第八章 原子吸收光谱
原子吸收光谱分析-下

体元素不同可能带来影响。
(2)标准溶液浓度应使 A ~ C 在直线的范围内, C
不能太大,一般控制A在0.2~0.8之间。
(3) 测定过程中应保持测定条件不变。 • 标准曲线法简便、快速,适用于组分比较简单的样 品,适用于大批量的样品分析。但样品的情况不清 或很复杂时分析误差较大,可用其他方法定量。
检测限 (Detection limit, DL)
• 检出限不仅与灵敏度有关,而且还考虑 到仪器噪声!因而检测限比灵敏度具有更 明确的意义,更能反映仪器的性能。只有 同时具有高灵敏度和高稳定性时,才有低 的检出限。
——测定条件的选择 • 分析方法的精密度和准确度除了与仪器的性能有 关外,还与测定条件有关,注意选择: 1、试样取量及处理
用有机溶剂
(二)化学干扰及其抑制
指待测元素与其它组分之间的化学作用所引起的干扰效应 ,主要 影响到待测元素的原子化效率,是选择性干扰,为主要干扰源
1. 化学干扰的类型
(1)待测元素与其共存物质作用生成难挥发的化合物,致使参 与吸收的基态原子减少。 a、铝、硅、硼、钛、铍在火焰中易生成难熔化合物 b、硫酸盐、磷酸盐与钙生成难挥发物。 (2)待测原子发生电离反应,生成离子,不产生共振吸收,总 吸收强度减弱,电离电位≤6eV的元素易发生电离,火焰温度越高 ,干扰越严重,(如碱及碱土元素)。
• 氘灯是连续光谱( 190-360nm ),它和空心阴极灯的锐线
光源通过切光器交替照射在原子化器上。 氘灯的能量被背景和被测元素吸收,但被测元素是线吸收,
它占整个连续光谱的吸收信号很小,可以忽略。因此可以
认为,氘灯测得的就是背景吸光度。 A氘=A背 • 空心阴极灯测得的是被测元素吸光度和背景吸光度,
例如:钙电离,在溶液中加入大量易电离的 钾或铯,有大量电子存在,抑制钙的电离,提高 测定灵敏度。 K ---- K+ + e
原子吸收光谱法实验报告

原子吸收光谱法实验报告实验报告:原子吸收光谱法一、实验目的1.了解原子吸收光谱法的原理和仪器设备。
2.掌握使用原子吸收光谱法进行测定的方法和步骤。
3.学习如何分析、处理实验数据,得出准确的样品含量。
二、实验原理原子吸收光谱法是一种常用的分析方法,其基本原理是:当原子或离子吸收具有特定波长的光时,会产生吸收线,其强度与物质浓度成正比。
在实验中,使用的是原子吸收分光光度计,它由光源、光栅、光程系统、光电转换器等组成。
三、实验步骤1.仪器准备:打开仪器电源,启动仪器,预热10分钟。
2.样品制备:根据实验要求,稀释待测样品,使其浓度适合于测定。
3.设置光谱仪参数:选择合适的光谱波长,进入光谱扫描模式,设置光谱仪参数。
4.标定曲线制备:准备一系列浓度不同的标准溶液,并分别测定其吸光度,得到吸光度与浓度之间的线性关系。
5.测定样品的吸光度:依次将各个浓度样品和待测样品放入进样池中,分别测定其吸光度。
6.作图和计算:根据标定曲线,将吸光度转化为物质浓度,并绘制出吸光度与浓度的关系图。
根据待测样品的吸光度,计算出其浓度。
四、数据处理与结果分析根据实验操作,记录下各个浓度样品和待测样品的吸光度数据。
使用标定曲线,将吸光度转化为物质浓度,并绘制出吸光度与浓度的关系图。
根据待测样品的吸光度,计算出其浓度。
根据实验结果,我们可以得出待测样品中所含物质的浓度。
如果待测样品的浓度超出了标定曲线的范围,可以通过稀释样品重新测定,以确保结果的准确性。
五、实验总结通过本次实验,我深入了解了原子吸收光谱法的原理和仪器设备,掌握了使用该方法进行测定的步骤和技巧。
实验中,需要注意的是样品的制备和标定曲线的制备,这两个步骤对于后续的测定至关重要。
实验中可能出现的误差主要包括仪器误差、操作误差和样品制备误差等。
在实验过程中,我们需要严格控制这些误差,以确保结果的准确性和可靠性。
同时,我们也要注意实验数据的处理与分析,避免统计和计算上的错误。
原子吸收光谱

8
第三阶段 电热原子吸收光谱仪器的产生 1959年,苏联里沃夫发表了电热原子化技术的第一篇论 文。电热原子吸收光谱法的绝对灵敏度可达到10-12-10-14g, 使原子吸收光谱法向前发展了一步。近年来,塞曼效应和自 吸效应扣除背景技术的发展,使在很高的的背景下亦可顺利 地实现原子吸收测定。
(3) 压力变宽(Pressure effect) 又称为碰撞(Collisional broadening)变宽。它是由于碰撞使激发 态寿命变短所致。外加压力越大,浓度越大,变宽越显著。可分为
a) Lorentz 变宽:待测原子与其它原子之间的碰撞。变宽在10-3nm。
劳伦兹变宽用Δν表示,可表达为 :
单色光谱线很窄才有明显吸收! 若 103 nm 则 I / I 0 1, A 0 无法分析
23
对于分子的紫外-可见吸收光谱的测量,入射光是由单 色器色散的光束中用狭缝截取一段波长宽度为0.xnm至1.xnm 的光,这样宽度的光对于宽度为几十nm甚至上百nm的分子带 状光谱来说,是近乎单色了,它们对吸收的测量几乎没有影 响,当然入射光的单色性更差时,就会引起吸收定律的偏离。 而对于原子吸收光谱是宽度很窄的线状光谱来说,如果 还是采用类似分子吸收的方法测量,入射光的波长宽度将比 吸收光的宽度大得许多,原子吸收的光能量只作入射光总能 量的极小部分。这样测量误差所引起的对分析结果影响就很 大。这种关系如下图所示。
33
若吸收线轮廓单纯取决于多普勒变宽,则:
原子吸收

原子吸收光谱原子吸收光谱(Atomic Absorption Spectroscopy,AAS),即原子吸收光谱法,是基于气态的基态原子外层电子对紫外光和可见光范围的相对应原子共振辐射线的吸收强度来定量被测元素含量为基础的分析方法,是一种测量特定气态原子对光辐射的吸收的方法。
此法是20世纪50年代中期出现并在以后逐渐发展起来的一种新型的仪器分析方法,它在地质、冶金、机械、化工、农业、食品、轻工、生物医药、环境保护、材料科学等各个领域有广泛的应用。
该法主要适用样品中微量及痕量组分分析。
查看精彩图册目录基本原理原子吸收光谱分析谱线轮廓发展历史特点灵敏度高精密度好选择性好,方法简便准确度高,分析速度快应用广泛原子吸收光谱分析的基本原理原子吸收光谱的产生原子吸收光谱的谱线轮廓原子吸收光谱的测量原子吸收分光光度计的组成光源原子化器分光器检测系统干扰及其消除方法物理干扰化学干扰电离干扰光谱干扰分子吸收干扰原子吸收光谱应用近年研究展望展开基本原理原子吸收光谱分析谱线轮廓发展历史特点灵敏度高精密度好选择性好,方法简便准确度高,分析速度快应用广泛原子吸收光谱分析的基本原理原子吸收光谱的产生原子吸收光谱的谱线轮廓原子吸收光谱的测量原子吸收分光光度计的组成光源原子化器分光器检测系统干扰及其消除方法物理干扰化学干扰电离干扰光谱干扰分子吸收干扰原子吸收光谱应用近年研究展望展开编辑本段基本原理原子吸收光谱原理图每一种元素的原子不仅可以发射一系列特征谱线,也可以吸收与发射线波长相同的特征谱线。
当光源发射的某一特征波长的光通过原子蒸气时,即入射辐射的频率等于原子中的电子由基态跃迁到较高能态(一般情况下都是第一激发态)所需要的能量频率时,原子中的外层电子将选择性地吸收其同种元素所发射的特征谱线,使入射光减弱。
特征谱线因吸收而减弱的程度称吸光度A,与被测元素的含量成正比:式中K为常数;C为试样浓度;I0v为原始光源强度;Iv为吸收后特征谱线的强度。
原子吸收光谱法基本原理

原子吸收光谱法基本原理【任务分析】通过日常生活中的实例,使学生自然地将样品、光、分析联系在一起,理解产生原子吸收光谱的原理。
【任务实施】1、原子吸收分光光度计的基本原理(1)共振线和吸收线任何元素的原子都由原子核和围绕原子核运动的电子组成。
这些电子按其能量的高低分层分布,而具有不同能级,因此一个原子可具有多种能级状态。
在正常状态下,原子处于最低能态(这个能态最稳定)称为基态。
处于基态的原子称基态原子。
基态原子受到外界能量(如热能、光能等)激发时,其外层电子吸收了一定能量而跃迁到不同能态,因此原子可能有不同的激发态。
当电子吸收一定能量从基态跃迁到能量最低的激发态时所产生的吸收谱线,称为共振吸收线,简称共振线。
当电子从第一激发态跃回基态时,则发射出同样频率的光辐射,其对应的谱线称为共振发射线,也简称共振线。
由于不同元素的原子结构不同,其共振线也因此各有其特征。
由于原子的能态从基态到最低激发态的跃迁最容易发生,因此对大多数元素来说,共振线也是元素的最灵敏线。
原子吸收光谱分析法就是利用处于基态的待测原子蒸气对从光源发射的共振发射线的吸收来进行分析的,因此元素的共振线又称分析线。
(2)谱线轮廓与谱线变宽①谱线轮廓从理论上讲,原子吸收光谱应该是线状光谱。
但实际上任何原子发射或吸收的谱线都不是绝对单色的几何线,而是具有一定宽度的谱线。
若在各种频率ν下,测定吸收系数νK, K为纵坐标,ν为横坐标,可得如图5-9所示曲线,称为吸收曲线。
曲线极大值对应的以ν频率ν称为中心频率。
中心频率所对应的吸收系数称为峰值吸收系数。
在峰值吸收系数一半(νK/2)处,吸收曲线呈现的宽度称为吸收曲线半宽度,以频率差ν∆表示。
吸收曲线的∆的数量级约为10-3~10-2 nm(折合成波长)。
吸收曲线的形状就是谱线轮廓。
半宽度ν②谱线变宽原子吸收谱线变宽原因较为复杂,一般由两方面的因素决定。
一方面是由原子本身的性质决定了谱线自然宽度;另一方面是由于外界因素的影响引起的谱线变宽。
原子吸收光谱法

15:35
(2)谱线的热变宽 又称多普勒( Doppler )变宽,它是由于原子在空间 作热运动而引起的。
从物理学原理可知,从一个运动的原子发出的光,如果运动方 向离开观察者,则在观察者看来,其频率要比静止原子所发出 的光频率低,反之,如果原子向着观察者运动,则其频率要比 静止原子发出的光的频率高,这就是多普勒效应。 原子吸收分析法中,气体中的原子是处于无规则热运动中,有 的向着检测器方向运动,使光能增大,波长变短一点。有的背 向检测器运动,光能减弱,波长变长一点,一长一短,使谱线 变宽。这种频率分布和气体中原子的热运动的速度分布相符。
§5-1概述
一、方法简介 原子吸收光谱法 (又名原子吸收分光光度法 ) 是基于测量 试样所产生的原子蒸气对特定谱线的吸收程度,来确定试 样中待测元素的浓度或含量的方法。
原子吸收现象是1859年德国物理学家基尔霍夫发现的,1955年澳 大利亚物理学家A.Walsh提出峰值吸收测量法,从理论上解决了 15:35 定量问题,这一方法才得以应用.
1.14 10 4
从以上计算可以看出,与基态原子数相比,激发态原子数可忽 略不计。
即 N0≈N总
由此我们可以得到结论: (1)基态原子数等于总原子数。
15:35 ( 2)原子吸收法受温度影响不大。
二、吸收轮廓及变宽原因 1.吸收轮廓 从能级跃迁的观点看,吸收线与发射线应是一条严格的几何线, 但实际上是有一定宽度的。我们把吸收线或发射线的强度按频 率的分布叫谱线轮廓。如图5-2所示。 图中最大吸收对应的 频率 ν 0 称为峰值吸收
15:35
§5-2 原子吸收法的基本原理 一、基态原子数与火焰温度的关系 根据热力学原理,在一定温度下达到热力学平衡状态时,基态 和激发态的原子数之比与热力学温度的关系,可以用玻尔茨曼公 式描述: E j E0
原子吸收光谱

原子吸收光谱第一节仪器的安装和调整一、安装场地的要求1.环境实验时应设置在无强磁场和热辐射的地方,不宜建在会产生剧烈振动的设备和车间附近。
实验室内应保持清洁。
温度应保持在1030C,空气相对湿度应小于80%。
仪器应避免日光直射、烟尘、污浊气流及水蒸气的影响,防止腐蚀气体的干扰2.实验台应坚固稳定,台面平整。
为便于操作与维修,实验台四周应留出足够的空间。
3.排气罩原子吸收分光光度计的上方必须准备一个通风罩,使燃烧器产生的燃烧气体能顺利排。
4.电源各个品牌的原子吸收分光光度计以及其各种附件容许的电压范围和功率都有所不同,使用前务必按照说明书的要求进行配置。
一般要求为:采用三相供电系统。
一相供主机、计算机和打印机。
电压为220V10%,最要接到一个大于1kVA的稳压电源。
另一相为石墨炉电源,电流一般为150300A,不必通过稳压电源,可直接供电。
第三相用于空气压缩机、空调和排风设备。
为保证仪器具有良好的稳定性和操作安全。
,仪器的地线最好接到一块直接埋入地下1m深处的金属板上。
5.冷却水最好配备水循环设备,用水质较硬的自来水容易在石墨炉腔体内结水垢。
6.供气供气钢瓶不应放在仪器房间内,要放在离主机最近、安全、通风良好的房间。
二、使用高压气体的注意事项使用高压气体必须仔细,要遵守当地的相关的法规。
1.安装气瓶(1)气瓶安装在室外通风处,不能让阳光直晒。
(2)注意气瓶的温度不能高于40℃,气瓶的2米之内不容许有火源。
(3)气瓶要放置牢固,不能翻倒。
液化气体的气瓶(乙炔,氧化亚氮,等。
)须垂直放置不容许倒下,也不能水平放置。
2.乙炔(1)使用乙炔时,请使用乙炔专用的减压阀,不能直接让乙炔流入管道。
乙炔与铜,银,汞及其合金会产生这些金属的乙炔化物,在震动等情况下引起\分解爆炸\,因此要避免接触这些金属。
(2)乙炔气瓶内有丙酮等溶剂。
如果初级压力低于0.5MPa,就应该换新瓶,避免溶剂流出。
3.空气供应干燥空气。
原子发射光谱分析 (2)

火焰 电弧 火花
直流电弧 交流电弧
电感耦合等离子体,ICP 激光光源
(1)、直流电弧:接触引燃,二次电子发射放电
L
E 220~380V V
5~30A
G
R
A
直流电作为激发能源,电压150 ~380V,电流5~ 30A;
两支石墨电极,试样放置在一支电极(下电极)的凹槽内;
阴极释放的电子不断撞击阳极,产生高温阳极斑(4000 K);
等离子体是一种电离度大于0.1%的电离气体,由电子、 离子、原子和分子所组成,其中电子数目和离子数目基本相等, 整体呈现中性。
通常产生等离子体的气体为氩气。 最常用的等离子体光源是直流等离子焰(DCP)、电感耦 合高频等离子炬(ICP)、容耦微波等离子炬(CMP)和微波诱 导等离子体(MIP)等。
电感耦合等离子体
ms 光谱的多重性(M):
M=2S+1
内量子数(J):光谱支项 J = L+S、•••、 L-S J = S+L、•••、 S-L
(LS )
(S >L)
(二).原子的能级与能级图
1.光谱项:原子发射光谱是由原子或离子的核外电子在高低级间跃迁 而产生的,原子或离子的能级通常用光谱项符号来表示:
n2S+1LJ or n M LJ
第八章 原子发射光谱分析法
•原子光谱法(Atomic spectroscopy methods)是基于激 发(热能、电能或光能)下的气态原子的外层电子的能级 间跃迁过程中吸收或发射的特征谱线而建立的光学分析法。 •研究与光谱线有关的特征物理量:波长和强度 波长—定性 强度—定量 •原子光谱类型 原子发射光谱:发射(吸收热能、激发以后回到基态时) 原子荧光光谱:发射(吸收光辐射、激发以后回到基态时) 原子吸收光谱:吸收(吸收光辐射、基态到激发态时) •分析对象:元素分析(Elemental analysis)