是等边三角形,∴AE=AB,AD=AC,∠EAB=60°,∠DAC=60°,…………………………1分∴∠EAB+∠BAC=∠DAC+∠BAC,即∠EAC=∠BAD,……………………………………………………………………2分在△AEC和△ABD中,,,,AE AB EAC BAD AC AD =⎧⎪∠=∠⎨⎪=⎩∴△AEC ≌△ABD .……………………………………………………………………5分 (2)由(1)得△AEC ≌△ABD ,…………………………………………………………6分 ∴∠AEC =∠ABD ,……………………………………………………………………7分 ∵∠AFE =∠BFO (对顶角),在△AEF 中,∠AEF +∠EF A +∠EAF =180°,…………………………8分在△BFO 中,∠FBO +∠BFO +∠FOB =180°,……………………………………9分 ∴∠EAB =∠EOB =60°,…………………………………………………………10分 ∴∠BOC =180°-∠EOB =120°.……………………………………………………11分。

(精品word)2018-2019学年度第一学期新优质八年级(上)期中试题(含答案)

(精品word)2018-2019学年度第一学期新优质八年级(上)期中试题(含答案)

2018/2019学年度第一学期第一阶段学业质量监测试卷八年级数学(满分:100分 考试时间:100分钟)注意事项:1 •选择题请用2B 铅笔将答题卡上对应的答案标号涂黑•如需改动,请用橡皮擦干净后, 再选涂其他答案.2 •非选择题必须用 0.5毫米黑色墨水签字笔写在答题卷上的指定位置,在其他位置答题一律无效.、选择题(本大题共8小题,每小题2分,共16分•在每小题所给出的四个选项中, 恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1 •下列“表情”中属于轴对称图案的是2.下列说法正确的是3.下列长度的三条线段,能组成直角三角形的是C . 3, 4, 5D • 4, 5, 6AB = AC , BD ABC 的高,若/ BAC = 40° 则/ CBD 的度数是5•如图,分别以直角三角形各边为一边向三角形外部作正方形,其中两个小正方形的面 积分别为9和25,则正方形 A 的面积是A . 16B . 32C . 34D . 64A •两个等边三角形一定全等B ・形状相同的两个三角形全等C ・面积相等的两个三角形全等D ・全等三角形的面积一定相等 4.在△ ABC 中,A • 70 °B • 40C . 20 °D • 30 °A.B.C.D.6.到三角形三条边距离相等的点是A .三条边的垂直平分线的交点C •三条边上中线的交点7•用直尺和圆规作一个角等于已知角,如图,能得出// 2 = 40°则/ 1的度数为、填空题(本大题共 10小题,每小题2分,共20分•不需写出解答过程,请把答案直 接填写在答题卷相应位置上)9. 等边三角形有▲条对称轴.10. 在 Rt △ ABC 中,/ C = 90° AB = 13, BC = 12,贝U AC = ▲.,11. 已知△ ABCDEF ,且△ DEF 的周长为 12.若 AB = 5, BC = 4,贝U AC =A. 12.若等腰三角形的两边长分别为4和8,则这个三角形的周长为▲•—13. 在等腰厶 ABC 中,AC = AB ,/ A = 70 ° 则/ B =^°14. 如图,在 Rt △ ABC 中,/ ACB = 90° AC = 6, BC = 8, CD 丄 AB ,垂足为 D , CD = ▲.15. 如图,在等腰厶 ABC 中,AB = AC , AD ABC 的中线,/ B = 72 °则/ DAC =」°B •三条边上高的交点 D •三个内角平分线的交点A'C'B'=/ ACB 的依据是&如图,长方形纸片 ABCD 沿EF 折叠后,点A 落在CD 边上的点A ',点B 落在点B 处.若A . 115B . 120 °C . 130 °D . 140D . AAS16. 在Rt A ABC中,/ C= 90 ° / A= 30 ° D是斜边AB的中点,DE丄AC,垂足为E,DE = 2,贝U AB=d.由①、②,得a 2 + b 2 = c 2.(第 20 题)17. 如图,△ DEF 的3个顶点分别在小正方形的顶点(格点)上,这样的三角形叫做格点三角形•若在图中再画 1个格点△ ABC (不包括厶DEF ),使厶ABCDEF ,这样 的格点三角形能画▲个18. 如图,在 Rt △ ABC 中,/ ABC = 90° AB = BC = 4, M 在 BC 上,且 BM = 1, N 是 AC上一动点,则BN + MN 的最小值为▲.三、解答题(本大题共 9小题,共64分•请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19. (6 分)已知:如图,在△ ABC 中,DE // BC , AD = AE . 求证:AB =AC .20. ( 5分)如图,三个直角三角形(I,n,川)拼成一个梯形(两底分别为a 、b ,咼为a + b ),利用这个图形,小明验证了勾股定理•请将计算过程补充完整.1 1解:S 梯形=寸(上底+下底)小= 1 ( a + b )?( a + b ),1即S梯形=2(▲).①S 梯形=i + n + m (罗马数字表式相应图形的面积) =▲+▲+▲.1即S 梯形=(▲).②F(第 18 题)EBC(第19题)21. (6分)如图,育苗棚的顶部是长方形,求育苗棚顶部薄膜22. (6分)已知:如图,点A、F、C、D在同一直线上,点两侧,且AB= DE,/ A =Z D, AF = DC .求证:BC// EF .23. (6分)如图,△ ABC是等边三角形,D是BC上任意一点(与点B、C不重合),以AD为一边向右侧作等边△ ADE,连接CE.求证:△ CAE◎△ BAD . nE(第21 题)ABDE的面积.B和点E分别在直线AD的D (第22 题)(第23 题)24. (7 分)如图,在Rt△ ABC 中,/ B= 90° AB = 3, BC= 4, CD = 12, AD = 13.求四边形ABCD的面积.25. (8分)如图,在△ ABC中,/ C = 90° E是AB中点,DE丄AB,垂足为E.若CD = ED,求/ BAC,Z B的度数.(第24 题)(第25题)26. (8分)如图,在四边形ABCD 中,/ ABC =Z ADC = 90° M 为AC 的中点.(1)求证:MB = MD .(2)若/ BAD = 100° 求/ BMD 的度数.(第26 题)27. (12分)在Rt△ ABC中,/ C= 90°将厶ABC沿着某条直线折叠.(1 )若该直线经过点A,且折叠后点C落在AB边上,请用直尺和圆规在图①中作出该直线(不写作法,保留作图痕迹);(2)若折叠后点A与点B重合.①请用直尺和圆规在图②中作出该直线(不写作法,保留作图痕迹);②若图②中所画直线与AC交于点P,且AB= 8, AP = 5,求CP的长.(第27 题)C图①2018/2019学年度第一学期第一阶段学业质量监测试卷八年级数学参考答案及评分标准说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分.二、填空题(每小题2分,共计20分)9. 3 10. 5 11. 3 12. 20 13. 55 14. 4.8 15. 18 16. 8 17. 318. 5三、解答题(本大题共9小题,共计64分)19. (本题6分)证明:••• DE // BC,•••/ ADE = Z B, / AED = Z C. ................................................................ 2 分•/ AD = AE,•••/ ADE = Z AED . ............................................................................ 4 分B=Z C. .................................................................................... 5 分• AB = AC. ....................................................................................................... 6 分20. (本题5分)1 1解:S梯形=2(上底+下底)?高=(a + b)?(a + b),1即S梯形=2 (c2+ 2 ab).②........................... 5分由①、②,得a 2+ b 2= c2.21. (本题6分)解:在RtMBC 中,/ ACB = 90°由勾股定理得:AB2= AC2+ BC2= 22+ 1.52= 6.25 ,二AB = 2.5 ( m) . ............ 3 分二S 四边形ABDE= 2.5 >20= 50 ( m2) . ...................................... 5 分答:四边形ABDE的面积是50m2 . ................................................................ 6分22. (本题6分)证明:AF = DC,「. AF + FC = DC + FC .即AC= DF . ............................................ 1 分AB = DE,在厶ABC 和厶DEF 中,/ A=Z D, /.△ABC DEF (SAS). ............................ 4 分AC = DF .•••/ BCA = Z EFD . ..................................................................... 5 分••• BC // EF . ................................................................. 6 分23 .(本题6分)证明:•••△ ABC和厶ADE是等边三角形,• AC= AB, AE= AD,/ DAE =Z BAC = 60°........................................................ 3 分•••/ DAE-Z CAD =Z BAC-Z CAD,即/ CAE =Z BAD . ...................................... 4 分AC = AB,在厶CAE 和厶BAD 中,Z CAE = Z BAD , CAE^A BAD(SAS . ................ 6 分AE = AD .24 .(本题7分)解:•••在△ ABC 中,Z B= 90° AB= 4, BC= 3,. AC = 5. ......................................... 2 分在厶ADC 中,AD = 13, CD = 12, AC = 5 .•/ 122+ 52= 132,即CD2+ AC2= AD2,• △ ADC是直角三角形,且Z DCA = 90° ........................................................ 4分1111二S 四边形ABCD= SZ ABC+ SZ ADC = ?AB?BC + qAC/D = 2 x3X 4 + - X 5X 12= 36.7分25.(本题8分)解:连接AD .•••/C = 90° DE 丄AB, CD = ED ,•••点D在/ BAC的角平分线上.•••/ CAD = / EAD . (2).................................................................................................................................................. 分•/ E是AB中点,DE丄AB,•DB = DA . ...................................................................................................... 4 分•••/ DBA = Z DAB . (6).................................................................................................................................................. 分•••/ DBA + Z CAB= 90°•3/ DBA = 90°•••/ DBA = 30°•••/ B = 30° / BAC = 60° (8).................................................................................................................................................. 分26. (本题8分)(1)证明:•••/ ABC=Z ADC = 90°1 1又••• M 为AC 的中点,• MB = 2AC, MD = 2AC. ........................................ 4 分• MB = MD . .................................................................................................... 5 分(2)解:J/ BAD = 100° ,•••/ BCD = 360°-(/ ABC + / ACB)-/ BAD = 80° ........................................................... 6 分MB = MC = MD ,•••/ MBC = / MCB , / MCD = / MDC . .......................................................................... 7 分•••/ BMD =/ BMA + / DMA = 2 / BCA+ 2 / DCA = 2 / ACB = 2X 80°= 160°.……8 分27. (本题12分)解:(1)如图,直线AD即为所求. ........................................... 3分八年级数学第9页(共6页)八年级数学第13页(共6页)•••/ C = 90o,••• △ BCP 和厶ACB 是直角三角形. 在 Rt △ ABC 中,•/ AC 2 + CB 2= AB 2,「. BC 2= AB 2— AC 2. ..................................................... 8分 在 Rt △ PCB 中,•/ PC 2 + CB 2= PB 2,.・. BC 2= PB 2— CP 2. .................................................... 9分 • AB 2 — AC 2= PB 2— CP 2.设CP = x ,贝U AC = 5+ x ,52 — x 2= 82 — (5 + x)2. .......................................................................................... 11 分x = 1.4.即CP 的长为1.4.1即 S 梯形=(a 1 2 + 2ab + b 2).① ......................... 1 分 S 梯形=i + n + m (罗马数字表式相应图形的面积) =fab +^c 2 + |ab .12分.A②由①中的作图得: AP = PB .7分。

2018-2019学年八年级上期中联考数学试题及答案

2018-2019学年八年级上期中联考数学试题及答案

2018-2019第一学期八年级数学七校联考期中试题及答案数学试卷考试时间 120 分钟试卷满分 120 分一、选择题(每小题 3 分,共 30 分)1 下列长度的三条线段能组成三角形的是()A. 3,4,8B. 5,6,11C. 6,6,6D. 9,9,192. 若三角形三个内角度数之比为 1:2:3,则这个三角形一定是( )A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰三角形3. 如图,A、B、C、D 在一条直线上,MB=ND,∠MBA=∠D,添加下列某一条件后不能判定△ABM≌△CDN 的是()A.∠M=∠N B.AB=CD C.AM=CN D.AM∥CN4. 一个多边形的内角和是外角和的 2 倍,这个多边形的边数是()A.4 B.6 C.8 D.105.若等腰三角形两边长分别为 3、8,则其周长为()A.14 B.19 C.14 或 19 D.上述答案都不对6.如图,OP 为∠AOB 的角平分线,PC⊥OA 于 C,PD⊥OB于 D,则下列结论中错误的是()A.∠COP=∠DOP B.PC=PDC.OC=OD D.∠CPD=2∠COD7. 若一个等腰三角形有一个角为 100°,那么它的底角的度数为()A.100° B.40° C.100°或 40° D.50°8. 若某多边形从一个顶点所作的对角线为 4 条,则这个多边形是()A.五边形 B.六边形 C.七边形 D.八边形9. 如图,∠MON=36°,点 P 是∠MON 中的一定点,点 A、B 分别在射线 OM、ON 上移动.当△PAB 的周长最小时,∠APB 的大小为()A.100° B.104° C.108° D.116°10. 如图,AD 为等边ΔABC 的高,E、F 分别为线段AD、AC 上的动点,且 AE=CF,当 BF+CE 取得最小值时,∠AFB=( )A.112.5°B. 105°C. 90°D. 82.5°二、填空题(每小题 3 分,共 18 分)11. 点 A﹙3,6﹚关于 y 轴的对称点的坐标为_____________12. 如图,△ABC 中,∠C=90°,AC=BC,AD 平分∠CAB 交BC 于 D,DE⊥AB 于 E.若 AB=16,则△DEB 的周长为___________13. 如图,已知△ABC 为直角三角形,∠C=90°.若沿图中虚线剪去∠C,则∠1+∠2=________14. 若等腰三角形一腰上的高与另一腰的夹角为 50°,则这个等腰三角形的底角为_________15. 如图,平面直角坐标系中,A(1,0)、B(0,2),BA=BC,∠ABC=90°,若存在点 P(不与点 C 重合),使得以 P、A、B 为顶点的三角形与△ABC 全等,则点 P 的坐标为___________16. 如图,四边形 ABCD 中,∠ACB=60°,BD=BC,∠BAC=76°,∠DAC=28°,则∠ACD=________(有同学发现若作△ABC 关于直线 AB 对称的△ABE,则 D、A、E 三点共线)三、解答题﹙共 72 分﹚17. ﹙本题 8 分﹚已知△ABC 中,∠B=∠A+15°,∠C=∠B+15°求△ABC 的各内角度数18.(本题 8 分)如图,已知点 E、C 在线段 BF 上,BE=CF,AB∥DE,∠ACB=∠F,求证:△ABC≌△DEF19. (本题 8 分)已知等腰三角形的周长为 16,一边长为 2,求另两边长。

2019学年江苏省八年级上学期期中考试数学试卷【含答案及解析】(3)

2019学年江苏省八年级上学期期中考试数学试卷【含答案及解析】(3)

2019学年江苏省八年级上学期期中考试数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、选择题1. 下列图形中,是轴对称图形的是()2. 如图,在△ABC中,AB=AC,D为BC中点,∠BAD=35°,则∠C的度数为()A.35° B.45° C.55° D.60°3. 如图,公路AC、BC互相垂直,公路AB的中点M与点C被湖隔开.若测得BM的长为1.2km,则点M与点C之间的距离为()A.0.5km B.0.6km C.0.9km D.1.2km4. 如图,∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是()A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD5. 由下列条件不能判定△ABC为直角三角形的是()A.∠A+∠C=∠BB.a=,b=,c=C.(b+a)(b-a)=c2D.∠A:∠B:∠C =5:3:26. 如图,在△ABC中,∠A=36°,AB=AC,CD是△ABC的角平分线.若在边AC上截取CE=CB,连接DE,则图中等腰三角形共有()A.2个 B.3个 C.4个 D.5个7. 如图,请仔细观察用直尺和圆规作一个角∠A′O′B′等于己知角∠AOB的示意图,根据所学知识,说明∠A′O′B′=∠AOB的依据是()A.SSS B.SAS C.ASA D.AAS8. 如图①是4×4正方形方格,已有两个正方形方格被涂黑,请你再将其中两个方格涂黑,并且使得涂黑后的整个图案是轴对称图形,约定经过旋转后全等的图案都视为同一种,图②中的两幅图就视为同一种,则得到的不同图案共有()A.6种 B.7种 C.8种 D.9种二、填空题9. 如果等腰三角形有一个角等于50°,那么它的底角为___________°.10. 角是轴对称图形,它的对称轴是______________________________________.11. 已知△DEF≌△ABC,等腰△ABC的周长为22cm,BC=4cm,则DE= cm.12. 如图,在△ABC中,∠C=90°,AD是角平分线,AC=12,AD=15,则点D到AB的的距离为_________.13. 观察以下几组勾股数,并寻找规律:①3,4,5;②5,12,13;③7,24,25;④9,40,41;…,请你写出具有以上规律的第⑥组勾股数:_________________.14. 如图,“赵爽弦图”是由四个全等的直角三角形和一个小正方形构成的大正方形,若直角三角形的两边长分别为3和5,则小正方形的面积为_____________.15. 如图,△ABC中,D是BC上一点,AC=AD=DB,∠BAC=105°,则∠ADC=°.16. 如图,在等边△ABC中,点D、E分别在边BC、AB上,且DE∥AC,过点E作EF⊥DE,CB的延长线于点F,若BD=2,则EF 2=__________.17. 如图是单位长度为1的网格图,A、B、C、D是4个网格线的交点,以其中两点为端点的线段中,任意取3条,能够组成个直角三角形.18. 如图,矩形ABCD中,AB=8,BC=6,P为AD上一点,将△ABP沿BP翻折至△EBP,PE 与CD相交于点O,且OE=OD,则AP的长为__________.三、解答题19. 如图,AC平分∠BAD,∠1=∠2,AB与AD相等吗?请说明理由.20. 如图,△ABC是正方形网格上的格点三角形(顶点A、B、C在正方形网格的格点上).(1)画出△ABC关于直线l的对称图形;(2)画出以P为顶点且与△ABC全等的格点三角形(规定:点P与点B对应).21. 学完勾股定理之后,同学们想利用升旗的绳子、卷尺,测算出学校旗杆的高度.爱动脑筋的小明设计了这样一个方案:将升旗的绳子拉到旗杆底端,并在绳子上打了一个结,然后将绳子拉到离旗杆底端5米处,发现此时绳子底端距离打结处约1米.请你帮助小明计算出旗杆的高度.22. 如图,△ABC≌△ADE,∠EAB =125°,∠CAD=25°,求∠BFD的度数.23. 如图,在△ABC中,AB=AC,点D是BC的中点,AB平分∠DAE,AE⊥BE,垂足为E.(1)求证:AD=AE;(2)若BE∥AC,试判断△ABC的形状,并说明理由.24. 如图,在四边形ABCD中,∠BAD=∠BCD=90°,M、N分别是BD、AC的中点.(1)求证:MN⊥AC;(2)若∠ADC=120°,求∠1的度数.25. 如图,在△ABC中,AC边的垂直平分线DM交AC于D,BC边的垂直平分线EN交BC于E,DM与EN相交于点F.(1)若△CMN的周长为20cm,求AB的长;(2)若∠MFN=70°,求∠MCN的度数.26. 如图,在Rt△ABC中,∠ACB=90°,E为AC上一点,且AE=BC,过点A作AD⊥CA,垂足为A,且AD=AC,AB、DE交于点F.(1)判断线段AB与DE的数量关系和位置关系,并说明理由;(2)连接BD、BE,若设BC=a,AC=b,AB=c,请利用四边形ADBE的面积证明勾股定理.27. 在△ABC和△DEC中,AC=BC,DC=EC,∠ACB=∠ECD=90°.(1)如图1,当点A、C、D在同一条直线上时,AC=12,EC=5.①求证:AF⊥BD,②求AF的长度;(2)如图2,当点A、C、D不在同一条直线上时.求证:AF⊥BD;(3)如图3,在(2)的条件下,连接CF并延长CF交AD于点G,∠AFG是一个固定的值吗?若是,求出∠AFG的度数,若不是,请说明理由.参考答案及解析第1题【答案】第2题【答案】第3题【答案】第4题【答案】第5题【答案】第6题【答案】第7题【答案】第8题【答案】第9题【答案】第10题【答案】第11题【答案】第12题【答案】第13题【答案】第14题【答案】第15题【答案】第16题【答案】第17题【答案】第18题【答案】第19题【答案】第20题【答案】第21题【答案】第22题【答案】第23题【答案】第24题【答案】第25题【答案】第26题【答案】第27题【答案】。

2018-2019学年新八年级上数学期中试题

2018-2019学年新八年级上数学期中试题

12ab 分母有理化后得1.若3-m为二次根式,则m的取值为()A.m≤3B.m<3C.m≥3D.m>32.下列式子中二次根式的个数有()⑴11;⑵-3;⑶-x2+1;⑷38;⑸(-)2;⑹1-x(x>1);⑺x2+2x+3. 33A.2个B.3个C.4个D.5个a+23.当有意义时,a的取值范围是()a-2A.a≥2B.a>2C.a≠2D.a≠-24.下列计算正确的是()①(-4)(-9)=-4⋅-9=6;②(-4)(-9)=4⋅9=6;③52-42=5+4⋅5-4=1;④52-42=52-42=1;A.1个B.2个C.3个D.4个5.化简二次根式(-5)2⨯3得()A.-53B.53C.±53D.306.对于二次根式x2+9,以下说法不正确的是()A.它是一个正数B.是一个无理数C.是最简二次根式D.它的最小值是3 7.把3aA.4b B.2b C.12b D.()b2b8、下列说法错误的是()A.在x轴上的点的坐标纵坐标都是0,横坐标为任意数;B.坐标原点的横、纵坐标都是0;C.在y轴上的点的坐标的特点是横坐标都是0,纵坐标都大于0;D.坐标轴上的点不属于任何象限9.下列二次根式中,最简二次根式是()A.3a2B.13C.153D.14310.计算:a1÷ab⋅等于()b abA.111ab B.ab C.ab D.b ab ab2ab b11.直角三角形中一直角边的长为9,另两边为连续自然数,则直角三角形的周长为()A.121B.120C.90D.不能确定12.放学以后,小红和小颖从学校分手,分别沿东南方向和西南方向回家,若小红和小颖行走的速度都是40米/分,小红用15分钟到家,小颖20分钟到家,小红和小颖家的直线距离为()A.600米 B.800米 C.1000米 D.不能确定二、填空题(每小题2分,共16分)13.当x___________时,1-3x是二次根式.31 OA =OB ,BC =12,求△ABC 三个顶点的坐标.(6 分)14.当 x___________时, 3 - 4 x 在实数范围内有意义.15.比较大小: - 3 2 ______ - 2 3 .16.在直角坐标系中,点 M 到 x 轴负半轴的距离为 12,到 y 轴的正半轴的距离为 4,则 M 点的坐标为 .17.直角三角形两直角边长分别为 5 和 12,则它斜边上的高为_______.18.直角三角形的三边长为连续偶数,则这三个数分别为__________.19. 如图,一根树在离地面 9 米处断裂,树的顶部落在离底部 12 米处.树折断之前有______ 米.20.如图,梯子 AB 靠在墙上,梯子的底端 A 到墙根 O 的距离为 2 米,梯子的顶端 B 到地面的距离为 7 米.现将梯子的底端 A 向外移动到 A ’,使梯子的底端 A ’到墙根 O 的距离等于 3 米,同时梯子的顶端 B 下降至 B ’,那么 BB ’的值: ①等于 1 米;②大于 1 米 5; ③小于 1 米.其中正确结论的序号是 .yA 三、解答题(共 48 分)21.(12 分)计算: B O(第19题)C x⑴ - 3 ⋅ (-16)(-36)⑵2 ⋅ 13 ⋅ 6 ;3 1⋅ 2 3 ⋅ (- 10 ) ⑷ 5 210x ⋅ 10 -1 y ⋅ 100z . ⑴ 2121 ÷2 ⨯ 1 ;3 3 5- 452 20 ;⑵ 0.01 ⨯ 810.25 ⨯ 144; ⑶23、已知,如图在平面直角坐标系中, =24, △S AB C24.(6 分)小东拿着一根长竹竿进一个宽为 3 米的城门,他先横着拿不进去,又竖起来拿, 结果竿比城门高 1 米,当他把竿斜着时,两端刚好顶着城门的对角,问竿长多少米? 25.(6 分)如图,有一个直角三角形纸片,两直角边 AC=6cm,BC=8cm,现将直角边 AC 沿∠CAB 的角平分线 AD 折叠,使它落在斜边 AB 上,且与 AE 重合,你能求出 CD 的长吗?DCBE A26.(6 分)如图所示,某人到岛上去探宝,从 A 处登陆后先往东走 4km ,又往北走 1.5km , 遇到障碍后又往西走 2km ,再折回向北走到 4.5km 处往东一拐,仅走 0.5km 就找到宝藏。

2 018-201 9 学年上学期八年级数学期中考试卷含答案

2018-2019学年八年级(上)期中数学试卷一、选择题(本大题共10个小题.每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)下列图形中,不是轴对称图形的是()A.B.C.D.2.(3分)下列尺规作图,能判断AD是△ABC边上的高是()A.B.C.D.3.(3分)长度分别为2,7,x的三条线段能组成一个三角形,x的值可以是()A.4 B.5 C.6 D.94.(3分)如图,△ABC与△DEF关于直线MN轴对称,则以下结论中错误的是()A.AB∥DF B.∠B=∠EC.AB=DE D.AD的连线被MN垂直平分5.(3分)如图,在△ABC中,D、E分别是AC、BC上的点,若△ADB≌△EDB≌△EDC,则∠C的度数是()A.15°B.20°C.25°D.30°6.(3分)如图,在△ABC中,BC=8,AB的中垂线交BC于D,AC的中垂线交BC于E,则△ADE的周长等于()A.8 B.4 C.12 D.167.(3分)等腰三角形的一个角是80°,则它的底角是()A.50°B.80°C.50°或80°D.20°或80°8.(3分)下列说法中,正确的个数是()①斜边和一直角边对应相等的两个直角三角形全等;②有两边和它们的对应夹角相等的两个直角三角形全等;③一锐角和斜边对应相等的两个直角三角形全等;④两个锐角对应相等的两个直角三角形全等.A.1个B.2个C.3个D.4个9.(3分)如图.从下列四个条件:①BC=B′C,②AC=A′C,③∠A′CA=∠B′CB,④AB=A′B′中,任取三个为条件,余下的一个为结论,则最多可以构成正确的结论的个数是()A.1个 B.2个C.3个D.4个10.(3分)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AB=10,AD是∠BAC的平分线.若P,Q分别是AD和AC上的动点,则PC+PQ的最小值()A.2.4 B.4 C.5 D.4.8二、填空题(本题5个小题,每小题3分,共15分.把答案填在题中横线上)11.(3分)若正多边形的一个外角是40°,则这个正多边形的边数是.12.(3分)如图所示,在△ABC中,∠C=90°,AB=8,AD是△ABC的一条角平分线.若CD=2,则△ABD的面积为.13.(3分)如图,已知△ABC≌△BAD,若∠DAC=20°,∠C=88°,则∠DBA=度.14.(3分)△ABC中,AB=5,AC=3,AD是△ABC的中线,设AD长为m,则m的取值范围是.15.(3分)在△ABC中,∠A=45°,∠B=30°,AD为△ABC的中线,则∠ADC=.三、解答题(本大题共7个小题,共55分.解答应写出证明过程或演算步骤)16.(6分)已知:点B、E、C、F在同一直线上,AB=DE,∠A=∠D,AC∥DF.求证:(1)△ABC≌△DEF;(2)BE=CF.17.(6分)如图:小亮从A点出发,沿直线前进10米后向左转30度,再沿直线前进10米,又向左转30度,…照这样走下去,他第一次回到出发点A点时,一共走了多少米?18.(6分)如图,已知A(2,3)、B(1,1)、C(4,1)是平面直角坐标系中的三点.(1)请画出△ABC关于y轴对称的△A1B1C1;(2)画出△A1B1C1向下平移3个单位得到的△A2B2C2;(3)若△ABC中有一点P坐标为(x,y),请直接写出经过以上变换后△A2B2C2中点P的对应点P2的坐标.19.(7分)已知:△ABC内部一点O到两边AB、AC所在直线的距离相等,且OB=OC.求证:AB=AC.20.(8分)在△ABC中,AD平分∠BAC,BD⊥AD,垂足为D,过D作DE∥AC,交AB于E,若AB=5,求线段DE的长.21.(10分)如图,△ABC中,∠ACB=90°,∠B=30°,AD平分∠CAB,延长AC至E,使CE=AC.(1)求证:DE=DB;(2)连接BE,试判断△ABE的形状,并说明理由.22.(12分)如图1所示,在△ABC中,∠ACB为锐角,点D为射线BC上一动点,连接AD,以AD为直角边,A为直角顶点,在AD左侧作等腰直角三角形ADF,连接CF,AB=AC,∠BAC=90°.(1)当点D在线段BC上时(不与点B重合),线段CF和BD的数量关系与位置关系分别是什么?请给予证明.(2)当点D在线段BC的延长线上时,(1)的结论是否仍然成立?请在图2中画出相应的图形,并说明理由.参考答案与试题解析一、选择题(本大题共10个小题.每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)下列图形中,不是轴对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,不符合题意;B、不是轴对称图形,符合题意;C、是轴对称图形,不符合题意;D、是轴对称图形,不符合题意;故选:B.2.(3分)下列尺规作图,能判断AD是△ABC边上的高是()A.B.C.D.【解答】解:过点A作BC的垂线,垂足为D,故选:B.3.(3分)长度分别为2,7,x的三条线段能组成一个三角形,x的值可以是()A.4 B.5 C.6 D.9【解答】解:由三角形三边关系定理得7﹣2<x<7+2,即5<x<9.因此,本题的第三边应满足5<x<9,把各项代入不等式符合的即为答案.4,5,9都不符合不等式5<x<9,只有6符合不等式,故选:C.4.(3分)如图,△ABC与△DEF关于直线MN轴对称,则以下结论中错误的是()A.AB∥DF B.∠B=∠EC.AB=DE D.AD的连线被MN垂直平分【解答】解:A、AB与DF不是对应线段,不一定平行,故错误;B、△ABC与△DEF关于直线MN轴对称,则△ABC≌△DEF,∠B=∠E,正确;C、△ABC与△DEF关于直线MN轴对称,则△ABC≌△DEF,AB=DE,正确;D、△ABC与△DEF关于直线MN轴对称,A与D的对应点,AD的连线被MN垂直平分,正确.故选:A.5.(3分)如图,在△ABC中,D、E分别是AC、BC上的点,若△ADB≌△EDB≌△EDC,则∠C的度数是()A.15°B.20°C.25°D.30°【解答】解:∵△ADB≌△EDB≌△EDC,∴AB=BE=EC,∠ABD=∠DBE=∠C,∴∠A=90°,∴∠C=30°,故选:D.6.(3分)如图,在△ABC中,BC=8,AB的中垂线交BC于D,AC的中垂线交BC于E,则△ADE的周长等于()A.8 B.4 C.12 D.16【解答】解:∵AB的中垂线交BC于D,AC的中垂线交BC于E,∴DA=DB,EA=EC,则△ADE的周长=AD+DE+AE=BD+DE+EC=BC=8,故选:A.7.(3分)等腰三角形的一个角是80°,则它的底角是()A.50°B.80°C.50°或80°D.20°或80°【解答】解:①当顶角是80°时,它的底角=(180°﹣80°)=50°;②底角是80°.所以底角是50°或80°.故选:C.8.(3分)下列说法中,正确的个数是()①斜边和一直角边对应相等的两个直角三角形全等;②有两边和它们的对应夹角相等的两个直角三角形全等;③一锐角和斜边对应相等的两个直角三角形全等;④两个锐角对应相等的两个直角三角形全等.A.1个B.2个C.3个D.4个【解答】解:①斜边和一直角边对应相等的两个直角三角形全等,正确;②有两边和它们的夹角对应相等的两个直角三角形全等,正确;③一锐角和斜边对应相等的两个直角三角形全等,正确;④两个锐角对应相等的两个直角三角形全等,错误;故选:C.9.(3分)如图.从下列四个条件:①BC=B′C,②AC=A′C,③∠A′CA=∠B′CB,④AB=A′B′中,任取三个为条件,余下的一个为结论,则最多可以构成正确的结论的个数是()A.1个B.2个C.3个D.4个【解答】解:当①②③为条件,④为结论时:∵∠A′CA=∠B′CB,∴∠A′CB′=∠ACB,∵BC=B′C,AC=A′C,∴△A′CB′≌△ACB,∴AB=A′B′,当①②④为条件,③为结论时:∵BC=B′C,AC=A′C,AB=A′B′∴△A′CB′≌△ACB,∴∠A′CB′=∠ACB,∴∠A′CA=∠B′CB.故选:B.10.(3分)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AB=10,AD是∠BAC的平分线.若P,Q分别是AD和AC上的动点,则PC+PQ的最小值()A.2.4 B.4 C.5 D.4.8【解答】解:如图,过点C作CM⊥AB交AB于点M,交AD于点P,过点P作PQ⊥AC于点Q,∵AD是∠BAC的平分线.∴PQ=PM,这时PC+PQ有最小值,即CM的长度,∵AC=6,BC=8,∠ACB=90°,∴AB==10,∵S△ABC=AB•CM=AC•BC,∴CM===.故选:D.二、填空题(本题5个小题,每小题3分,共15分.把答案填在题中横线上)11.(3分)若正多边形的一个外角是40°,则这个正多边形的边数是9.【解答】解:多边形的每个外角相等,且其和为360°,据此可得=40,解得n=9.故答案为9.12.(3分)如图所示,在△ABC中,∠C=90°,AB=8,AD是△ABC的一条角平分线.若CD=2,则△ABD的面积为8.【解答】解:作DE⊥AB于E,∵AD是△ABC的一条角平分线,∠C=90°,DE⊥AB,∴DE=DC=2,∴△ABD的面积=×AB×DE=8,故答案为:8.13.(3分)如图,已知△ABC≌△BAD,若∠DAC=20°,∠C=88°,则∠DBA=36度.【解答】解:∵△ABC≌△BAD,∴∠D=∠C=88°,∠DBA=∠CAB,∴∠DBA=(180°﹣20°﹣88°)=36°,故答案为:36°,14.(3分)△ABC中,AB=5,AC=3,AD是△ABC的中线,设AD长为m,则m的取值范围是1<m<4.【解答】解:延长AD至E,使AD=DE,连接CE,则AE=2m,∵AD是△ABC的中线,∴BD=CD,在△ADB和△EDC中,∵,∴△ADB≌△EDC,∴EC=AB=5,在△AEC中,EC﹣AC<AE<AC+EC,即5﹣3<2m<5+3,∴1<m<4,故答案为:1<m<4.15.(3分)在△ABC中,∠A=45°,∠B=30°,AD为△ABC的中线,则∠ADC=45°.【解答】解:过C作CE⊥AB于点E,则有∠AEC=∠BEC=90°,∵∠CAB=45°,∠B=30°,∴∠ACE=∠CAB=45°,∠BCE=60°,∴AE=CE,∵AD为三角形的中线,∴BD=CD=DE=BC,∴∠BED=30°,∴△CED是等边三角形,∴DE=CE=AE,∠CDE=60°,∴∠ADE=∠DAE=∠BED=15°,∴∠ADC=∠CDE﹣∠ADE=45°.故答案为:45°.三、解答题(本大题共7个小题,共55分.解答应写出证明过程或演算步骤)16.(6分)已知:点B、E、C、F在同一直线上,AB=DE,∠A=∠D,AC∥DF.求证:(1)△ABC≌△DEF;(2)BE=CF.【解答】证明:(1)∵AC∥DF∴∠ACB=∠F在△ABC与△DEF中,∴△ABC≌△DEF(2)∵△ABC≌△DEF∴BC=EF∴BC﹣EC=EF﹣EC即BE=CF17.(6分)如图:小亮从A点出发,沿直线前进10米后向左转30度,再沿直线前进10米,又向左转30度,…照这样走下去,他第一次回到出发点A点时,一共走了多少米?【解答】解:∵小亮每次都是沿直线前进10米后向左转30度,∴他走过的图形是正多边形,∴边数n=360°÷30°=12,∴他第一次回到出发点A时,一共走了12×10=120(米).故他一共走了120米.18.(6分)如图,已知A(2,3)、B(1,1)、C(4,1)是平面直角坐标系中的三点.(1)请画出△ABC关于y轴对称的△A1B1C1;(2)画出△A1B1C1向下平移3个单位得到的△A2B2C2;(3)若△ABC中有一点P坐标为(x,y),请直接写出经过以上变换后△A2B2C2中点P的对应点P2的坐标.【解答】解:(1)如图:△A1B1C1即为所求;(2)如图,△A2B2C2即为所求;(3)根据题意可得点P2的坐标为(﹣x,y﹣3).19.(7分)已知:△ABC内部一点O到两边AB、AC所在直线的距离相等,且OB=OC.求证:AB=AC.【解答】证明:在Rt△BOF和Rt△COE中,,∴Rt△BOF≌Rt△COE,∴∠FBO=∠ECO,∵OB=OC,∴∠CB O=∠BCO,∴∠ABC=∠ACB,∴AB=AC.20.(8分)在△ABC中,AD平分∠BAC,BD⊥AD,垂足为D,过D作DE∥AC,交AB于E,若AB=5,求线段DE的长.【解答】解:∵AD平分∠BAC,∴∠BAD=∠CAD,∵DE∥AC,∴∠CAD=∠ADE,∴∠BAD=∠ADE,∴AE=DE,∵AD⊥DB,∴∠ADB=90°,∴∠EAD+∠ABD=90°,∠ADE+∠BDE=∠ADB=90°,∴∠ABD=∠BDE,∴DE=BE,∵AB=5,∴DE=BE=AE=AB=2.5.21.(10分)如图,△ABC中,∠ACB=90°,∠B=30°,AD平分∠CAB,延长AC至E,使CE=AC.(1)求证:DE=DB;(2)连接BE,试判断△ABE的形状,并说明理由.【解答】(1)证明:∵∠ACB=90°,∠ABC=30°,∴BC⊥AE,∠CAB=60°,∵AD平分∠CAB,∴∠DAB=∠CAB=30°=∠ABC,∴DA=DB,∵CE=AC,∴BC是线段AE的垂直平分线,∴DE=DA,∴DE=DB;(2)△ABE是等边三角形;理由如下:连接BE,如图:∵BC是线段AE的垂直平分线,∴BA=BE,即△ABE是等腰三角形,又∵∠CAB=60°,∴△ABE是等边三角形.22.(12分)如图1所示,在△ABC中,∠ACB为锐角,点D为射线BC上一动点,连接AD,以AD为直角边,A为直角顶点,在AD左侧作等腰直角三角形ADF,连接CF,AB=AC,∠BAC=90°.(1)当点D在线段BC上时(不与点B重合),线段CF和BD的数量关系与位置关系分别是什么?请给予证明.(2)当点D在线段BC的延长线上时,(1)的结论是否仍然成立?请在图2中画出相应的图形,并说明理由.【解答】解:(1)CF=BD,且CF⊥BD,证明如下:∵∠FAD=∠CAB=90°,∴∠FAC=∠DAB.在△ACF和△ABD中,,∴△ACF≌△ABD∴CF=BD,∠FCA=∠DBA,∴∠FCD=∠FCA+∠ACD=∠DBA+∠ACD=90°,∴FC⊥CB,故CF=BD,且CF⊥BD.(2)(1)的结论仍然成立,如图2,∵∠CAB=∠DAF=90°,∴∠CAB+∠CAD=∠DAF+∠CAD,即∠CAF=∠BAD,在△ACF和△ABD中,,∴△ACF≌△ABD(SAS),∴CF=BD,∠ACF=∠B,∵AB=AC,∠BAC=90°,∴∠B=∠ACB=45°,∴∠BCF=∠ACF+∠ACB=45°+45°=90°,∴CF⊥BD;∴CF=BD,且CF⊥BD.。

2018-2019学年八年级上册期中数学试卷含答案(人教版)

2018-2019学年八年级(上册)期中数学试卷一、选择题(本大题共14小题,每小题3分,共42分)在每小题锁给出的四个选项中,只有一项是符合题目要求的.1.(3分)下列亚运会会徽中的图案,不是轴对称图形的是()A.B.C.D.2.(3分)小芳有两根长度为5cm和11cm的木条,她想钉一个三角形木框,桌上有下列长度的几根木条,她应该选择长度为()的木条.A.5cm B.3cm C.17cm D.12cm3.(3分)如果n边形的内角和是它外角和的4倍,则n等于()A.7B.8C.10D.94.(3分)若等腰三角形的一边长等于6,另一边长等于4,则它的周长等于()A.15B.16C.14D.14或165.(3分)在△ABC中,∠B=∠C,与△ABC全等的三角形有一个角是100°,那么在△ABC中,与这100°角对应相等的角是()A.∠A B.∠B C.∠C D.∠B或∠C6.(3分)如图,在等腰△ABC中,AB=AC,BD⊥AC,∠ABC=72°,则∠ABD等于()A.18°B.36°C.54°D.64°7.(3分)如图,CE是△ABC的外角∠ACD的平分线,若∠B=35°,∠ACE=60°,则∠A=()A.35°B.95°C.85°D.75°8.(3分)如图,已知D为△ABC边AB的中点,E在边AC上,将△ABC折叠,使A点落在BC上的F 处,若∠B=75°,则∠BDF等于()(A.30°B.50°C.60°D.37.5°9.3分)如图所示,小华从A点出发,沿直线前进10米后左转24°,再沿直线前进10米,又向左转24°,…,照这样走下去,他第一次回到出发地A点时,一共走的路程是()A.140米B.150米C.160米D.240米10.(3分)如图,在△ABC和△DEC中,已知AB=△DE,还需添加两个条件才能使ABC≌△DEC,不能添加的一组条件是()A.BC=EC,∠B=∠EC.BC=DC,∠A=∠DB.BC=EC,AC=DCD.AC=DC,∠A=∠D11.(3分)如图,锐角三角形ABC中,直线L为BC的中垂线,直线M为∠ABC的角平分线,L与M相交于P点.若∠A=60°,∠ACP=24°,则∠ABP的度数为何?()A.24°B.30°C.32°D.36°12.(3分)如图所示的正方形网格中,网格的交点称为格点,已知A,B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形,则符合条件的点C的个数是()A.6B.7C.8D.913.(3分)如图,点P是∠AOB外的一点,点M,N分别是∠AOB两边上的点,点P关于OA的对称点Q恰好落在线段MN上,点P关于OB的对称点R落在MN的延长线上.若PM=2.5cm,PN=3cm,MN =4cm,则线段QR的长为()A.4.5cm B.5.5cm C.6.5cm D.7cm14.(3分)如图所示,△ABC为等边三角形,AQ=PQ,PR=PS,PR⊥AB于R,PS⊥AC于S,则四个结论①点P在∠A的平分线上;②AS=AR;③QP∥AR;④△BRP≌△QSP.其中正确的是()A.①②B.①②④C.①②③D.①②③④二、填空题:(本题共5小题,每小题3分,共15分)15.(3分)点P(﹣3,5)关于x轴的对称点的坐标是.16.(3分)如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,DF⊥AC于点F,S=7,DE△ABC =2,AB=4,则AC长是.17.(3分)如图,△ABC中,AC=8,BC=5,AB的垂直平分线DE交AB于点D,交边AC于点E,则△BCE的周长为.18.(3分)如图,AB、CD相交于点O,AD=△CB,请你补充一个条件,使得AOD≌△COB,你补充的条件是.19.(3分)如图,已知∠MON=30°,点A1,A2,A3,…在射线ON上,点B1,B2,B3,…在射线OM 上.△A1B1A△2,A2B2A△3,A3B3A4,…均为等边三角形,若OA1=△4,则A6B6A7的边长为.三、解答题(本大题共7个小题,共计63分)20.(6分)用尺规作图,在△ABC中作一点P,使点P到AB,AC两边的距离相等,且P A=PB.21.(7分)如图,△ABC三个顶点的坐标分别为A(﹣4,1),B(﹣3,3),C(﹣1,2).(1)作出△ABC关于y轴对称的△A′B′C′,并写出△A′B′C′三个顶点的坐标.(2)在x轴上画出点P,使P A+PC最小.(不写作法,保留作图痕迹).22.(8分)如图,在△ABC中,∠B=40°,AE是∠BAC的平分线,∠ACD=106°,求∠AEC的度数.23.(8分)如图,在△ABC和△DCB中,∠A=∠D=90°,OA=OD,AC与BD相交于点O.(1)求证:AB=CD;(2)请判断△OBC的形状,并证明你的结论.24.(10分)如图,已知港口A东偏南10°方向有一处小岛B,一艘货轮从港口A沿南偏东40°航线出发,行驶80海里到达C处,此时观测小岛B在北偏东60°方向.(1)求此时货轮到小岛B的距离.(2)在小岛周围36海里范围内是暗礁区,此时轮船向正东方向航行有没有触礁危险?请作出判断并说明理由.25.(12分)如图,△ABC和△EBD中,∠ABC=∠DBE=90°,AB=CB,BE=BD,连接AE,CD,AE 与CD交于点M,AE与BC交于点N.(1)求证:AE=CD;(2)求证:AE⊥CD;(3)连接BM,有以下两个结论:①BM平分∠CBE;②MB平分∠AMD.其中正确的有(请写序号,少选、错选均不得分).26.(12分)如图1,点P、Q分别是边长为4cm的等边△ABC边AB、BC上的动点,点P从顶点A,点Q从顶点B同时出发,且它们的速度都为1cm/s.(1)连接AQ、CP交于点M,则在P、Q运动的过程中,∠CMQ变化吗?若变化,则说明理由,若不变,则求出它的度数;(2)试求何时△PBQ是直角三角形?(3)如图2,若点P、Q在运动到终点后继续在射线AB、BC上运动,直线AQ、CP交点为M,则∠CMQ 变化吗?若变化,则说明理由,若不变,则求出它的度数.2018-2019学年八年级(上册)期中数学试卷参考答案与试题解析一、选择题(本大题共14小题,每小题3分,共42分)在每小题锁给出的四个选项中,只有一项是符合题目要求的.1.(3分)下列亚运会会徽中的图案,不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的定义求解.【解答】解:A、不是轴对称图形,故本选项正确;B、是轴对称图形,故本选项错误;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.故选:A.【点评】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.(3分)小芳有两根长度为5cm和11cm的木条,她想钉一个三角形木框,桌上有下列长度的几根木条,她应该选择长度为()的木条.A.5cm B.3cm C.17cm D.12cm【分析】设木条的长度为x cm,再由三角形的三边关系即可得出结论.【解答】解:设木条的长度为x cm,则11﹣5<x<11+5,即6<x<16.故选:D.【点评】本题考查的是三角形的三边关系,熟知三角形任意两边之和大于第三边,任意两边之差小于第三边是解答此题的关键.3.(3分)如果n边形的内角和是它外角和的4倍,则n等于()A.7B.8C.10D.9【分析】利用多边形的内角和公式和外角和公式,根据一个n边形的内角和是其外角和的4倍列出方程求解即可.【解答】解:多边形的外角和是360°,根据题意得:180°•(n﹣2)=360°×4,解得n=10.故选:C.【点评】本题主要考查了多边形内角和公式及外角的特征.求多边形的边数,可以转化为方程的问题来解决.4.(3分)若等腰三角形的一边长等于6,另一边长等于4,则它的周长等于()A.15B.16C.14D.14或16【分析】由于等腰三角形的底边与腰不能确定,故应分4为底边与6为底边两种情况进行讨论.【解答】解:当4为底边时,腰长为6,则这个等腰三角形的周长=4+6+6=16;当6为底边时,腰长为4,则这个等腰三角形的周长=4+4+6=14;故选:D.【点评】本题考查的是等腰三角形的性质,在解答此题时要注意进行分类讨论,不要漏解是解题关键.5.(3分)在△ABC中,∠B=∠C,与△ABC全等的三角形有一个角是100°,那么在△ABC中,与这100°角对应相等的角是()A.∠A B.∠B C.∠C D.∠B或∠C【分析】根据三角形的内角和等于180°可知,相等的两个角∠B与∠C不能是100°,再根据全等三角形的对应角相等解答.【解答】解:在△ABC中,∵∠B=∠C,∴∠B、∠C不能等于100°,∴与△ABC全等的三角形的100°的角的对应角是∠A.故选:A.【点评】本题主要考查了全等三角形的对应角相等的性质,三角形的内角和等于180°,根据∠A=∠C判断出这两个角都不能是100°是解题的关键.6.(3分)如图,在等腰△ABC中,AB=AC,BD⊥AC,∠ABC=72°,则∠ABD等于()A.18°B.36°C.54°D.64°【分析】根据等腰三角形的性质由已知可求得∠A的度数,再根据垂直的定义和三角形内角和定理不难求得∠ABD的度数.【解答】解:∵AB=AC,∠ABC=72°,∴∠ABC=∠ACB=72°,∴∠A=36°,∵BD⊥AC,∴∠ABD=90°﹣36°=54°.故选:C.【点评】本题主要考查等腰三角形的性质,解答本题的关键是会综合运用等腰三角形的性质和三角形的内角和定理进行答题,此题难度一般.7.(3分)如图,CE是△ABC的外角∠ACD的平分线,若∠B=35°,∠ACE=60°,则∠A=()A.35°B.95°C.85°D.75°【分析】根据三角形角平分线的性质求出∠ACD,根据三角形外角性质求出∠A即可.【解答】解:∵CE是△ABC的外角∠ACD的平分线,∠ACE=60°,∴∠ACD=2∠ACE=120°,∵∠ACD=∠B+∠A,∴∠A=∠ACD﹣∠B=120°﹣35°=85°,故选:C.【点评】本题考查了三角形外角性质,角平分线定义的应用,注意:三角形的一个外角等于和它不相邻的两个内角的和.8.(3分)如图,已知D为△ABC边AB的中点,E在边AC上,将△ABC折叠,使A点落在BC上的F 处,若∠B=75°,则∠BDF等于()(A.30°B.50°C.60°D.37.5°【分析】由题意可得AD=BD=DF,即可求∠B=∠DFB=75°,根据三角形内角和定理可求∠BDF的度数.【解答】解:∵点D是AB的中点∴AD=BD∵折叠∴AD=DF∴BD=AD=DF∴∠B=∠DFB=75°∴∠BDF=30°故选:A.【点评】本题考查了翻折变换,三角形内角和定理,熟练运用折叠性质解决问题是本题的关键.9.3分)如图所示,小华从A点出发,沿直线前进10米后左转24°,再沿直线前进10米,又向左转24°,…,照这样走下去,他第一次回到出发地A点时,一共走的路程是()A.140米B.150米C.160米D.240米【分析】多边形的外角和为360°每一个外角都为24°,依此可求边数,再求多边形的周长.【解答】解:∵多边形的外角和为360°,而每一个外角为24°,∴多边形的边数为360°÷24°=15,∴小华一共走了:15×10=150米.故选:B.【点评】本题考查多边形的内角和计算公式,多边形的外角和.关键是根据多边形的外角和及每一个外角都为24°求边数.10.(3分)如图,在△ABC和△DEC中,已知AB=△DE,还需添加两个条件才能使ABC≌△DEC,不能添加的一组条件是()A.BC=EC,∠B=∠EC.BC=DC,∠A=∠DB.BC=EC,AC=DCD.AC=DC,∠A=∠D【分析】根据全等三角形的判定方法逐项判断即可.【解答】解:∵AB=DE,∴当BC=EC,∠B=∠E时,满足SAS,可证明△ABC≌△DEC,故A可以;当BC=EC,AC=DC时,满足SSS,可证明△ABC≌△DEC,故B可以;当BC=DC,∠A=∠D时,在△ABC中是ASS,在△DEC中是SAS,故不能证明△ABC≌△DEC,故C不可以;当AC=DC,∠A=∠D时,满足SAS,可证明△ABC≌△DEC,故D可以;故选:C.【点评】本题主要考查全等三角形的判定,掌握全等三角形的判定方法是解题的关键,即SSS、SAS、ASA、AAS和HL.11.(3分)如图,锐角三角形ABC中,直线L为BC的中垂线,直线M为∠ABC的角平分线,L与M相交于P点.若∠A=60°,∠ACP=24°,则∠ABP的度数为何?()A.24°B.30°C.32°D.36°【分析】根据角平分线的定义可得∠ABP=∠CBP,根据线段垂直平分线上的点到两端点的距离相等可得BP=CP,再根据等边对等角可得∠CBP=∠BCP,然后利用三角形的内角和等于180°列出方程求解即可.【解答】解:∵直线M为∠ABC的角平分线,∴∠ABP=∠CBP.∵直线L为BC的中垂线,∴BP=CP,∴∠CBP=∠BCP,∴∠ABP=∠CBP=∠BCP,在△ABC中,3∠ABP+∠A+∠ACP=180°,即3∠ABP+60°+24°=180°,解得∠ABP=32°.故选:C.【点评】本题考查了线段垂直平分线上的点到两端点的距离相等的性质,角平分线的定义,三角形的内角和定理,熟记各性质并列出关于∠ABP的方程是解题的关键.12.(3分)如图所示的正方形网格中,网格的交点称为格点,已知A,B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形,则符合条件的点C的个数是()A.6B.7C.8D.9【分析】分AB是腰长时,根据网格结构,找出一个小正方形与A、B顶点相对的顶点,连接即可得到等腰三角形,AB是底边时,根据线段垂直平分线上的点到线段两端点的距离相等,AB垂直平分线上的格点都可以作为点C,然后相加即可得解.【解答】解:①AB为等腰△ABC底边时,符合条件的C点有4个;②AB为等腰△ABC其中的一条腰时,符合条件的C点有4个.故选:C.【点评】本题考查了等腰三角形的判定,熟练掌握网格结构的特点是解题的关键,要注意分AB是腰长与底边两种情况讨论求解.13.(3分)如图,点P是∠AOB外的一点,点M,N分别是∠AOB两边上的点,点P关于OA的对称点Q恰好落在线段MN上,点P关于OB的对称点R落在MN的延长线上.若PM=2.5cm,PN=3cm,MN=4cm,则线段QR的长为()A.4.5cm B.5.5cm C.6.5cm D.7cm【分析】利用轴对称图形的性质得出PM=MQ,PN=NR,进而利用MN=4cm,得出NQ的长,即可得出QR的长.【解答】解:∵点P关于OA的对称点Q恰好落在线段MN上,点P关于OB的对称点R落在MN的延长线上,∴PM=MQ,PN=NR,∵PM=2.5cm,PN=3cm,MN=4cm,∴RN=3cm,MQ=2.5cm,即NQ=MN﹣MQ=4﹣2.5=1.5(cm),则线段QR的长为:RN+NQ=3+1.5=4.5(cm).故选:A.【点评】此题主要考查了轴对称图形的性质,得出PM=MQ,PN=NR是解题关键.14.(3分)如图所示,△ABC为等边三角形,AQ=PQ,PR=PS,PR⊥AB于R,PS⊥AC于S,则四个结论①点P在∠A的平分线上;②AS=AR;③QP∥AR;④△BRP≌△QSP.其中正确的是()A.①②B.①②④C.①②③D.①②③④【分析】因为△ABC为等边三角形,根据已知条件可推出△Rt ARP≌△Rt ASP,则AR=AS,故(2)正确,∠BAP=∠CAP,所以AP是等边三角形的顶角的平分线,故(1)正确,根据等腰三角形的三线合一的性质知,AP也是BC边上的高和中线,即点P是BC的中点,因为AQ=PQ,所以点Q是AC的中点,所以PQ是边AB对的中位线,有PQ∥AB,故(△3)正确,又可推出BRP≌△QSP,故(4)正确.【解答】解:∵PR⊥AB于R,PS⊥AC于S∴∠ARP=∠ASP=90°∵PR=PS,AP=AP∴△Rt ARP≌△Rt ASP∴AR=AS,故(2)正确,∠BAP=∠CAP∴AP是等边三角形的顶角的平分线,故(1)正确∴AP是BC边上的高和中线,即点P是BC的中点∵AQ=PQ∴点Q是AC的中点∴PQ是边AB对的中位线∴PQ∥AB,故(3)正确∵∠B=∠C=60°,∠BRP=∠CSP=90°,BP=CP∴△BRP≌△QSP,故(4)正确∴全部正确.故选:D.【点评】本题利用了等边三角形的性质:三线合一,全等三角形的判定和性质,中位线的性质求解.二、填空题:(本题共5小题,每小题3分,共15分)15.(3分)点P(﹣3,5)关于x轴的对称点的坐标是(﹣3,﹣5).【分析】利用平面内两点关于x轴对称时:横坐标不变,纵坐标互为相反数,进行求解.【解答】解:P(﹣3,5)关于x轴的对称点的坐标是(﹣3,﹣5),故答案为:(﹣3,﹣5).【点评】本题考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.16.(3分)如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,DF⊥AC于点F,S=7,DE△ABC =2,AB=4,则AC长是3.【分析】根据角平分线上的点到角的两边距离相等可得DE=DF,再根据三角形的面积公式列式计算即可得解.【解答】解:∵AD是△ABC中∠BAC的角平分线,DE⊥AB,DF⊥AC,∴DE=DF,=×4×2+AC•2=7,∴S△ABC解得AC=3.故答案为:3.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,熟记性质是解题的关键.17.(3分)如图,△ABC中,AC=8,BC=5,AB的垂直平分线DE交AB于点D,交边AC于点E,则△BCE的周长为13.【分析】根据线段的垂直平分线的性质得到EA=EB,根据三角形的周长公式计算即可.【解答】解:∵DE是AB的垂直平分线,∴EA=EB,则△BCE的周长=BC+EC+EB=BC+EC+EA=BC+AC=13,故答案为:13.【点评】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.18.(3分)如图,AB、CD相交于点O,AD=△CB,请你补充一个条件,使得AOD≌△COB,你补充的条件是∠A=∠C或∠ADO=∠CBO.【分析】本题证明两三角形全等的三个条件中已经具备一边和一角,所以只要再添加一组对应角或边相等即可.【解答】解:添加条件可以是:∠A=∠C或∠ADC=∠ABC.∵添加∠A=∠C根据AAS判定△AOD≌△COB,添加∠ADC=∠ABC根据ASA判定△AOD≌△COB,故填空答案:∠A=∠C或∠ADC=∠ABC.【点评】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关键.19.(3分)如图,已知∠MON=30°,点A1,A2,A3,…在射线ON上,点B1,B2,B3,…在射线OM 上.△A1B1A△2,A2B2A△3,A3B3A4,…均为等边三角形,若OA1=△4,则A6B6A7的边长为128.【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及A2B2=2B1A2,得出A3B3=4B1A2=16,A4B4=8B1A2=32,A5B5=16B1A2…进而得出答案.【解答】解:∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°﹣120°﹣30°=30°,又∵∠3=60°,∴∠5=180°﹣60°﹣30°=90°,∵∠MON=∠1=30°,∴OA1=A1B1=4,∴A2B1=4,∵△A2B2A3、△A3B3A4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴A2B2=2B1A2,B3A3=2B2A3,∴A3B3=4B1A2=16=24,A4B4=8B1A2=32=25,A5B5=16B1A2=64=26,以此类推:△A n B n A n+1的边长为2n+1,∴△A6B6A7的边长为:26+1=128.故答案为:128.【点评】此题主要考查了等边三角形的性质以及直角三角形30度角的性质,根据已知得出A3B3=4B1A2,A4B4=8B1A2,A5B5=16B1A2进而发现规律是解题关键.三、解答题(本大题共7个小题,共计63分)20.(6分)用尺规作图,在△ABC中作一点P,使点P到AB,AC两边的距离相等,且P A=PB.【分析】分别作∠BAC的平分线和线段AB的中垂线,它们的交点即为所求点P.【解答】解:如图所示,点P即为所求.【点评】此题主要考查了线段垂直平分线的性质与作法以及角平分线的性质与作法,正确掌握相关性质是解题关键.21.(7分)如图,△ABC三个顶点的坐标分别为A(﹣4,1),B(﹣3,3),C(﹣1,2).(1)作出△ABC关于y轴对称的△A′B′C′,并写出△A′B′C′三个顶点的坐标.(2)在x轴上画出点P,使P A+PC最小.(不写作法,保留作图痕迹).【分析】(1)写出点A、B、C关于y轴对称的对应点A′、B′、C′的坐标,然后描点即可;(2)作A点关于x轴的对应点A″,连接A″C交x轴于点P,利用两点之间线段最短可判断此时P A+PC 最小.【解答】解:(△1)如图,A′B′△C′为所作,A′B′C′三个顶点的坐标分别为A'(4,1),B'(3,3),C'(1,2);(2)如图,点P为所作..【点评】本题考查了作图﹣轴对称变换:在画一个图形的轴对称图形时,也是先从确定一些特殊的对称点开始的,一般的方法是:由已知点出发向所给直线作垂线,并确定垂足;直线的另一侧,以垂足为一端点,作一条线段使之等于已知点和垂足之间的线段的长,得到线段的另一端点,即为对称点;连接这些对称点,就得到原图形的轴对称图形.22.(8分)如图,在△ABC中,∠B=40°,AE是∠BAC的平分线,∠ACD=106°,求∠AEC的度数.【分析】先由三角形外角的性质,求出∠BAC的度数,然后由角平分线的定义即可求出∠BAE的度数,然后再根据外角的性质,即可求∠AEC的度数.【解答】解:∵∠ACD是△ABC的外角,∴∠ACD=∠B+∠BAC,∵∠B=40°,∠ACD=106°,∴∠BAC=66°,∵AE平分∠BAC,∴∠BAE=∠BAC=33°,∵∠AEC是△ABE的外角,∴∠AEC=∠B+∠BAE=73°.【点评】此题考查了三角形外角的性质及角平分线的定义,熟记三角形的外角等于与它不相邻的两个内角之和.23.(8分)如图,在△ABC和△DCB中,∠A=∠D=90°,OA=OD,AC与BD相交于点O.(1)求证:AB=CD;(2)请判断△OBC的形状,并证明你的结论.【分析】(1)根据已知条件,用HL公理证:△Rt ABC≌△Rt DCB,从而得证;(2)利用△Rt ABC≌△Rt DCB的对应角相等,即可证明△OBC是等腰三角形.【解答】证明:(1)在△Rt ABC与△Rt DCB中,∠A=∠D=90°,,∴△Rt ABC≌△Rt DCB(HL),∴AB=CD;(2)△OBC是等腰三角形,理由如下:∵△ABC≌△DCB,则∠ACB=∠DBC,在△OBC中,即∠OCB=∠OBC∴△OBC是等腰三角形.【点评】此题主要考查全等三角形的判定和性质,关键是学生对直角三角形全等的判定和等腰三角形的判定与性质的理解和掌握.24.(10分)如图,已知港口A东偏南10°方向有一处小岛B,一艘货轮从港口A沿南偏东40°航线出发,行驶80海里到达C处,此时观测小岛B在北偏东60°方向.(1)求此时货轮到小岛B的距离.(2)在小岛周围36海里范围内是暗礁区,此时轮船向正东方向航行有没有触礁危险?请作出判断并说明理由.【分析】(1)根据题意得到∠CAB=∠B,根据等腰三角形的性质得到CB=CA=80,得到答案;(2)作BD⊥CD于点D,求出∠BCD=30°,根据直角三角形的性质计算即可.【解答】解:(1)由题意得,∠CAB=90°﹣40°﹣10°=40°,∠ACB=40°+60°=100°,∴∠B=180°﹣100°﹣40°=40°,∴∠CAB=∠B,∴CB=CA=80(海里),答:此时货轮到小岛B的距离为80海里;(2)轮船向正东方向航行没有触礁危险.理由如下:如图,作BD⊥CD于点D,∵∠BCD=90°﹣60°=30°,∴BD=BC=40,∵40>36,∴轮船向正东方向航行没有触礁危险.【点评】本题考查的是解直角三角形的应用﹣方向角问题,掌握直角三角形的性质、方向角的概念是解题的关键.25.(12分)如图,△ABC和△EBD中,∠ABC=∠DBE=90°,AB=CB,BE=BD,连接AE,CD,AE 与CD交于点M,AE与BC交于点N.(1)求证:AE=CD;(2)求证:AE⊥CD;(3)连接BM,有以下两个结论:①BM平分∠CBE;②MB平分∠AMD.其中正确的有②(请写序号,少选、错选均不得分).【分析】(1)欲证明AE=△CD,只要证明ABE≌△CBD;(2)由△ABE≌△CBD,推出BAE=∠BCD,由∠NMC=180°﹣∠BCD﹣∠CNM,∠ABC=180°﹣∠BAE ﹣∠ANB,又∠CNM=∠ABC,∠ABC=90°,可得∠NMC=90°;(3)结论:②;作BK⊥AE于K,BJ⊥CD于J.理由角平分线的判定定理证明即可;【解答】(1)证明:∵∠ABC=∠DBE,∴∠ABC+∠CBE=∠DBE+∠CBE,即∠ABE=∠CBD,在△ABE和△CBD中,,∴△ABE≌△CBD,∴AE=CD.(2)∵△ABE≌△CBD,∴∠BAE=∠BCD,∵∠NMC=180°﹣∠BCD﹣∠CNM,∠ABC=180°﹣∠BAE﹣∠ANB,又∠CNM=∠ABC,∵∠ABC=90°,∴∠NMC=90°,∴AE⊥CD.(3)结论:②△S ABE=理由:作BK⊥AE于K,BJ⊥CD于J.∵△ABE≌△CBD,∴AE=CD,△S CDB,∴•AE•BK=•CD•BJ,∴BK=BJ,∵作BK⊥AE于K,BJ⊥CD于J,∴BM平分∠AMD.不妨设△①成立,则ABM≌△DBM,则AB=BD,显然可不能,故①错误.故答案为②.【点评】本题考查全等三角形的判定和性质、等腰直角三角形的性质、角平分线的性质定理等知识,解题的关键是正确寻找全等三角形解决问题,学会添加常用辅助线解决问题.26.(12分)如图1,点P、Q分别是边长为4cm的等边△ABC边AB、BC上的动点,点P从顶点A,点Q从顶点B同时出发,且它们的速度都为1cm/s.(1)连接AQ、CP交于点M,则在P、Q运动的过程中,∠CMQ变化吗?若变化,则说明理由,若不变,则求出它的度数;(2)试求何时△PBQ是直角三角形?(3)如图2,若点P、Q在运动到终点后继续在射线AB、BC上运动,直线AQ、CP交点为M,则∠CMQ 变化吗?若变化,则说明理由,若不变,则求出它的度数.【分析】(△1)利用等边三角形的性质可证明APC≌△BQA,则可求得∠BAQ=∠ACP,再利用三角形外角的性质可证得∠CMQ=60°;(2)可用t分别表示出BP和BQ,分∠BPQ=90°和∠BPQ=90°两种情况,分别利用直角三角形的性质可得到关于t的方程,则可求得t的值;(3)同(△1)可证得PBC≌△QCA,再利用三角形外角的性质可求得∠CMQ=120°.【解答】解:(△1)∵ABC为等边三角形,∴AB=AC,∠B=∠P AC=60°,∵点P从顶点A,点Q从顶点B同时出发,且它们的速度都为1cm/s,∴AP=BQ,在△APC和△BQA中,∴△APC≌△BQA(SAS),∴∠BAQ=∠ACP,∴∠CMQ=∠CAQ+∠ACP=∠BAQ+∠CAQ=∠BAC=60°,∴在P、Q运动的过程中,∠CMQ不变,∠CMQ=60°;(2)∵运动时间为ts,则AP=BQ=t,∴PB=4﹣t,当∠PQB=90°时,∵∠B=60°,∴PB=2BQ,∴4﹣t=2t,解得t=,当∠BPQ=90°时,∵∠B=60°,∴BQ=2PB,∴t=2(4﹣t),解得t=,∴当t为s或s时,△PBQ为直角三角形;(3)在等边三角形ABC中,AC=BC,∠ABC=∠BCA=60°,∴∠PBC=∠QCA=120°,且BP=CQ,在△PBC和△QCA中,∴△PBC≌△QCA(SAS),∴∠BPC=∠MQC,又∵∠PCB=∠MCQ,∴∠CMQ=∠PBC=120°,∴在P、Q运动的过程中,∠CMQ的大小不变,∠CMQ=120°.【点评】本题为三角形的综合应用、等边三角形的性质、直角三角形的性质、勾股定理、全等三角形的判定和性质、解题的关键是正确寻找全等三角形解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.。

新人教版2018-2019学年八年级(上)学期期中数学试卷附答案

2018-2019学年八年级(上)学期期中数学试卷一、选择题(每小题3分,共30分)1.下列“QQ表情”中属于轴对称图形的是()A.B.C.D.2.以下列各组线段为边,能组成三角形的是()A.2cm,3cm,5cm B.3cm,3cm,6cmC.5cm,8cm,2cm D.4cm,5cm,6cm3.如图,在△ABC中,∠B=40°,∠C=30°,延长BA到D,则∠CAD的度数为()A.110°B.80°C.70°D.60°4.下列条件中,不能判定三角形全等的是()A.三条边对应相等B.两边和一角对应相等C.两角和其中一角的对边对应相等D.两角和它们的夹边对应相等5.点(﹣4,3)关于x轴对称的点的坐标为()A.(4,3)B.(4,﹣3)C.(﹣4,﹣3)D.无法确定6.已知△ABC≌△DEF,∠A=80°,∠E=50°,则∠F的度数为()A.30°B.50°C.80°D.100°7.如图,工人师傅砌门时,常用木条EF固定门框ABCD,使其不变形,这种做法的根据是()A.两点之间线段最短B.矩形的对称性C.矩形的四个角都是直角D.三角形的稳定性8.如图,OC是∠AOB的平分线,P是OC上一点,PD⊥OA于点D,PD=6,则点P到边OB的距离为()A.5 B.6 C.3 D.49.如图,△ABC≌△DEF,BE=4,AE=1,则DE的长是()A.5 B.4 C.3 D.210.如图所示,AC=BD,AB=CD,图中全等的三角形的对数是()A.5 B.4 C.3 D.2二、填空题(本大题共6小题,每小题4分,共24分)11.线段AB和线段A′B′关于直线l对称,若AB=16cm,则A′B′=cm.12.一个多边形的内角和是720°,这个多边形的边数是.13.如图,已知∠1=∠2,请你添加一个条件:,使△ABD≌△ACD.14.一个三角形的两边长分别是2和3,若它的第三边长为奇数,则这个三角形的周长为.15.如图,某同学将三角形玻璃打碎,现要到玻璃店配一块完全相同的玻璃,应带去.16.如图,三角形纸牌中,AB=8cm,BC=6cm,AC=5cm,沿着过△ABC的顶点B的直线折叠这个三角形,使点C落在AB边上的点E处,折痕为BD,则△AED周长为.三、解答题(一)(本大题共3小题,每小题6分,共18分)17.求出图中的x的值.18.如图,已知∠A=∠D,CO=BO,求证:△AOC≌△DOB.19.尺规作图,保留作图痕迹,不写作法.(1)作△ABC中∠B的平分线;(2)作△ABC边BC上的高.四、解答题(二)(本大题共3小题,每小题7分,共21分)20.如图在△ABC中,AD平分∠BAC,点D是BC的中点,DE⊥AB于点E,DF⊥AC于点F.求证:∠B=∠C.21.如图,在△ABC中,∠B=50°,∠C=70°,AD是高,AE是角平分线,求∠EAD的度数.22.如图,已知点B、E、C、F在同一直线上,AB=DE,∠A=∠D,AC∥DF.求证:(1)△ABC≌△DEF;(2)BE=CF.五、解答题(三)(本大题共3小题,每小题9分,共27分)23.如图,在平面直角坐标系中,A(﹣1,5),B(﹣1,0),C(﹣4,3).(1)求出△ABC的面积;(2)在图中作出△ABC关于y轴的对称图形△A1B1C1;(3)写出点A1,B1,C1的坐标.24.如图,已知点A、F、E、C在同一直线上,AB∥CD,∠ABE=∠CDF,AF=CE.(1)从图中任找两组全等三角形;(2)从(1)中任选一组进行证明.25.如图,在△ABC中,∠C=90°,∠CAD=∠BAD,DE⊥AB于E,点F在边AC上,连接DF.(1)求证:AC=AE;(2)若AC=8,AB=10,且△ABC的面积等于24,求DE的长;(3)若CF=BE,直接写出线段AB,AF,EB的数量关系:.参考答案一、选择题(每小题3分,共30分)ADCBC BDBAC二、填空题(本大题共6小题,每小题4分,共24分)11.16 12.6.13.∠B=∠C或∠BAD=∠CAD或BD=CD.14.8.15.③.16.7cm.解:∵过△ABC的顶点B的直线折叠这个三角形,使点C落在AB边上的点E处,折痕为BD,∴DC=DE,BE=BC=6cm,∵AB=8cm,∴AE=AB﹣BE=2cm,∵△AED周长=AD+DE+AE=AD+DC+AE=AC+AE=5cm+2cm=7cm.三、解答题(一)(本大题共3小题,每小题6分,共18分)17.解:由图知:x+80=x+x+20.解得x=60.∴x的值是60.18.证明:在△AOC与△DOB中,,∴△AOC≌△DOB(AAS).19.解:(1)如图所示,射线BD即为所求;(2)如图所示,线段AE即为所求.20.解:∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴DE=DF,∠BED=∠CFD=90°,∵D是BC的中点,∴BD=CD在Rt△BDE和Rt△CDF中∵DE=DF,DB=DC,∴Rt△BDE≌Rt△CDF(HL)∴∠B=∠C(8分)21.解:∵∠B=50°,∠C=70°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣50°﹣70°=60°,∵AE是角平分线,∴∠BAE=∠BAC=×60°=30°,∵AD是高,∴∠BAD=90°﹣∠B=90°﹣50°=40°,∴∠EAD=∠BAE﹣∠BAD=40°﹣30°=10°.22.证明:(1)∵AC∥DF,∴∠ACB=∠F,在△ABC和△DEF中,,∴△ABC≌△DEF(AAS);(2)∵△ABC≌△DEF,∴BC=EF,∴BC﹣CE=EF﹣CE,即BE=CF.23.解:(1)如图所示:△ABC的面积:×3×5=7.5;(2)如图所示:(3)A1(1,5),B1(1,0),C1(4,3).24.解:(1)△ABE≌△CDF,△AFD≌△CEB;(2)∵AB∥CD,∴∠1=∠2,∵AF=CE,∴AF+EF=CE+EF,即AE=FC,在△ABE和△CDF中,,∴△ABE≌△CDF(AAS).25.解:(1)∵∠C=90°,DE⊥AB∴∠C=∠AED=90°,在△ACD和△AED中,,∴△ACD≌△AED(AAS),∴AC=AE.(2)由(1)得:△ACD≌△AED,∴DC=DE,∵S△ACB=S△ACD+S△ADB,∴,又∵AC=8,AB=10,且△ABC的面积等于24,∴∴DE=.(3)∵AB=AE+EB,AC=AE,∴AB=AC+EB,∵AC=AF+CF,CF=BE∴AB=AF+2EB.。

2018-2019学年八年级数学上册期中调研测试题9

2018-2019学年度第一学期八年级数学期中考试答案 一、选择题(每题3分,共24分) 1. D 2. A 3.B 4. A 5. C 6. D 7. B 8.C 二、填空题(每题3分,共30分) 9. 17 10. 角平分线所在的直线 11.90° 12. 4 13.30 14. 3 15.4 16.512 17. 3 18. 12n

三、解答题(共66分) 19.(1)40°;80°----------------------4分 (2)BCE的周长=BC+EC+BE= BC+EC+AE ----6分, =53cm-----8分 20.(1)画图正确,并标出字母 (画图略) ----------4分, (2)画图并标出点P(画图略)----------------8分 21. 因为BD、CE是ABC的两条高, 所以∠AEC=∠ADB=90°-----------------2分 又因为∠EAC=∠DAB,AB=AC 所以ABD≌ACE---------------------6分 所以BD=CE----------------------------8分 22. BC=EF ,BC∥EF ---------------------------------------2分 因为AF=DC,所以AF+FC=DC+FC,即AC=DF-----------------4分 又因为∠A=∠D,AB=DE,所以ABC≌DEF,所以 BC=EF-----6分 因为ABC≌DEF,所以∠BCA=∠EFD,BC∥EF--------------8分 23.(1)AD⊥BD--------------------------------------------1分 因为AD为BC的中线,BC=10,所以BD=5-------------------2分 因为222222ABBDAD169,169,所以ABBDAD 所以ABD是直角三角形,且∠ADB=90°-------------------4分 所以AD⊥BD--------------------------------------------5分 (2)因为AD⊥BD,AD为BC的中线,所以AD垂直平分BC, 所以AC=AB=13------------------------------------------8分 24.(1) 因为RtABC≌RtCDE,所以∠BAC=∠ECD---------------1分 又因为∠B=90°,所以∠BAC+∠ACB=90°----------------2分 所以∠ECD +∠ACB=90°-------------------------------3分 又因为∠ACB+∠ACE+∠ECD =180°,所以∠ACE=90°------4分 (2) 因为∠B=∠D=∠ACE=90°,

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

江苏省常州市2018-2019学年八年级数学上学期期中阶段性质量调研
试题
一、选择题(每小题2分,共16分)
1.下列图形中是轴对称图形的是----------------------------------------------------------------【】
A.B.C.D

2.等腰三角形的对称轴有-------------------------------------------------------------------------【】
A.1条B.2条C.3条D
.6条

3.如图,下列条件中,不能证明△ABD≌△ACD的是---------------------------------------【】
A.AB=AC,BD=CD
B.∠B=∠C,∠BAD=∠CAD
C.∠B=∠C,BD=CD
D.∠ADB=∠ADC,DB=DC
4.在△ABC中,∠A=50°,∠B=80°,则△ABC是--------------------------------------【】
A.钝角三角形B
.等腰三角形

C.等边三角形D
.等腰直角三角形

5.下列说法中正确的是----------------------------------------------------------------------------【】
A.斜边相等的两个直角三角形全等B
.腰相等的两个等腰三角形全等

C.有一边相等的两个等边三角形全等D
.两条边相等的两个直角三角形全等

6.已知△ABC中,a、b、c分别是∠A、∠B、∠C的对边,下列条件不能判断
△ABC是直角三角形的是-----------------------------------------------------------------------【】
A.12a,22b,32cB
.cb,

45A

C.CBA323D.a+b=2.5,a-b=1.6,c
=2

7.如图,在△ABC中,点D是AB边上一点,且AB=AC=CD,
则∠1与∠2之间的关系是-----------------------------------------【】
A.1801223B

180122

C.180123D

221

8.如图,在△ABC中,∠A=90°,点D是BC的中点,过点
D
作DE⊥DF分别AB、AC于点E、F.若5.1BE,CF=2,
则EF的长是----------------------------------------------------------【】
A.4.2B

5.2

C.3D

5.3

二、填空题(每小题2分,共20分)

9.已知ABC△≌△DEF(A、B、C分别对应D、E、F),若∠A=50°,∠E=72°,则∠
F

相关文档
最新文档