广东省深圳外国语学校2014_2015学年高一数学上学期期中试题(无答案)

合集下载

广东省深圳市高级中学2014—2015学年度高二数学上学期期中试题 文

广东省深圳市高级中学2014—2015学年度高二数学上学期期中试题 文

高级中学2014-2015学年第一学期期中测试高二数学〔文科〕本试卷分为第1卷〔选择题〕和第2卷〔非选择题〕两局部,第1卷为1-10题,共50分,第2卷为11-20题,共100分,总分为150分.考试用时120分钟.第1卷 (选择题共50分)一.选择题:〔本大题共10小题,每一小题5分,共50分.在每一小题给出的四个选项中,有且只有一项为哪一项符合题目要求的〕1. 命题p :3是奇数,q :5是偶数,如此如下说法中正确的答案是( ) A .p 或q 为真 B .p 且q 为真 C .非p 为真 D .非q 为假2. “02=-x x 〞是“1=x 〞的( )A .充分而不必要条件 B.必要而不充分条件 C .充要条件 D.既不充分也不必要条件3. 圆心在直线270x y --=上,且与y 轴交于点(0,4)A -,(0,2)B -的圆的标准方程为 〔 〕A. 22(3)(2)5x y -+-= B. 22(2)(3)5x y +++= C. 22(2)(3)5x y -++= D. 22(2)(3)5x y -+-=4. 假设直线0x y a ++=与圆22()2x a y -+=相切,如此a =〔 〕 A .1 B .-1 CD .1或-15. 设双曲线22221(0,0)x y a b a b-=>>的虚轴长为2,焦距为23,如此双曲线的渐近线方程为〔〕A. y =B. 2y x =±C. 2y x =±D. 12y x =±6. 函数)(x f 的定义域为开区间),(b a ,导函数)(x f '在),(b a 内的图象如下列图,如此函数)(x f 在开区间),(b a 内有极大值点〔 〕A. 1个B. 2个C.3个D.4个7. 过点P 〔-1,4〕作圆0126422=+--+y x y x 的切线,如此切线长为〔 〕 A .3B .5C .10D .58. 与直线430x y -+=平行的抛物线22y x =的切线方程是( ) A .410x y -+= B.410x y --= C .420x y --=D.420x y -+=9. O 为坐标原点,F 为抛物线C :2y =的焦点,P 为C 上一点,假设|PF |=42,如此△POF 的面积为( ) A. 2 B. 22C. 2 3 D. 4 10. ()x f x x e =⋅,方程()()()210f x tf x t R ++=∈有四个实数根,如此t 的取值范围为〔 〕A. 21,e e ⎛⎫++∞ ⎪⎝⎭B. 21,e e ⎛⎫+-∞- ⎪⎝⎭ C. 21,2e e ⎛⎫+-- ⎪⎝⎭ D. 212,e e ⎛⎫+ ⎪⎝⎭第2卷 (非选择题共100分)二.填空题:〔本大题共4小题,每一小题5分,总分为20分〕 11. x x x f cos ln )(+=,如此'()2f π=.12. 2,10x R x ax ∃∈-+≤为假命题,如此实数a 的取值范围为. 13. 假设椭圆2215x y m+=的离心率为105,如此实数m 的值为.14.设F 1,F 2是双曲线C: 22221a x y b-= (a>0,b>0)的两个焦点,假设在C 上存在一点P ,使PF 1⊥PF 2,且∠PF 1F 2=30°,如此双曲线C 的离心率为.三.解答题:〔本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤〕 15. 〔本小题总分为12分〕函数()sin(),(0)6f x x πωω=+>的最小正周期为π.〔1〕求ω和()12f π的值;〔2〕求函数()f x 的最大值与相应x 的集合.16. 〔本小题总分为12分〕设直线2310x y ++=和圆22230x y x +--=相交于点A 、B.〔1〕求弦AB 的垂直平分线方程; 〔2〕求弦AB 的长.17. 〔本小题总分为14分〕设函数x e x x f 221)(=. 〔1〕求函数)(x f 的单调区间;〔2〕假设当]2,2[-∈x 时,不等式m x f <)(恒成立,求实数m 的取值范围.18.〔本小题总分为14分〕设12,F F 分别是椭圆2222:1x y C a b+=(0)a b >>的左、右焦点,椭圆C 上的点3(1,)2A 到12,F F 两点的距离之和等于4. 〔1〕求椭圆C 的方程;〔2〕设点P 是椭圆C 上的动点,1(0,)2Q ,求PQ 的最大值.19. 〔本小题总分为14分〕如下列图,抛物线E 关于x 轴对称,它的顶点在坐标原点,点P (1,2),A (x 1,y 1),B (x 2,y 2)均在抛物线上.〔1〕求抛物线E 的标准方程与其准线方程;〔2〕当PA 与PB 的斜率存在且倾斜角互补时,求y 1+y 2的值与 直线AB 的斜率.20. 〔本小题总分为14分〕函数()axf x a x =++21,()ln g x a x x =-〔a >0〕. 〔1〕当a =1时,求函数()f x 的极值;〔2〕求证:对于任意(]12,0,e x x ∈,总有12()()g x f x <成立.高级中学2014-2015学年第一学期期中考试高二数学〔文科〕答题卷一、选择题〔每题5分,10题共50分〕二、填空题〔每题5分,4题共20分〕 11. 12. 13. 14.三、解答题:(本大题6小题,总分为80分.解答须写出文字说明、证明过程和演算步骤) 15. 〔本小题总分为12分〕题号 1 2 3 4 5 6 7 8 9 10 答案16. 〔本小题总分为12分〕17. 〔本小题总分为14分〕18. 〔本小题总分为14分〕19. 〔本小题总分为14分〕20.〔本小题总分为14分〕高级中学2014-2015学年第一学期期中考试高二数学〔文科〕答题卷解:〔1〕∵函数()sin()6f x x πω=+的周期是π且0ω>T ππω∴==2,解得2ω= … ……………………………………………………3分∴()sin(2)6f x x π=+…………………………4分∴()sin(2)sin 121263f ππππ=⨯+==………………………………………6分〔2〕∵1sin(2)16x π-≤+≤………………………………………….8分∴当22()62x k k Z πππ+=+∈即()6x k k Z ππ=+∈时()f x 取得最大值1 (10)分此时x 的集合为{,}6x x k k Z ππ=+∈…………………………………….12分16. 〔本小题总分为12分〕解:〔1〕圆方程可整理为:4)1(22=+-y x ,圆心坐标为〔1,0〕,半径r=2............2分 易知弦AB 的垂直平分线l 过圆心,且与直线AB 垂直,而23,321=∴-=k k AB ………….4分 所以,由点斜式方程可得:),1(230-=-x y整理得:0323=--y x ………………….6分〔2〕圆心〔1,0〕到直线,13323|12|013222=++==++d y x 的距离为……….8分故.135592)133(22||22=-⨯=AB ………………12分 17. 〔本小题总分为14分〕解:〔1〕)2(2121)(2+=+='x x e e x xe x f xx x..............................2分 令0)2(>+x x e x,得20-<>x x 或,∴)(x f 的增区间为)2,(-∞-和),0(∞+ ...............................4分令0)2(<+x x e x,得02<<-x ,∴)(x f 的减区间为)0,2(-..................................6分〔2〕因为当]2,2[-∈x 时,不等式恒m x f <)(成立 等价于max ()f x m <………………………...8分因为]2,2[-∈x ,令0)(='x f ,得2-=x ,或0=x ,∴2max ()2f x e =………………………….12分 ∴22e m >……………………………………….14分 18. 〔本小题总分为14分〕解:〔1〕椭圆C 的焦点在x 轴上,由椭圆上的点A 到12,F F 两点的距离之和是4,得24a =即2a =,又3(1,)2A 在椭圆上,223()1212b∴+=,解得23b =,于是21c =所以椭圆C 的方程是22143x y +=………………………6分 (2).设(,)P x y ,如此22143x y +=,22443x y ∴=-…………………….8分 222222214111713()4()52343432PQ x y y y y y y y =+-=-+-+=--+=-++…10分又3y -≤≤ .....................................12分∴当32y =-时,max PQ =………………………14分 19. 〔本小题总分为14分〕解:(1)由条件,可设抛物线的方程为y 2=2px (p >0)........................................1分∵点P (1,2)在抛物线上,∴22=2p ×1,解得p =2.………………………...3分 故所求抛物线的方程是y 2=4x …………………………….4分 准线方程是x =-1.…………………………….6分 (2)设直线PA 的斜率为k PA ,直线PB 的斜率为k PB ,如此k PA =y 1-2x 1-1(x 1≠1),k PB =y 2-2x 2-1(x 2≠1), ∵PA 与PB 的斜率存在且倾斜角互补,∴k PA =-k PB .……………………….8分 由A (x 1,y 1),B (x 2,y 2)均在抛物线上,得y 21=4x 1,① y 22=4x 2,② ∴y 1-214y 21-1=-y 2-214y 22-1 ∴y 1+2=-(y 2+2).∴y 1+y 2=-4.…………………………12分 由①-②得,y 21-y 22=4(x 1-x 2), ∴k AB=y 1-y 2x 1-x 2=4y 1+y 2=-1(x 1≠x 2). ...........................................14分 20.〔本小题总分为14分〕解:〔1〕函数()f x 的定义域为R ,()()()()()x x x f x x x --+'==++2222211111…………….1分 当x 变化时,()f x ',()f x 的变化情况如下表:………5分∴当x =-1时,()f x 有极小值,极小值为12当x =1时,()f x 有极大值,极大值为32…………………………7分〔2〕()()()()()()a x a x x f x x x --+'==++2222211111.当a >0时,当x 变化时,()f x ',()f x 的变化情况如下表:x(,)-∞-1(,)-11(,)+∞1()f x '-+-()f x↘↗↘x (,)-∞-1(,)-11(,)+∞1所以()f x 在(,)01上单调递增,在(,e]1上单调递减,且2e(e)(0)e 1a f a a f =+>=+. 所以(0,e]x ∈时,min ()f x a =……………………..9分因为()ln g x a x x =-,所以()1ag x x '=-,令()0g x '=,得x a =①当0e a <<时,由()0g x >',得0x a <<;由()0g x <',得x a >,所以函数()g x 在(0,)a 上单调递增,在(,e]a 上单调递减.所以max ()()ln g x g a a a a ==-. 因(ln )(2ln )(2ln e)0a a a a a a a a --=->-=>,对任意(]12,0,e x x ∈,总有12()()g x f x <………………………………12分②当e a ≥时,()0g x '≥在(0,e]上恒成立,所以函数()g x 在(0,e]上单调递增,max ()(e)e <g x g a a ==-. 所以对于任意(]12,0,e x x ∈,仍有12()()g x f x <.综上所述,对于任意(]12,0,e x x ∈,总有12()()g x f x <. …………………14分()f x ' -0 +0-()f x↘↗↘。

2015-2016学年广东省深圳市宝安区第一外国语学校高一(上)期中数学试卷(解析版)

2015-2016学年广东省深圳市宝安区第一外国语学校高一(上)期中数学试卷(解析版)

2015-2016学年广东省深圳市宝安区第一外国语学校高一(上)期中数学试卷参考答案与试题解析一、选择题:(本大题共12小题,每小题5分共计60分).1.设集合A={x|(x+1)(x﹣2)<0},集合B={x|1<x<3},则A∪B=()A.{x|﹣1<x<3} B.{x|﹣1<x<1} C.{x|1<x<2} D.{x|2<x<3}【考点】并集及其运算.【专题】函数的性质及应用.【分析】求解不等式得出集合A={x|﹣1<x<2},根据集合的并集可求解答案.【解答】解:∵集合A={x|(x+1)(x﹣2)<0},集合B={x|1<x<3},∴集合A={x|﹣1<x<2},∵A∪B={x|﹣1<x<3},故选:A【点评】本题考查了二次不等式的求解,集合的运算,属于容易题.2.下列四组函数中,表示同一函数的是()A.y=x﹣1与y=B.y=与y=C.y=4lgx与y=2lgx2D.y=lgx﹣2与y=lg【考点】判断两个函数是否为同一函数.【专题】阅读型.【分析】分别求出四组函数的定义域、对应法则、值域;据函数的三要素:定义域、对应法则、值域都相同时为同一个函数选出答案.【解答】解:∵y=x﹣1与y==|x﹣1|的对应法则不同,故不是同一函数;y=(x≥1)与y=(x>1)的定义域不同,∴它们不是同一函数;又y=4lgx(x>0)与y=2lgx2(x≠0)的定义域不同,因此它们也不是同一函数,而y=lgx﹣2(x>0)与y=lg=lgx﹣2(x>0)有相同的定义域,值域与对应法则,故它们是同一函数.故选D【点评】本题考查函数的三要素:定义域、对应法则、值域;并利用三要素判断两个函数是否是一个函数,3.下列函数既是奇函数,又是增函数的是()A.y=log2|x| B.y=x3+x C.y=3x D.y=x﹣3【考点】奇函数;函数单调性的性质.【专题】计算题;函数的性质及应用.【分析】A:y=log2|x|是偶函数B:y=x+x3既是奇函数又是增函数.C:y=3x非奇非偶函数D:y=x﹣3是奇函数,但是在(0,+∞),(﹣∞,0)递减函数,从而可判断【解答】解:A:y=log2|x|是偶函数B:y=x+x3既是奇函数又是增函数.C:y=3x非奇非偶函数D:y=x﹣3是奇函数,但是在(0,+∞),(﹣∞,0)递减函数故选B.【点评】本题主要考察了函数的奇偶性及函数的单调性的判断,属于基础试题4.已知函数f(x)=,那么f(5)的值为()A.32 B.16 C.8 D.64【考点】函数的值.【专题】函数的性质及应用.【分析】根据自变量所属于的范围代入相应的解析式求出值.【解答】解:∵f(x)=,∴f(5)=f(4)=f(3)=23=8故选C.【点评】本题考查函数值的求法,是基础题,解题时要注意函数性质的合理运用.5.函数y=a x﹣2+2(a>0,且a≠1)的图象必经过点()A.(0,1) B.(1,1) C.(2,2) D.(2,3)【考点】指数函数的单调性与特殊点.【专题】计算题;函数的性质及应用.【分析】根据指数函数的性质,指数函数y=a x(a>0,a≠1)的图象恒过(0,1)点,再根据函数图象的平移变换法则,求出平移量,进而可以得到函数图象平移后恒过的点的坐标.【解答】解:由指数函数y=a x(a>0,a≠1)的图象恒过(0,1)点而要得到函数y=a x﹣2+2,(a>0,a≠1)的图象,可将指数函数y=a x(a>0,a≠1)的图象向右平移两个单位,再向上平移两个单位.则(0,1)点平移后得到(2,3)点故选:D.【点评】本题考查的知识点是指数函数的图象与性质,其中根据函数y=a x﹣2+2(a>0,a≠1)的解析式,结合函数图象平移变换法则,求出平移量是解答本题的关键.6.函数的定义域为()A.(2,3) B.(2,4) C.(2,3)∪(3,4]D.(﹣1,3)∪(3,6]【考点】函数的定义域及其求法.【专题】转化思想;定义法;函数的性质及应用.【分析】根据函数f(x)的解析式,列出使解析式有意义的不等式组,求出解集即可.【解答】解:∵函数,∴,解得2<x≤4,且x≠3;∴函数f(x)的定义域为(2,3)∪(3,4].故选:C.【点评】本题考查了利用函数的解析式求定义域的应用问题,是基础题目.7.函数f(x)=lnx+x3﹣9的零点所在的区间为()A.(0,1) B.(1,2) C.(2,3) D.(3,4)【考点】函数零点的判定定理;二分法求方程的近似解.【专题】函数的性质及应用.【分析】根据函数f(x)在(0,+∞)上是增函数,f(2)<0,f(3)>0,可得函数f(x)在区间(2,3)上有唯一的零点.【解答】解:由于函数f(x)=lnx+x3﹣9在(0,+∞)上是增函数,f(2)=ln2﹣1<0,f(3)=ln3>0,故函数f(x)=lnx+x3﹣9在区间(2,3)上有唯一的零点,故选:C.【点评】本题主要考查函数的单调性,函数零点的判定定理,属于基础题.8.已知f(x)为奇函数,当x∈[1,4]时,f(x)=x2﹣4x+5.那么当﹣4≤x≤﹣1时,f(x)的最大值为()A.﹣5 B.1 C.﹣1 D.5【考点】二次函数在闭区间上的最值.【专题】函数的性质及应用.【分析】根据已知条件能够求出f(x)在[﹣4,﹣1]上的函数解析式,通过对二次函数f(x)配方即可求出f(x)在[﹣4,﹣1]上的最大值.【解答】解:设x∈[﹣4,﹣1],则﹣x∈[1,4];∴f(﹣x)=x2+4x+5=﹣f(x);∴f(x)=﹣x2﹣4x﹣5=﹣(x+2)2﹣1;∴x=﹣2时,当﹣4≤x≤﹣1,f(x)的最大值为﹣1.故选C.【点评】考查奇函数的定义,以及求函数解析式的方法,以及二次函数的最值.9.已知2lg(x﹣2y)=lgx+lgy,则的值为()A.1 B.4 C. D.或4【考点】对数的运算性质.【分析】根据对数的运算法则,2lg(x﹣2y)=lg(x﹣2y)2=lg(xy),可知:x2+4y2﹣4xy=xy,即可得答案.【解答】解:∵2lg(x﹣2y)=lg(x﹣2y)2=lg(xy),∴x2+4y2﹣4xy=xy∴(x﹣y)(x﹣4y)=0∴x=y(舍)或x=4y∴=4故选B.【点评】本题主要考查对数的运算性质.10.已知f(x)=ax3+bx﹣3其中a,b为常数,若f(﹣2)=2,则f(2)的值等于()A.﹣8 B.﹣6 C.﹣4 D.﹣2【考点】函数奇偶性的性质.【专题】常规题型;函数思想;函数的性质及应用.【分析】利用函数的奇偶性求解函数值即可.【解答】解:f(x)=ax3+bx﹣3其中a,b为常数,f(﹣2)=2,﹣8a﹣2b﹣3=2,可得8a+2b=﹣5.则f(2)=8a+2b﹣3=﹣5﹣3=﹣8.故选:A.【点评】本题考查函数的奇偶性的应用,函数值的求法,是基础题.11.函数的图象的大致形状是()A. B.C.D.【考点】函数的图象.【专题】数形结合.【分析】先利用绝对值的概念去掉绝对值符号,将原函数化成分段函数的形式,再结合分段函数分析位于y轴左右两侧所表示的图象即可选出正确答案.【解答】解:∵y==当x>0时,其图象是指数函数y=a x在y轴右侧的部分,因为a>1,所以是增函数的形状,当x<0时,其图象是函数y=﹣a x在y轴左侧的部分,因为a>1,所以是减函数的形状,比较各选项中的图象知,C符合题意故选C.【点评】本题考查了绝对值、分段函数、函数的图象与图象的变换,培养学生画图的能力,属于基础题.12.定义符号max{a,b}的含义为:当a≥b时,max{a,b}=a;当a<b时,max{a,b}=b.如max{2,﹣3}=2,max{﹣4,﹣2}=﹣2,则max{x2+x﹣2,2x}的最小值是()A.B.﹣2 C.D.4【考点】函数的最值及其几何意义.【专题】新定义;分析法;函数的性质及应用;不等式的解法及应用.【分析】设f(x)=max{x2+x﹣2,2x},由定义讨论当x2+x﹣2≥2x,当x2+x﹣2<2x,求得f(x),运用二次函数和一次函数的单调性,可得最小值.【解答】解:设f(x)=max{x2+x﹣2,2x},当x2+x﹣2≥2x,即x≥2或x≤﹣1时,f(x)=x2+x﹣2,由于对称轴x=﹣,可得f(x)在x≥2递增,可得f(x)≥f(2)=4,f(x)在x≤﹣1递减,可得f(x)≥f(﹣1)=﹣2;当x2+x﹣2<2x,即﹣1<x<2时,f(x)=2x,可得f(x)在﹣1<x<2递增,即有﹣2<f(x)<4,综上可得,f(x)的值域为[﹣2,+∞),即有f(x)=max{x2+x﹣2,2x}的最小值为﹣2.故选B.【点评】本题考查新定义的理解和运用,考查二次不等式的解法,考查二次函数和一次函数的最值的求法,属于中档题.二、填空题:(本大题共4小题,每小题5分共计20分).13.幂函数f(x)的图象过点,则=2.【考点】幂函数的概念、解析式、定义域、值域.【专题】计算题;函数思想;函数的性质及应用.【分析】求出幂函数的解析式,然后求解函数值即可.【解答】解:设幂函数为:f(x)=x a,幂函数f(x)的图象过点,可得=2a.解得a=则==2.故答案为:2.【点评】本题考查幂函数的解析式的求法,函数值的求法,考查计算能力.14.如果定义在区间[2﹣a,5]上的函数f(x)为奇函数,则a=7.【考点】函数奇偶性的性质.【专题】计算题;函数思想;函数的性质及应用.【分析】利用函数的奇偶性的定义域的对称性,列出方程求解即可.【解答】解:定义在区间[2﹣a,5]上的函数f(x)为奇函数,可得a﹣2=5,解得a=7.故答案为:7.【点评】本题考查函数的解析式的定义的应用,是基础题.15.函数y=x2﹣3x﹣4的定义域是[﹣1,m],值域是[﹣,0],则m的取值范围是.【考点】二次函数的性质.【专题】函数的性质及应用.【分析】y=x2﹣3x﹣4的图象是开口朝上,且以x=为对称的抛物线,故当x=时,函数取最小值﹣,又由f(﹣1)=f(4)=0,可得当函数y=x2﹣3x﹣4的定义域是[﹣1,m],值域是[﹣,0]时,实数m的范围.【解答】解:∵y=x2﹣3x﹣4的图象是开口朝上,且以x=为对称的抛物线,∴当x=时,函数取最小值﹣,又∵f(﹣1)=f(4)=0,∴当函数y=x2﹣3x﹣4的定义域是[﹣1,m],值域是[﹣,0]时,m∈,∴m的取值范围是,故答案为:.【点评】本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质是解答的关键.16.下列各式:(1);(2)已知,则;(3)函数y=2x的图象与函数y=﹣2﹣x的图象关于原点对称;(4)函数f(x)=的定义域是R,则m的取值范围是0<m≤4;(5)已知函数f(x)=x2+(2﹣m)x+m2+12为偶函数,则m的值是2.其中正确的有(3)(5).(把你认为正确的序号全部写上)【考点】命题的真假判断与应用.【专题】探究型;简易逻辑;推理和证明.【分析】根据指数的运算性质,化简式子,可判断(1);根据对数函数的性质,求出a的范围,可判断(2);根据函数图象的对称变换,可判断(3);求出满足条件的m的范围,可判断(4);根据偶函数的定义,可判断(5).【解答】解:(1),故错误;(2)已知,则,或a>1,故错误;(3)函数y=2x的图象与函数y=﹣2﹣x的图象关于原点对称,故正确;(4)函数f(x)=的定义域是R,则m的取值范围是0≤m≤4,故错误;(5)已知函数f(x)=x2+(2﹣m)x+m2+12为偶函数,则f(﹣x)=f(x),即x2﹣(2﹣m)x+m2+12=x2+(2﹣m)x+m2+12,解得:m=2,故正确.故正确的命题有:(3)(5),故答案为:(3)(5)【点评】本题以命题的真假判断与应用为载体,考查了指数的运算性质,对数函数的性质,图象的对称变换,函数的定义域,函数的奇偶性等知识点,难度中档.三.解答题(解答应写出文字说明、证明过程或演算步骤,共计70分)17.设全集为R,集合A={x|﹣1≤x<3},B={x|2x﹣4≥x﹣2},1)求:A∪B,∁R(A∩B);2)若集合C={x|2x+a>0},满足B∪C=C,求实数a的取值范围.【考点】子集与交集、并集运算的转换.【专题】计算题;集合.【分析】(1)由A与B,求出两集合的交集,并集,以及交集的补集即可;(2)B∪C=C,则B⊆C,即可求实数a的取值范围.【解答】解:(1)∵A={x|﹣1≤x<3},B={x|x≥2},全集为R,∴A∪B={x|x≥﹣1},A∩B={x|2≤x<3},C R(A∩B)={x|x<2或x≥3};(2)C={x|2x+a>0}={x|x>﹣},∵B∪C=C,∴B⊆C,∴﹣<2,∴a>﹣4.【点评】此题考查了交、并、补集的混合运算,熟练掌握各自的定义是解本题的关键.18.已知函数f(x)是定义在R上的奇函数,当x>0时,f(x)=2x+1(1)求f(x)的解析式;(2)解关于x的不等式f(x)≤.【考点】指、对数不等式的解法;函数解析式的求解及常用方法.【专题】函数的性质及应用.【分析】(1)首先,当x=0时,f(0)=0,然后,设x<0,则﹣x>0,然后,借助于函数为奇函数,进行求解即可.(2)根据(1)中函数的解析式,分当x>0时,当x=0时和当x<0时三种情况,讨论不等式f(x)≤成立的x的取值范围,最后综合讨论结果,可得答案.【解答】解:因为f(x)是定义在R上的奇函数,所以,当x=0时,f(0)=0,设x<0,则﹣x>0,∴f(﹣x)=2﹣x+1,∵f(﹣x)=﹣f(x),∴f(x)=﹣2﹣x+1,∴,(2)当x>0时,2x+1>2恒成立,不满足不等式f(x)≤.当x=0时,f(x)=0,满足不等式f(x)≤.当x<0时,﹣2﹣x+1<﹣2恒成立,满足不等式f(x)≤.综上所述,不等式f(x)≤的解集为:(﹣∞,0]【点评】本题重点考查了函数的奇偶性与函数的解析式相结合知识点,涉及到指数的运算性质,属于中档题,难度中等.19.已知f(x)是定义在R上的奇函数,如图为函数f(x)的部分图象.(1)请你补全它的图象;(2)求f(x)在R上的表达式;(3)写出f(x)在R上的单调区间(不必证明).【考点】函数奇偶性的性质.【专题】计算题;作图题;函数的性质及应用.【分析】(1)由函数的对称性补全它的图象;(2)设f(x))=a(x﹣0)(x﹣2),从而求出函数解析式,由奇函数解对称区间上的解析式;(3)由图象写出函数的单调区间.【解答】解:(1)(2)当x≥0时,设f(x)=a(x﹣0)(x﹣2),把A点(1,﹣1)代入,解得a=1,∴f (x )=x 2﹣2x ,(x ≥0),当x <0时,∵f (x )为R 上的奇函数,∴f (x )=﹣f (﹣x )=﹣[(﹣x )2﹣2(﹣x )]=﹣x 2﹣2x ,∴;(3)由图知,f (x )在(﹣∞,﹣1]和[1,+∞)上单调递增,f (x )在(﹣1,1)上单调递减.【点评】本题考查了函数的解析式的求法,图象的作法及单调区间的写法,属于基础题.20.已知函数f (x )为定义域在(0,+∞)上的增函数,且满足f (2)=1,f (xy )=f (x )+f (y )(1)求f (1),f (4)的值.(2)如果f (x )﹣f (x ﹣3)<2,求x 的取值范围.【考点】抽象函数及其应用.【专题】计算题;函数的性质及应用.【分析】(1)令x=y=1,可求出f (1),令x=y=2,结合条件,可求出f (4);(2)将2换成f (4),结合条件得到f (x )<f (4x ﹣12),再由单调性,即可求出x 的取值范围,注意定义域.【解答】解:(1)∵f (xy )=f (x )+f (y ),∴令x=y=1,则f (1)=2f (1),即f (1)=0,令x=y=2,则f (4)=2f (2)=2.(2)f (x )﹣f (x ﹣3)<2即f (x )<f (x ﹣3)+2,即f (x )<f (x ﹣3)+f (4),即f (x )<f (4x ﹣12),∵函数f (x )为定义域在(0,+∞)上的增函数,∴即∴x >4,故x 的取值范围是(4,+∞).【点评】本题主要考查函数的单调性及运用,考查解决抽象函数值的常用方法:赋值法,属于基础题.21.某企业生产A,B两种产品,根据市场调查与预测,A产品的利润与投资关系如图(1)所示;B产品的利润与投资的算术平方根成正比,其关系如图(2)所示(注:利润和投资单位:万元).(1)分别将A,B两种产品的利润表示为投资的函数关系式;(2)已知该企业已筹集到18万元资金,并将全部投入A,B两种产品的生产.问怎样分配这18万元投资,才能使该企业获得最大利润?其最大利润约为多少万元?【考点】函数模型的选择与应用.【专题】函数的性质及应用.【分析】(1)对于A,当0≤x≤2时,因为图象过(2,0.5)和原点,当x>2时,图象过(2,0.5)和(3,1),可得函数的解析式;对于B,易知.(2)设投入B产品x万元,则投入A产品(18﹣x)万元,利润为y万元.分16≤x≤18时,0≤x<16时两种情况求出函数的最大值,比较后可得答案.【解答】解:(1)对于A,当0≤x≤2时,因为图象过(2,0.5),所以,…2分当x>2时,令y=kx+b,因图象过(2,0.5)和(3,1),得,解得,故;…4分对于B,易知.…5分(2)设投入B产品x万元,则投入A产品(18﹣x)万元,利润为y万元.若16≤x≤18时,则0≤18﹣x≤2,则投入A产品的利润为,投入B产品的利润为,则y=+,令,,则,此时当t=4,即x=16时,y max=9万元;…8分当0≤x<16时,2<18﹣x≤18,则投入A产品的利润为,投入B产品的利润为,则y=+﹣,令,t∈[0,4),则,当t=2时,即x=4时,y max=10.5万元;…11分由10.5>9,综上,投入A产品14万元,B产品4万元时,总利润最大值为10.5万元.…12分.【点评】本题考查的知识点是函数的选择与应用,函数的最值,难度不大,属于基础题.22.已知二次函数f(x)的最小值为1,且f(0)=f(2)=3.(1)求f(x)的解析式;(2)若f(x)在区间[2a,a+1]上不单调,求实数a的取值范围;(3)在区间[﹣1,1]上,y=f(x)的图象恒在y=2x+2m+1的图象上方,试确定实数m的取值范围.【考点】二次函数的性质.【专题】计算题.【分析】(1)用待定系数法先设函数f(x)的解析式,再由已知条件求解未知量即可(2)只需保证对称轴落在区间内部即可(3)转化为函数求最值问题,即可得到个关于变量m的不等式,解不等式即可【解答】解:(1)由已知∵f(x)是二次函数,且f(0)=f(2)∴对称轴为x=1又最小值为1设f(x)=a(x﹣1)2+1又f(0)=3∴a=2∴f(x)=2(x﹣1)2+1=2x2﹣4x+3(2)要使f(x)在区间[2a,a+1]上不单调,则2a<1<a+1∴(3)由已知2x2﹣4x+3>2x+2m+1在[﹣1,1]上恒成立化简得m<x2﹣3x+1设g(x)=x2﹣3x+1则g(x)在区间[﹣1,1]上单调递减∴g(x)在区间[﹣1,1]上的最小值为g(1)=﹣1∴m<﹣1【点评】本题考查待定系数法和二次函数的单调性和最值,须注意恒成立问题的转化.属简单题。

广东省宝安第一外国语学校2015-2016学年高一上学期期中考试数学试卷

广东省宝安第一外国语学校2015-2016学年高一上学期期中考试数学试卷

2015~2016学年度第一学期期中考试 高一年级数学试卷 第I卷(选择题) 一、选择题:(本大题共12小题,每小题5分共计60分)。

1.设集合,,则() A. B. C.D. 2. B. C.D. 3. B. C. D. 4. 已知函数 , 那么的值为().A. 32B. 16C. 8D. 64 5.函数(且)的图象一定经过点()A.(0,)B.(0,3)C.(2,2)D.(2,3) 6.的定义域为() A. B. C. D. 7.A. B. C. D. 8.9.已知则等于() A. B. C. D. 10.已知其中为常数,若,则的值等于( )A. B. C. D. 11. ( ) 12.定义符号的含义为:当时,;当时,。

如,,则的最小值是() A. B. C. D. 第II卷(非选择题) 二、填空题:(本大题共5小题,每小题4分共计20分)。

13.幂函数的图象过点,则=. 1.上的函数为奇函数,则=_____. 15. 函数的定义域是,值域是,则的取值范围是______. 16. 下列各式: (); (2)已知,则; (3)函数的图象与函数的图象关于原点对称; (4)函数f(x)=的定义域是R,则m的取值范围是; (5)已知函数为偶函数,则的值是正确的有 .(把你认为正确的序号全部写上) 17. (本小题分), (1)求:。

(2)若集合,满足,求实数的取值范围. 18.(本小题分)是定义在R上的奇函数,当时, (1)求的解析式 (2)解关于的不等式。

19.(本小题分)(本小题分)为定义域在上的 增函数,且满足,。

(1)求的值; (2)如果,求的取值范围。

21.(本小题分) (1)分别将甲、乙两种产品的利润表示为投资的函数关系式; (2)已知该企业已筹集18万元资金,并将全部投入甲、乙两种产品的生产。

问:怎样分配 这18万元投资,才能使企业获得最大利润?其最大利润约为多少万元? 22.(本小题12分)高一数学期中考试参考答案(2015-2016学年度第一学期) 。

广东省深圳市高级中学2015-2016学年高一上学期期中考试数学试卷Word版含答案

广东省深圳市高级中学2015-2016学年高一上学期期中考试数学试卷Word版含答案

深圳市高级中学2015-2016学年第一学期期中测试高一数学命题人:程正科 审题人:范铯本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷为1-12题,共60分;第Ⅱ卷为13-22题,共90分。

全卷共计150分。

考试时间为120分钟。

注意事项:1.答题前,考生务必将自己的姓名、准考证号、考试科目填涂在答题卡相应的位置。

2.选择题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动用橡皮擦干净后,再涂其它答案。

全部答案在答题卡上完成,答在本试题上无效。

3、考试结束,监考人员将答题卡按座位号、页码顺序收回。

第Ⅰ卷(本卷共60分)一.选择题:本大题共12小题,每小题5分,共60分。

在每个小题给出的四个选项中,只有一项是符合题目要求的。

1.设集合{}|24x A x =≤,集合{}|lg(1)B x y x ==-,则AB 等于( ) (A )(1,2) (B ) (1,2] (C ) [1,2)(D )[1,2]2.函数()()2log 31xf x =-的定义域为( )(A )[)1,+∞ (B )()1,+∞ (C )[)0,+∞ (D ) ()0,+∞ 3.已知函数⎩⎨⎧≤>=0,20,log )(3x x x x f x,则))91((f f =( ) (A )12 (B )14 (C )16 (D )184.已知f (x )=(a -1)x 2+3ax +7为偶函数,则f (x )在区间(-5,7)上为 ( )(A )先递增再递减 (B )先递减再递增 (C )增函数 (D ) 减函数5.三个数a =0.42,b =log 20.4,c =20.4之间的大小关系是( )(A )a c b << (B )a b c << (C )b a c << (D )b c a <<6.若函数32()22f x x x x =+--的一个正数零点附近的函数值用二分法计算,得数据如下:(789( ) (A )12(B )12-(C )2 (D )2-10.函数()f x 是R 上的偶函数,在[0,)+∞上是减函数,若(ln )(1),f x f >则x 的取值范围是 ()(A )(0,1)(,)e +∞ (B )1(0,)(1,)e -+∞ (C )1(,1)e - (D ) 1(,)e e -11.已知函数53()28f x ax bx x =++-且10)2(=-f ,那么=)2(f ( )(A )26- (B )26 (C )10- (D )10 12.已知函数2()2f x x x =-,()2(0)g x ax a =+>,且对任意的1[1,2]x ∈-,都存在2[1,2]x ∈-,使21()()f xg x =,则实数a 的取值范围是( )(A )[3,+∞) (B )(0,3] (C )⎣⎡⎦⎤12,3 (D )⎝⎛⎦⎤0,12第Ⅱ卷(本卷共计90分)二.填空题:本大题共四小题,每小题5分。

2014-2015年广东省深圳高中高二上学期数学期中试卷带答案(理科)

2014-2015年广东省深圳高中高二上学期数学期中试卷带答案(理科)

2014-2015学年广东省深圳高中高二(上)期中数学试卷(理科)一、选择题(本题8个小题,每小题5分,共40分,在每小题给出的四个选项中,有且只有一项是符合要求的)1.(5分)若a∈R,则a=2是(a﹣1)(a﹣2)=0的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件2.(5分)抛物线y2=16x的焦点为()A.(0,2) B.(4,0) C.D.3.(5分)若{、、}为空间的一组基底,则下列各项中,能构成基底的一组向量是()A.,+,﹣B.,+,﹣C.,+,﹣D.+,﹣,+24.(5分)若点P(1,1)为圆(x﹣3)2+y2=9的弦MN的中点,则弦MN所在直线方程为()A.2x+y﹣3=0 B.x﹣2y+1=0 C.x+2y﹣3=0 D.2x﹣y﹣1=05.(5分)命题p:不等式x(x﹣1)<0的解集为{x|0<x<1},命题q:“A=B”是“sinA=sinB”成立的必要非充分条件,则()A.p真q假B.p且q为真C.p或q为假D.p假q真6.(5分)若向量=(1,λ,1),=(2,﹣1,1)且与的夹角的余弦值为,则λ等于()A.2 B.﹣2 C.﹣2或D.2或7.(5分)若点A的坐标为(3,2),F是抛物线y2=2x的焦点,点M在抛物线上移动时,使|MF|+|MA|取得最小值的M的坐标为()A.(0,0) B. C.D.(2,2)8.(5分)已知圆O:x2+y2=r2,点P(a,b)(ab≠0)是圆O内一点,过点P的圆O的最短弦所在的直线为l1,直线l2的方程为ax+by+r2=0,那么()A.l1∥l2,且l2与圆O相离B.l1⊥l2,且l2与圆O相切C.l1∥l2,且l2与圆O相交D.l1⊥l2,且l2与圆O相离二.填空题:(本大题共6小题,每小题5分,满分30分)9.(5分)有下列四个命题:①命题“若xy=1,则x,y互为倒数”的逆命题;②命题“面积相等的三角形全等”的否命题;③命题“若m≤1,则x2﹣2x+m=0有实根”的逆否命题;④命题“若A∩B=B,则A⊆B”的逆否命题.其中是真命题的是(填上你认为正确的命题的序号).10.(5分)命题“对任何x∈R,|x﹣2|+|x﹣4|>3”的否定是.11.(5分)若直线y=x﹣m与曲线有两个不同的交点,则实数m的取值范围是.12.(5分)如图,在多面体ABCDEF中,四边形ABCD是矩形,AB∥EF,∠EAB=90°,AB=4,AD=AE=EF=1,平面ABEF⊥平面ABCD,则点D到平面BCF的距离为.13.(5分)已知双曲线﹣=1(a>0,b>0)的左、有焦点分别为F1,F2,若在双曲线的右支上存在一点P,使得|PF1|=3|PF2|,则双曲线的离心率e的取值范围为.14.(5分)已知P是椭圆=1上的点,F1、F2分别是椭圆的左、右焦点,若,则△F1PF2的面积为.三.解答题:(本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤)15.(12分)设p:实数x满足x2﹣4ax+3a2<0,其中a≠0,q:实数x满足(Ⅰ)若a=1,p且q为真,求实数x的取值范围;(Ⅱ)若p是q的必要不充分条件,求实数a的取值范围.16.(12分)如图,正方形AMDE的边长为2,B,C分别为AM,MD的中点,在五棱锥P﹣ABCDE中,F为棱PE的中点,平面ABF与棱PD,PC分别交于点G,H.(1)求证:AB∥FG;(2)若PA⊥底面ABCDE,且PA=AE,求直线BC与平面ABF所成角的大小,并求线段PH的长.17.(14分)在平面直角坐标系xOy中,曲线y=x2﹣6x+1与坐标轴的交点都在圆C上.(Ⅰ)求圆C的方程;(Ⅱ)若圆C与直线x﹣y+a=0交与A,B两点,且OA⊥OB,求a的值.18.(14分)已知动点P与平面上两定点连线的斜率的积为定值﹣.(1)试求动点P的轨迹方程C;(2)设直线l:y=kx+1与曲线C交于M.N两点,当|MN|=时,求直线l 的方程.19.(14分)如图所示,在三棱柱ABC﹣A1B1C1中,H是正方形AA1B1B的中心,AA1=2,C1H⊥平面AA1B1B,且C1H=.(1)求异面直线AC与A1B1所成角的余弦值;(2)求二面角A﹣A1C1﹣B1的正弦值.20.(14分)已知椭圆C的中心在原点,一个焦点,且长轴长与短轴长的比是.(1)求椭圆C的方程;(2)若椭圆C在第一象限的一点P的横坐标为1,过点P作倾斜角互补的两条不同的直线PA,PB分别交椭圆C于另外两点A,B,求证:直线AB的斜率为定值;(3)求△PAB面积的最大值.2014-2015学年广东省深圳高中高二(上)期中数学试卷(理科)参考答案与试题解析一、选择题(本题8个小题,每小题5分,共40分,在每小题给出的四个选项中,有且只有一项是符合要求的)1.(5分)若a∈R,则a=2是(a﹣1)(a﹣2)=0的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件【解答】解:当a=2时,(a﹣1)(a﹣2)=0成立故a=2⇒(a﹣1)(a﹣2)=0为真命题而当(a﹣1)(a﹣2)=0,a=1或a=2,即a=2不一定成立故(a﹣1)(a﹣2)=0⇒a=2为假命题故a=2是(a﹣1)(a﹣2)=0的充分不必要条件故选:A.2.(5分)抛物线y2=16x的焦点为()A.(0,2) B.(4,0) C.D.【解答】解:抛物线y2=2x的焦点在x轴的正半轴上,且p=8,∴=4,故焦点坐标为(4,0),故选:B.3.(5分)若{、、}为空间的一组基底,则下列各项中,能构成基底的一组向量是()A.,+,﹣B.,+,﹣C.,+,﹣D.+,﹣,+2【解答】解:∵(+)+(﹣)=2,∴,+,﹣共面,不能构成基底,排除A;∵(+)﹣(﹣)=2,∴,+,﹣共面,不能构成基底,排除B;∵+2=(+)﹣(﹣),∴,+,﹣,+2共面,不能构成基底,排除D;若、+、﹣共面,则=λ(+)+m(﹣)=(λ+m)+(λ﹣m),则、、为共面向量,此与{、、}为空间的一组基底矛盾,故,+,﹣可构成空间向量的一组基底.故选:C.4.(5分)若点P(1,1)为圆(x﹣3)2+y2=9的弦MN的中点,则弦MN所在直线方程为()A.2x+y﹣3=0 B.x﹣2y+1=0 C.x+2y﹣3=0 D.2x﹣y﹣1=0【解答】解:圆心C(3,0),,∴MN方程为y﹣1=2(x﹣1),即2x﹣y﹣1=0,故选:D.5.(5分)命题p:不等式x(x﹣1)<0的解集为{x|0<x<1},命题q:“A=B”是“sinA=sinB”成立的必要非充分条件,则()A.p真q假B.p且q为真C.p或q为假D.p假q真【解答】解:由题意命题p:不等式x(x﹣1)<0的解集为{x|0<x<1},为真命题;因为“A=B”是“sinA=sinB”成立的充分不必要条件,所以命题q是假命题.故选:A.6.(5分)若向量=(1,λ,1),=(2,﹣1,1)且与的夹角的余弦值为,则λ等于()A.2 B.﹣2 C.﹣2或D.2或【解答】解:∵向量=(1,λ,1),=(2,﹣1,1),且与的夹角的余弦值为,∴•=||×||cos<,>=××=×;又•=1×2+λ×(﹣1)+1×1=3﹣λ,∴=3﹣λ;两边平方得=(3﹣λ)2,整理得5λ2﹣36λ+52=0,解得λ=2,λ=.故选:D.7.(5分)若点A的坐标为(3,2),F是抛物线y2=2x的焦点,点M在抛物线上移动时,使|MF|+|MA|取得最小值的M的坐标为()A.(0,0) B. C.D.(2,2)【解答】解:由题意得F(,0),准线方程为x=﹣,设点M到准线的距离为d=|PM|,则由抛物线的定义得|MA|+|MF|=|MA|+|PM|,故当P、A、M三点共线时,|MF|+|MA|取得最小值为|AP|=3﹣(﹣)=.把y=2代入抛物线y2=2x 得x=2,故点M的坐标是(2,2),故选:D.8.(5分)已知圆O:x2+y2=r2,点P(a,b)(ab≠0)是圆O内一点,过点P的圆O的最短弦所在的直线为l1,直线l2的方程为ax+by+r2=0,那么()A.l1∥l2,且l2与圆O相离B.l1⊥l2,且l2与圆O相切C.l1∥l2,且l2与圆O相交D.l1⊥l2,且l2与圆O相离【解答】解:由题意可得a2+b2<r2,OP⊥l1.∵K OP=,∴l1的斜率k1=﹣.故直线l1的方程为y﹣b=﹣(x﹣a),即ax+by﹣(a2+b2)=0.又直线l2的方程为ax+by﹣r2=0,故l1∥l2,圆心到直线l2的距离为>=r,故圆和直线l2相离.故选:A.二.填空题:(本大题共6小题,每小题5分,满分30分)9.(5分)有下列四个命题:①命题“若xy=1,则x,y互为倒数”的逆命题;②命题“面积相等的三角形全等”的否命题;③命题“若m≤1,则x2﹣2x+m=0有实根”的逆否命题;④命题“若A∩B=B,则A⊆B”的逆否命题.其中是真命题的是①②③(填上你认为正确的命题的序号).【解答】解:①若x,y互为倒数,则xy=1成立;②逆命题是“三角形全等则面积一定相等”正确则其否命题正确,③若m≤1则△=4﹣4m≥0方程有根原命题正确则其逆否命题正确④若A∩B=B应是B⊆A则其逆否命题不正确.故答案是①②③10.(5分)命题“对任何x∈R,|x﹣2|+|x﹣4|>3”的否定是∃x0∈R有|x﹣2|+|x ﹣4|≤3.【解答】解:“对任何x∈R,|x﹣2|+|x﹣4|>3”的否定是∃x0∈R,有,|x﹣2|+|x﹣4|≤3故答案为∃x0∈R有|x﹣2|+|x﹣4|≤311.(5分)若直线y=x﹣m与曲线有两个不同的交点,则实数m的取值范围是(﹣,﹣1] .【解答】解:∵表示的曲线为圆心在原点,半径是1的圆在x轴以及x轴上方的部分.作出曲线的图象,在同一坐标系中,再作出直线y=x﹣m,平移过程中,直线先与圆相切,再与圆有两个交点,直线与曲线相切时,可得,=1∴m=﹣当直线y=x﹣m经过点(﹣1,0)时,m=﹣1,直线y=x+1,而该直线也经过(0,1),即直线y=x+1与半圆有2个交点故答案为:(﹣,﹣1].12.(5分)如图,在多面体ABCDEF中,四边形ABCD是矩形,AB∥EF,∠EAB=90°,AB=4,AD=AE=EF=1,平面ABEF⊥平面ABCD,则点D到平面BCF的距离为.【解答】解:如右图,∵四边形ABCD是矩形,∴AD∥BC,∴点D到平面BCF的距离可化为点A到平面BCF的距离,又∵平面ABEF⊥平面ABCD,∴平面BCF⊥平面ABEF,∴点A到平面BCF的距离可化为平面ABEF内点A到直线BF的距离,则在平面ABEF内,BF=,则××h=×4×1,则h=.故答案为:.13.(5分)已知双曲线﹣=1(a>0,b>0)的左、有焦点分别为F1,F2,若在双曲线的右支上存在一点P,使得|PF1|=3|PF2|,则双曲线的离心率e的取值范围为1<e≤2.【解答】解:设P点的横坐标为x∵|PF1|=3|PF2|,P在双曲线右支(x≥a)根据双曲线的第二定义,可得,∴ex=2a∵x≥a,∴ex≥ea∴2a≥ea,∴e≤2∵e>1,∴1<e≤2故答案为:1<e≤2.14.(5分)已知P是椭圆=1上的点,F1、F2分别是椭圆的左、右焦点,若,则△F1PF2的面积为.【解答】解:已知P是椭圆=1上的点,F1、F2分别是椭圆的左、右焦点,则:|PF1|+|PF2|=10,|F1F2|=8在△PF1F2中,利用余弦定理得:|PF2|cosθcosθ=解得:则:|PF1||PF2|=12故答案为:三.解答题:(本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤)15.(12分)设p:实数x满足x2﹣4ax+3a2<0,其中a≠0,q:实数x满足(Ⅰ)若a=1,p且q为真,求实数x的取值范围;(Ⅱ)若p是q的必要不充分条件,求实数a的取值范围.【解答】解:(Ⅰ)由x2﹣4ax+3a2<0,得:(x﹣3a)(x﹣a)<0,当a=1时,解得1<x<3,即p为真时实数x的取值范围是1<x<3.由,得:2<x≤3,即q为真时实数x的取值范围是2<x≤3.若p且q为真,则p真且q真,所以实数x的取值范围是2<x<3.(Ⅱ)p是q的必要不充分条件,即q推出p,且p推不出q,设A={x|p(x)},B={x|q(x)},则B是A的真子集,又B=(2,3],当a>0时,A=(a,3a);a<0时,A=(3a,a).所以当a>0时,有,解得1<a≤2,当a<0时,显然A∩B=∅,不合题意.所以实数a的取值范围是1<a≤2.16.(12分)如图,正方形AMDE的边长为2,B,C分别为AM,MD的中点,在五棱锥P﹣ABCDE中,F为棱PE的中点,平面ABF与棱PD,PC分别交于点G,H.(1)求证:AB∥FG;(2)若PA⊥底面ABCDE,且PA=AE,求直线BC与平面ABF所成角的大小,并求线段PH的长.【解答】(1)证明:在正方形AMDE中,∵B是AM的中点,∴AB∥DE,又∵AB⊄平面PDE,∴AB∥平面PDE,∵AB⊂平面ABF,且平面ABF∩平面PDE=FG,∴AB∥FG;(2)解:∵PA⊥底面ABCDE,∴PA⊥AB,PA⊥AE,如图建立空间直角坐标系Axyz,则A(0,0,0),B(1,0,0),C(2,1,0),P(0,0,2),E(0,2,0),F(0,1,1),,设平面ABF的法向量为=(x,y,z),则即,令z=1,则y=﹣1,∴=(0,﹣1,1),设直线BC与平面ABF所成的角为α,则sinα=|cos<,>|=||=,∴直线BC与平面ABF所成的角为,设H(u,v,w),∵H在棱PC上,∴可设,即(u,v,w﹣2)=λ(2,1,﹣2),∴u=2λ,v=λ,w=2﹣2λ,∵是平面ABF 的法向量,∴=0,即(0,﹣1,1)•(2λ,λ,2﹣2λ)=0,解得λ=,∴H(),∴PH==2.17.(14分)在平面直角坐标系xOy中,曲线y=x2﹣6x+1与坐标轴的交点都在圆C上.(Ⅰ)求圆C的方程;(Ⅱ)若圆C与直线x﹣y+a=0交与A,B两点,且OA⊥OB,求a的值.【解答】解:(Ⅰ)法一:曲线y=x2﹣6x+1与y轴的交点为(0,1),与x轴的交点为(3+2,0),(3﹣2,0).可知圆心在直线x=3上,故可设该圆的圆心C为(3,t),则有32+(t﹣1)2=(2)2+t2,解得t=1,故圆C的半径为,所以圆C的方程为(x﹣3)2+(y﹣1)2=9.法二:圆x2+y2+Dx+Ey+F=0x=0,y=1有1+E+F=0y=0,x2 ﹣6x+1=0与x2+Dx+F=0是同一方程,故有D=﹣6,F=1,E=﹣2,即圆方程为x2+y2﹣6x﹣2y+1=0(Ⅱ)设A(x1,y1),B(x2,y2),其坐标满足方程组,消去y,得到方程2x2+(2a﹣8)x+a2﹣2a+1=0,由已知可得判别式△=56﹣16a﹣4a2>0.在此条件下利用根与系数的关系得到x1+x2=4﹣a,x1x2=①,由于OA⊥OB可得x1x2+y1y2=0,又y1=x1+a,y2=x2+a,所以可得2x1x2+a(x1+x2)+a2=0②由①②可得a=﹣1,满足△=56﹣16a﹣4a2>0.故a=﹣1.18.(14分)已知动点P与平面上两定点连线的斜率的积为定值﹣.(1)试求动点P的轨迹方程C;(2)设直线l:y=kx+1与曲线C交于M.N两点,当|MN|=时,求直线l 的方程.【解答】解:(Ⅰ)设动点P的坐标是(x,y),由题意得:k PA k PB=∴,化简,整理得故P点的轨迹方程是,(x≠±)(Ⅱ)设直线l与曲线C的交点M(x1,y1),N(x2,y2),由得,(1+2k2)x2+4kx=0∴x1+x2=,x1 x2=0,|MN|=,整理得,k4+k2﹣2=0,解得k2=1,或k2=﹣2(舍)∴k=±1,经检验符合题意.∴直线l的方程是y=±x+1,即:x﹣y+1=0或x+y﹣1=019.(14分)如图所示,在三棱柱ABC﹣A1B1C1中,H是正方形AA1B1B的中心,AA1=2,C1H⊥平面AA1B1B,且C1H=.(1)求异面直线AC与A1B1所成角的余弦值;(2)求二面角A﹣A1C1﹣B1的正弦值.【解答】解:如图所示,建立空间直角坐标系,点B为坐标原点.依题意得,B(0,0,0),,,,.(1)易得于是===.∴异面直线AC与A1B1所成角的余弦值为.(2)易知.设平面AA 1C1的法向量,则,即,不妨令,则z=,可得.同样可设面A 1B1C1的法向量,得.于是===,∴.∴二面角A﹣A1C﹣B1的正弦值为.20.(14分)已知椭圆C的中心在原点,一个焦点,且长轴长与短轴长的比是.(1)求椭圆C的方程;(2)若椭圆C在第一象限的一点P的横坐标为1,过点P作倾斜角互补的两条不同的直线PA,PB分别交椭圆C于另外两点A,B,求证:直线AB的斜率为定值;(3)求△PAB面积的最大值.【解答】解:(Ⅰ)设椭圆C的方程为.由题意,解得a2=4,b2=2.所以,椭圆C的方程为.故点P(1,)(Ⅱ)由题意知,两直线PA,PB的斜率必存在,设PB的斜率为k,则PB的直线方程为.由得,.设A(x A,y A),B(x B,y B),则,同理可得.则,.所以直线AB 的斜率为定值.(Ⅲ)设AB 的直线方程为,由得.由,得m 2<8.此时,.由椭圆的方程可得点P (1,),根据点到直线的距离公式可得P 到AB 的距离为,由两点间的距离公式可得=,故===≤×=.因为m 2=4使判别式大于零,所以当且仅当m=±2时取等号,所以△PAB 面积的最大值为.赠送初中数学几何模型【模型二】半角型:图形特征:AB正方形ABCD中,∠EAF=45°∠1=12∠BAD推导说明:1.1在正方形ABCD中,点E、F分别在BC、CD上,且∠FAE=45°,求证:EF=BE+DFE-a1.2在正方形ABCD中,点E、F分别在BC、CD上,且EF=BE+DF,求证:∠FAE=45°DEa+b-aa45°AB E挖掘图形特征:x-a a-a运用举例:1.正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且∠EDF=45°.将△DAE绕点D逆时针旋转90°,得到△DCM.(1)求证:EF=FM(2)当AE=1时,求EF的长.DE3.如图,梯形ABCD中,AD∥BC,∠C=90°,BC=CD=2AD=4,E为线段CD上一点,∠ABE=45°.(1)求线段AB的长;(2)动点P从B出发,沿射线..BE运动,速度为1单位/秒,设运动时间为t,则t为何值时,△ABP为等腰三角形;(3)求AE-CE的值.A变式及结论:4.在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.(1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图1),求证:△AEG≌△AEF;(2)若直线EF与AB,AD的延长线分别交于点M,N(如图2),求证:EF2=ME2+NF2;(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图3),请你直接写出线段EF,BE,DF之间的数量关系.F第21页(共21页)。

XXX2014-2015学年下学期高一年级期中数学试卷。后有答案

XXX2014-2015学年下学期高一年级期中数学试卷。后有答案

XXX2014-2015学年下学期高一年级期中数学试卷。

后有答案XXX2014-2015学年下学期高一年级期中数学试卷试卷分为两卷,卷(I)100分,卷(II)50分,共计150分。

考试时间:120分钟。

卷(I)一、选择题:(本大题共10小题,每小题5分,共50分)1.若实数a,b满足a>b,则下列不等式一定成立的是()A。

a^2<b^2B。

1/a<1/bC。

a^2>b^2D。

a^3>b^32.等差数列{an}中,若a2=1,a4=5,则{an}的前5项和S5=()A。

7B。

15C。

20D。

253.不等式(1/x-1)>1的解集为()A。

{x>1}B。

{x<1}C。

{x>2}D。

{x<2}4.△ABC中,三边a,b,c的对角为A,B,C,若B=45°,b=23,c=32,则C=()A。

60°或120°B。

30°或150°C。

60°D。

30°5.已知数列{an}的前n项和为Sn,且Sn=2an-1(n∈N*),则a5=()A。

32B。

31C。

16D。

156.等差数列{an}中,an=6-2n,等比数列{bn}中,b5=a5,b7=a7,则b6=()A。

42B。

-42C。

±42D。

无法确定7.△ABC中,若∠ABC=π/2,AB=2,BC=3,则sin∠BAC=()A。

4/5B。

3/10C。

5/10D。

1/108.计算机是将信息转换成二进制进行处理的,所谓二进制即“逢二进一”,如(1101)2表示二进制的数,将它转换成十进制数的形式是1×23+1×22+0×21+1×2=13,那么将二进制数(11.1)2转换成十进制数是(){共9位}A。

512B。

511C。

256D。

2559.不等式①x2+3>3x;②a2+b2≥2(a-b-1);③ba+≥2,其中恒成立的是()A。

2014-2015学年上学期高一期中测试数学试题(含答案)

2014-2015学年上学期高一期中测试数学试题(含答案) 第I 卷(选择题共60分)一、选择题(本大题共12小题,每小题5分,共60分,在每个小题给出的四个选项中,只有一项是符合要求的)1.下列函数中,既是偶函数又在+∞(0,)单调递增的函数是( )A .3y x =B . 1y x =+C .21y x =-+D . 2x y -=2.在同一坐标系中,表示函数log a y x =与y x a =+的图象正确的是( )A B C D3.若1log 12a<,则a 的取值范围是( ) A .1(0,)(1,)2+∞ B .1(,1)2 C .(1,)+∞ D .1(,1)(1,)2+∞4.已知函数f(x)为定义在R 上的奇函数,当x≥0时, ()22xf x x m =++ (m 为常数),则(1)f -的值为( )A .-3B .-1C .1D .35.设全集U =R ,{}|0P x f x x ==∈R (),,{}|0Q x g x x ==∈R (),,{}|0S x x x ϕ==∈R (),,则方程22f x x x ϕ=()+g ()()的解集为( )A . P Q SB .P QC .P Q S ()D . P Q S u (C )5.设9.0log 5.0=a ,9.0log 1.1=b ,9.01.1=c ,则c b a , ,的大小关系为( )A .c b a <<B .c a b <<C .a c b <<D .b c a <<6.设}3 2, ,21 ,31 ,1{-∈α,若函数αx y =是定义域为R 的奇函数,则α的值为( )A .3 ,31B .3 ,31 ,1- C .3 ,1- D .31,1- 7.已知函数)(x f 是奇函数,当0>x 时,)1 ,0( )(≠>=a a a x f x,且3)4(log 5.0-=f ,则a的值为( )A .3B .3C .9D .238.已知函数⎪⎩⎪⎨⎧>-≤=-)1( )23(log )1( 2)(2x x x x f x ,若4)(=a f ,则实数=a ( ) A .2-或6 B .2-或310 C .2-或2 D .2或3109.方程21231=⎪⎭⎫ ⎝⎛--x x 的解所在的区间为( )A .) 1 ,0 (B .) 2 ,1 (C .) 3 ,2 (D .) 4 ,3 (10.已知函数bx ax y +=2和xb a y =|)| || ,0(b a ab ≠≠在同一直角坐标系中的图象不可能 是( )11.已知函数)3(log 221a ax x y +-=在区间) ,2[∞+上是减函数,则a 的取值范围是( )A .)4 ,(-∞B .]4 ,4[-C .]4 ,4(-D .]4 ,(-∞12.若在直角坐标平面内B A ,两点满足条件:①点B A ,都在函数)(x f y =的图象上;②点B A ,关于原点对称,则称B A ,为函数)(x f y =的一个“黄金点对”.那么函数=)(x f ⎪⎩⎪⎨⎧>≤-+)0( 1)0( 222x x x x x 的“黄金点对”的个数是( )A .0个B .1个C .2个D .3个 第Ⅱ卷(非选择题,共90分)二、填空题:本题共4小题,共20分.13.已知集合}06|{2=--=x x x M ,}01|{=+=ax x N ,且M N ⊆,则由a 的取值组成的集合是 .14.若x x f =)(log 5,则=-)9log 2(log 255f .15.已知定义在R 上的偶函数)(x f 满足0)1(=-f ,并且)(x f 在)0 ,(-∞上为增函数.若0)( <a f a ,则实数a 的取值范围是 .16.已知函数()x f 的定义域是}0|{≠∈=x R x D ,对任意D x x ∈21 ,都有:=⋅)(21x x f)()(21x f x f +,且当1>x 时,()0>x f .给出结论:①()x f 是偶函数;②()x f 在()∞+ ,0上是减函数.则正确结论的序号是 .三、解答题:本大题共6小题,共70分,解答应写出必要的文字说明、证明过程及演算步骤。

广东省深圳高中2014-2015学年高二上学期期中数学试卷(理科)

广东省深圳高中2014-2015学年高二上学期期中数学试卷(理科)一、选择题(本题8个小题,每小题5分,共40分,在每小题给出的四个选项中,有且只有一项是符合要求的)1.(5分)若a∈R,则a=2是(a﹣1)(a﹣2)=0的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件2.(5分)抛物线y2=16x的焦点为()A.(0,2)B.(4,0)C.D.3.(5分)若{、、}为空间的一组基底,则下列各项中,能构成基底的一组向量是()A.,+,﹣B.,+,﹣C.,+,﹣D.+,﹣,+24.(5分)若点P(1,1)为圆(x﹣3)2+y2=9的弦MN的中点,则弦MN所在直线方程为()A.2x+y﹣3=0 B.x﹣2y+1=0 C.x+2y﹣3=0 D.2x﹣y﹣1=05.(5分)命题p:不等式x(x﹣1)<0的解集为{x|0<x<1},命题q:“A=B”是“sinA=sinB”成立的必要非充分条件,则()A.p真q假B.p且q为真C.p或q为假D.p假q真6.(5分)若向量=(1,λ,1),=(2,﹣1,1)且与的夹角的余弦值为,则λ等于()A.2B.﹣2 C.﹣2或D.2或7.(5分)若点A的坐标为(3,2),F是抛物线y2=2x的焦点,点M在抛物线上移动时,使|MF|+|MA|取得最小值的M的坐标为()A.(0,0)B.C.D.(2,2)8.(5分)已知圆O:x2+y2=r2,点P(a,b)(ab≠0)是圆O内一点,过点P的圆O的最短弦所在的直线为l1,直线l2的方程为ax+by+r2=0,那么()A.l1∥l2,且l2与圆O相离B.l1⊥l2,且l2与圆O相切C.l1∥l2,且l2与圆O相交D.l1⊥l2,且l2与圆O相离二.填空题:(本大题共6小题,每小题5分,满分30分)9.(5分)有下列四个命题:①命题“若xy=1,则x,y互为倒数”的逆命题;②命题“面积相等的三角形全等”的否命题;③命题“若m≤1,则x2﹣2x+m=0有实根”的逆否命题;④命题“若A∩B=B,则A⊆B”的逆否命题.其中是真命题的是(填上你认为正确的命题的序号).10.(5分)命题“对任何x∈R,|x﹣2|+|x﹣4|>3”的否定是.11.(5分)若直线y=x﹣m与曲线有两个不同的交点,则实数m的取值范围是.12.(5分)如图,在多面体ABCDEF中,四边形ABCD是矩形,AB∥EF,∠EAB=90°,AB=4,AD=AE=EF=1,平面ABEF⊥平面ABCD,则点D到平面BCF的距离为.13.(5分)已知双曲线﹣=1(a>0,b>0)的左、有焦点分别为F1,F2,若在双曲线的右支上存在一点P,使得|PF1|=3|PF2|,则双曲线的离心率e的取值范围为.14.(5分)已知P是椭圆=1上的点,F1、F2分别是椭圆的左、右焦点,若,则△F1PF2的面积为.三.解答题:(本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤)15.(12分)设p:实数x满足x2﹣4ax+3a2<0,其中a≠0,q:实数x满足(Ⅰ)若a=1,p且q为真,求实数x的取值范围;(Ⅱ)若p是q的必要不充分条件,求实数a的取值范围.16.(12分)如图,正方形AMDE的边长为2,B,C分别为AM,MD的中点,在五棱锥P﹣ABCDE 中,F为棱PE的中点,平面ABF与棱PD,PC分别交于点G,H.(1)求证:AB∥FG;(2)若PA⊥底面ABCDE,且PA=AE,求直线BC与平面ABF所成角的大小,并求线段PH的长.17.(14分)在平面直角坐标系xOy中,曲线y=x2﹣6x+1与坐标轴的交点都在圆C上.(Ⅰ)求圆C的方程;(Ⅱ)若圆C与直线x﹣y+a=0交与A,B两点,且OA⊥OB,求a的值.18.(14分)已知动点P与平面上两定点连线的斜率的积为定值﹣.(1)试求动点P的轨迹方程C;(2)设直线l:y=kx+1与曲线C交于M.N两点,当|MN|=时,求直线l的方程.19.(14分)如图所示,在三棱柱ABC﹣A1B1C1中,H是正方形AA1B1B的中心,AA1=2,C1H⊥平面AA1B1B,且C1H=.(1)求异面直线AC与A1B1所成角的余弦值;(2)求二面角A﹣A1C1﹣B1的正弦值.20.(14分)已知椭圆C的中心在原点,一个焦点,且长轴长与短轴长的比是.(1)求椭圆C的方程;(2)若椭圆C在第一象限的一点P的横坐标为1,过点P作倾斜角互补的两条不同的直线PA,PB 分别交椭圆C于另外两点A,B,求证:直线AB的斜率为定值;(3)求△PAB面积的最大值.广东省深圳高中2014-2015学年高二上学期期中数学试卷(理科)参考答案与试题解析一、选择题(本题8个小题,每小题5分,共40分,在每小题给出的四个选项中,有且只有一项是符合要求的)1.(5分)若a∈R,则a=2是(a﹣1)(a﹣2)=0的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.分析:根据一元二次方程根的定义,我们判断出a=2⇒(a﹣1)(a﹣2)=0及(a﹣1)(a﹣2)=0⇒a=2的真假,进而根据充要条件的定义即可得到答案.解答:解:当a=2时,(a﹣1)(a﹣2)=0成立故a=2⇒(a﹣1)(a﹣2)=0为真命题而当(a﹣1)(a﹣2)=0,a=1或a=2,即a=2不一定成立故(a﹣1)(a﹣2)=0⇒a=2为假命题故a=2是(a﹣1)(a﹣2)=0的充分不必要条件故选A点评:本题考查的知识点是充要条件,其中判断a=2⇒(a﹣1)(a﹣2)=0及(a﹣1)(a﹣2)=0⇒a=2是解答本题的关键.2.(5分)抛物线y2=16x的焦点为()A.(0,2)B.(4,0)C.D.考点:抛物线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:焦点在x轴的正半轴上,且p=8,利用焦点为(,0),写出焦点坐标.解答:解:抛物线y2=2x的焦点在x轴的正半轴上,且p=8,∴=4,故焦点坐标为(4,0),故选B.点评:本题考查抛物线的标准方程,以及简单性质的应用,求的值是解题的关键.3.(5分)若{、、}为空间的一组基底,则下列各项中,能构成基底的一组向量是()A.,+,﹣B.,+,﹣C.,+,﹣D.+,﹣,+2考点:空间向量的基本定理及其意义.专题:证明题.分析:空间的一组基底,必须是不共面的三个向量,利用向量共面的充要条件可证明A、B、D三个选项中的向量均为共面向量,利用反证法可证明C中的向量不共面解答:解:∵(+)+(﹣)=2,∴,+,﹣共面,不能构成基底,排除A;∵(+)﹣(﹣)=2,∴,+,﹣共面,不能构成基底,排除B;∵+2=(+)﹣(﹣),∴,+,﹣,+2共面,不能构成基底,排除D;若、+、﹣共面,则=λ(+)+m(﹣)=(λ+m)+(λ﹣m),则、、为共面向量,此与{、、}为空间的一组基底矛盾,故,+,﹣可构成空间向量的一组基底.故选:C点评:本题主要考查了空间向量基本定理,向量共面的充要条件等基础知识,判断向量是否共面是解决本题的关键,属基础题4.(5分)若点P(1,1)为圆(x﹣3)2+y2=9的弦MN的中点,则弦MN所在直线方程为()A.2x+y﹣3=0 B.x﹣2y+1=0 C.x+2y﹣3=0 D.2x﹣y﹣1=0考点:直线与圆相交的性质.专题:计算题;转化思想.分析:求出圆心坐标,求出PC的斜率,然后求出MN的斜率,即可利用点斜式方程求出直线MN 的方程.解答:解:圆心C(3,0),,∴MN方程为y﹣1=2(x﹣1),即2x﹣y﹣1=0,故选D.点评:本题是基础题,考查直线的斜率的求法,直线方程的求法,考查计算能力,转化思想的应用.5.(5分)命题p:不等式x(x﹣1)<0的解集为{x|0<x<1},命题q:“A=B”是“sinA=sinB”成立的必要非充分条件,则()A.p真q假B.p且q为真C.p或q为假D.p假q真考点:必要条件、充分条件与充要条件的判断.专题:简易逻辑.分析:对命题p,q分别判断真假,然后按照复合命题的真假判断解答.解答:解:由题意命题p:不等式x(x﹣1)<0的解集为{x|0<x<1},为真命题;因为“A=B”是“sinA=sinB”成立的充分不必要条件,所以命题q是假命题.故选A.点评:本题考查了命题的真假判断以及复合命题的判断,属于基础题.6.(5分)若向量=(1,λ,1),=(2,﹣1,1)且与的夹角的余弦值为,则λ等于()A.2B.﹣2 C.﹣2或D.2或考点:空间向量的数量积运算.专题:空间向量及应用.分析:根据向量数量积的定义以及坐标表示,列出方程,求出λ的值.解答:解:∵向量=(1,λ,1),=(2,﹣1,1),且与的夹角的余弦值为,∴•=||×||cos<,>=××=×;又•=1×2+λ×(﹣1)+1×1=3﹣λ,∴=3﹣λ;两边平方得=(3﹣λ)2,整理得5λ2﹣36λ+52=0,解得λ=2,λ=.故选:D.点评:本题考查了空间向量的应用问题,解题时应类比平面向量的定义与性质,是基础题.7.(5分)若点A的坐标为(3,2),F是抛物线y2=2x的焦点,点M在抛物线上移动时,使|MF|+|MA|取得最小值的M的坐标为()A.(0,0)B.C.D.(2,2)考点:抛物线的定义.专题:计算题.分析:求出焦点坐标和准线方程,把|MF|+|MA|转化为|MA|+|PM|,利用当P、A、M三点共线时,|MA|+|PM|取得最小值,把y=2代入抛物线y2=2x 解得x值,即得M的坐标.解答:解:由题意得F(,0),准线方程为x=﹣,设点M到准线的距离为d=|PM|,则由抛物线的定义得|MA|+|MF|=|MA|+|PM|,故当P、A、M三点共线时,|MF|+|MA|取得最小值为|AP|=3﹣(﹣)=.把y=2代入抛物线y2=2x 得x=2,故点M的坐标是(2,2),故选D.点评:本题考查抛物线的定义和性质得应用,解答的关键利用是抛物线定义,体现了转化的数学思想.8.(5分)已知圆O:x2+y2=r2,点P(a,b)(ab≠0)是圆O内一点,过点P的圆O的最短弦所在的直线为l1,直线l2的方程为ax+by+r2=0,那么()A.l1∥l2,且l2与圆O相离B.l1⊥l2,且l2与圆O相切C.l1∥l2,且l2与圆O相交D.l1⊥l2,且l2与圆O相离考点:直线与圆的位置关系;直线的一般式方程与直线的平行关系.专题:计算题;直线与圆.分析:用点斜式求得直线m的方程,与直线l的方程对比可得m∥l,利用点到直线的距离公式求得圆心到直线l的距离大于半径r,从而得到圆和直线l相离.解答:解:由题意可得a2+b2<r2,OP⊥l1.∵K OP=,∴l1的斜率k1=﹣.故直线l1的方程为y﹣b=﹣(x﹣a),即ax+by﹣(a2+b2)=0.又直线l2的方程为ax+by﹣r2=0,故l1∥l2,圆心到直线l2的距离为>=r,故圆和直线l2相离.故选A.点评:本题考查点和圆、直线和圆的位置关系,点到直线的距离公式,得到圆心到直线l的距离大于半径r,是解题的关键.二.填空题:(本大题共6小题,每小题5分,满分30分)9.(5分)有下列四个命题:①命题“若xy=1,则x,y互为倒数”的逆命题;②命题“面积相等的三角形全等”的否命题;③命题“若m≤1,则x2﹣2x+m=0有实根”的逆否命题;④命题“若A∩B=B,则A⊆B”的逆否命题.其中是真命题的是①②③(填上你认为正确的命题的序号).考点:命题的真假判断与应用.分析:命题判断一是直接判断二是用等价命题法①若x,y互为倒数,则xy=1成立;②三角形全等则面积一定相等正确,③若m≤1则△=4﹣4m≥0方程有根④若A∩B=B应是B⊆A.解答:解:①若x,y互为倒数,则xy=1成立;②逆命题是“三角形全等则面积一定相等”正确则其否命题正确,③若m≤1则△=4﹣4m≥0方程有根原命题正确则其逆否命题正确④若A∩B=B应是B⊆A则其逆否命题不正确.故答案是①②③点评:本题主要考查命题的判断方法.10.(5分)命题“对任何x∈R,|x﹣2|+|x﹣4|>3”的否定是∃x0∈R有|x﹣2|+|x﹣4|≤3.考点:命题的否定.专题:阅读型.分析:将命题中的“任何”变为“∃”,同时将结论否定即可.解答:解:“对任何x∈R,|x﹣2|+|x﹣4|>3”的否定是∃x0∈R,有,|x﹣2|+|x﹣4|≤3故答案为∃x0∈R有|x﹣2|+|x﹣4|≤3点评:本题考查含量词的命题的否定形式:将:“任意”与“存在”互换,结论否定.11.(5分)若直线y=x﹣m与曲线有两个不同的交点,则实数m的取值范围是(﹣,﹣1.点评:本题考查直线与曲线的交点问题,在同一坐标系中,分别作出函数的图象,借助于数形结合是求解的关键12.(5分)如图,在多面体ABCDEF中,四边形ABCD是矩形,AB∥EF,∠EAB=90°,AB=4,AD=AE=EF=1,平面ABEF⊥平面ABCD,则点D到平面BCF的距离为.考点:点、线、面间的距离计算.专题:计算题;作图题;空间位置关系与距离.分析:由题意作出图象,则可将点D到平面BCF的距离可化为点A到平面BCF的距离,再转化为平面ABEF内点A到直线BF的距离,从而利用面积相等求解.解答:解:如右图,∵四边形ABCD是矩形,∴AD∥BC,∴点D到平面BCF的距离可化为点A到平面BCF的距离,又∵平面ABEF⊥平面ABCD,∴平面BCF⊥平面ABEF,∴点A到平面BCF的距离可化为平面ABEF内点A到直线BF的距离,则在平面ABEF内,BF=,则××h=×4×1,则h=.故答案为:.点评:本题考查了学生的作图能力与转化能力,属于中档题.13.(5分)已知双曲线﹣=1(a>0,b>0)的左、有焦点分别为F1,F2,若在双曲线的右支上存在一点P,使得|PF1|=3|PF2|,则双曲线的离心率e的取值范围为1<e≤2.考点:双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:设P点的横坐标为x,根据|PF1|=3|PF2|,P在双曲线右支(x≥a),利用双曲线的第二定义,可得x关于e的表达式,进而根据x的范围确定e的范围.解答:解:设P点的横坐标为x∵|PF1|=3|PF2|,P在双曲线右支(x≥a)根据双曲线的第二定义,可得,∴ex=2a∵x≥a,∴ex≥ea∴2a≥ea,∴e≤2∵e>1,∴1<e≤2故答案为:1<e≤2.点评:本题主要考查了双曲线的简单性质,考查了双曲线的第二定义的灵活运用,属于基础题.14.(5分)已知P是椭圆=1上的点,F1、F2分别是椭圆的左、右焦点,若,则△F1PF2的面积为.考点:椭圆的简单性质.专题:解三角形;平面向量及应用;圆锥曲线的定义、性质与方程.分析:首先利用椭圆的方程求得:|PF1|+|PF2|=10,|F1F2|=8,进一步利用余弦定理|PF2|cosθ解得:|PF1||PF2|=12,在利用向量的夹角求出θ,最后利用三角形的面积公式求的结果.解答:解:已知P是椭圆=1上的点,F1、F2分别是椭圆的左、右焦点,则:|PF1|+|PF2|=10,|F1F2|=8在△PF1F2中,利用余弦定理得:|PF2|cosθcosθ=解得:则:|PF1||PF2|=12故答案为:点评:本题考查的知识要点:椭圆的定义和性质,余弦定理得应用,向量的夹角,及三角形的面积的应用.三.解答题:(本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤)15.(12分)设p:实数x满足x2﹣4ax+3a2<0,其中a≠0,q:实数x满足(Ⅰ)若a=1,p且q为真,求实数x的取值范围;(Ⅱ)若p是q的必要不充分条件,求实数a的取值范围.考点:命题的真假判断与应用;必要条件、充分条件与充要条件的判断.专题:阅读型.分析:(1)把a=1代入不等式后求解不等式,同时求解不等式组,得到命题p和命题q中x的取值范围,由p且q为真,对求得的两个范围取交集即可;(2)p是q的必要不充分条件,则集合B是集合A的子集,分类讨论后运用区间端点值之间的关系可求a的取值范围.解答:解:(Ⅰ)由x2﹣4ax+3a2<0,得:(x﹣3a)(x﹣a)<0,当a=1时,解得1<x<3,即p为真时实数x的取值范围是1<x<3.由,得:2<x≤3,即q为真时实数x的取值范围是2<x≤3.若p且q为真,则p真且q真,所以实数x的取值范围是2<x<3.(Ⅱ)p是q的必要不充分条件,即q推出p,且p推不出q,设A={x|p(x)},B={x|q(x)},则B是A的真子集,又B=(2,3hslx3y3h,当a>0时,A=(a,3a);a<0时,A=(3a,a).所以当a>0时,有,解得1<a≤2,当a<0时,显然A∩B=∅,不合题意.所以实数a的取值范围是1<a≤2.点评:本题是命题真假的判断与应用,考查了必要条件问题,考查了数学转化和分类讨论思想,是中档题.16.(12分)如图,正方形AMDE的边长为2,B,C分别为AM,MD的中点,在五棱锥P﹣ABCDE 中,F为棱PE的中点,平面ABF与棱PD,PC分别交于点G,H.(1)求证:AB∥FG;(2)若PA⊥底面ABCDE,且PA=AE,求直线BC与平面ABF所成角的大小,并求线段PH的长.考点:直线与平面所成的角.专题:计算题;证明题;空间位置关系与距离;空间角.分析:(1)运用线面平行的判定定理和性质定理即可证得;(2)由于PA⊥底面ABCDE,底面AMDE为正方形,建立如图的空间直角坐标系Axyz,分别求出A,B,C,E,P,F,及向量BC的坐标,设平面ABF的法向量为n=(x,y,z),求出一个值,设直线BC与平面ABF所成的角为α,运用sinα=|cos|,求出角α;设H(u,v,w),再设,用λ表示H的坐标,再由n=0,求出λ和H的坐标,再运用空间两点的距离公式求出PH的长.解答:(1)证明:在正方形AMDE中,∵B是AM的中点,∴AB∥DE,又∵AB⊄平面PDE,∴AB∥平面PDE,∵AB⊂平面ABF,且平面ABF∩平面PDE=FG,∴AB∥FG;(2)解:∵PA⊥底面ABCDE,∴PA⊥AB,PA⊥AE,如图建立空间直角坐标系Axyz,则A(0,0,0),B(1,0,0),C(2,1,0),P(0,0,2),E(0,2,0),F(0,1,1),,设平面ABF的法向量为n=(x,y,z),则即,令z=1,则y=﹣1,∴n=(0,﹣1,1),设直线BC与平面ABF所成的角为α,则sinα=|cos|=||=,∴直线BC与平面ABF所成的角为,设H(u,v,w),∵H在棱PC上,∴可设,即(u,v,w﹣2)=λ(2,1,﹣2),∴u=2λ,v=λ,w=2﹣2λ,∵n是平面ABF的法向量,∴n=0,即(0,﹣1,1)•(2λ,λ,2﹣2λ)=0,解得λ=,∴H(),∴PH==2.点评:本题主要考查空间直线与平面的位置关系,考查直线与平面平行、垂直的判定和性质,同时考查直线与平面所成的角的求法,考查运用空间直角坐标系求角和距离,是一道综合题.17.(14分)在平面直角坐标系xOy中,曲线y=x2﹣6x+1与坐标轴的交点都在圆C上.(Ⅰ)求圆C的方程;(Ⅱ)若圆C与直线x﹣y+a=0交与A,B两点,且OA⊥OB,求a的值.考点:圆的标准方程;直线与圆相交的性质.专题:直线与圆.分析:(Ⅰ)法一:写出曲线与坐标轴的交点坐标,利用圆心的几何特征设出圆心坐标,构造关于圆心坐标的方程,通过解方程确定出圆心坐标,进而算出半径,写出圆的方程;法二:可设出圆的一般式方程,利用曲线与方程的对应关系,根据同一性直接求出参数,(Ⅱ)利用设而不求思想设出圆C与直线x﹣y+a=0的交点A,B坐标,通过OA⊥OB建立坐标之间的关系,结合韦达定理寻找关于a的方程,通过解方程确定出a的值.解答:解:(Ⅰ)法一:曲线y=x2﹣6x+1与y轴的交点为(0,1),与x轴的交点为(3+2,0),(3﹣2,0).可知圆心在直线x=3上,故可设该圆的圆心C为(3,t),则有32+(t﹣1)2=(2)2+t2,解得t=1,故圆C的半径为,所以圆C的方程为(x﹣3)2+(y﹣1)2=9.法二:圆x2+y2+Dx+Ey+F=0x=0,y=1有1+E+F=0y=0,x2 ﹣6x+1=0与x2+Dx+F=0是同一方程,故有D=﹣6,F=1,E=﹣2,即圆方程为x2+y2﹣6x﹣2y+1=0(Ⅱ)设A(x1,y1),B(x2,y2),其坐标满足方程组,消去y,得到方程2x2+(2a﹣8)x+a2﹣2a+1=0,由已知可得判别式△=56﹣16a﹣4a2>0.在此条件下利用根与系数的关系得到x1+x2=4﹣a,x1x2=①,由于OA⊥OB可得x1x2+y1y2=0,又y1=x1+a,y2=x2+a,所以可得2x1x2+a(x1+x2)+a2=0②由①②可得a=﹣1,满足△=56﹣16a﹣4a2>0.故a=﹣1.点评:本题考查圆的方程的求解,考查学生的待定系数法,考查学生的方程思想,直线与圆的相交问题的解决方法和设而不求的思想,考查垂直问题的解决思想,考查学生分析问题解决问题的能力,属于直线与圆的方程的基本题型.18.(14分)已知动点P与平面上两定点连线的斜率的积为定值﹣.(1)试求动点P的轨迹方程C;(2)设直线l:y=kx+1与曲线C交于M.N两点,当|MN|=时,求直线l的方程.考点:直线与圆锥曲线的综合问题;圆锥曲线的轨迹问题.专题:圆锥曲线的定义、性质与方程.分析:(Ⅰ)设出P的坐标,利用动点P与平面上两定点连线的斜率的积为定值,建立方程,化简可求动点P的轨迹方程C.(Ⅱ)直线l:y=kx+1与曲线C方程联立,利用韦达定理计算弦长,即可求得结论.解答:解:(Ⅰ)设动点P的坐标是(x,y),由题意得:k PA k PB=∴,化简,整理得故P点的轨迹方程是,(x≠±)(Ⅱ)设直线l与曲线C的交点M(x1,y1),N(x2,y2),由得,(1+2k2)x2+4kx=0∴x1+x2=,x1 x2=0,|MN|=,整理得,k4+k2﹣2=0,解得k2=1,或k2=﹣2(舍)∴k=±1,经检验符合题意.∴直线l的方程是y=±x+1,即:x﹣y+1=0或x+y﹣1=0点评:本题考查轨迹方程的求解,考查直线与椭圆的位置关系,考查弦长公式的运用,考查学生的计算能力,属于中档题.19.(14分)如图所示,在三棱柱ABC﹣A1B1C1中,H是正方形AA1B1B的中心,AA1=2,C1H⊥平面AA1B1B,且C1H=.(1)求异面直线AC与A1B1所成角的余弦值;(2)求二面角A﹣A1C1﹣B1的正弦值.考点:用空间向量求平面间的夹角;直线与平面所成的角;二面角的平面角及求法.专题:空间角;空间向量及应用.分析:(1)通过建立空间直角坐标系,利用异面直线的方向向量的夹角即可得出;(2)先求出两个平面的法向量的夹角即可得出二面角的余弦值.解答:解:如图所示,建立空间直角坐标系,点B为坐标原点.依题意得,B(0,0,0),,,,.(1)易得于是===.∴异面直线AC与A1B1所成角的余弦值为.(2)易知.设平面AA1C1的法向量,则,即,不妨令,则z=,可得.同样可设面A1B1C1的法向量,得.于是===,∴.∴二面角A﹣A1C﹣B1的正弦值为.点评:熟练掌握通过建立空间直角坐标系并利用异面直线的方向向量的夹角求异面直线所成的角、两个平面的法向量的夹角求二面角的方法是解题的关键.20.(14分)已知椭圆C的中心在原点,一个焦点,且长轴长与短轴长的比是.(1)求椭圆C的方程;(2)若椭圆C在第一象限的一点P的横坐标为1,过点P作倾斜角互补的两条不同的直线PA,PB 分别交椭圆C于另外两点A,B,求证:直线AB的斜率为定值;(3)求△PAB面积的最大值.考点:椭圆的标准方程;直线的斜率;直线与圆锥曲线的综合问题.专题:压轴题.分析:(1)待定系数法求椭圆的方程.(2)设出A、B坐标,利用一元二次方程根与系数的关系,求出A、B横坐标之差,纵坐标之差,从而求出AB斜率.(3)设出AB直线方程,与椭圆方程联立,运用根与系数的关系求AB长度,计算P到AB的距离,计算△PAB面积,使用基本不等式求最大值.解答:解:(Ⅰ)设椭圆C的方程为.由题意,解得a2=4,b2=2.所以,椭圆C的方程为.故点P(1,)(Ⅱ)由题意知,两直线PA,PB的斜率必存在,设PB的斜率为k,则PB的直线方程为.由得,.设A(x A,y A),B(x B,y B),则,同理可得.则,.所以直线AB的斜率为定值.(Ⅲ)设AB的直线方程为,由得.由,得m2<8.此时,.由椭圆的方程可得点P(1,),根据点到直线的距离公式可得P到AB的距离为,由两点间的距离公式可得=,故===≤×=.因为m2=4使判别式大于零,所以当且仅当m=±2时取等号,所以△PAB面积的最大值为.点评:直线与圆锥曲线的综合问题,注意应用一元二次方程根与系数的关系,式子的化简变形,是解题的难点和关键.。

广东省深圳市高级中学2014-2015学年高一上学期10月月考数学试题

深圳市高级中学2014-2015学年第一学期第一次月考高一数学试卷一、选择题(本大题共8小题,每小题5分,共40分).1.若集合{}{}22(,)0,(,)0,,M x y x y N x y x y x R y R =+==+=∈∈,则有( ) A .MN M = B . M N N = C . M N M = D .M N =∅2.定义在R 上的函数()f x 对任意两个不相等实数,a b ,总有()()0f a f b a b->-成立,则必有( )A.函数()f x 是先增加后减少B.函数()f x 是先减少后增加C.()f x 在R 上是增函数D.()f x 在R 上是减函数3.下列各组函数是同一函数的是 ( ) ①3()2f x x =-与()2g x x x =-;②()f x x =与2()g x x =;③0()f x x =与01()g x x=;④2()21f x x x =--与2()21g t t t =--。

A.①② B.①③ C.③④ D.①④4.偶函数)(x f y =在区间上单调递减,则有 ( ) A.)()3()1(ππ->>-f f f B. )()1()3(ππ->->f f fC.)3()1()(ππf f f >->-D. )3()()1(ππf f f >->-5.函数243,[0,3]y x x x =-+∈的值域为 ( ) A. B. C. D.6.函数2y ax bx =+与y ax b =+(0)ab ≠的图象只能是 ( )7、若)(x f 是奇函数,且在(0,+∞)上是增函数,又0)3(=-f ,则0)()1(<-x f x 的解是 ( ) A.),1()0,3(+∞⋃- B. )3,0()3,(⋃--∞ C. ),3()3,(+∞⋃--∞ D. )3,1()0,3(⋃-8.已知函数22,,()42,x m f x x x x m >⎧=⎨++≤⎩的图像与直线y x =恰有三个公共点,则实数m 的取值范围是 ( ) A. (]1,-∞- B. ),2[+∞ C.]2,1[- D. )2,1[-二、填空题(本大题共6小题,每小题5分,共30分)9.=--+---3222132)278()21(1627 。

XXX2014-2015学年高一上学期期中考试数学试题 Word版含解析

XXX2014-2015学年高一上学期期中考试数学试题 Word版含解析没有明显有问题的段落需要删除,只需修改格式错误和语言表达不清的地方。

XXX2014-2015学年第一学期期中考试高一数学试题第Ⅰ卷选择题(共30分)一、选择题(本题共10小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一项符合题目要求。

)1、已知集合$S=\{x|x+1\geq2\}$,$T=\{-2,-1,0,1,2\}$,则$S\cap T=$()A。

$\{2\}$。

B。

$\{1,2\}$。

C。

$\{0,1,2\}$。

D。

$\{-1,0,1,2\}$解题思路】:题目给出了集合$S$和$T$,需要先求出它们的具体表达内容,再求它们的交集。

$S$是一次函数不等式的解,$S=\{x|x\geq1\}$;$S\cap T=\{1,2\}$,故选B。

2、用阴影部分表示集合$C\cup A\cup B$,正确的是()解题思路】:题目给出了四个图形,需要判断哪个图形表示$C\cup A\cup B$。

利用XXX求解,A中阴影部分表示$C\cup(A\cup B)$,B中阴影部分表示$(C\cup A)\cap B$,C中阴影部分表示$A\cap B$,D中阴影部分表示$C\cup A\cup B$,故选D。

3、函数$y=\log_{\frac{1}{2}}(x-1)$的定义域是()A。

$(1,+\infty)$。

B。

$[1,+\infty)$。

C。

$(0,+\infty)$。

D。

$[0,+\infty)$解题思路】:题目给出了函数$y=\log_{\frac{1}{2}}(x-1)$,需要求出它的定义域。

由$\log_{\frac{1}{2}}(x-1)>0$得$x-1>0$,即$x>1$,故选A。

4、下列函数中,在其定义域内既是奇函数又是减函数的是()A。

$y=-|x|$。

B。

$y=x$。

C。

$y=|x|$。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

广东省深圳外国语学校2014-2015学年高一数学上学期期中试题
一、选择题
1、已知集合,π为圆周率,则()
A. B. C. D .
2、下列各组函数表示相等函数的是()
A.和g B.
C.
D.
3、函数的定义域是()
A.(-2,-1)
B.(-2,1)
C.(-2,-1)
D.
4、在下列函数中,在定义域上是单调的奇函数的为()
A. B. C. D.
5、已知函数则方程的解集是()
A. B. C.D。

6、幂函数的图像过点(2,),则 )
A..
B.2
C.
D.
7、函数y=2与y=图象的大致形状是()
9
8、已知二次函数的开口向下,且满足,则()
A. B. C.
D.
9、若不等式2在区间上恒成立,则的取值范围是()
A. B. C. D.
10、对于任意给定的两个正数定义一种运算:。

设,,则下列命题中:①;
②;③;④,正确命题的个数为()
A. 1
B. 2
C. 3
D. 4
二、填空题
11若函数,则。

12、已知奇函数和偶函数满足,则。

13、函数的值域是。

14、定义在R上的偶函数,当时,为自然对数的底数),
若存在,使方程的实数根,则的取值集合是。

三、解答题
15、
(1)((2)
16、已知集合,,若,求实数a 的取值范围。

17、某省两相近重要城市之间人员交流频繁,为了缓解交通压力,特修一条专用铁路,用一列火车作为交通车,已知该车每次拖4节车厢,一天能来回16次,如果每次拖7节车厢,则每天能来回10次。

(1)若每天来回的次数是车头每次拖挂车厢节数的一次函数,求此一次函数解析式;
(2)在(1)的条件下,每节车厢能载乘客110人。

问这列火车每天来回多少次才能使运营人数最多?并求出每天最多运营人数。

18、已知奇函数是定义域上的减函数,若,求实数a的取值范围。

19、设二次函数在区间上的最大值、最小值分别是,集
合。

(1)若,且,求和的值;
(2)若,且,记,求的最小值。

20、已知。

(1)若,求函数的零点;
(2)若方程只有负根,求实数的取值范围。

21、已知函数有如下性质;如果常数t>0,那么该函数在(0,)上是减函数,在(,上是增函数。

(1)已知,,利用上述性质,求函数的单调区间和值域;
(2)对于(1)中的函数和函数,若对任意,总存在,使得成立,求实数a的值。

相关文档
最新文档