方位角计算公式(DOC)

合集下载

工程测量中坐标方位角计算公式

工程测量中坐标方位角计算公式

工程测量中如何计算坐标方位角?
工程测量中坐标方位角计算是测量过程中非常重要的一项工作,
它不仅能够精确测算点位之间的距离和方向,还能够在工程项目中起
到指导作用。

那么,在实际操作中,我们应该如何计算坐标方位角呢?
首先,我们需要确定测量点位的基准点和目标点,并使用仪器进
行测量。

在取得测量数据之后,我们可以利用以下公式进行坐标方位
角的计算:
tanθ = (E2 - E1) / (N2 - N1),其中E1和E2为基准点和目标
点的东坐标,N1和N2为基准点和目标点的北坐标。

在进行计算时,需要注意以下几点:
1.计算中的角度应该以北为0度,逆时针旋转为正向。

2.坐标位置的表示需要考虑到坐标系的不同,因此应根据不同的
坐标系进行转换。

3.在测量时,应该尽可能使用高精度的仪器,减小误差的产生。

通过以上几点的注意事项,我们可以更加准确地进行坐标方位角
的计算,为工程项目的实施提供可靠的测量数据和指导意见。

坐标方位角的计算公式

坐标方位角的计算公式

坐标方位角的计算公式嘿,咱来说说这坐标方位角的计算公式。

您要是学过地理或者相关的学科,应该都听过坐标方位角这玩意儿。

那到底啥是坐标方位角呢?简单说,它就是表示一个方向的角度。

咱们先从基础的概念入手哈。

想象一下您站在一个地方,要确定另一个地方相对于您所在位置的方向,这时候坐标方位角就派上用场啦。

那坐标方位角咋算呢?这就得提到一些数学公式啦。

比如说,我们有起始点的坐标(x1, y1)和终点的坐标(x2, y2),这时候坐标方位角α就可以通过下面这个公式来算:α = arctan((y2 - y1) / (x2 - x1))可别被这公式吓着,我给您举个例子就明白啦。

有一次我出去旅游,到了一个陌生的小镇。

我在小镇的广场上(就把这当作起始点,坐标是 100, 200),想要去小镇边缘的一座小亭子(当作终点,坐标是 300, 400)。

那按照公式,先算出 (y2 - y1) 就是400 - 200 = 200,(x2 - x1) 就是 300 - 100 = 200。

然后代入公式arctan(200 / 200) ,算出角度就是 45 度。

这就说明从小镇广场去那座小亭子的方向是 45 度。

在实际应用中,还得注意一些细节。

比如说,如果 (x2 - x1) 等于 0 ,这时候就得特殊处理啦。

因为除数不能为 0 嘛。

如果是这种情况,那就说明方向是垂直的,要么是 90 度,要么是 270 度,具体得看 (y2 -y1) 是正还是负。

而且,算出来的角度可能不是我们想要的最终结果。

因为算出来的角度范围是 -π/2 到π/2 之间,但是我们通常想要的是 0 到 360 度之间的角度。

这时候就得根据坐标的正负情况来调整。

比如说,如果算出来的角度是负数,那就加上 360 度;如果是正数但小于 0 度,那就直接加上 360 度。

坐标方位角的计算公式在很多领域都有用呢。

像测绘、建筑、导航这些,都离不开它。

比如说在建筑工地上,工程师们要确定建筑物各个部分的位置和方向,就得靠这个公式来帮忙。

测量学坐标方位角怎么计算

测量学坐标方位角怎么计算

测量学坐标方位角怎么计算引言在测量学中,测量坐标方位角是一个常见且重要的问题。

方位角是指一个点相对于某个参考点的方向,通常用于导航、位置定位和地图绘制等应用中。

本文将介绍如何计算测量学中的坐标方位角。

坐标系与方位角概念在进行坐标方位角的计算之前,需要先了解一些基本概念。

在测量学中,我们常用的坐标系是笛卡尔坐标系,它由水平方向的x轴和垂直方向的y轴构成。

而方位角则以正北方向为参考,顺时针计算。

方位角的表示通常采用度数制,以360度为一圈。

0度表示正北方向,90度表示正东方向,180度表示正南方向,270度表示正西方向。

方位角计算方法要计算一个点相对于参考点的方位角,需要知道两点在笛卡尔坐标系中的坐标。

设参考点的坐标为(x1, y1),目标点的坐标为(x2, y2),则方位角的计算公式如下:方位角 = atan2(y2 - y1, x2 - x1) * (180 / pi)其中,atan2是一个数学函数,用于计算给定点的反正切值。

需要注意的是,由于计算结果是弧度制,所以要将其转换为度数制。

实例演示为了更好地理解方位角的计算方法,我们来进行一个实例演示。

假设参考点的坐标为(3, 4),目标点的坐标为(8, 6)。

我们希望计算目标点相对于参考点的方位角。

首先,我们需要代入上述计算公式:方位角 = atan2(6 - 4, 8 - 3) * (180 / pi)接下来,我们可以用计算器或者编程语言中的数学库来计算,得到方位角为45.96 度。

结论测量学中坐标方位角的计算是通过参考点和目标点的笛卡尔坐标来进行的。

通过代入方位角的计算公式,我们可以得到一个点相对于参考点的方向。

这在导航、位置定位和地图绘制等应用中具有重要的作用。

希望本文对于测量学中坐标方位角的计算有所帮助,能够帮助读者更好地理解和应用这一概念。

参考文献•Wikipedia.。

已知两点坐标计算方位角

已知两点坐标计算方位角

已知两点坐标计算方位角方位角是地理学和导航中常用的概念,用于描述一个点相对于另一个点的方向。

通过已知两点的坐标,我们可以计算出它们之间的直线距离和方位角。

本文将介绍如何通过已知两点坐标来计算方位角,并提供详细步骤和示例。

1. 确定两点坐标首先,我们需要明确两点的坐标。

假设点A的坐标为(x1,y1),点B的坐标为(x2,y2)。

这些坐标可以通过地图、导航系统或其他方式获取。

2. 计算直线距离直线距离是指点A到点B之间的最短距离。

我们可以利用两点之间的距离公式来计算直线距离:d = √((x2 - x1)² + (y2 - y1)²)其中,d表示直线距离,√表示平方根。

3. 计算方位角方位角是指点A相对于点B的方向。

为了计算方位角,我们可以利用以下公式:θ = atan2(y2 - y1, x2 - x1)其中,θ表示方位角,atan2表示求反正切。

需要注意的是,不同的计算机语言和工具可能对atan2函数的参数顺序有所差异。

4. 将方位角转化为度数方位角通常以弧度表示,但为了方便理解,我们常常将其转化为度数。

转化的公式如下:angle = (θ * 180) / π其中,angle表示方位角的度数,π表示圆周率。

举例说明:假设点A坐标为(2,3),点B坐标为(5,7)。

我们可以按照上述步骤计算方位角。

首先,计算直线距离:d = √((5 - 2)² + (7 - 3)²)= √(9 + 16)= √25= 5然后,计算方位角:θ = atan2(7 - 3, 5 - 2)= atan2(4, 3)最后,将方位角转化为度数:angle = (θ * 180) / π通过计算,我们可以得到点A相对于点B的方位角为51.34度。

总结:通过已知两点的坐标,我们可以计算出它们之间的直线距离和方位角。

直线距离可以通过两点之间的距离公式计算,方位角则可以通过atan2函数来求解。

方位角的计算公式

方位角的计算公式

计算公式一、 方位角的计算公式1. 字母所代表的意义:x 1:QD 的X 坐标 y 1:QD 的Y 坐标 x 2:ZD 的X 坐标 y 2:ZD 的Y 坐标 S :QD ~ZD 的距离 α:QD ~ZD 的方位角2. 计算公式:()()212212y y x x S -+-=1)当y 2- y 1>0,x 2- x 1>0时:1212x x y y arctg--=α2)当y 2- y 1<0,x 2- x 1>0时:1212360x x y y arctg --+︒=α 3)当x 2- x 1<0时:1212180x x y y arctg--+︒=α 二、 平曲线转角点偏角计算公式1. 字母所代表的意义:α1:QD ~JD 的方位角 α2:JD ~ZD 的方位角 β:JD 处的偏角2. 计算公式:β=α2-α1(负值为左偏、正值为右偏)三、 平曲线直缓、缓直点的坐标计算公式1. 字母所代表的意义:U :JD 的X 坐标 V :JD 的Y 坐标 A :方位角(ZH ~JD )T :曲线的切线长,2322402224R L L D tg R L R T ss s -+⎪⎪⎭⎫ ⎝⎛+=D :JD 偏角,左偏为-、右偏为+2. 计算公式:直缓(直圆)点的国家坐标:X ′=U+Tcos(A+180°)Y ′=V+Tsin(A+180°)缓直(圆直)点的国家坐标:X ″=U+Tcos(A+D)Y ″=V+Tsin(A+D)四、 平曲线上任意点的坐标计算公式1. 字母所代表的意义:P :所求点的桩号B :所求边桩~中桩距离,左-、右+ M :左偏-1,右偏+1C :JD 桩号 D :JD 偏角 L s :缓和曲线长 A :方位角(ZH ~JD ) U :JD 的X 坐标 V :JD 的Y 坐标T :曲线的切线长,2322402224R L L D tg R L R T ss s -+⎪⎪⎭⎫ ⎝⎛+=I=C -T :直缓桩号 J=I+L :缓圆桩号s L DRJ H -+=180π:圆缓桩号K=H+L :缓直桩号2. 计算公式: 1)当P<I 时中桩坐标:X m =U+(C -P)cos(A+180°) Y m =V+(C -P)sin(A+180°) 边桩坐标:X b =X m +Bcos(A+90°) Y b =Y m +Bsin(A+90°)2)当I<P<J 时()s230RL I P MA O π-︒+= ()()2390R I P I P G ---=中桩坐标:X m =U+Tcos(A+180°)+GcosO Y m =V+Tsin(A+180°)+GsinO()s290RL I P W π-︒=边桩坐标:X b =X m +Bcos(A+MW+90°) Y b =Y m +Bsin(A+MW+90°)3)当J<P<H 时()()R J P L M A R J P R L M A O s s πππ-+︒+=⎪⎭⎫⎝⎛-︒+︒+=909090 ()RJ P R G π-︒=90sin2中桩坐标:()O G R L M A R L L A T U X s ss m cos 30cos 90180cos 23+⎪⎭⎫⎝⎛︒+⎪⎪⎭⎫ ⎝⎛-+︒++=π ()O G R L M A R L L A T V Y s ss m sin 30sin 90180sin 23+⎪⎭⎫ ⎝⎛︒+⎪⎪⎭⎫ ⎝⎛-+︒++=π ()RJ P W π-︒=90边桩坐标:X b =X m +Bcos(O+MW+90°) Y b =Y m +Bsin(O+MW+90°)4)当H<P<K 时()sRL K P MMD A O π230180-︒-︒++= ()2390R P K P K G ---= 中桩坐标:X m =U+Tcos(A+MD)+GcosO Y m =V+Tsin(A+MD)+GsinO()s290RL K P W π-︒=边桩坐标:X b =X m +Bcos(A+MD -MW+90°) Y b =Y m +Bsin(A+MD -MW+90°)5)当P>K 时中桩坐标:X m =U+(T+P -K)cos(A+MD) Y m =V+(T+P-K)sin(A+MD) 边桩坐标:X b =X m +Bcos(A+MD+90°) Y b =Y m +Bsin(A+MD+90°)注:计算公式中距离、长度、桩号单位:“米”;角度测量单位:“度”;假设要以“弧度”为角度测量单位,请将公式中带°的数字换算为弧度。

日出日落的方位角度计算公式

日出日落的方位角度计算公式

计算日出日落的方位角度公式要计算任意一个地方在任意一天日出日落的方位角度,可以用下面的公式:方位角=90 - 0.5arccos[2(sinM/cosN)^2- 1]公式中,M表示的是某天太阳直射的纬度,N表示的是某地的纬度,^2表示平方。

例如,北京在北纬40度,则N=40,夏至这一天太阳在北纬23.5度(太阳直射北纬23.5度),即M=23.5,把N和M的值代入上式,可求得方位角=31度意思是,夏至这一天,在北京的人看来,太阳是从东偏北31度的方位升起的,是在西偏北31度的方位落下的。

说明:1本公式是在理想条件下推导出来的,即假设地球是个标准球体。

而实际上地球两极略扁,而且各地也有高山、洼地等,所以计算结果可能与实测结果有一点误差。

2 太阳围绕地球旋转的轨迹实际上是螺旋线(好象在地球外面套一根弹簧),所以实际上每天日出和日落的方位角稍微有点差别。

例如,在春分到夏至这段时间,日出方位角要略小于日落方位角。

昼夜长短的计算公式:Cost=-tgδ*tgφ太阳视位置太阳视位置指从地面上看到的太阳的位置,用太阳高度角和太阳方位角两个角度作为坐标表示。

太阳高度角指从太阳中心直射到当地的光线与当地水平面的夹角,其值在0°到90°之间变化,日出日落时为零,太阳在正天顶上为90°(本万年历中显示的高度角均已进行了蒙气差的订正,蒙气差值取自天文年历)。

太阳方位角即太阳所在的方位,指太阳光线在地平面上的投影与当地子午线的夹角,可近似地看作是竖立在地面上的直线在阳光下的阴影与正南方的夹角。

方位角以正南方向为零,由南向东向北为负,由南向西向北为正,如太阳在正东方,方位角为-90°,在正东北方时,方位为-135°,在正西方时方位角为90°,在正北方时为±180°。

实际上太阳并不总是东升西落,只有在春秋分两天,太阳是从正东方升,正西方落。

在北半球,从春分到秋分的夏半年中,太阳从东偏北的方向升(方位角为-90°到-180°之间),在西偏北的方向落(方位角为90°到180°之间);而从秋分到下一年春分的冬半年中,太阳从东偏南的方向升(方位角为-90°到0°之间),在西偏南的方向落(方位角为0°到90°之间)。

方位角与仰俯角

方位角与仰俯角

测量设备
罗盘
罗盘是一种常用的测量方位角的 工具,通过磁针指示方向,可以
测量出目标物的方位角。
陀螺仪
陀螺仪可以测量出物体的仰俯角和 方位角,其原理是利用高速旋转的 陀螺在空间中的进动和自转来测量 角度。
全站仪
全站仪是一种集成了测距、测角、 数据处理等多种功能的测量仪器, 可以测量出目标物的三维坐标、仰 俯角和方位角等参数。
环境因素
环境因素如磁场干扰、温度变化等也会影响测量精度,需要在测量 时尽量减少这些因素的影响。
操作误差
操作人员的技能水平和经验也会影响测量精度,正确的操作方法和 熟练的操作技能可以提高测量精度。
05 2 3
定位目标
在军事领域,方位角和仰俯角是确定目标位置的 重要参数,有助于精确制导和射击。
导航
在复杂的地形和气象条件下,通过测量方位角和 仰俯角,可以确定军用车辆、飞机和舰艇的准确 位置,进行导航。
情报侦察
通过测量和分析不同地点的方位角和仰俯角,可 以获取敌方阵地、装备部署等信息,为军事决策 提供依据。
航空应用
飞行控制
01
在飞机导航和控制系统,方位角和仰俯角是重要的飞行参数,
用于确定飞行方向和高度,确保安全飞行。
方位角与仰俯角
目录
• 方位角 • 仰俯角 • 方位角与仰俯角的转换关系 • 方位角与仰俯角的测量工具 • 方位角与仰俯角的实际应用
01
方位角
定义
• 方位角:指从正北方向顺时针转到目标方向线的夹角,范围是 0°到360°。
计算方法
01
02
03
计算公式
方位角 = arctan((y坐标 值/x坐标值)×tan(北向角 度))。
在定位系统中的应用

方位角及坐标计算

方位角及坐标计算

方位角及坐标计算公路工程各点方位角及坐标计算公式(一)各点方位角计算:1、第一直线段(K0~ZH):F=arctgΔY/ΔX注:直线方位角要考虑象限角才能定出正确线路走向 2、第一缓和曲线段(KZH~KHY):δ1=(K0-KZH)2/(2RLh)×180/π 3、圆曲线段(KHY~KYH):δ2=[2(K0-KZH)-Lh]/2R×180/π δ2=(KHY-KZH)/2R×180/π+(K0-KHY)/R×180/π无缓和曲线时:δ2=(K0-KHY)/R×180/π(即圆曲线圆心角) 4、第二缓和曲线段(KYH~KHZ):δ3=(KHZ-K0)2/(2RLh)×180/π 5、第二直线段(KHZ~KZH):F±α (左偏时F-α,右偏时F+α)注:K0――计算点的程α――曲线交点偏角Lh――缓和曲线长(注意有时第一和第二缓和曲线长不一样)(二)各点坐标计算XZH=XJD-T?CosF XHZ=XJD+T?Cos(F±α) YZH=YJD-T?SinF YHZ=YJD+T?Sin(F±α) 1、第一直线段:X=XZH+(K0-KZH)?CosF 中桩Y=YZH+(K0-KZH)?SinF X边=X中±B?Cos(F-Δ)边桩Y边=Y中±B?Sin(F-Δ)注:B――中桩至所求点的距离(左幅时为+B,右幅时为-B,当设计轴线与线路不垂直时B取斜长,即B/SinΔ)设计轴线线路方向。

BΔ 图S-12、第一缓和曲线段: XX=XZH-Y′?Sinθ+X′?Cosθ X X′ X′ 中桩′Y=YZH+Y′?Cosθ+X′?Sinθ Y ZH Y θ HZX边=X中±B?Cos(F+μδ1-Δ) HY YH 边桩Y边=Y中±B?Sin(F+μδ1-Δ)JD Y′ 注:(本公式只适用与图S-2线形)图S-2 μ――曲线左转为-1,右转为+1θ――线路方位角与Y轴所夹的锐角,见图S-2 Y′=L-L5/(40R2Lh2);X′=L3/(6RLh)-L7/(336R3Lh3);(R―圆曲线半径,L―缓和曲线上任一点至曲线起点长度)3、圆曲线段:X=XHY+2R?Sinφ?Cos(F+μ(ξ+φ))中桩Y=YHY+2R?Sinφ?Sin(F+μ(ξ+φ)) X边=X中±B?Cos(F+μδ2-Δ)边桩Y边=Y中±B?Sin(F+μδ2-Δ)注:φ=(K0-KHY)/2R×180/π;ξ=(KHY-KZH)/2R×180/π 4、第二缓和曲线段:X=XHZ-Y′?Sinθ+X′?Cosθ 中桩Y=YHZ-Y′?Cosθ-X′?Sinθ X边=X中±B?Cos(F+μδ1-Δ)边桩Y边=Y中±B?Sin(F+μδ1-Δ)注:1、本公式只适用与图S-2线形,其他线形可根据本线形公式变换2、式中符号与第一缓和曲线意义相同3、注意有时第一缓和曲线长和第二缓和曲线长不一样4、第二直线段:X=XHZ+(K0-KHZ)?Cos(F±α)中桩Y=YHZ+(K0-KHZ)?Sin(F±α) X边=X中±B?Cos(F±α-Δ)边桩Y边=Y中±B?Sin(F±α-Δ)注:F――第一直线段的方位角(三)用CASIO fx-4500P计算已知坐标点在线路上的里程和距中线距离 1、直线段(已知坐标X、Y)Pol(X-XHZ,Y-YHZ):K=V?Cos(F-W)+KHZ B=V?Sin(F-W)注: 1、在fx-4500P中计算结果存入变量储存区V和W,要显示储存区内容时按RCL V 、 W 键。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、直线定向

1、正、反方位角换算

对直线而言,过始点的坐标纵轴平行线指北端顺时针至直线的夹角是的正方位角,而过端点的坐标纵轴平行线指北端顺时针至直线的夹角则是的反方位角,同一条直线的正、反方位角相差,即同一直线的正反方位角 = (1-13) 上式右端,若<,用“+”号,若,用“-”号。 2、象限角与方位角的换算

一条直线的方向有时也可用象限角表示。所谓象限角是指从坐标纵轴的指北端或指南端起始,至直线的锐角,用表示,取值范围为。为了说明直线所在的象限,在前应加注直线所在象限的名称。四个象限的名称分别为北东(NE)、南东(SE)、南西(SW)、北西(NW)。象限角和坐标方位角之间的换算公式列于表1-4。 表1-4 象限角与方位角关系表 象 限 象限角与方位角换算公式

第一象限 (NE) =

第二象限 (SE) =-

第三象限 (SW) =+

第四象限 (NW) =-

3、坐标方位角的推算 测量工作中一般并不直接测定每条边的方向,而是通过与已知方向进行连测,推算出各边的坐标方位角。

设地面有相邻的、、三点,连成折线(图1-17),已知边的方位角,又测定了和之间的水平角,求边的方位角,即是相邻边坐标方位角的推算。 水平角又有左、右之分,前进方向左侧的水平角为,前进方向右侧的水平角。

设三点相关位置如图1-17()所示,应有 =++ (1-14) 设三点相关位置如图1-17()所示,应有 =++-=+- (1-15) 若按折线前进方向将视为后边,视为前边,综合上二式即得相邻边坐标方位角推算的通式: =+ (1-16) 显然,如果测定的是和之间的前进方向右侧水平角,因为有=-,代入上式即得通式 =- (1-17) 上二式右端,若前两项计算结果<,前面用“+”号,否则前面用“-”号。 二、坐标推算 1、坐标的正算 地面点的坐标推算包括坐标正算和坐标反算。坐标正算,就是根据直线的边长、坐标方位角和一个端点的坐标,计算直线另一个端点的坐标的工作。 如图1所示,设直线AB的边长DAB和一个端点A的坐标XA、YA为已知,则直线另一个端点B的坐标为: XB=XA+ΔXAB YB=YA+ΔYAB 式中,ΔXAB、ΔYAB称为坐标增量,也就是直线两端点A、B的坐标值之差。由图1中,根据三角函数,可写出坐标增量的计算公式为: ΔXAB=DAB·cosαAB ΔYAB=DAB·sinαAB

式中ΔX、ΔY均有正、负,其符号取决于直线的坐标方位角所在的象限, 参见表1-5。

表1-5 不同象限坐标增量的符号 坐标方位角及其所在象限 之符号 之符号 (第一象限) (第二象限) (第三象限) (第四象限)

+ - - + + + - -

2、坐标的反算 根据、两点的坐标、和、,推算直线的水平距离与坐标方位角,为坐标反算。由图1可见,其计算公式为: = ( 1-20 ) = ( 1-21 )

注意,由(1-20)式计算时往往得到的是象限角的数值,必须参照表1-5表1-4,先根据、的正、负号,确定直线所在的象限,再将象限角化为坐标方位角。 例如、均为-1。这时由(1-20)式计算得到的数值为,但根据、的符号判断,直线应在第三象限。因此,最后得==,余类推。 表1-4 象限角与方位角关系表 象 限 象限角与方位角换算公式

第一象限 (NE) =

第二象限 (SE) =-

第三象限 (SW) =+

第四象限 (NW) =-

三、举例 1、某导线12边方位角为45°,在导线上2点测得其左角为250°,求α32 ? 解:1)23边的方位角: 根据公式=+ 因α12=250°,α12 >180°,

故计算公式中,前面应取“-”号: α23=α12+- =45°+250°-180° =115° 2)求α23反方位角:

根据公式 =,本例α23<180°,故前面应取“+”号: α32=α23+=295° 当前位置:首页-复习总结-基本计算2

一、水准测量内业的方法: 水准测量的内业即计算路线的高差闭合差,如其符合要求则予以调整,最终推算出待定点的高程。 1.高差闭合差的计算与检核

附合水准路线高差闭合差为: = - () (2-8) 闭合水准路线高差闭合差为: = (2-9) 为了检查高差闭合差是否符合要求,还应计算高差闭合差的容许值(即其限差)。一般水准测量该容许值规定为

平地 =mm 山地 =mm (2-11) 式中,―水准路线全长,以km为单位;―路线测站总数。 2.高差闭合差的调整 若高差闭合差小于容许值,说明观测成果符合要求,但应进行调整。方法是将高差闭合差反符号,按与测段的长度(平地)或测站数(山地)成正比,即依下式计算各测段的高差改正数,加入到测段的高差观测值中:

⊿= - (平地) ⊿= - (山地) 式中, ―路线总长;―第测段长度 (km) (=1、2、3...); ―测站总数;―第测段测站数。 3.计算待定点的高程 将高差观测值加上改正数即得各测段改正后高差: hi改=hi+⊿h i i=1,2,3,…… 据此,即可依次推算各待定点的高程。 如上所述,闭合水准路线的计算方法除高差闭合差的计算有所区别而外,其余与附合路线的计算完全相同。 二、举例 1.附合水准路线算例 下图2-18所示附合水准路线为例,已知水准点A、B和待定点1、2、3将整个路线分为四个测段。

表 2-2 附合水准路线计算 测段号 点 名 测站数 观测高差/m 改正数 /m 改正后高差/m 高 程/m 备注 1 2 3 4 5 6 7 8 1 BM1 8 +8.364 -0.014 +8.350 39.833 1 48.183 2 3 -1.433 -0.005 -1.438 2 46.745 3 4 -2.745 -0.007 -2.752 3 43.993 4 5 +4.661 -0.008 +4.653 BM2 48.646

20 + 8.847 -0.034 +8.813 辅助 计算 =+ 0.034m

== 54mm 1)将点名、各测段测站数、各测段的观测高差、已知高程数填入表2-2内相应栏目2、3、4、7(如系平地测量,则将测站数栏改为公里数栏,填入各测段公里数;表内加粗字为已知数据)。 2)进行高差闭合差计算:

= - () =8.847-(48.646-39.833)=+ 0.034m 由于图中标注了测段的测站数,说明是山地观测,因此依据总测站数计算高差闭合差的容许值为:

=== 54mm 计算的高差闭合差及其容许值填于表2-2下方的辅助计算栏。 3)高差闭合差的调整 fh≤fh容,故其精度符合要求。 本例中,将高差闭合差反符号,按下式依次计算各测段的高差改正数:

⊿= - ( ―测站总数,―第测段测站数) 第一测段的高差改正数为:

⊿=-14mm 同法算得其余各测段的高差改正数分别为-5、-7、-8mm,依次列入表2-2中第5栏。 注:1、所算得的高差改正数总和应与高差闭合差的数值相等,符号相反,以此对计算进行校核。如因取整误差造成二者出现小的较差可对个别测段高差改正数的尾数适当取舍1mm,以满足改正数总和与闭合差数值相等的要求。 2、若为平地,高差改正数按各测段长度比例分配:用公式⊿=-计算,式中,―路线总长;―第测段长度 (km) (=1、2、3...)。 4)计算待定点的高程 将高差观测值加上改正数即得各测段改正后高差: hi改=hi+⊿h i i=1,2,3,4 据此,即可依次推算各待定点的高程。(上例计算结果列入表2-2之第6、7栏)。 H1=HA+H1改 H2=H1+H2改 …… HB(算)=HB(已知) 注:改正后的高差代数和,应等于高差的理论值(HB-HA),即: ∑h改=HB-HA 。如不相等,说明计算中有错误存在。最后推出的终点高程应与已知的高程相等。

2 闭合水准路线算例 闭合水准路线的计算方法除高差闭合差的计算有所区别而外,其余与附合路线的计算完全相同。计算时应当注意高差闭合差的公式为: fh=∑h测。 如图2所示一闭合水准路线,A为已知水准点,A点高程为51.732m,,其观测成果如图中所示,计算1、2、3各点的高程。 将图中各数据按高程计算顺序列入表2进行计算:

表2 水准测量成果计算表 测段号 点 名 测站数 观测高差 /m 改正数 /mm 改正后 高差/m 高 程 /m 1 2 3 4 5 6 7 1 BMA 11 -1.352 0.006 -1.346 51.732

1 50.386 2 8 2.158 0.004 2.162 2 52.548 3 6 2.574 0.003 2.577 3 55.125 4 7 -3.397 0.004 -3.393 BMB 51.732 32 -0.017 0.017 0

辅助 计算 =30mm

=mm=±68mm 计算步骤如下: ⑴计算实测高差之和 ∑h测=3.766m

=3.766-3.736=0.030m=30mm ⑶计算容许闭合差 fh容==±68mm fh≤fh容,故其精度符合要求,可做下一步计算。 ⑷计算高差改正数 高差闭合差的调整方法和原则与符合水准路线的方法一样。本例各测段改正数vi计算如下:

相关文档
最新文档