有理数应用题及答案

合集下载

有理数的应用题

有理数的应用题

1、某商店进行促销活动,一种商品原价为100元,现打八折销售,则该商品的现价为:A. 20元B. 50元C. 80元D. 120元(答案)C2、某城市冬季某天的温度是-5℃,中午上升了8℃,则中午的温度是:A. -13℃B. 3℃C. -3℃D. 13℃(答案)B3、某学生参加数学竞赛,共有10道题,每做对一道题得10分,不做或做错扣5分,该学生最后得分为70分,则他做对了:A. 6道题B. 7道题C. 8道题D. 9道题(答案)C4、一潜水艇从海面先下潜20米,然后又上升了15米,此时潜水艇的高度是:A. +5米B. -5米C. +15米D. -20米(答案)B5、某公司去年盈利50万元,今年由于改进技术,盈利比去年增加了20%,则今年盈利为:A. 40万元B. 50万元C. 60万元D. 70万元(答案)C6、小明从家出发,先向正东方向走50米,再向正南方向走30米到达学校,如果以家为坐标原点,正东方向为x轴正方向,正北方向为y轴正方向,则学校的坐标为:A. (50, 30)B. (50, -30)C. (-50, 30)D. (-50, -30)(答案)B7、某股票开盘价为10元,上午11时跌了1.5元,下午收盘时又涨了0.5元,则该股票收盘价为:A. 8元B. 8.5元C. 9元D. 10元(答案)C8、某地区海拔高度为-100米,表示该地区:A. 比海平面高100米B. 比海平面低100米C. 与海平面相平D. 无法确定(答案)B9、某班级进行数学测试,满分为100分,及格分数为60分,小明得了75分,则小明的成绩:A. 低于及格线B. 刚好及格C. 高于及格线但低于满分D. 满分(答案)C10、某商品原价为a元,第一次降价10%,第二次又降价10%,则两次降价后的价格为:A. 0.8a元B. 0.9a元C. 0.81a元D. 0.99a元(答案)C。

七年级数学有理数加减混合运算应用题

七年级数学有理数加减混合运算应用题

七年级数学有理数加减混合运算应用题
以下是一些七年级数学有理数加减混合运算应用题的例子:
1.小明从A地出发,向北走20米到达B地,然后向东走30米到达C地,最
后再向南走40米到达D地。

请问他最终离出发点A地有多远?
解答:小明从A地出发,先向北走20米到B地,再向东走30米到C地,最后向南走40米到D地。

因为北和南是相反的方向,所以20米和40米会相互抵消,只剩下向东的30米。

因此,他最终离A地30米。

2.一个书架上有10本图书,第一天借出了4本,第二天归还了2本。

请问两
天后书架上还剩多少本书?
解答:开始时有10本书,第一天借出了4本,所以剩下10 - 4 = 6本。

第二天归还了2本,所以6 + 2 = 8本。

因此,两天后书架上还剩8本书。

3.小华和小明一起从学校出发去图书馆。

小华先走了20分钟,然后小明开始
追赶他。

如果小明的速度是每小时6公里,而小华的速度是每小时4公里,请问小明需要多长时间才能追上小华?
解答:因为小华先走了20分钟,所以他已经走了4×20/60 = 1.33公里。

小明每小时比小华快6 - 4 = 2公里,所以他需要追赶1.33公里。

因此,所需时间为1.33/2 = 0.665小时,也就是40分钟。

有理数应用题及答案

有理数应用题及答案

有理数应用题及答案【篇一:初一有理数练习题及答案一】t>一、选择题(每题3分,共30分)1、1999年国家财政收入达到11377亿元,用四舍五入法保留两个有效数字的近似值为()亿元(a)1.1?104 (b)1.1?105 (c)11.4?103 (d)11.3?103 2、大于–3.5,小于2.5的整数共有()个。

(a)6 (b)5 (c)4 (d)33、已知数a,b在数轴上对应的点在原点两侧,并且到原点的位置相等;数x,y是互为倒数,那么2|a?b|?2xy的值等于()(a)2(b)–2(c)1(d)–14、如果两个有理数的积是正数,和也是正数,那么这两个有理数()(a)同号,且均为负数(b)异号,且正数的绝对值比负数的绝对值大(c)同号,且均为正数(d)异号,且负数的绝对值比正数的绝对值大 5、在下列说法中,正确的个数是()⑴任何一个有理数都可以用数轴上的一个点来表示⑵数轴上的每一个点都表示一个有理数⑶任何有理数的绝对值都不可能是负数⑷每个有理数都有相反数a、1b、2c、3d、46、如果一个数的相反数比它本身大,那么这个数为() a、正数 c、整数b、负数d、不等于零的有理数7、下列说法正确的是()a、几个有理数相乘,当因数有奇数个时,积为负;b、几个有理数相乘,当正因数有奇数个时,积为负; c、几个有理数相乘,当负因数有奇数个时,积为负; d、几个有理数相乘,当积为负数时,负因数有奇数个; 8、在有理数中,绝对值等于它本身的数有()a.1个b.2个c. 3个d.无穷多个9、下列计算正确的是()a.-22=-4b.-(-2)2=4c.(-3)2=6d.(-1)3=1 10、如果a0,那么a和它的相反数的差的绝对值等于() a.a b.0 c.-a d.-2a 二、填空题:(每题2分,共42分) 1、??2?64。

2、小明与小刚规定了一种新运算*:若a、b是有理数,则a*b =3a?2b。

含有理数原理的实际应用题

含有理数原理的实际应用题

含有理数原理的实际应用题题目一:购物计算假设你去超市购物,购买了以下商品:•牛奶:14元•面包:6元•鸡蛋:12元请计算你购买这些商品的总价格。

解答:不难发现,购物的总价格等于各种商品的价格之和。

我们可以用数学中的加法来表示这个关系。

所以,购物的总价格 = 牛奶的价格 + 面包的价格 + 鸡蛋的价格将每个商品的价格代入公式:购物的总价格 = 14元 + 6元 + 12元 = 32元所以,购买这些商品的总价格是32元。

题目二:温度转换假设现在的室外温度是摄氏30度,要将它转换为华氏温度,请计算。

解答:温度的转换关系有一个转换公式,我们可以使用这个公式来计算。

华氏温度 = 摄氏温度 × 1.8 + 32将摄氏30度代入公式进行计算:华氏温度 = 30 × 1.8 + 32 = 86所以,将摄氏30度转换为华氏温度是86度。

题目三:速度计算假设一辆汽车以每小时60公里的速度行驶,经过3个小时,它行驶了多远?请计算。

解答:速度的计算公式是:距离 = 速度 × 时间将题目中给出的速度和时间代入公式进行计算:距离 = 60公里/小时 × 3小时 = 180公里所以,经过3个小时,汽车行驶了180公里。

题目四:货币兑换假设你去国外旅行,想要将100美元兑换为人民币,汇率是1美元兑换为6.5人民币,请计算你可以得到多少人民币。

解答:货币兑换的计算公式是:兑换获得的货币 = 要兑换的货币 × 汇率将题目中给出的数据代入公式进行计算:兑换获得的人民币 = 100美元 × 6.5人民币/美元 = 650人民币所以,你可以得到650人民币。

题目五:面积计算假设一个正方形的边长是5米,求其面积。

请计算。

解答:正方形的面积计算公式是:面积 = 边长²将题目中给出的边长代入公式进行计算:面积 = 5米 × 5米 = 25平方米所以,这个正方形的面积是25平方米。

有理数应用题经典30题(学生版)

有理数应用题经典30题(学生版)

有理数应用题经典30题(学生版)一、题目:有理数应用题经典30题(学生版)1. 均匀缩小小明购买了一副长方形的相框,长和宽的比例是3:2。

如果将宽缩小10%,那么长也需要缩小多少才能保持原来的比例?解析:设原来宽为x,则长为1.5x。

缩小10%后的宽为0.9x,新的长应为1.5x*0.9=1.35x。

所以,长需要缩小15%。

2. 装满水壶一个16升的水壶和一个9升的水壶都是空的。

现在需要得到恰好4升的水,问如何操作才能实现?解析:首先,将9升水壶装满水,再倒入16升水壶中,此时9升水壶中剩余5升水。

然后,倒空16升水壶,将9升水壶中的5升水倒入16升水壶中。

最后,将9升水壶重新装满水,再倒入16升水壶中,此时16升水壶中已经有4升水。

3. 倒水比例小明用相同的速度向两个相同容积的杯子中倒水,第一个杯子先倒水,第二个杯子稍后开始倒水,小明一直保持恒定的速度进行倒水。

如果要使两个杯子中的水量一直保持比例3:5,那么第二个杯子开始倒水的时间点在第一个杯子开始倒水后的多久?解析:设第一个杯子开始倒水后经过t时间,第二个杯子开始倒水。

根据题意可得:水量比例=倒水时间比例。

即3/(3+t) = 5/t,解方程可得t=5/2,所以第二个杯子开始倒水的时间点在第一个杯子开始倒水后的2.5分钟。

4. 数字排列将1、2、3、4、5、6、7、8、9这九个数字分别填入以下的方框中,使得相邻的两个数字之和为偶数。

每个数字只能使用一次。

□□□□□□□□□解析:填入以下数字即可满足条件:1234567895. 数轴运动一只蚂蚁在数轴上从0点开始向右爬,并且每次只能移动1个单位。

如果这只蚂蚁每次以等概率向左或向右爬,那么在第5次移动后,它距离0点的期望距离是多少?解析:蚂蚁在第1次、第3次、第5次移动时一定是在偶数点上,而第2次、第4次移动时一定是在奇数点上。

所以在第5次移动后,它距离0点的期望距离为0。

6. 周长比较一个矩形的长和宽之比是3:2,另一个矩形的长和宽之比是2:3。

人教版七年级上册数学第一章有理数应用题专项训练(word版含答案)

人教版七年级上册数学第一章有理数应用题专项训练(word版含答案)

人教版七年级上册数学第一章有理数应用题专项训练1.某出租车沿某南北方向的公路上载客,约定前北为正,向南为负.某天自A地出发到收工时所走路线(单位:千米)为:+10,﹣3,+4,﹣8,+13,﹣2,+12,+8.(1)问收工时距A地多远?(2)若每千米路程耗油0.15升,问从A地出发到收工共耗油多少升?2.某自行车厂计划平均每天生产200辆,但是由于种种原因,实际每天生产量与计划量相比有出入.表是某周的生产情况(超产记为正,减产记为负):(1)根据记录的数据可知该厂星期三生产自行车多少辆?(2)产量最多的一天比产量最少的一天多生产自行车多少辆?3.出租车一天下午以家为出发地在东西方向营运,向东为正方向,向西为负方向,行车里程(单位:km)依先后载客次序记录如下:+8,﹣9,﹣7,+6,﹣3,﹣14,+5,+12(1)该出租车师傅将最后一名乘客送达到目的地,出租车离家有多远?(2)该出租车师傅下午离家最远有多少千米?(3)若汽车耗油量为0.2升/千米,这天下午接送乘客,出租车共耗油多少升?(4)若出租车起步价为10元,起步里程为3km(包括3km),超过部分每千米啊1.2元,问这天下午该出租车师傅的营业额是多少元?4.哈市出租车司机李师傅某天的营运全都是在一条东西方向的大街上运行的,若规定从出发点向东方向为正,向西方向为负,他这天走的里程如下:(单位:千米)-3,+4,-12,-5,+6,-8,-7,+9,-10,+11(1)李师傅第四次运营后的位置在出发点的哪个方向?多少千米处?(2)若每千米耗油0.04升,则这天营运耗油多少升?5.某服装厂一周计划生产2800套运动服,计划平均每天生产400套,超出计划产量的记为“+”,不足计划产量的记为“-”,下表记录的是该厂某一周的生产情况:表中星期六的记录情况被墨水涂污了.(1)根据记录可知,星期六工厂生产多少套运动服?(2)产量最多的一天比产量最少的一天多生产多少套运动服?(3)该服装厂工资结算方式如下:①每人每天基本工资200元.①以每天完成400套为标准,若当天超额完成任务,超额部分每套奖励10元;若当天未完成生产任务,则少生产一套扣掉15元.该服装厂采用流水作业方式生产,当天所得奖金总额按人均分配,若该工厂这一周每天都有20名工人生产,则这一周服装厂实际需要付给该工厂每名工人多少元?6.某市股民小张上星期五买进某公司股票1000股,每股27元,下表为本周内每日该股票的涨跌情况(单位:元):(1)本周三收盘时,每股是多少元?(2)本周内最高价是每股多少元?最低价是每股多少元?(3)若小张在本周四交易,问他的盈利情况如何?(交易时的手续费忽略不计)7.据新闻报道,渝万高铁于即将通车,为了保证安全,某动车检修小组沿铁路检修,约定前进为正,后退为负,某天自甲地出发到收工时所走路线(单位:km)为+10,-3,+4,-2,-9,+13,-2,+12,+8,+5;问:(1)检修小组第几次回到甲地?(2)收工时距甲地多远?(3)若每千米耗电25度,则从甲地出发到收工共耗电多少度.8.某水果店以每箱40元的价格从水果批发市场购进8箱苹果.若以每箱净重10千克为标准,超过的千克数记为正数,不足的千克数记为负数,称重的记录如下:-1,1,0,-2,-1,-1,-2,1.(1)这8箱苹果的总重量是多少千克?(2)如果把这些苹果全部以零售的形式卖掉,水果店将获利50%,那么苹果零售价应定为每千克多少元?(3)若第一天水果店以(2)中的单价售出了全部苹果的60%,第二天因害怕剩余的苹果腐烂变质,决定降价把剩余的苹果按原零售价的七五折销售完.请计算该水果店在销售这批苹果过程中盈利多少元?9.本市图书馆上周借书记录如下(超过100册记为正,不超过100册记为负):(1)上周星期三比星期四多借出多少册书?(2)上周平均每天借出多少册书?10.一辆出租车一天上午从某商场出发在东西大街上运行,若规定向东为正,向西为负,行车里程(单位:km)依次如下:+9,-8,-5,+6,-8,+9,-3,-7,-5,+10.(1)将最后一名乘客送到目的地,出租车离该商场有多远?(2)按出租车每行驶100km油耗为10L,1L汽油的售价为7.2元,计算出租车在该上午消耗汽油的金额是多少元?(3)如果不计其它成本,只计消耗的汽油费用,每千米收费3元,计算这名司机挣(或赔)了多少元?11.2020年新冠肺炎疫情的蔓延,使得医用口罩销量大幅增加,某口罩加工厂每名工人计划每天生产300个医用口罩,一周生产2100个.由于种种原因,实际每天生产量与计划量相比有出入.下表是工人小王某周的生产情况(超产记为正,减产记为负).(1)根据记录的数据可知,小王星期五生产口罩______个;(2)根据表格记录的数据可知,小王本周实际生产口罩数量为______个;(3)若该厂实行每周计件工资制,每生产一个口罩可得0.8元,若超额完成周计划工作量,则超过部分每个另外奖励0.2元;若完不成每周的计划量,则少生产一个扣0.25元,小王这一周的工资总额是多少元?(4)若该厂实行每日计件工资制,每生产一个口罩可得0.8元.若超额完成每日计划工作量,则超过部分每个另外奖励0.2元;若完不成每天的计划量,则少生产一个扣0.25元,小王这一周的工资总额是多少元?12.有一批试剂,每瓶标准剂量为250毫升,现抽取8瓶样品进行检测,超过或不足标准剂量的部分分别用正、负数表示,记录结果如下(单位:毫升):+6,-2,+3,+10,-6,+5,-15,-8.(1)这8瓶样品试剂的总剂量是多少?(2)若增加或者减少每瓶试剂剂量的人工费为10元/毫升,求将这8瓶样品试剂再加工制作成标准剂量需要多少人工费?13.有6筐白菜,以每筐25千克为标准质量,超过的千克数记作正数,不足的千克数记作负数,称量后的记录如图.请回答下列问题:(1)这6筐白菜中最接近标准质量的这筐白菜为____________千克.(2)与标准质量相比,这6筐白菜总计超过或不足多少千克?14.某水果店以每箱200元的价格从水果批发市场购进20箱樱桃,若以每箱净重10千克为标准,超过的千克数记为正数,不足的千克数记为负数,称重的记录如下表:(1)求n的值及这20箱樱桃的总重量;(2)若水果店打算以每千克25元销售这批樱桃,若全部售出可获利多少元;(3)实际上该水果店第一天以(2)中的价格只销售了这批樱桃的60%,第二天因为害怕剩余樱桃腐烂,决定降价把剩余的樱桃以原零售价的70%全部售出,水果店在销售这批樱桃过程中是盈利还是亏损,盈利或亏损多少元.15.随着手机的普及,微信的兴起,许多人做起了“微商”,很多农产品也改变了原来的销售模式,实行了网上销售.刚大学毕业的小明把自家的冬枣产品也放到了网上实行包邮销售,他原计划每天卖100斤冬枣,但由于种种原因,实际每天的销售量与计划量相比有出入,下表是某周的销售情况(超额记为正,不足记为负.单位:斤);(1)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售________斤;(2)本周实际销售总量是否达到了计划数量?试说明理由;(3)若冬枣每斤按8元出售,每斤冬枣需要小明支付的平均运费是3元,那么小明本周销售冬枣实际共得多少元?16.出租车司机小李某天下午的运营是在南北走向的大街进行的,假定向南为正,向北为负,他那天下午行驶里程(单位:km)如下:+15,-3,+14,-11,+10,+4,-26(1)小李在送第几位乘客时行驶的路程最远?(2)小李送完最后一位乘客时所处的地点,在他最初出发地的什么方向?距离出发地多远?(3)若汽车耗油量为0.1L/km,这天下午汽车一共耗油多少升?17.新华文具用品店最近购进了一批钢笔,进价为每支6元,为了合理定价,在销售前五天试行机动价格,卖出时每支以10元为标准,超过10元的部分记为正,不足10元的部分记为负.文具店记录了这五天该钢笔的售价情况和售出情况,如表所示:(1)这五天中赚钱最多的是第_____天,这天赚钱_____元.(2)新华文具用品店这五天出售这种钢笔一共赚了多少钱?18.某股民上星期六买进某公司股票1000股,每股27元,下表为本周内每日该股票的涨跌情况:(单位:元)(1)星期三收盘时每股是多少元?(2)本周内最高价是每股多少元?最低价是每股多少元?(3)已知该股民买进股票时付了0.15%的手续费,卖出时需付成交额0.15%的手续费和0.1%的交易税,如果他一直观望到星期六才将股票全部卖出,请算算他本周的收益如何?19.某城市治安巡逻队员乘车沿东西方向的一条主干线进行巡逻.某天早上从A地出发,晚上最后到达B地,约定向东为正方向,当天的行驶记录如下(单位:千米):+18,﹣9,+7,﹣12,﹣4,+12,﹣5,﹣6(1)B地在A地何方,相距多少千米?(2)问巡逻队员在距A地最远时的最远距离是多少千米?(3)每千米耗油0.6升,每升4.5元,这天共耗油费用为多少元?20.某冷库一天的冷冻食品进出记录如下表(运进用正数表示,运出用负数表示);(1)这天冷库的冷冻食品的质量相比原来是增加了还是减少了?请说明理由;(2)根据实际情况,现有两种方案:方案一:运进每吨冷冻食品费用200元,运出每吨冷冻食品费用400元;方案二:不管运进还是运出每吨冷冻食品费用都是300元.从节约运费的角度考虑,选择哪一种方案比较合算?参考答案:1.(1)34千米(2)9升2.(1)192辆(2)25辆3.(1)在家的西方,离家有2km(2)19千米(3)12.8升(4)128元4.(1)西方,16 千米(2)3升5.(1)星期六生产了448套运动服(2)多生产56套运动服(3)需付给每名工人1435元6.(1)34.5元(2)35.5元,26元(3)盈利5000元7.(1)第五次回到了甲地(2)距离甲地36km(3)从甲地出发到收工共耗电1700度8.(1)这8箱苹果的总重量是75千克(2)苹果的零售价应定为每千克6.4元(3)该水果店在销售这批苹果过程中盈利112元9.(1)上周星期三比星期四多借出39册书(2)上周平均每天借出105册书10.(1)出租车在商场西面,距商场2km处(2)消耗汽油的金额是50.4元(3)这名司机挣了159.6元11.(1)291(2)2111(3)1691元(4)1689.85元12.(1)1993毫升;(2)550元13.(1)24.5(2)总计超过3千克14.(1)5n ,203千克;(2)1075元;(3)是盈利的,盈利466元.15.(1)29(2)达到了计划数量(3)3585元16.(1)小李在送最后一位乘客时行车里程最远;(2)在他最初出发地的正南方向,距离出发地3km;(3)这天下午汽车共耗油8.3升17.(1)4,96(2)360元18.(1)34.5元(2)35.5元;26元(3)赚889.5元19.(1)B地在A地东方,相距1千米处(2)18千米(3)197.1元20.(1)减少了,理由见解析(2)从节约运费的角度考虑,选择方案二比较合算。

七年级有理数应用题1

七年级有理数应用题1

七年级有理数应用题11.10袋小麦每袋重150千克,超过标准重量记为正数,不足的记为负数,分别为:-6,-3,-1,-2,+7,+3,+4,-3,-2,+1.求10袋小麦总共超过或不足多少千克?求10袋小麦的总重量是多少千克?2.火车沿东西方向直线行驶,规定自车站向东为正,向西为负,进站前的时间为负,进站后的时间为正。

如果速度为60千米/小时,时间为3小时,火车在哪里?如果速度为65千米/小时,时间为-3.4小时,火车在哪里?3.记上升为正,下降为负。

一架直升机从高度为450米的位置开始,先以20米/秒的速度上升60秒,后以12米/秒的速度下降120秒。

求直升机此时所在的高度是多少米?4.某儿童服装店老板以32元的价格买进30件连衣裙,针对不同的顾客,30件连衣裙的售价完全不相同。

如果以47元为标准,将超过的钱数记为正,不足的钱数记为负,记录结果如下表:售出件数,售价为+3元、+2元、+1元、-1元、-2元。

问该服装店售完这30件连衣裙后,赚了多少钱?5.抽查10袋盐,每袋盐的标准质量是100克,超出部分记为正,统计结果如下表:盐的袋数为2、3、3、1、1,每袋超出标准的克数为+1克、-0.5克、+1.5克、-2克。

问这10袋盐一共有多少克?6.某检修小组乘一辆检修车沿铁路检修,规定向东走为正,向西走为负,出发地记为0.某天检修完毕时,行走记录(单位:千米)如下:+10,-2,+3,-1,+9,-3,-2,+11,+3,-4,+6.问收工时,检修小组距出发地有多远?在东侧还是西侧?若检修车每千米耗油2.8升,求从出发到收工共耗油多少升?7.某出租车在下午从鼓楼出发,行驶了一段距离,行车里程依次为:+9、-3、-5、+4、-8、+6、-3、-6、-4、+10.问题一:最后一名乘客到达目的地后,出租车距离鼓楼出发点多远?在鼓楼的哪个方向?问题二:如果每公里价格为2.4元,司机一个下午的营业额是多少?2.某仓库原存某种原料350千克,一周内存入和领出情况如下:存入150千克,领出30千克,存入65千克,存入60千克,领出180千克,领出25千克,领出20千克。

有理数应用题及答案

有理数应用题及答案

有理数应用题及答案【篇一:初一有理数练习题及答案一】t>一、选择题(每题3分,共30分)1、1999年国家财政收入达到11377亿元,用四舍五入法保留两个有效数字的近似值为()亿元(a)1.1?104 (b)1.1?105 (c)11.4?103 (d)11.3?103 2、大于–3.5,小于2.5的整数共有()个。

(a)6 (b)5 (c)4 (d)33、已知数a,b在数轴上对应的点在原点两侧,并且到原点的位置相等;数x,y是互为倒数,那么2|a?b|?2xy的值等于()(a)2(b)–2(c)1(d)–14、如果两个有理数的积是正数,和也是正数,那么这两个有理数()(a)同号,且均为负数(b)异号,且正数的绝对值比负数的绝对值大(c)同号,且均为正数(d)异号,且负数的绝对值比正数的绝对值大 5、在下列说法中,正确的个数是()⑴任何一个有理数都可以用数轴上的一个点来表示⑵数轴上的每一个点都表示一个有理数⑶任何有理数的绝对值都不可能是负数⑷每个有理数都有相反数a、1b、2c、3d、46、如果一个数的相反数比它本身大,那么这个数为() a、正数 c、整数b、负数d、不等于零的有理数7、下列说法正确的是()a、几个有理数相乘,当因数有奇数个时,积为负;b、几个有理数相乘,当正因数有奇数个时,积为负; c、几个有理数相乘,当负因数有奇数个时,积为负; d、几个有理数相乘,当积为负数时,负因数有奇数个; 8、在有理数中,绝对值等于它本身的数有()a.1个b.2个c. 3个d.无穷多个9、下列计算正确的是()a.-22=-4b.-(-2)2=4c.(-3)2=6d.(-1)3=1 10、如果a0,那么a和它的相反数的差的绝对值等于() a.a b.0 c.-a d.-2a 二、填空题:(每题2分,共42分) 1、??2?64。

2、小明与小刚规定了一种新运算*:若a、b是有理数,则a*b =3a?2b。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有理数应用题及答案【篇一:初一有理数练习题及答案一】t>一、选择题(每题3分,共30分)1、1999年国家财政收入达到11377亿元,用四舍五入法保留两个有效数字的近似值为()亿元(a)1.1?104 (b)1.1?105 (c)11.4?103 (d)11.3?103 2、大于–3.5,小于2.5的整数共有()个。

(a)6 (b)5 (c)4 (d)33、已知数a,b在数轴上对应的点在原点两侧,并且到原点的位置相等;数x,y是互为倒数,那么2|a?b|?2xy的值等于()(a)2(b)–2(c)1(d)–14、如果两个有理数的积是正数,和也是正数,那么这两个有理数()(a)同号,且均为负数(b)异号,且正数的绝对值比负数的绝对值大(c)同号,且均为正数(d)异号,且负数的绝对值比正数的绝对值大 5、在下列说法中,正确的个数是()⑴任何一个有理数都可以用数轴上的一个点来表示⑵数轴上的每一个点都表示一个有理数⑶任何有理数的绝对值都不可能是负数⑷每个有理数都有相反数a、1b、2c、3d、46、如果一个数的相反数比它本身大,那么这个数为() a、正数 c、整数b、负数d、不等于零的有理数7、下列说法正确的是()a、几个有理数相乘,当因数有奇数个时,积为负;b、几个有理数相乘,当正因数有奇数个时,积为负; c、几个有理数相乘,当负因数有奇数个时,积为负; d、几个有理数相乘,当积为负数时,负因数有奇数个; 8、在有理数中,绝对值等于它本身的数有()a.1个b.2个c. 3个d.无穷多个9、下列计算正确的是()a.-22=-4b.-(-2)2=4c.(-3)2=6d.(-1)3=1 10、如果a0,那么a和它的相反数的差的绝对值等于() a.a b.0 c.-a d.-2a 二、填空题:(每题2分,共42分) 1、??2?64。

2、小明与小刚规定了一种新运算*:若a、b是有理数,则a*b =3a?2b。

小明计算出2*5=-4,请你帮小刚计算2*(-5)= 。

3、若x?6?y?5?0 ,则x?y4、大于-2而小于3的整数分别是_________________、 5、(-3.2)3中底数是______,乘方的结果符号为______。

6、甲乙两数的和为-23.4,乙数为-8.1,甲比乙大7、在数轴上表示两个数,的数总比的大。

(用“左边”“右边”填空)8、仔细观察、思考下面一列数有哪些规律:-2 ,4 ,-8 ,16 ,-32 ,64 ,…………然后填..出下面两空:(1)第7个数是;(2)第 n 个数是。

9、若│-a│=5,则a=________.10、已知:2? 23?2?223,3?38?3?238,4?415?4?2415, (10)ab?10?2ab(a,b均为整数)则a+b= .11、写出三个有理数数,使它们满足:①是负数;②是整数;③能被2、3、5 整除。

答:____________。

12、数轴上原点右边4.8厘米处的点表示的有理数是32,那么,数轴左边18厘米处的点表示的有理数是____________。

13、已知|?a|?a?0,则a是__________数;已知|ab|ab??1?b?0?,那么a是_________数。

14、计算:??1????1?????1?122000=_________。

15、已知|4?a|??a?2b??0,则a?2b=_________。

216、____________________范围内的有理数经过四舍五入得到的近似数3.142。

17、:11?2?12?3?13?4???11999?2000。

18、数5的绝对值是5,是它的本身;数–5的绝对值是5,是它的相反数;以上由定理非负数的绝对值等于它本身,非正数的绝对值等于它的相反数而来。

由这句话,正数–a的绝对值为__________;负数–b的绝对值为________;负数1+a的绝对值为________,正数–a+1的绝对值___________。

19、已知|a|=3,|b|=5,且ab,则a-b的值为。

20、观察下列等式,你会发现什么规律:1?3?1?22 ,2?4?1?32,3?5?1?42,。

请将你发现的规律用只含一个字母n(n为正整数)的等式表示出来21 、观察下列各式1?3?12?2?1,2?4?22?2?2,3?5?32?2?3,。

请你将猜到的规律用n(n≥1)表示出来. 22、已知|a|a?b|b|?0,则|a?b|a?b?___________。

23、当1?x?3时,化简|x?3|?|x?1|x?2的结果是24、已知a是整数,3a2?2a?5是一个偶数,则a是(奇,偶)25、当a??6时,化简|3?|3?a||的结果为。

三、计算下列各题(要求写出解题关键步骤): 1、?22???3????1????1?2、34512?(?23)?45?(?12)?(?13)??3?3?4?2?1??3243、?????????????3???3????1?2?????2??3????144926、?48?(12?58?13?1116) 7、(?13)?0.5?(?6)?22234四、我们已经学过:任意两个有理数的和仍是有理数,在数学上就称有理数集合对加法运算是封闭的。

同样,有理数集合对减法、乘法、除法(除数不为0)也是封闭的。

请你判断整数集合对加、减、乘、除四则运算是否具有封闭性?(4分)利用你的结论,解答:若a、b、c为整数,且a?b?c?a1.已知a=3b,c=a/2。

求a+b+c/a+b-c的值。

2.已知a-b/a+b=3,求{2(a+b)/a-b}-{4(a-b)/3(a+b)}的值。

3.“两点确定一条直线”,若平面内有四个点,可以确定的直线条数为().(a)1条或6条(b)4条或6条(c)1条或4条(d)1条或4条或6条 4.在6点10分的时候钟表上的时针和分针的夹角为().(a)1200 (b)1250(c)1300 (d)1350 5.下列叙述中,正确的共有().(1)一个角的补角比这个角的余角大900(2)互余的两个角的比是4:6,这两个角分别是400和600?1,求a?b?b?c?c?a的值。

(3)两个角若互补,其中一个角是锐角另一个角为钝角(4)小于平角的角是钝角(a)0个(b)1个(c)2个(d)3个6.如图,小于平角的角有()(a)10个(b)9个(c)8个 (d)4个 7.如图,ob,oc是∠aod的任意两条射线,om平分∠aob,on平分∠cod,若∠mon=?,∠cob=?,则∠aod等于().(a)2?—?(b)?—? (c)?+? (d)以上都不对 8.某测绘装置上一枚指针原来指向南偏西500(如图2),把这枚指针按逆时针方向旋转14m周,则结果指针的指向().西东(a)南偏东50o (b)西偏北50o (c)南偏东40o (d)东南方向南9.如图,在4?4的正方形网格中,?1,?2,?3的大小关系是().(a)?1??2??3(b)?1??2??3 (c)?1??2??3(d)?1??2??3 10.下列说法中错误的是()1(a)若b为线段ac的中点,则bc=2ac (b)若ao=bo,则o点是线段ab的中点1(c)若ao=bo=2ab,则o点是线段ab的中点1(d)若oc平分∠aob,则∠aoc=∠boc=2∠aob11.(1)班同学订2009年的报纸共68分.班长统计时发现:同学们每人一份(中国少年报),每4人一份(小学生数学报),每6人一份(科技与博览).”5(1)班有多少人?【篇二:有理数单元测试题及答案】>一、精心选一选:(每题2分、计18分)1、a,b,c三个数在数轴上的位置如图所示,则下列结论中错误的是( c )(A)a+b0 (B)a+c0(C)a-b0 (D)b-2、若两个有理数的和是正数,那么一定有结论( d)(a)两个加数都是正数;(b)两个加数有一个是正数;(c)一个加数正数,另一个加数为零;(d)两个加数不能同为负数3、1?2?3?4?5?6+……+2005-2006的结果不可能是:( b )a、奇数b、偶数c、负数d、整数4、、两个非零有理数的和是0,则它们的商为:( b )a、0b、-1 c、+1 d、不能确定5、有1000个数排一行,其中任意相邻的三个数中,中间的数等于它前后两数的和,若第一个数和第二个数都是1,则1000个数的和等于((A)1000 (B)1(C)0(D)-16每天供给地球光和热的太阳与我们的距离非常遥远,它距地球的距离约为150000000千米,将150000000千米用科学记数法表示为( b )*7.(?2)2004?3?(?2)2003 的值为( a ).a.?22003 b.22003 c.?22004 d.22004*8、已知数轴上的三点a、b、c分别表示有理数a,1,?1,那么a?1表示( b).a.a、b两点的距离 b.a、c两点的距离c.a、b两点到原点的距离之和d. a、c两点到原点的距离之和*9.1?2?3?4???14?15?2?4?6?8???28?30等于( d).a.114 b.?14 c.2 d.?12b )二.填空题:(每题3分、计42分)1、如果数轴上的点a对应的数为-1.5,那么与a点相距3个单位长度的点所对应的有理数为_____。

-4.5或1.52、倒数是它本身的数是;相反数是它本身的数是;绝对值是它本身的数是。

3、?m的相反数是 m,?m?1的相反数是 m-1 ,m?1的相反数是-m-1 .4、已知?a?9,那么?a的相反数是 -9 .;已知a??9,则a的相反数是9 .5、观察下列算式:,,,,请你在观察规律之后并用你得到的规律填空:48x52+46、如果|x+8|=5,那么x=。

-3或-1322227、观察等式:1+3=4=2 ,1+3+5=9=3 ,1+3+5+7=16=4 ,1+3+5+7+9=25=5 ,……2猜想:(1) 1+3+5+7…+99 =; 50(2) 1+3+5+7+…+(2n-1)=_____________ .2(结果用含n的式子表示,其中n =1,2,3,……)。

n8、计算|3.14 - ?|- ?的结果是 . -3.149、规定图形表示运算a–b + c,图形表示运算x?z?y?w. .则10、计算: + =____0___(直接写出答案). ??1?1???1?2????1?2000=_________。

0111111;-;;;;……;第2003个数是。

-;;-;23456200312310111.观察下面一列数,根据规律写出横线上的数,-;1112.计算:(-1)+(-1)+(-1)+……+(-1)=________。

相关文档
最新文档