最新高考理科数学大题专项训练:解析几何
高考数学《解析几何》专项训练及答案解析

高考数学《解析几何》专项训练一、单选题1.已知直线l 过点A (a ,0)且斜率为1,若圆224x y +=上恰有3个点到l 的距离为1,则a 的值为( )A .B .±C .2±D .2.已知双曲线2222:1x y C a b-=(0,0)a b >>,过右焦点F 的直线与两条渐近线分别交于A ,B ,且AB BF =uu u r uu u r,则直线AB 的斜率为( ) A .13-或13B .16-或16C .2D .163.已知点P 是圆()()22:3cos sin 1C x y θθ--+-=上任意一点,则点P 到直线1x y +=距离的最大值为( )AB .C 1D 2+4.若过点(4,0)A 的直线l 与曲线22(2)1x y -+=有公共点,则直线l 的斜率的取值范围为( )A .⎡⎣B .(C .33⎡-⎢⎣⎦D .33⎛⎫- ⎪ ⎪⎝⎭5.已知抛物线C :22x py =的焦点为F ,定点()M ,若直线FM 与抛物线C 相交于A ,B 两点(点B 在F ,M 中间),且与抛物线C 的准线交于点N ,若7BN BF =,则AF 的长为( )A .78B .1C .76D6.已知双曲线2222:1x y C a b-=(0,0)a b >>的两个焦点分别为1F ,2F ,以12F F 为直径的圆交双曲线C 于P ,Q ,M ,N 四点,且四边形PQMN 为正方形,则双曲线C 的离心率为( )A .2-BC .2D7.已知抛物线C :22(0)y px p =>的焦点F ,点00(2p M x x ⎛⎫>⎪⎝⎭是抛物线上一点,以M 为圆心的圆与直线2p x =交于A 、B 两点(A 在B 的上方),若5sin 7MFA ∠=,则抛物线C 的方程为( )A .24y x =B .28y x =C .212y x =D .216y x =8.已知离心率为2的椭圆E :22221(0)x y a b a b +=>>的左、右焦点分别为1F ,2F ,过点2F 且斜率为1的直线与椭圆E 在第一象限内的交点为A ,则2F 到直线1F A ,y 轴的距离之比为( )A .5B .35C .2D二、多选题9.已知点A 是直线:0l x y +=上一定点,点P 、Q 是圆221x y +=上的动点,若PAQ ∠的最大值为90o ,则点A 的坐标可以是( )A .(B .()1C .)D .)1,110.已知抛物线2:2C y px =()0p >的焦点为F ,F ,直线l 与抛物线C交于点A 、B 两点(点A 在第一象限),与抛物线的准线交于点D ,若8AF =,则以下结论正确的是( ) A .4p = B .DF FA =uuu r uu rC .2BD BF = D .4BF =三、填空题11.已知圆C 经过(5,1),(1,3)A B 两点,圆心在x 轴上,则C 的方程为__________.12.已知圆()2239x y -+=与直线y x m =+交于A 、B 两点,过A 、B 分别作x 轴的垂线,且与x轴分别交于C 、D 两点,若CD =m =_____.13.已知双曲线()2222:10,0x y C a b a b-=>>的焦距为4,()2,3A 为C 上一点,则C 的渐近线方程为__________.14.已知抛物线()220y px p =>,F 为其焦点,l 为其准线,过F 任作一条直线交抛物线于,A B 两点,1A 、1B 分别为A 、B 在l 上的射影,M 为11A B 的中点,给出下列命题: (1)11A F B F ⊥;(2)AM BM ⊥;(3)1//A F BM ;(4)1A F 与AM 的交点的y 轴上;(5)1AB 与1A B 交于原点. 其中真命题的序号为_________.四、解答题15.已知圆22:(2)1M x y ++=,圆22:(2)49N x y -+=,动圆P 与圆M 外切并且与圆N 内切,圆心P 的轨迹为曲线C . (1)求曲线C 的方程;(2)设不经过点(0,Q 的直线l 与曲线C 相交于A ,B 两点,直线QA 与直线QB 的斜率均存在且斜率之和为-2,证明:直线l 过定点.16.已知椭圆方程为22163x y +=.(1)设椭圆的左右焦点分别为1F 、2F ,点P 在椭圆上运动,求1122PF PF PF PF +⋅u u u r u u u u r的值;(2)设直线l 和圆222x y +=相切,和椭圆交于A 、B 两点,O 为原点,线段OA 、OB 分别和圆222x y +=交于C 、D 两点,设AOB ∆、COD ∆的面积分别为1S 、2S ,求12S S 的取值范围.参考答案1.D 【解析】 【分析】因为圆224x y +=上恰有3个点到l 的距离为1,所以与直线l 平行且距离为1的两条直线,一条与圆相交,一条与圆相切,即圆心到直线l 的距离为1,根据点到直线的距离公式即可求出a 的值. 【详解】直线l 的方程为:y x a =-即0x y a --=.因为圆224x y +=上恰有3个点到l 的距离为1,所以与直线l 平行且距离为1的两条直线,一条与圆相交,一条与圆相切,而圆的半径为2,即圆心到直线l 的距离为1.1=,解得a =故选:D . 【点睛】本题主要考查直线与圆的位置关系的应用,以及点到直线的距离公式的应用,解题关键是将圆上存在3个点到l 的距离为1转化为两条直线与圆的位置关系,意在考查学生的转化能力与数学运算能力,属于中档题. 2.B 【解析】 【分析】根据双曲线的离心率求出渐近线方程,根据AB BF =u u u r u u u r,得到B 为AF 中点,得到B 与A 的坐标关系,代入到渐近线方程中,求出A 点坐标,从而得到AB 的斜率,得到答案. 【详解】因为双曲线2222:1x y C a b-=(0,0)a b >>,又222c e a =22514b a =+=,所以12b a =,所以双曲线渐近线为12y x =± 当点A 在直线12y x =-上,点B 在直线12y x =上时, 设(),A A Ax y (),B B B x y ,由(c,0)F 及B 是AF 中点可知22A B A B x c x y y +⎧=⎪⎪⎨⎪=⎪⎩,分别代入直线方程,得121222A A A A y x y x c ⎧=-⎪⎪⎨+⎪=⋅⎪⎩,解得24A Ac x c y ⎧=-⎪⎪⎨⎪=⎪⎩,所以,24c c A ⎛⎫-⎪⎝⎭, 所以直线AB 的斜率AB AFk k =42cc c =--16=-,由双曲线的对称性得,16k =也成立. 故选:B. 【点睛】本题考查求双曲线渐近线方程,坐标转化法求点的坐标,属于中档题. 3.D 【解析】 【分析】计算出圆心C 到直线10x y +-=距离的最大值,再加上圆C 的半径可得出点P 到直线10x y +-=的距离的最大值. 【详解】圆C 的圆心坐标为()3cos ,sin θθ+,半径为1,点C 到直线10x y +-=的距离为sin 14d πθ⎛⎫===++≤+ ⎪⎝⎭因此,点P 到直线1x y +=距离的最大值为12122++=+. 故选:D. 【点睛】本题考查圆上一点到直线距离的最值问题,当直线与圆相离时,圆心到直线的距离为d ,圆的半径为r ,则圆上一点到直线的距离的最大值为d r +,最小值为d r -,解题时要熟悉这个结论的应用,属于中等题. 4.D 【解析】设直线方程为(4)y k x =-,即40kx y k --=,直线l 与曲线22(2)1x y -+=有公共点,圆心到直线的距离小于等于半径22411k k d k -=≤+,得222141,3k k k ≤+≤,选择C 另外,数形结合画出图形也可以判断C 正确. 5.C 【解析】 【分析】由题意画出图形,求出AB 的斜率,得到AB 的方程,求得p ,可得抛物线方程,联立直线方程与抛物线方程,求解A 的坐标,再由抛物线定义求解AF 的长. 【详解】解:如图,过B 作'BB 垂直于准线,垂足为'B ,则'BF BB =,由7BN BF =,得7'BN BB =,可得1sin 7BNB '∠=, 3cos 7BNB '∴∠=-,tan 43BNB '∠=又()23,0M ,AB ∴的方程为2343y x =-, 取0x =,得12y =,即10,2F ⎛⎫ ⎪⎝⎭,则1p =,∴抛物线方程为22x y =. 联立223432y x x y ⎧=-⎪⎨⎪=⎩,解得23A y =.12172326A AF y ∴=+=+=. 故选:C . 【点睛】本题考查抛物线的简单性质,考查直线与抛物线位置关系的应用,考查计算能力,是中档题. 6.D 【解析】 【分析】设P 、Q 、M 、N 分别为第一、二、三、四象限内的点,根据对称性可得出22,22P c ⎛⎫⎪ ⎪⎝⎭,将点P 的坐标代入双曲线C 的方程,即可求出双曲线C 的离心率. 【详解】设双曲线C 的焦距为()20c c >,设P 、Q 、M 、N 分别为第一、二、三、四象限内的点, 由双曲线的对称性可知,点P 、Q 关于y 轴对称,P 、M 关于原点对称,P 、N 关于x 轴对称,由于四边形PQMN 为正方形,则直线PM 的倾斜角为4π,可得,22P c ⎛⎫ ⎪ ⎪⎝⎭, 将点P 的坐标代入双曲线C 的方程得2222122c c a b -=,即()22222122c c a c a -=-, 设该双曲线的离心率为()1e e >,则()2221221e e e -=-,整理得42420e e -+=,解得22e =,因此,双曲线C 故选:D. 【点睛】本题考查双曲线离心率的计算,解题的关键就是求出双曲线上关键点的坐标,考查计算能力,属于中等题. 7.C 【解析】 【分析】根据抛物线的定义,表示出MF ,再表示出MD ,利用5sin 7MFA ∠=,得到0x 和p 之间的关系,将M 点坐标,代入到抛物线中,从而解出p 的值,得到答案.【详解】抛物线C :22(0)y px p =>, 其焦点,02p F ⎛⎫⎪⎝⎭,准线方程2p x =-,因为点(002p M x x ⎛⎫> ⎪⎝⎭是抛物线上一点, 所以02p MF x =+AB所在直线2p x =, 设MD AB ⊥于D ,则02p MD x =-, 因为5sin 7MFA ∠=,所以57 MD MF=,即5272pxpx-=+整理得03x p=所以()3,66M p将M点代入到抛物线方程,得()26623p p=⨯,0p>解得6p=,所以抛物线方程为212y x=故选:C.【点睛】本题考查抛物线的定义,直线与圆的位置关系,求抛物线的标准方程,属于中档题.8.A【解析】【分析】结合椭圆性质,得到a,b,c的关系,设2AF x=,用x表示112,AF F F,结合余弦定理,用c表示x,结合三角形面积公式,即可。
高考数学平面解析几何专项训练(100题-含答案)

高考数学平面解析几何专项训练(100题-含答案)1.在平面直角坐标系xOy 中,已知点12(1,0),(1,0)F F -,点M 满足12MF MF +=记点M 的轨迹为曲线C .(1)求曲线C 的方程;(2)点T 在直线2x =上,过T 的两条直线分别交C 于,A B 两点和,P Q 两点,且||||||||TA TB TP TQ ⋅=⋅,求直线AB 的斜率与直线PQ 的斜率之和.【答案】(1)2212x y +=(2)0【解析】【分析】(1)根据122MF MF +=,利用椭圆的定义求解;(2)设()2,T m ,直线AB 的参数方程为()2cos ,sin x t y m t θθθ=+⎧⎨=+⎩为参数,与椭圆方程联立,利用参数的几何意义求解.(1)解:因为122MF MF +=,所以点M 的轨迹是以12(1,0),(1,0)F F -为焦点的椭圆,则21,1a c b ===,所以椭圆的方程是2212x y +=;(2)设()2,T m ,直线AB 的参数方程为()2cos ,sin x t y m t θθθ=+⎧⎨=+⎩为参数,与椭圆方程联立()()2222cos 2sin 4cos 4sin 420t m t m θθθθ+++++=,由参数的几何意义知:12,TA t TB t ==,则22122224242cos 2sin 2cos m m t t θθθ++⋅=-=-+-,设直线PQ 的参数方程为:()2cos ,sin x y m λαλλα=+⎧⎨=+⎩为参数,则12,TP TQ λλ==,则22122224242cos 2sin 2cos m m λλααα++⋅=-=-+-,由题意得:222242422cos 2cos m m θα++-=---,即22cos cos θα=,因为αθ≠,所以cos cos θα=-,因为0,0θπαπ<<<<,所以θαπ+=,所以直线AB 的斜率tan θ与直线PQ 的斜率tan α之和为0.2.设n S 是数列{}n a 的前n 项和,13a =,点(),N n S n n n *⎛⎫∈ ⎪⎝⎭在斜率为1的直线上.(1)求数列{}n a 的通项公式;(2)求数列12n n a +⎧⎫⎨⎬⎩⎭的前n 项和n T .【答案】(1)21n a n =+(2)152522n n n T ++=-【解析】【分析】(1)根据斜率公式可得出()222n S n n n =+≥,可知13S =满足()222n S n n n =+≥,可得出22n S n n =+,再利用11,1,2n n n S n a S S n -=⎧=⎨-≥⎩可求得数列{}n a 的通项公式;(2)求得1212n n n c ++=,利用错位相减法可求得n T .(1)解:由13a =,点,n S n n ⎛⎫ ⎪⎝⎭在斜率为1的直线上,知1111n S S n n -=-,即()222n S n n n =+≥.当1n =时,113S a ==也符合上式,故22n S n n =+.当2n ≥时,()()221212121n n n a S S n n n n n -⎡⎤=-=+--+-=+⎣⎦;13a =也满足上式,故21n a n =+.(2)解:112122n n n n a n c +++==.则2341357212222n n n T ++=++++ ,所以,3412135212122222n n n n n T ++-+=++++ ,上式-下式得1232211113111213214212422224212n n n n n n n T -++⎛⎫- ⎪++⎛⎫⎝⎭=++++-=+- ⎝⎭- 252542n n ++=-,因此,152522n n n T ++=-.3.椭圆2222:1(0)x y C a b a b +=>>的离心率为3,且过点(3,1).(1)求椭圆C 的方程;(2)A ,B ,P 三点在椭圆C 上,O 为原点,设直线,OA OB 的斜率分别是12,k k ,且1213k k ⋅=-,若OP OA OB λμ=+,证明:221λμ+=.【答案】(1)221124x y +=(2)证明见解析【解析】【分析】(1)由条件可得c a22911a b +=,222c b a +=,解出即可;(2)设()()()112200,,,,,A x y B x y P x y ,由条件可得012012x x x y y y λμλμ=+⎧⎨=+⎩,12123x x y y =-,然后将01212x x x y y y λμλμ=+⎧⎨=+⎩代入椭圆方程可得2222221122121221124124124x y x y x x y y λμλμ⎛⎫⎛⎫⎛⎫+++++= ⎪ ⎪⎝⎭⎝⎭⎝⎭,然后可得答案.(1)因为ca=22911a b +=,222c b a +=所以可解得2a b ⎧=⎪⎨=⎪⎩所以椭圆C 的方程221124x y +=.(2)设()()()112200,,,,,A x y B x y P x yOP OA OB λμ=+ ,012012x x x y y y λμλμ=+⎧∴⎨=+⎩()()222212120011124124x x y y x y λμλμ+++=∴+= 即2222221122121221124124124x y x y x x y y λμλμ⎛⎫⎛⎫⎛⎫+++++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2222112211124124x y x y +=+= ,,即22121221124x x y y λμλμ⎛⎫+++= ⎪⎝⎭又1212121133y y k k x x ⋅=-∴=- ,即12123x x y y =-,221λμ∴+=4.已知椭圆()2222:10x y C a b a b+=>>,A 、B 分别为椭圆C 的右顶点、上顶点,F 为椭圆C的右焦点,椭圆C 的离心率为12,ABF 的面积为32.(1)求椭圆C 的标准方程;(2)点P 为椭圆C 上的动点(不是顶点),点P 与点M ,N 分别关于原点、y 轴对称,连接MN 与x 轴交于点E ,并延长PE 交椭圆C 于点Q ,则直线MP 的斜率与直线MQ 的斜率之积是否为定值?若是,求出该定值;若不是,请说明理由.【答案】(1)22143x y +=(2)是定值,定值为32-【解析】【分析】(1)根据椭圆的离心率可得到a,b,c 的关系,再结合ABF 的面积可得到()a c b -=,由此解得a,b ,可得答案.(2)设直线方程,并联立椭圆方程,得到根与系数的关系式,结合直线MP 的斜率与直线MQ 的斜率之积,代入化简可得答案.(1)由题意得12c a =,则2a c =,b =.ABF 的面积为()1322a cb -=,则()a c b -将2a c =,b =代入上式,得1c =,则2a =,b =,故椭圆C 的标准方程为22143x y +=.(2)由题意可知直线PQ 的斜率一定存在,设直线PQ 的方程为y kx m =+,设()11,P x y ,()22,Q x y ,则()11,M x y --,()11,N x y -,()1,0E x -,联立方程22143x y y kx m ⎧+=⎪⎨⎪=+⎩,得()2223484120k x kmx m +++-=,∴122834kmx x k +=-+,∴()12122286223434km m y y k x x m k m k k ⎛⎫+=++=-+= ⎪++⎝⎭,∴21212263348434MQmy y k k km x x kk ++===-+-+,112PEPQ y k k k x ===,∵11112222MP PE y yk k k x x ====,∴33242MP MQ k k k k ⋅=-⨯=-∴MP MQ k k ⋅为定值32-.【点睛】本题考查了椭圆方程的求法以及直线和椭圆的位置关系,综合考查了学生分析问题,解决问题以及计算方面的能力和综合素养,解答的关键是理清解决问题的思路,并能正确地进行计算.5.已知圆M 过点()1,0,且与直线1x =-相切.(1)求圆心M 的轨迹C 的方程;(2)过点()2,0P 作直线l 交轨迹C 于A 、B 两点,点A 关于x 轴的对称点为A '.问A B '是否经过定点,若经过定点,求出定点坐标;若不经过,请说明理由.【答案】(1)24y x =(2)()2,0-【解析】【分析】(1)根据抛物线的定义计算可得;(2)设直线l 的方程为2x ty =+,()11,A x y 、()22,B x y ,则()11,A x y '-,联立直线与抛物线方程,消元、列出韦达定理,再表示出直线A B '的方程,将12y y +、12y y 代入整理即可得解;(1)解:由题意知动点M 的轨迹C 是以(0,0)O 为顶点,()1,0为焦点,1x =-为准线的抛物线,所以动圆圆心M 的轨迹方程为:24y x =;(2)解:设直线l 的方程为2x ty =+,()11,A x y 、()22,B x y 不妨令21y y >,则()11,A x y '-,联立直线l 与抛物线方程得224x ty y x =+⎧⎨=⎩消去x 得2480y ty --=,则124y y t +=、128y y =-,则直线A B '的方程为()()211121y y y y x x x x +--=--,即()()21212121x x y x y y y x y x -+=+-,则()()()()2121212122ty ty y ty y y y x y ty -++=+-+,()()()2121211222t y y y y y x ty y y y -=+--+,即()()21211222y y y x ty y y y =+--+,所以()42824y tx t t ⋅=-⨯--⨯,即()2y t x =+,令200x y +=⎧⎨=⎩解得20x y =-⎧⎨=⎩,所以直线A B '恒过定点()2,0-;6.已知1F ,2F 是椭圆C :()222104x yb b+=>的左、右焦点,过1F 的直线与C 交于A ,B两点,且22::3:4:5AF AB BF =.(1)求C 的离心率;(2)设M ,N 分别为C 的左、右顶点,点P 在C 上(P 不与M ,N 重合),证明:MPN MAN ∠≤∠.【答案】(2)见解析【解析】【分析】(1)由题意设223,4,5AF m AB m BF m ===,由勾股定理的逆定理可得290BAF ∠=︒,再根据椭圆的定义可求出m 的值,从而可求出12,AF AF 的值,则可得点A 是椭圆短轴的一个端点,进而可求出离心率,(2)由椭圆的对称性,不妨设00(,)P x y,0y ∈,,PMN PNM αβ=∠=∠,则可得0000tan ,tan 22y y x x αβ==+-,然后求出tan tan αβ+,tan tan αβ,再利用正切的两角和公式可得02tan()y αβ+=,由正切函数可求出αβ+的最小值,从而可求出()MPN παβ∠=-+的最大值,进而可证得结论(1)由()222104x y b b+=>,得24a =,得2a =,由题意设223,4,5AF m AB m BF m ===,则22222AF AB BF +=,所以290BAF ∠=︒,因为223451248AF AB BF m m m m a ++=++===,所以23m =,所以22AF =,所以122422AF a AF =-=-=,所以12AF F △为等腰直角三角形,所以点A 是椭圆短轴的一个端点,所以b c =,因为222224b c b a +===,得b c =所以椭圆的离心率为2c e a ==(2)由(1)可得椭圆方程为22142x y +=,则(2,0),(2,0)M N -,因为点A是椭圆短轴的一个端点,所以不妨设A ,由椭圆的对称性,不妨设00(,)P x y,0y ∈,,PMN PNM αβ=∠=∠,则0000tan ,tan 22y y x x αβ==+-,2200142x y +=,所以2200002200001tan tan 22422y y y y x x x y αβ⋅=⋅===+--,00002200000442tan tan 2242y y y y x x x y y αβ+=+===+--,所以0tan tan 4tan()1tan tan y αβαβαβ++==-,所以当0y =tan()αβ+取得最小值由(1)可知290BAF ∠=︒,所以()0,2παβ⎛⎫+∈ ⎪⎝⎭,所以当tan()αβ+取得最小值时,αβ+取得最小值,即点P 与点A 重合时,αβ+取得最小值,此时()MPN παβ∠=-+取得最大,所以MPN MAN∠≤∠7.已知椭圆()2222:10x y C a b a b+=>>的长轴长为,且过点)P(1)求C 的方程:(2)设直线()0y kx m m =+>交y 轴于点M ,交C 于不同两点A ,B ,点N 与M 关于原点对称,BO AN ⊥,Q 为垂足.问:是否存在定点M ,使得·NQ NA 为定值?【答案】(1)221102x y +=(2)存在【解析】【分析】(1)利用待定系数法求方程;(2)联立方程组,结合韦达定理可得直线恒过定点,进而求解.(1)依题意知2a =a =所以C 的方程可化为222110x y b+=,将点)P代入C 得251110b +=,解得22b =,所以椭圆方程为221102x y +=;(2)设点()11,A x y ,()22,B x y ,联立221102x y y kx m ⎧+=⎪⎨⎪=+⎩得,()22215105100k x kmx m +++-=,()()()222104155100km k m ∆=-+->,解得22210m k <+,1221015km x x k -+=+,212251015m x x k -=+,注意到Q ,N ,A 三点共线,NQ NA NQ NA ⋅=⋅,又()NQ NA NB BQ NA NB NA ⋅=+⋅=⋅()()()()1212121222x x y m y m x x kx m kx m =+++=+++()()()()222222212122215102012441515k m k mkx xmk x x mm kk+-=++++=-+++()222221510510415k m m m k--+-=++当()2215105510m m --=-,解得1m =±,因为0m >,所以1m =,此时1NQ NA ⋅=-,满足0∆>,故存在定点()0,1M ,使得1NQ NA ⋅=-等于定值1.【点睛】解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.8.已知椭圆C :22221(0)x y a b a b +=>>,4a M b ⎛⎫ ⎪⎝⎭为焦点是22y x =的抛物线上一点,H 为直线y a =-上任一点,A ,B 分别为椭圆C 的上,下顶点,且A ,B ,H 三点的连线可以构成三角形.(1)求椭圆C 的方程;(2)直线HA ,HB 与椭圆C 的另一交点分别交于点D ,E ,求证:直线DE 过定点.【答案】(1)2214x y +=(2)证明见解析【解析】【分析】(1)由椭圆的离心率求出,a c 的关系式,再由,4a M b ⎛⎫⎪⎝⎭为抛物线22=y x 上的点,结合222a b c =+,即可求出椭圆C 的方程.(2)设点()(),20H m m -≠,求得HA ,HB 的方程,与椭圆联立求得,D E 坐标,写出直线DE 的方程,即可求出DE 恒过的定点.(1)由题意知,222224c aa b a b c⎧=⎪⎪⎪=⨯⎨⎪=+⎪⎪⎩,解得21a b c ⎧=⎪=⎨⎪=⎩,∴椭圆C 的方程为2214x y +=.(2)设点()(),20H m m -≠,易知()0,1A ,()0,1B -,∴直线HA 的方程为31y x m =-+,直线HB 的方程为11y x m=--.联立223114y x m x y ⎧=-+⎪⎪⎨⎪+=⎪⎩,得22362410x x m m ⎛⎫+-= ⎪⎝⎭,∴22436D m x m =+,223636D m y m -=+,同理可得284E m x m -=+,2244E m y m -=+,∴直线DE 的斜率为21216m k m-=,∴直线DE 的方程为222241284164m m m y x m m m --⎛⎫-=+ ⎪++⎝⎭,即2121162m y x m -=-,∴直线DE 过定点10,2⎛⎫- ⎪⎝⎭.9.已知点(1,2)M -在抛物线2:2(0)E y px p =>上.(1)求抛物线E 的方程;(2)直线12,l l 都过点12(2,0),,l l 的斜率之积为1-,且12,l l 分别与抛物线E 相交于点A ,C 和点B ,D ,设M 是AC 的中点,N 是BD 的中点,求证:直线MN 恒过定点.【答案】(1)24y x =(2)证明见解析【解析】【分析】(1)将点坐标代入求解抛物线方程;(2)设出直线方程,表达出,M N 的坐标,求出直线MN 的斜率,利用直线斜率之积为-1,求出直线MN 恒过的定点,从而证明出结论.(1)∵点(1,2)M -在抛物线2:2E y px =上,∴2(2)2p -=,∴解得:2p =,∴抛物线E 的方程为:24y x =.(2)由12,l l 分别与E 相交于点A ,C 和点B ,D ,且由条件知:两直线的斜率存在且不为零.∴设1122:2,:2l x m y l x m y =+=+由214,2y x x m y ⎧=⎨=+⎩得:21480y m y --=设()()1122,,,A x y C x y ,则1214y y m +=,∴12M y m =,又2122M x m =+,即()21122,2M m m +同理可得:()22222,2N m m +∴()()212212212212222MN m m k m m m m -==++-+,∴()211121:222MN y m x m m m -=--+即MN :()1212121y x m m m m =--⎡⎤⎣⎦+,∵12,l l 的斜率之积为1-,∴12111m m ⋅=-,即121m m =-,∴121:(4)MN y x m m =-+,即直线MN 过定点(4,0).10.已知抛物线()20x ay a =>,过点0,2a M ⎛⎫ ⎪⎝⎭作两条互相垂直的直线12,l l ,设12,l l 分别与抛物线相交于,A B 及,C D 两点,当A 点的横坐标为2时,抛物线在点A 处的切线斜率为1.(1)求抛物线的方程;(2)设线段,AB CD 的中点分别为,E F ,O 为坐标原点,求证直线EF 过定点.【答案】(1)24x y =;(2)证明见解析.【解析】【分析】(1)结合导数知识,利用切线斜率构造方程可得a ,由此可得抛物线方程;(2)将直线AB 方程代入抛物线方程中,结合韦达定理可确定中点坐标,同理可得CD中点坐标,利用直线方程两点式可得直线EF 方程,化简可知其过定点()0,4.(1)由2x ay =得:21y ax =,则2y x a '=,241x y a=∴==',解得:4a =,∴抛物线方程为:24x y =;(2)由题意知:直线12,l l 的斜率都存在且都不为零,由(1)知:()0,2M ,设直线:2AB y kx =+,代入24x y =得:2480x kx --=,设()11,A x y ,()22,B x y ,则124x x k +=,128x x =-,()21212444y y k x x k ∴+=++=+,AB ∴中点()22,22E k k +;12l l ⊥ ,1:2CD y x k ∴=-+,同理可得:CD 中点222,2F k k ⎛⎫-+ ⎪⎝⎭;EF ∴的方程为:()()222222222222k k y k x k k k ⎛⎫+-+ ⎪⎝⎭-+=-+,化简整理得:14y k x k ⎛⎫=-+ ⎪⎝⎭,则当0x =时,4y =,∴直线EF 恒过定点()0,4.【点睛】思路点睛:本题考查直线与抛物线综合应用中的直线过定点问题的求解,求解此类问题的基本思路如下:①假设直线方程,与抛物线方程联立,整理为关于x 或y 的一元二次方程的形式;②利用0∆>求得变量的取值范围,得到韦达定理的形式;③利用韦达定理表示出已知中的等量关系,代入韦达定理可整理得到变量间的关系,从而化简直线方程;④根据直线过定点的求解方法可求得结果.11.在直角坐标系xOy 中,曲线:C 221x y +=经过伸缩变换x xy '='=⎧⎪⎨⎪⎩后的曲线为1C ,以x 轴正半轴为级轴,建立极坐标系.曲线2C的极坐标方程为sin 4πρθ⎛⎫+= ⎪⎝⎭(1)写出1C 的普通方程和2C 的直角坐标方程;(2)若1C 上的一点P 到2C 的距离的最大,求距离的最大值及P 点的坐标.【答案】(1)1C :2213y x +=,2C :40x y +-=;(2)max d =,1322P ⎛⎫-- ⎪⎝⎭,.【解析】【分析】()1直接利用转换关系,把参数方程,直角坐标方程和极坐标方程之间进行转换;()2利用三角函数关系式的变换和点到直线的距离公式的应用求出结果.(1)解:由伸缩变换x xy '='=⎧⎪⎨⎪⎩得,代入曲线:C 221x y +=得:1C 的普通方程为2213y x +=,由极坐标方程sin 4πρθ⎛⎫+= ⎪⎝⎭sin y ρθ=,cos x ρθ=可得:2C 的直角坐标方程为40x y +-=.(2)解:直线2C 的普通方程为40x y +-=,设1C上的为点()cos P θθ,到2C 的距离为d =当且仅当()223k k Z πθπ=-+∈时,取得max d =,又因为1cos 23y 2x θθ⎧==-⎪⎪⎨⎪==-⎪⎩,即点P 的坐标为1322⎛⎫-- ⎪⎝⎭.12.已知椭圆C :2222+x y a b=1(a >b >0)经过点A (0,1),且右焦点为F (1,0).(1)求C 的标准方程;(2)过点(0,12)的直线l 与椭圆C 交于两个不同的点P .Q ,直线AP 与x 轴交于点M ,直线AQ 与x 轴交于点N .证明:以MN 为直径的圆过y 轴上的定点.【答案】(1)2212x y +=(2)证明见解析【解析】【分析】(1)由已知得,c b ,再求得a ,即得椭圆方程;(2)由题意直线l 斜率存在,可设直线1:2l y kx =+,设()()1122,,,P x y Q x y ,直线方程代入椭圆方程应用韦达定理得1212,x x x x +,由直线,AP AQ 方程求出,M N 坐标,求出以MN 为直径的圆的方程,然后代入1212,x x x x +求得圆方程的常数项,从而可得y 的定点坐标.(1)由题意可得1,1c b ==从而22a =.所以椭圆的标准方程为2212x y +=.(2)证明:由题意直线l 斜率存在,可设直线1:2l y kx =+,设()()1122,,,P x y Q x y ,将直线l 代入椭圆方程得()2242430k x kx ++-=,所以12122243,,4242k x x x x k k --+==++,直线AP 的方程为1111y y x x -=+,直线AQ 的方程为2211y y x x -=+.可得1212,0,,011x x M N y y ⎛⎫⎛⎫--⎪ ⎪--⎝⎭⎝⎭,以MN 为直径的圆方程为,21212011x x x x y y y ⎛⎫⎛⎫+++= ⎪⎪--⎝⎭⎝⎭,即()()221212121201111x x x x x y x y y y y ⎛⎫++++= ⎪----⎝⎭.①因为()()()1212122121212124111142122x x x x x x y y k x x k x x kx kx ==---++⎛⎫⎛⎫-- ⎪⎪⎝⎭⎝⎭22212612842k k k -==--+++.所以在①中令0x =,得26y =,即以MN 为直径的圆过y轴上的定点(0,,13.已知抛物线C :()220y px p =>,过点()2,0R 作x 轴的垂线交抛物线C 于G ,H 两点,且OG OH ⊥(O 为坐标原点).(1)求p ;(2)过()2,1Q 任意作一条不与x 轴垂直的直线交抛物线C 于A ,B 两点,直线AR 交抛物线C 于不同于点A 的另一点M ,直线BR 交抛物线C 于不同于点B 的另一点N .求证:直线MN 过定点.【答案】(1)1p =(2)证明见解析【解析】【分析】(1)由题意知2RG OR ==,不妨设()2,2G ,代入抛物线方程中可求出p 的值,(2)设211,2y A y ⎛⎫ ⎪⎝⎭,222,2y B y ⎛⎫ ⎪⎝⎭,233,2y M y ⎛⎫ ⎪⎝⎭,244,2y N y ⎛⎫⎪⎝⎭,则可表示出直线AB ,AM ,BN 的方程,再由直线AB 过()2,1Q 及直线AM ,BN 过()2,0R 可得()121240y y y y -++=,13244y y y y ==-,再表示出直线MN 的方程,结合前面的式子化简可得结论(1)由题意知,2RG OR ==.不妨设()2,2G ,代入抛物线C 的方程,得44p =解得1p =.(2)由(1)知,抛物线C 的方程为22y x =.设211,2y A y ⎛⎫ ⎪⎝⎭,222,2y B y ⎛⎫ ⎪⎝⎭,233,2y M y ⎛⎫ ⎪⎝⎭,244,2y N y ⎛⎫ ⎪⎝⎭,则直线AB 的斜率为12221212222AB y y k y y y y -==+-.所以直线AB 的方程为2111222y y x y y y ⎛⎫=-+ ⎪+⎝⎭,即()121220x y y y y y -++=.同理直线AM ,BN ,MN 的方程分别为()131320x y y y y y -++=,()242420x y y y y y -++=,()343420x y y y y y -++=,由直线AB 过()2,1Q 及直线AM ,BN 过()2,0R 可得()121240y y y y -++=,13244y y y y ==-.又直线MN 的方程为()343420x y y y y y -++=,即1212441620x y y y y y ⎛⎫+++= ⎪⎝⎭.所以直线MN 的方程为()1212280y y x y y y +++=.把()121240y y y y -++=代入()1212280y y x y y y +++=,得()12122480y y x y y y +++=,()122)880(y y x y y +++=,所以由20x y +=,880y +=可得2x =,1y =-.所以直线MN 过定点()2,1-.14.已知抛物线C :y 2=4x 的焦点为F ,过点F 的直线l 与抛物线C 交于P ,A 两点,且PF λFA = .(1)若λ=4,求直线l 的方程;(2)设点E (a ,0),直线PE 与抛物线C 的另一个交点为B ,且PE EB μ=.若λ=4μ,求a的值.【答案】(1)4340x y --=或4340x y +-=(2)4【解析】【分析】(1)由4PF FA =得014y y =-,设直线l :1x my =+,与抛物线C :24y x =联立,结合韦达定理,即得解;(2)由PF λFA = 得01y y λ=-,结合014y y =-,可得204y λ=,再由PE EB μ= 得02y y μ=-,设直线PB :x ny a =+,与抛物线C :24y x =联立由韦达定理可得024y y a =-,故204y aμ=,又4λμ=,代入运算即得解(1)易知焦点F (1,0),设P (0x ,0y ),A (1x ,1y )由4PF FA =得014y y =-设直线l :1x my =+,与抛物线C :24y x =联立得2440y my --=,其中216160m ∆=+>,所以014y y =-由①②可得0141y y =⎧⎨=-⎩或0141y y =-⎧⎨=⎩又014y y m +=,所以34m =或34m =-所以直线l 的方程为314x y =+或314x y =-+.化简得4340x y --=或4340x y +-=(2)由PF λFA =得01y y λ=-又014y y =-可得204y λ=设点B (2x ,2y ),由PE EB μ= 得02y y μ=-设直线PB :x ny a =+,与抛物线C :24y x =联立得2440y ny a --=.所以216()0n a ∆=+>,024y y a=-故204y aμ=又4λμ=,所以2200444y y a=⋅,考虑到点P 异于原点,所以00y ≠,解得4a =此时2216()16(4)0n a n ∆=+=+>所以a 的值为415.平面直角坐标系xOy 中,双曲线22:136x y C -=的右焦点为F ,T 为直线:1l x =上一点,过F 作TF 的垂线分别交C 的左、右支于P 、Q 两点,交l 于点A .(1)证明:直线OT 平分线段PQ ;(2)若3PA QF =,求2TF 的值.【答案】(1)证明见解析(2)12+【解析】【分析】(1)设直线PQ 的方程为3x ty =+,设点()11,P x y 、()22,Q x y ,将直线PQ 的方程与双曲线的方程联立,列出韦达定理,求出线段PQ 的中点N 的坐标,计算得出ON OT k k =,证明出O 、T 、N 三点共线,即可证得结论成立;(2)由3PA QF =得3PA QF = ,可得出1238x x -+=,变形可得出()()12212184384x x x x x x ⎧++=⎪⎨+-=⎪⎩,两式相乘结合韦达定理可求得2t 的值,再利用两点间的距离公式可求得2TF 的值.(1)解:依题意,3F x ==,即()3,0F ,设()1,2T t ,则直线PQ 的方程为3x ty =+,由22326x ty x y =+⎧⎨-=⎩得()222112120t y ty -++=,设()11,P x y 、()22,Q x y ,则()222210Δ14448210t t t ⎧-≠⎪⎨=-->⎪⎩,故212t ≠,由韦达定理可得1221221t y y t +=--,1221221y y t =-,所以()121226621x x t y y t +=++=--,又直线PQ 分别交C 的左、右支于P 、Q 两点,所以()()()22121212122963339021t x x ty ty t y y t y y t +=++=+++=-<-,故212t >所以PQ 中点为2236,2121t N t t ⎛⎫-- ⎪--⎝⎭,所以2ON OT k t k ==,故O 、T 、N 三点共线,即直线OT 平分线段PQ .(2)解:依题意,由3PA QF =得3PA QF =,则()12133x x -=-,即1238x x -+=,所以()12284x x x ++=,①,()121384x x x +-=,②①×②得()()21212123166416x x x x x x +++-=,所以()22222366963166416212121t t t t+⨯-⨯-=-⨯---,解得28374t +=,或28374t -=(舍去),此时,224412t TF =+=+【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为()11,x y 、()22,x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算∆;(3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x (或12y y +、12y y )的形式;(5)代入韦达定理求解.16.已知抛物线2:4E y x =,F 为其焦点,O 为原点,A ,B 是E 上位于x 轴两侧的不同两点,且5OA OB ⋅=.(1)求证:直线AB 恒过一定点;(2)在x 轴上求一定点C ,使F 到直线AC 和BC 的距离相等;(3)在(2)的条件下,当F 为ABC 的内心时,求ABC 重心的横坐标.【答案】(1)证明见解析(2)见解析(3)173【解析】【分析】(1)设直线AB 的方程为x my n =+,211(,)4y A y ,222(,)4y B y ,联立24x my n y x =+⎧⎨=⎩,消x 得:2440y my n --=,124y y m +=,124y y n =-,结合向量的数量积,转化求解直线AB 的方程,推出结果.(2)在x 轴上求一定点C ,使F 到直线AC 和BC 的距离相等即CF 平分ACB ∠,即直线AC 与直线BC 关于x 轴对称,根据斜率和为零,从而可得结果;(3)设11(,)A x y ,22(,)B x y ,直线AB 与x 轴交于N ,由题意可得32AC CF AN NF ==,坐标化,结合点在抛物线上可得点的坐标,从而得到结果.(1)设直线AB 的方程为x my n =+,211(,)4y A y ,222(,)4y B y ,联立24x my n y x=+⎧⎨=⎩,消x 得:2440y my n --=,则124y y m +=,124y y n =-,由5OA OB ⋅= 得:21212()516y y y y +=,所以:1220y y =-或124y y =(舍去),即4205n n -=-⇒=,所以直线AB 的方程为5x my =+,所以直线AB 过定点(5,0)P .(2)由(1)知,直线AB 过定点(5,0)P 可设直线AB 的方程为5x my =+,此时124y y m +=,1220y y =-,设x 轴上定点C 坐标为(,0)t ,要使F 到直线AC 和BC 的距离相等,则CF 平分ACB ∠,即直线AC 与直线BC 关于x 轴对称,故0AC BC k k +=,即21210y yx t x t+=--,∴()()21120y x t y x t -+-=,∴()()1212250my y t y y +-+=,∴()40450m m t -+-=对任意m 恒成立,∴510t -=,5t =-,故在x 轴上有一定点C (5,0)-,使F 到直线AC 和BC 的距离相等;(3)设11(,)A x y ,22(,)B x y ,直线AB 与x 轴交于N ,∵F 为ABC 的内心,∴32AC CF AN NF ==,32=,即2211126250x y x +-+=,又2114y x =,∴21122250x x -+=,同理22222250x x -+=,∴12,x x 是方程222250x x -+=的两个根,∴1222x x +=,∴三角形重心的横坐标为1251733x x +-=.17.已知椭圆C 的两个顶点分别为()2,0A -,()2,0B ,焦点在x (1)求椭圆C 的方程;(2)若直线()()10y k x k =-≠与x 轴交于点P ,与椭圆C 交于M ,N 两点,线段MN 的垂直平分线与x 轴交于Q ,求MN PQ的取值范围.【答案】(1)2214x y +=;(2)(4,【解析】【分析】(1)由顶点和离心率直接求,,a b c 即可;(2)先联立直线和椭圆方程,借助弦长公式表示出弦长MN ,再求出垂直平分线和Q 坐标,表示出PQ ,最后分离常数求取值范围即可.(1)由题意知2222,a c a a b c =⎧⎪⎪=⎨⎪=+⎪⎩可得1,2a b ==,故椭圆C 的方程为2214x y +=.(2)由()22114y k x x y ⎧=-⎪⎨+=⎪⎩,可得()2222418440k x k x k +-+-=,设()()1122,,,M x y N x y ,则22121222844,4141k k x x x x k k -+=⋅=++,()121222241k y y k x x k -+=+-=+,线段MN 的中点为2224,4141k k k k ⎛⎫- ⎪++⎝⎭,线段MN 的垂直平分线方程为22214()4141k k y x k k k --=--++,令0y =,得22341kx k =+,所以223,041k Q k ⎛⎫ ⎪+⎝⎭,又(1,0)P ,则22223114141k k PQ k k +=-=++,又12MN x x =-=所以2241141MN k k PQk +==++220,1331k k ≠∴<-<+ ,故MN PQ的取值范围为(4,.【点睛】(1)关键在于建立,,a b c 的关系式求解;(2)关键在于联立直线和椭圆方程,依次求出垂直平分线和弦长MN 、PQ ,转化成关于k 的代数式求范围即可.18.定义平面曲线的法线如下:经过平面曲线C 上一点M ,且与曲线C 在点M 处的切线垂直的直线称为曲线C 在点M 处的法线.设点()()000,0M x y y >为抛物线2:2(0)C y px p =>上一点.(1)求抛物线C 在点M 处的切线的方程(结果不含0x );(2)求抛物线C 在点M 处的法线被抛物线C 截得的弦长||AB 的最小值,并求此时点M 的坐标.【答案】(1)002y py x y =+(2);()p 【解析】【分析】(1)先化简求导确定切线斜率,再按照在点处的切线方程进行求解;(2)先联立法线和抛物线方程,借助弦长公式表示弦长,最后换元构造函数,求导确定最小值.(1)因为点()()000,0M x y y >在抛物线上方,所以由2:2(0)C y px p =>得y =py y'=,所以在点M 处的切线斜率0y y pk y y ='==,所求切线方程为000()py y x x y -=-,又202y x p=,故切线方程为2000()2y p y y x y p -=-,即002y p y x y =+.(2)点M 处的法线方程为2000()2y y y y x p p-=--,即220022y p p x y y p +=-+.联立抛物线2:2(0)C y px p =>,可得()2232000220y y p y y p y +-+=,可知0∆>,设()()1122,,,A x y B x y ,()2221212002,2p y y y y y p y +=-⋅=-+,所以322212202()y p AB y y y +⋅-=.令200t y =>,则3222()(0)t p AB t t +=>,令3222()()(0)t p f t t t +=>,1312222222223()()()(2)2()2t p t t p t p t p f t t t +⋅-++⋅-'=⨯=,所以()f t 在()20,2p 单调递减,在()22,p +∞单调递增,所以()2min ()2f t f p ==,即min AB =,此时点M的坐标为()p .【点睛】(1)关键在于化简出0y >时的抛物线方程,借助求导确定切线斜率;(2)写出法线方程,联立抛物线求弦长是通用解法,关键在于换元构造函数之后,借助导数求出最小值.19.已知点()11,0F -,()21,0F ,M 为圆22:4O x y +=上的动点,延长1F M 至N ,使得1MN MF =,1F N 的垂直平分线与2F N 交于点P ,记P 的轨迹为Γ.(1)求Γ的方程;(2)过2F 的直线l 与Γ交于,A B 两点,纵坐标不为0的点E 在直线4x =上,线段OE 分别与线段AB ,Γ交于,C D 两点,且2OD OC OE =⋅,证明:AC BC =.【答案】(1)22143x y +=;(2)证明见解析.【解析】【分析】(1)由线段垂直平分线和三角形中位线性质可证得12124PF PF F F +=>,可知P 点轨迹为椭圆,由此可得轨迹方程;(2)由已知可知24D C x x =;当l 斜率不存在时显然不成立;当l 斜率存在时,设l 方程,将其与椭圆方程联立,结合韦达定理可得AB 中点横坐标;设():0OE y k x k ''=≠,与直线l 和椭圆方程联立可求得34k k'=-,由此可整理得到C x ,与AB 中点横坐标相同,由此可得结论.(1)连接1,MO PF,PM 是1NF 的垂直平分线,1PF PN ∴=,1222PF PF PN PF NF ∴+=+=;,M O 分别为112,NF F F 中点,224NF MO ∴==,12124PF PF F F ∴+=>,P ∴点轨迹是以12,F F 为焦点,长轴长为4的椭圆,即2a =,1c =,23b ∴=,P ∴点轨迹Γ的方程为:22143x y +=;(2)2OD OC OE =⋅ ,即OD OE OC OD =,D EC Dx x x x ∴=,由题意知:0C x >,4E x =,24D C x x ∴=,①当直线l 斜率不存在时,即:1l x =,此时1C x =,2D x <,此时24D C x x =不成立;②当直线l 斜率存在时,设():1l y k x =-,()11,A x y ,()22,B x y ,由()221431x y y k x ⎧+=⎪⎨⎪=-⎩得:()22223484120k x k x k +-+-=,2122212283441234k x x k k x x k ⎧+=⎪⎪+∴⎨-⎪=⎪+⎩,AB ∴中点的横坐标为21224234x x k k +=+;设直线OE 的方程为:()0y k x k ''=≠,由()1y k x y k x ='=⎧⎨-⎩得:kx k k ='-,即C k x k k ='-;由22143y k xx y =⎧='⎪⎨+⎪⎩得:221234x k ='+,即221234D x k ='+;由24D C x x =得:212434k k k k =''+-,整理可得:34k k '=-,2122434324C x x kk x k k k+∴===++,C ∴为线段AB 的中点,AC BC ∴=.【点睛】关键点点睛:本题考查定义法求解轨迹方程、直线与椭圆综合应用问题;本题证明C 为AB 中点的关键是能够通过已知等式得到,C D 两点横坐标之间满足的等量关系,进而表示出AB 中点横坐标和C 点横坐标,证明二者相等即可.20.已知椭圆()2222:10x y E a b a b +=>>的左、右焦点分别为1F ,2F,离心率2e =,P为椭圆上一动点,12PF F △面积的最大值为2.(1)求椭圆E 的方程;(2)若C ,D 分别是椭圆E 长轴的左、右端点,动点M 满足MD CD ⊥,连结CM 交椭圆于点N ,O 为坐标原点.证明:OM ON ⋅为定值;(3)平面内到两定点距离之比是常数()1λλ≠的点的轨迹是圆.椭圆E 的短轴上端点为A ,点Q 在圆228x y +=上,求22QA QP PF +-的最小值.【答案】(1)22142x y +=;(2)见解析;4.【解析】【分析】(1)结合离心率和12PF F △面积的最大值列出关于,,a b c 的方程,解方程即可;(2)设直线CM 方程,写出点M 坐标,联立椭圆方程,求点N 坐标,通过向量数量积计算即可;(3)设点R 坐标,借助点Q 在圆228x y +=上,将2QA 转化成RA ,再借助椭圆定义将2PF 转化成14PF -,最后通过1,,R P F 三点共线求出最小值.(1)当P 为短轴端点时,12PF F △的面积最大,2bc =,222222,c a bc a b c ⎧=⎪⎪⎪=⎨⎪=+⎪⎪⎩解得2,a b c ===,故椭圆E 的方程为22142x y +=.(2)由(1)知,()2,0,(2,0)C D -,设直线():2CM y k x =+,11(,)N x y ,,(2,4)MD CD M k ⊥∴ ,联立221,42(2)x y y k x ⎧+=⎪⎨⎪=+⎩整理得()22222218840k x k x k +++-=,由21284221k x k --=+得2122421k x k -=+,1124(2)21ky k x k =+=+,222244(,)2121k k N k k -∴++,2222442442121k kOM ON k k k -⋅=⨯⨯++ ,故OM ON ⋅为定值4.(3)由题意(A ,设()(0,),,R m Q x y ,使2QA QR =,()()22222,4QR x y m QAx y +-==+,整理得222282833m m x y y --++=,又点Q 在圆228x y +=上,20,883m =∴⎨-⎪=⎪⎩解得m =,(0,R 由椭圆定义得124PF PF =-,2112(4)4QA QP PF QR QP PF QR QP PF +-=+--∴=++-,当1,,R P F三点共线时,(10,,(R F 22QA QP PF +-∴4.【点睛】(1)关键在于建立,,a b c 的方程;(2)关键在于设出直线方程,联立得出点N 坐标;(3)关键在于利用题目中给出的圆的定义将2QA 转化成RA ,再结合椭圆定义,将问题简化成共线问题.21.已知椭圆C :22221(0)x y a b a b+=>>的长轴长为4,点31,2⎛⎫ ⎪⎝⎭在椭圆C 上.(1)求椭圆C 的标准方程;(2)已知O 为坐标原点,P 为椭圆C 上的一个动点,过点E0)作OP 的平行线交椭圆C 于M ,N 两点,问:是否存在实数t (t >0),使得||,||,||EM t OP EN 构成等比数列?若存在,求出t 的值;若不存在,请说明理由.【答案】(1)22143x y +=(2)存在,12t =【解析】【分析】(1)由题意可得2a =,再将点31,2⎛⎫ ⎪⎝⎭代入椭圆方程中可求出2b ,从而可求得椭圆的方程,(2)①当OP 的斜率存在时,设直线OP 的方程为y kx =,将直线方程代入椭圆方程中可求出22,x y ,则可得2OP ,设直线MN的方程为()()1122(,,,y k x M x y N x y =,将直线方程代入椭圆方程消去y ,利用根与系数的关系,再利用两点间的距离公式表示出||,||EM EN ,再计算||||EM EN 与2OP 比较可求出t 的值,②当OP 的斜率不存在时,可得||OP =MN的方程为x ||||EM EN 的值,进而可求出t (1)由题意可得24a =,所以2a =.因为点(1,32)在椭圆C 上,所以221914a b +=,解得23b =.所以椭圆C 的标准方程为22143x y +=.(2)①当OP 的斜率存在时,设直线OP 的方程为y kx =.联立方程,得22143y kxx y =⎧⎪⎨+=⎪⎩解得221234x k =+,2221234k y k =+.解得()2222221211212||343434k k OP k k k+=+=+++,设直线MN的方程为()()1122(,,,y k x M x y N x y =-.联立方程,得(22143y k x x y ⎧=-⎪⎨⎪+=⎩化简,得()22223412120k x x k +=+-=.因为点E0)在椭圆内部,所0∆>,221213221212,3434k x x x x k k-+=⋅=++,所以1||EM x =-.同理可得2||EN x =所以()(())22121212||||113EM EN kx xk x x x x ⋅=+=+⋅++()()22222223112122413343434k k kk k k k +-=+⋅-+=+++,假设存在实数(0)t t >),使得||,||,||EM t OP EN 构成等比数列,则22||||||EM EN t OP ⋅=.所以()()22222311213434k k tk k ++=⋅++.解得214t=.四为1t >,所以12t =,②当OP 的斜率不存在时,||OP =MN 的方程为x =x =22143x y +=,得234y =.所以||||2EM EN ==,当||,||,||EM t OP EN 构成等比数列时,22||||||EM EN t OP ⋅=,即2334t =.因为0t >,所以12t =.综上所述,存在实数12t =,使得||,||,||EM t OP EN 构成等比数列.22.在平面直角坐标系xOy 中,曲线C 的参数方程为x y αααα⎧=-⎪⎨=+⎪⎩(α为参数),以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.直线l 的极坐标方程为()cos sin 3m m ρθθ++=l 与曲线C 交于A ,B 两点.(1)求曲线C 的普通方程和直线l 的直角坐标方程;(2)过A ,B 分别作l 的垂线与x 轴交于C ,D 两点,若AB =CD .【答案】(1)2212x y +=,30mx y m ++=;(2)4.【解析】【分析】(1)消参法求曲线C 的普通方程,公式法求直线l 的直角坐标方程.(2)由(1)所得普通方程,结合圆中弦长、半径、弦心距的几何关系求圆心到直线l 的距离,再利用点线距离公式列方程求参数m ,即可得直线的倾斜角大小,由AB 、CD 的关系求CD 即可.(1)由题意,消去参数α,得曲线C 的普通方程为2212x y +=.将cos x ρθ=,sin y ρθ=代入()cos sin 3m m ρθθ++得直线l的直角坐标方程为30mx y m ++=.(2)设圆心到直线l:30mx y m ++=的距离为d,则AB =3d =.3=,解得3m =-.所以直线l的方程为60x +=,则直线l 的倾斜角为30θ=︒.所以4cos30AB CD ==︒.23.在平面直角坐标系xOy中,已知直线340x y ++=与圆1C :222x y r +=相切,另外,椭圆2C :()222210x y a b a b +=>>的离心率为32,过左焦点1F 作x 轴的垂线交椭圆于C ,D 两点.且1CD =.(1)求圆1C 的方程与椭圆2C 的方程;(2)经过圆1C 上一点P 作椭圆2C 的两条切线,切点分别记为A ,B ,直线PA ,PB 分别与圆1C 相交于M ,N 两点(异于点P ),求△OAB 的面积的取值范围.【答案】(1)225x y +=,2214x y +=;(2)4,15⎡⎤⎢⎥⎣⎦.【解析】【分析】(1)由直线与圆的相切关系及点线距离公式求参数r ,即可得圆1C 的方程,根据椭圆离心率、22b CD a=及椭圆参数关系求出a 、b 、c ,即可得椭圆2C 的方程.(2)设()11,A x y 、()22,B x y 、()00,P x y ,讨论直线PA ,PB 斜率存在性,则直线PA 为()111y k x x y =-+、直线PB 为()222y k x x y =-+,联立椭圆方程并结合所得一元二次方程0∆=求1k 、2k ,进而得直线PA 为1114x x y y +=、直线PB 为2214x xy y +=,结合P 在直线PA ,PB 上有AB 为0014x xy y +=,联立椭圆方程,应用韦达定理、弦长公式、点线距离公式,结合三角形面积公式得0OAB S = .(1)由题设,圆1C :222x y r +=的圆心为()0,0,因为直线340x y ++=与圆1C相切,则r ==所以圆1C 的方程为225x y +=,因为椭圆2Cc e a ==c =,由221b CD a==,则22a b =,又222a b c =+,所以22324a a a =+,解得2a =,1b =,所以椭圆2C 的方程为2214x y +=.综上,圆1C 为225x y +=,椭圆2C 为2214x y +=.(2)设点()11,A x y ,()22,B x y ,()00,P x y .当直线PA ,PB 斜率存在时,设直线PA ,PB 的斜率分别为1k ,2k ,则直线PA 为()111y k x x y =-+,直线PB 为()222y k x x y =-+.由()11122440y k x x y x y ⎧=-+⎨+-=⎩,消去y 得:()()()22211111111148440k x k y k x x y k x ++-+--=.所以()()()2222111111116441444k y k x k y k x ⎡⎤∆=--+--⎣⎦.令0∆=,整理得()2221111114210x k x y k y -++-=,则11111122111444x y x y x k x y y --=-==-,所以直线PA 为()11114x y x x y y -=-+,化简得:22111144x x y y y x +=+,即1114x x y y +=.经验证,当直线PA 斜率不存在时,直线PA 为2x =或2x =-也满足1114x xy y +=.同理,可得直线PB 为2214x xy y +=.因为()00,P x y 在直线PA ,PB 上,所以101014x x y y +=,202014x xy y +=.综上,直线AB 为0014x xy y +=.由00221444x xy y x y ⎧+=⎪⎨⎪+=⎩,消去y 得:()22200035816160y x x x y +-+-=.所以01220835x x x y +=+,21220161635y x x y -=+.所以12AB x =-=)20203135y y +==+.又O 到直线AB的距离d ==所以)20200311235OABy S y +=⋅+ t =,[]1,4t ∈,则24444OAB t S t t t∆==++,又[]44,5t t+∈,所以△OAB 的面积的取值范围为4,15⎡⎤⎢⎥⎣⎦.【点睛】关键点点睛:第二问,设点及直线PA ,PB 的方程,联立椭圆结合相切关系求参数关系,进而确定PA ,PB 的方程,由P 在直线PA ,PB 上求直线AB 的方程,再联立椭圆并应用韦达定理、弦长公式、点线距离公式求三角形面积的范围.24.已知点A ,B 是抛物线x 2=2py (p 为常数且p >0)上不同于坐标原点O 的两个点,且0OA OB ⋅= .(1)求证:直线AB 过定点;(2)过点A 、B 分别作抛物线的切线,两切线相交于点M ,记 OMA 、 OAB 、 OMB 的面积分别为S 1、S 2、S 3;是否存在定值λ使得22s =λS 1S 3?若存在,求出λ值;若不存在,请说明理由.【答案】(1)证明见解析(2)存在,4λ=【解析】【分析】(1)设11(,)A x y ,22(,)B x y ,设直线AB 方程为y kx t =+,代入抛物线方程中,消去y ,。
2023高考数学解析几何应用练习题及答案

2023高考数学解析几何应用练习题及答案解析几何是高中数学中重要的一部分,也是高考数学中难度较大的题型之一。
2023年高考数学中解析几何应用的题目考察内容涵盖了直线、平面、坐标系等知识点。
下面是几道2023高考数学解析几何应用练习题及答案,希望对广大考生的备考有所帮助。
题目一:已知直线AB过点(2,3)和点(5,7),直线CD过点(-1,4)且垂直于直线AB。
求直线CD的方程。
解析:首先,我们计算直线AB的斜率。
根据斜率的定义,斜率k等于两个点的纵坐标之差与横坐标之差的比值:k = (7 - 3) / (5 - 2) = 4/3由于直线CD垂直于直线AB,所以两条直线的斜率乘积为-1。
即:k * k' = -1代入已知的斜率,得到:4/3 * k' = -1解方程可得斜率k' = -3/4。
由点斜式方程的定义可知,y - y1 = k' * ( x - x1 )将已知点(-1,4)代入,得到直线CD的方程为:y - 4 = -3/4 * ( x + 1 )简化方程,得到 CD 的方程为:3x + 4y - 16 = 0所以答案为:3x + 4y - 16 = 0。
题目二:已知平面P1过点A(1,2,3),并且与向量n1(2,1,4)垂直,平面P2过点B(-1,3,2),并且与向量n2(3,1,-1)垂直。
求平面P1和平面P2的交线方程。
解析:由于平面P1过点A且与向量n1垂直,所以平面P1的方程为:n1 · (X - A) = 0其中,·表示点乘运算。
代入已知的点A(1,2,3)和向量n1(2,1,4),得到:2(x - 1) + 1(y - 2) + 4(z - 3) = 0简化方程,得到平面P1的方程:2x + y + 4z - 18 = 0同理,平面P2的方程为:3x + y - z + 2 = 0要求平面P1和平面P2的交线方程,即联立平面P1和平面P2的方程,解得交点即为交线方程:联立方程可得:2x + y + 4z - 18 = 03x + y - z + 2 = 0解这个线性方程组,可得交点为(x, y, z) = (2, 6, 3)。
2023年全国卷解析几何解答题解法荟萃

2023年全国卷解析几何解答题解法荟萃上两点,0FM FN ⋅=,求2102y px −+==可得,,因为0FM FN ⋅=,所以)()(★方法2:焦半径表示面积设直线()11:,,MN x my n M x y =+,()22,N x y ,则1||2MFN S FM FN ∆=‖ ()()121112x x =++()()121112my n my n =++++()2212121(1)(1)2m y y m n y y n ⎡⎤=+++++⎣⎦2(1).n =− ,因为0FM FN ⋅=,所以)()(★方法2.斜率转化与齐次化.如图,设线段AB 垂直于x 轴,D 为AB 中点,P 为线外任意一点,则有:PD PB PA k k k 2=+.设直线PQ 的方程为(2)1m x ny ++=.因为直线PQ 过点(2,3)−.,代入得13n =.因为点,P Q 在椭圆22:9436C x y +=上,变形得229[(2)2]436x y +−+=,整理可得:229(2)36(2)40x x y +−++=.齐次化得229(2)36(2)[(2)]40, x x m x ny y +−++++=化简得22436(2)(936)(2)0.y ny x m x −++−+=等式两边同除以2(2)x +,构造斜率式得 24369360,22y y n m x x ⎛⎫−⋅+−= ⎪++⎝⎭把13n =代入得 24129360,22y y m x x ⎛⎫−⋅+−= ⎪++⎝⎭由根与系数的关系得32AQ AP AE k k k +==,其中E 为椭圆上顶点,故所以线段MN 的中点是定点()0,3. ★方法3.同构双割线设直线AP 方程为(2)y k x =+,联立22194(2)y x y k x ⎧+=⎪⎨⎪=+⎩得:()2222491616360k x k x k +++−=,当0∆>时,由22163649A P k x x k −⋅=+及2A x =−得2281849P k x k −+=+ 所以22281836,4949k k P k k ⎛⎫−+ ⎪++⎝⎭,设直线PQ 为:(2)3y m x =++,代入点P 化简 得:2123636270k k m −++=同理,设直线AQ 的斜率为k ',同理得到2123636270k k m −'++=k 和k '是二次方程2123636270x x m −++=的两个根,所以3k k +'=.直线,AP AQ 的方程分别为(2),(2)y k x y k x =+='+,当0x =时,2,2M N y k y k ==',即有32M Ny y k k +=+'=,综上,MN 的中点为定点(0,3).则1,0AB BC k k a b ⋅=−+<<同理令0BC k b c n =+=>,且设矩形周长为C ,由对称性不妨设1依题意可设21,4A a a ⎛⎫+ ⎪⎝⎭,易知直线的斜率分别为k 和1k −,由对称性,不妨设则联立2214()y x y k x a a ⎧=+⎪⎪⎨⎪=−++⎪⎩直线1MA 的方程为(112y y x x =+与直线2NA 的方程可得:22x x +−★方法4.消y 留x 之后的非对称处理记过点(4,0)−的直线为l .当l 与x 轴垂直时,易知点(4,(4,M N −−−,(1,P −−.当直线l 与x 轴不垂直时,设点(1M x ,)()()12200,,,,y N x y P x y ,直线:(4)l y k x =+.将(4)y k x =+代人221416x y −=,得)()2222(4816160k x k x k −−−+=.依题意,得()221212221618,. 44k k x x x x k k −++==−−设1212()x x x x λμ=++,即()22221618. 44k k k kλμ−++=−−即12x x =()12542x x −+−①. 直线1MA 的方程为()1122y y x x =++,直线2NA 的方程为()2222yy x x =−−,联立直线1MA 与直线2NA 的方程可得:()()()()()()12120021212422,2242y x x x x x y x x x −+−−==++++即01212012122248. 2428x x x x x x x x x x −−+−=++++将①代入式得0022x x −=+()1212338338x x x x −−+=−−+,即1x =−,据此可得点P 在定直线=1x −上运动.已知B A ,分别为椭圆1:222=+y ax E )1(>a 的左右顶点,G 为E 的上顶点,8=⋅→→GB AG ,点P 为直线6=x 上的动点,PA 与E 的另一个交点为C ,PB 与E 的另一个交点为D . (1)求E 的方程;(2)证明:直线CD 过定点.解析:(1)E 的方程为1922=+y x . (2)假设),(),,(),,6(2211y x D y x C t P .则由P C A ,,及P D B ,,三点共线可得:33;392211−=+=x y t x y t 将上面两式相除,再平方可得:91)3()3(21222221=+−⋅x x y y ....① 由于),(),,(2211y x D y x C 均在椭圆E 上,故满足:91;9122222121x y x y −=−=...② 将②代入①可得:91)3)(3()3)(3(2121=++−−x x x x ,整理可得:0364)(152121=−−+x x x x ...③假设直线CD 的方程为m kx y +=代入椭圆方程1922=+y x 可得: 09918)19(222=−+++m kmx x k将1999,19182221221+−=+−=+k m x x k km x x 代入③中,可得:023=+m k ,于是,直线CD 的方程为k kx y 23−=,故其过定点)0,23(.解法2.设()06,P y ,则直线AP 的方程为:()()00363y y x −=+−−,即:()039y y x =+联立直线AP 的方程与椭圆方程可得:()2201939x y y y x ⎧+=⎪⎪⎨⎪=+⎪⎩,整理得:()2222000969810y x y x y +++−=,解得:3x =−或20203279y x y −+=+,将20203279y x y −+=+代入直线()039y y x =+可得:02069y y y =+,所以点C 的坐标为20022003276,99y y y y ⎛⎫−+ ⎪++⎝⎭. 同理可得:点D 的坐标为2002200332,11y y y y ⎛⎫−− ⎪++⎝⎭∴直线CD 的方程为:0022********2000022006291233327331191y y y y y y y x y y y y y y ⎛⎫−− ⎪++⎛⎫⎛⎫−−⎝⎭−=−⎪ ⎪−+−++⎝⎭⎝⎭−++, 整理可得:()()()2220000002224200000832338331116963y y y y y y y x x y y y y y +⎛⎫⎛⎫−−+=−=− ⎪ ⎪+++−−⎝⎭⎝⎭整理得:()()0002220004243323333y y y y x x y y y ⎛⎫=+=− ⎪−−−⎝⎭,故直线CD 过定点3,02⎛⎫ ⎪⎝⎭解法3.不禁思考,为何此题使用三点共线就可成功地实现了设而不求,整体代入的思想呢?关键在于对椭圆方程的理解,即所谓的第三定义:))(()1(222222x a x a ab a x b y +−=−=这样的话,在遇到与椭圆左右顶点有关的三点共线结构时,我们就可以通过斜率关系再利用点在椭圆上将))(()1(222222x a x a ab a x b y +−=−=代入斜率式,从而构造出含21x x +与21x x 的方程,整体代入完成求解.而上面这个问题有着明显的极点极线背景:从直线t x =上任意一点P 向椭圆)0(12222>>=+b a by a x 的左右顶点引两条割线21,PA PA 与椭圆交于N M ,两点,则直线MN 恒过定点)0,(2ta .2024届九省联考解析几何的深度探究的交点,求GMN面积的最小值.,由直线AB与直线1、x m=S=GMNS=MNG例2.过椭圆22221x y a b+=的长轴上任意一点(,0)()S s a s a −<<作两条互相垂直的弦,AB CD ,若弦,AB CD 的中点分别为,M N ,那么直线MN 恒过定点222,0a s a b ⎛⎫⎪+⎝⎭.证明:如图,设AB 的直线方程为x my s =+,则CD 的直线方程为1x y s m=−+ 联立方程组22221x my s x y ab =+⎧⎪⎨+=⎪⎩,整理得()()2222222220m b a y b msy b s a +++−=则()()22222222221212222222240,,b s a msb a b m b a s y y y y m b a m b a−−∆=+−>+=⋅=++ 由中点坐标公式得22222222,a s msb M m b a m b a ⎛⎫− ⎪++⎝⎭ 将m 用1m −代换得到222222222,a sm msb N m a b m a b ⎛⎫ ⎪++⎝⎭所以MN 的直线方程为()()2222222222221a b m b sm a s y x b m a b m a a m +⎛⎫+=− ⎪++−⎝⎭令0y =,得222a sx a b =+.所以直线MN 恒过定点222,0a s a b ⎛⎫ ⎪+⎝⎭. 二.对点训练的斜率均存在,求FMN面积的最大值解析:(1)由题意得1c =,2c a =(2)证明:①当直线AB ,CD 有一条斜率不存在时,直线2,03P ⎛⎫⎪⎝⎭. 12FMNFPMFPNSSS=+=⨯S=FMN[2,∞+S取得最大值FMN。
新高考解析几何专项训练

新高考解析几何专项训练解析几何是高中数学中的一个重要分支,它以坐标系为基础,研究几何图形的代数性质和方程。
在新高考中,解析几何的题目通常涉及直线、圆、椭圆、双曲线、抛物线等基本几何图形,以及它们的位置关系和性质。
本专项训练旨在帮助学生深入理解解析几何的基本概念,掌握解题技巧,提高解题能力。
一、直线与圆1. 直线的方程:直线的点斜式、斜截式、一般式和参数式方程。
2. 圆的方程:圆的标准方程和一般方程。
3. 直线与圆的位置关系:直线与圆的相切、相交问题,包括切点弦、弦长和圆心距的计算。
二、椭圆1. 椭圆的定义:椭圆的几何定义和标准方程。
2. 椭圆的性质:焦点、长短轴、离心率、准线等。
3. 椭圆与直线的位置关系:直线与椭圆的交点、切点、弦长和最值问题。
三、双曲线1. 双曲线的定义:双曲线的几何定义和标准方程。
2. 双曲线的性质:焦点、实轴、虚轴、离心率等。
3. 双曲线与直线的位置关系:直线与双曲线的交点、渐近线、切点和最值问题。
四、抛物线1. 抛物线的定义:抛物线的几何定义和标准方程。
2. 抛物线的性质:焦点、准线、顶点等。
3. 抛物线与直线的位置关系:直线与抛物线的交点、切点、弦长和最值问题。
五、圆锥曲线的综合应用1. 圆锥曲线的统一性质:圆锥曲线的共性,如焦点、离心率等。
2. 圆锥曲线的变换:通过坐标变换将不同的圆锥曲线联系起来。
3. 圆锥曲线的综合问题:涉及多个圆锥曲线的交点、切点和最值问题。
六、解析几何的解题策略1. 图形与方程结合:利用图形的直观性和方程的精确性,相互验证解题思路。
2. 代数运算技巧:熟练掌握代数运算,包括因式分解、配方法、韦达定理等。
3. 几何直观:培养几何直观,通过图形的对称性、位置关系等进行快速判断。
七、专项训练题目1. 基础题:直线与圆的方程,直线与圆的位置关系。
2. 中等题:椭圆、双曲线、抛物线的性质和位置关系。
3. 提高题:圆锥曲线的综合问题,涉及多个圆锥曲线的交点、切点和最值问题。
高考数学解析几何题目训练卷

高考数学解析几何题目训练卷解析几何是高考数学中的重点和难点之一,它综合了代数和几何的知识,对同学们的思维能力和运算能力都有较高的要求。
为了帮助大家更好地应对高考中的解析几何题目,我们精心准备了这份训练卷。
一、选择题1、已知直线\(l\)经过点\((-2,0)\),且与直线\(y = 2x 1\)垂直,则直线\(l\)的方程为()A \(x + 2y + 2 = 0\)B \(x + 2y 2 = 0\)C \(2x + y + 4 = 0\)D \(2x + y 4 = 0\)解析:因为直线\(y = 2x 1\)的斜率为\(2\),所以与其垂直的直线的斜率为\(\frac{1}{2}\)。
又因为直线\(l\)经过点\((-2,0)\),所以直线\(l\)的方程为\(y 0 =\frac{1}{2}(x + 2)\),即\(x + 2y + 2 = 0\)。
故选 A。
2、若抛物线\(y^2 =2px\)的焦点坐标为\((1,0)\),则\(p\)的值为()A \(1\)B \(2\)C \(4\)D \(8\)解析:因为抛物线\(y^2 = 2px\)的焦点坐标为\((\frac{p}{2},0)\),已知焦点坐标为\((1,0)\),所以\(\frac{p}{2} =1\),解得\(p = 2\)。
故选 B。
3、双曲线\(\frac{x^2}{a^2} \frac{y^2}{b^2} = 1\)的离心率为\(\sqrt{3}\),则其渐近线方程为()A \(y =\pm \sqrt{2}x\)B \(y =\pm \frac{\sqrt{2}}{2}x\)C \(y =\pm \sqrt{3}x\)D \(y =\pm \frac{\sqrt{3}}{3}x\)解析:双曲线\(\frac{x^2}{a^2} \frac{y^2}{b^2} = 1\)的离心率\(e =\frac{c}{a}\),且\(c^2 = a^2 + b^2\)。
2023年高考优质解析几何大题练习【含答案】

新高考优质解析几何大题练习一.解答题(共30小题)1.(2022秋•浙江月考)如图,已知抛物线C:y2=2px(p>0)的焦点F,且经过点A(2p,m)(m>0),|AF|=5.(1)求p和m的值;(2)点M,N在C上,且AM⊥AN.过点A作AD⊥MN,D为垂足,证明:存在定点Q,使得|DQ|为定值.2.(2022秋•浙江月考)已知点A(2,1)在双曲线C:﹣=1(b>0)上.(Ⅰ)求双曲线C的渐近线方程;(Ⅱ)设直线l:y=k(x﹣1)与双曲线C交于不同的两点E,F,直线AE,AF分别交直线x=3于点M,N.当△AMN的面积为时,求k的值.3.(2022秋•玄武区校级月考)设A,B为双曲线C:﹣=1(a>b>0)的左、右顶点,直线l过右焦点F且与双曲线C的右支交于M,N两点,当直线l垂直于x轴时,△AMN为等腰直角三角形.(1)求双曲线C的离心率;(2)已知AB=4,若直线AM,AN分别交直线x=1于P,Q两点,若D(t,0)为x 轴上一动点,当直线l的倾斜角变化时,若∠PDQ为锐角,求t的取值范围.4.(2022•南京模拟)已知点F1,F2分别为双曲线C:的左、右焦点,点A为双曲线C的右顶点,已知,且点F2到一条渐近线的距离为2.(1)求双曲线C的方程;(2)若直线l:y=mx+n与双曲线C交于两点M,N,直线OM,ON的斜率分别记为k OM,k ON,且,求证:直线l过定点,并求出定点坐标.5.(2022春•开福区校级月考)已知双曲线C的渐近线方程为,且过点P(3,).(1)求C的方程;(2)设Q(1,0),直线x=t(t∈R)不经过P点且与C相交于A,B两点,若直线BQ 与C交于另一点D,过Q点作QN⊥AD于N,证明:直线AD过定点M,且点N在以QM为直径的圆上.6.(2022秋•皇姑区校级月考)已知椭圆Γ的方程为,圆C与x轴相切于点T(2,0),与y轴正半轴相交于A,B两点,且|AB|=3,如图.(1)求圆C的方程;(2)如图,过点(0,1)的直线l与椭圆Γ相交于P,Q两点,求证:射线AO平分∠PAQ.7.(2022秋•开福区校级月考)已知双曲线经过点(2,﹣3),两条渐近线的夹角为60°,直线l交双曲线于A,B两点.(1)求双曲线C的方程;(2)若动直线l经过双曲线的右焦点F2,是否存在x轴上的定点M(m,0),使得以线段AB为直径的圆恒过M点?若存在,求实数m的值;若不存在,请说明理由.8.(2022秋•锦州期中)已知双曲线C:=1(a>0,b>0)与双曲线=1有相同的焦点;且C的一条渐近线与直线x﹣2y+2=0平行.(1)求双曲线C的方程;(2)若直线l与双曲线C右支相切(切点不为右顶点),且l分别交双曲线C的两条渐近线于A、B两点,O为坐标原点,试判断△AOB的面积是否为定值,若是,请求出;若不是,请说明理由.9.(2022秋•湖北期中)在△ABC中,已知A(﹣1,0),B(﹣2,0),且sin B=sin A.(1)求顶点C的轨迹E的方程;(2)曲线E与y轴交于P,Q两点,T是直线y=2上一点,连TP,TQ分别与E交于M,N两点(异于P,Q两点),试探究直线MN是否过定点,若是求定点,若不是说明理由.10.(2022秋•南阳期中)已知动点P到两个定点的距离之和为4,记点P的轨迹为Γ.(1)求Γ的方程;(2)若点Q(0,﹣3),过点T(0,1)的直线l与Γ交于M,N两点,求△QMN面积的最大值.11.(2022•临澧县校级开学)已知椭圆C的方程为+=1(a>0),斜率为k(k≠0)的直线与C交于M,N两点.(1)若G为MN的中点,O为坐标原点,且直线OG的斜率为﹣,求椭圆C的方程;(2)在(1)的条件下,若P是椭圆C的左顶点,直线PM的斜率为k PM,直线PN的斜率为k PN,k PM•k PN=﹣,F是椭圆的左焦点,要使F在以MN为直径的圆内,求k 的取值范围.12.(2022秋•辽宁期中)如图所示:已知椭圆C:的长轴长为4,离心率.A是椭圆的右顶点,直线l过点M(﹣1,0)交椭圆于C,D两点,记△ACD的面积为S.(1)求椭圆C的标准方程;(2)求S的最大值.13.(2022•烟台三模)已知椭圆C:+=1(a>b>0)的离心率为,(,1)为C与抛物线x2=2py的交点.(1)求椭圆C的方程;(2)设椭圆的上顶点为A,斜率为k的直线过抛物线的焦点F且与椭圆交于M,N两点,试探究直线AM,AN的斜率之积是否为定值?若是,求出此定值;若不是,说明理由.14.(2022•雨花区校级模拟)如图,已知椭圆,其左、右焦点分别为F1,F2,过右焦点F2且垂直于x轴的直线交椭圆于第一象限的点P,且.(1)求椭圆C的方程;(2)过点且斜率为k的动直线l交椭圆于A,B两点,在y轴上是否存在定点M,使以AB为直径的圆恒过这个点?若存在,求出点M的坐标;若不存在,说明理由.15.(2022•鞍山模拟)已知O为坐标原点,F1、F2为椭圆C的左、右焦点,|F1F2|=2,P 为椭圆C的上顶点,以P为圆心且过F1、F2的圆与直线相切.(1)求椭圆C的标准方程;(2)若过点F2作直线l,交椭圆C于M,N两点(l与x轴不重合),在x轴上是否存在一点T,使得直线TM与TN的斜率之积为定值?若存在,请求出所有满足条件的点T的坐标;若不存在,请说明理由.16.(2022•洛阳模拟)已知抛物线C:y2=2px(p>0),A是C上位于第一象限内的动点,它到点B(3,0)距离的最小值为.直线AB与C交于另一点D,线段AD的垂直平分线交C于E,F两点.(1)求p的值;(2)若中,证明A,D,E,F四点共圆,并求该圆的方程.17.(2022•德州二模)已知△ABC的两个顶点A,B的坐标分别为(﹣,0),(,0),圆E是△ABC的内切圆,在边AC,BC,AB上的切点分别为P,Q,R,,动点C的轨迹为曲线G.(1)求曲线G的方程;(2)设直线l与曲线G交于M、N两点,点D在曲线G上,O是坐标原点,判断四边形OMDN的面积是否为定值?若为定值,求出该定值;如果不是,请说明理由.18.(2022•襄城区校级四模)已知抛物线C:x2=2py(p>0)的焦点为F,抛物线上一点到F点的距离为.(1)求抛物线的方程及点A坐标;(2)设斜率为k的直线l过点B(2,0)且与抛物线交于不同的两点M、N,若且,求斜率k的取值范围.19.(2021秋•淄博期末)已知O为坐标原点,A(x1,y1),B(x2,y2)是直线l与抛物线C:y2=4x的两个交点,满足.试求y1y2的值,并证明直线l恒过定点.20.(2021秋•十堰期末)已知抛物线,,点M(x0,y0)在C2上,且不与坐标原点O重合,过点M作C1的两条切线,切点分别为A,B.记直线MA,MB,MO的斜率分别为k1,k2,k3.(1)当x0=1时,求k1+k2的值;(2)当点M在C2上运动时,求的取值范围.21.(2021秋•武汉期末)已知双曲线的左、右焦点分别为,动点M满足|MF2|﹣|MF1|=2.(1)求动点M的轨迹方程;(2)若动点M在双曲线C上,设双曲线C的左支上有两个不同的点P,Q,点N(4,0),且∠ONP=∠ONQ,直线NQ与双曲线C交于另一点B.证明:动直线PB经过定点.22.(2021秋•菏泽期末)已知Rt△ABC中,A(﹣1,0),B(1,0),∠CAB=90°,,曲线E过C点,动点P在E上运动,且保持|PA|+|PB|的值不变.(1)求曲线E的方程;(2)过点(1,0)的直线l与曲线E交于M,N两点,则在x轴上是否存在定点Q.使得的值为定值?若存在,求出点Q的坐标和该定值;若不存在,请说明理由.23.(2021秋•南京月考)已知双曲线E:﹣=1(a>0,b>0)过点D(3,1),且该双曲线的虚轴端点与两顶点A1,A2的张角为120°.(1)求双曲线E的方程;(2)过点B(0,4)的直线l与双曲线E左支相交于点M,N,直线DM,DN与y轴相交于P,Q两点,求|BP|+|BQ|的取值范围.24.(2018秋•福田区校级期末)已知椭圆C的中心是坐标原点O,它的短轴长2,焦点F(c,0),点A(﹣c,0),且=2.(1)求椭圆C的标准方程;(2)是否存在过点A的直线与椭圆C相交于P、Q两点,且以线段PQ为直径的圆过坐标原点O,若存在,求出直线PQ的方程;不存在,说明理由.25.(2021•辽宁模拟)已知抛物线C1:y2=2px(p>0),椭圆C2:=1(a>b>0),抛物线与椭圆有共同的焦点F(4,0),且椭圆C2的离心率e=.(Ⅰ)求椭圆与抛物线的方程;(Ⅱ)直线l1的方程为x=﹣4,若不经过点P(4,8)的直线l2与抛物线交于A,B(A,B分别在x轴两侧),与直线l1交于点M,与椭圆交于点C,D,设PA,PM,PB的斜率分别为k1,k2,k3,若k1+k3=2k2.(ⅰ)证明:直线l2恒过定点;(ⅱ)点D关于x轴的对称点为D′,试问△CFD′的面积是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.26.(2021•平邑县校级开学)已知椭圆(a>b>0)过点(,0),其焦距的平方是长轴长的平方与短轴长的平方的等差中项.(1)求椭圆的标准方程:(2)直线l过点M(1,0),与椭圆分别交于点A,B,与y轴交于点N,各点均不重合且满足,,求λ+μ.27.(2022秋•青羊区校级月考)已知椭圆=1(a>b>0)的左右焦点分别为F1,F2,抛物线y2=4x与椭圆有相同的焦点,点P为抛物线与椭圆在第一象限的交点,且|PF1|=.(1)求椭圆的方程;(2)过F作两条斜率不为0且互相垂直的直线分别交椭圆于A,B和C,D,线段AB 的中点为M,线段CD的中点为N,证明:直线MN过定点,并求出该定点的坐标.28.(2022秋•思明区校级期中)在平面直角坐标系xOy中,△ABC的周长为12,AB,AC 边的中点分别为F1(﹣1,0)和F2(1,0),点M为BC边的中点.(1)求点M的轨迹方程;(2)设点M的轨迹为曲线Γ,直线MF1与曲线Γ的另一个交点为N,线段MF2的中点为E,记,求S的最大值.29.(2022秋•迎泽区校级月考)已知抛物线C:x2=2py(p>0)与圆O:x2+y2=12相交于A,B两点,且点A的横坐标为是抛物线C的焦点,过焦点的直线l与抛物线C 相交于不同的两点M,N.(1)求抛物线C的方程.(2)过点M,N作抛物线C的切线l1,l2,P(x0,y0)是l1,l2的交点,求证:点P在定直线上.参考公式:(cx2)′=2cx,其中c为常数.30.(2022秋•香坊区校级月考)动点M与定点A(1,0)的距离和M到定直线x=9的距离之比是常数.(1)求动点M的轨迹G的方程;(2)设O为原点,点B(﹣3,0),过点A的直线l与M的轨迹G交于P、Q两点,且直线l与x轴不重合,直线BP、BQ分别与y轴交于R、S两点,求证:|OR|⋅|OS|为定值.新高考优质解析几何大题练习参考答案与试题解析一.解答题(共30小题)1.(2022秋•浙江月考)如图,已知抛物线C:y2=2px(p>0)的焦点F,且经过点A(2p,m)(m>0),|AF|=5.(1)求p和m的值;(2)点M,N在C上,且AM⊥AN.过点A作AD⊥MN,D为垂足,证明:存在定点Q,使得|DQ|为定值.【答案】(1)p=2,m=4;(2)证明见解析.【解答】解:(1)由抛物线定义知:,则p=2,又A(4,m)(m>0)在抛物线上,则m2=4×4,可得m=4.(2)证明:设M(x1,y1),N(x2,y2),由(1)知:A(4,4),所以,,又AM⊥AN,所以(x1﹣4)(x2﹣4)+(y1﹣4)(y2﹣4)=x1x2﹣4(x1+x2)+y1y2﹣4(y1+y2)+32=0,令直线MN:x=ky+n,联立C:y2=4x,整理得y2﹣4ky﹣4n=0,且Δ=16k2+16n>0,所以y1+y2=4k,y1y2=﹣4n,则,,综上,n2﹣16k2﹣12n﹣16k+32=(n﹣4k﹣8)(n+4k﹣4)=0,当n=8+4k时,MN:x=k(y+4)+8过定点B(8,﹣4);当n=4﹣4k时,MN:x=k(y﹣4)+4过定点(4,4),即A,M,N共线,不合题意;所以直线MN过定点B(8,﹣4),又AD⊥MN,故D在以AB为直径的圆上,而AB中点为Q(6,0),即为定值,得证.2.(2022秋•浙江月考)已知点A(2,1)在双曲线C:﹣=1(b>0)上.(Ⅰ)求双曲线C的渐近线方程;(Ⅱ)设直线l:y=k(x﹣1)与双曲线C交于不同的两点E,F,直线AE,AF分别交直线x=3于点M,N.当△AMN的面积为时,求k的值.【答案】(Ⅰ)y=±x.(Ⅱ)2.【解答】解:(Ⅰ)因为点A(2,1)在双曲线上,所以﹣=1,b2=1,即双曲线C的方程为﹣y2=1,所以渐近线方程为y=±x,即y=±x.(Ⅱ)设直线AE的方程为y=k1(x﹣2)+1,直线AF的方程为y=k2(x﹣2)+1,联立,得(1﹣2k1)2x2+(8k12﹣4k1)x﹣8k12+8k1﹣4=0,所以x A+x E=﹣=,所以x E=﹣2=,y E=,所以E(,),同理可得F(,),联立,得M(3,k1+1),同理N(3,k2+1),所以|MN|=|k1﹣k2|,=|MN|×2=|k1﹣k2|=,所以S△AMN不妨设k1>k2,即k1=k2+,所以E(,),又E,F在直线l上,所以,解得,所以k的值为2.3.(2022秋•玄武区校级月考)设A,B为双曲线C:﹣=1(a>b>0)的左、右顶点,直线l过右焦点F且与双曲线C的右支交于M,N两点,当直线l垂直于x轴时,△AMN为等腰直角三角形.(1)求双曲线C的离心率;(2)已知AB=4,若直线AM,AN分别交直线x=1于P,Q两点,若D(t,0)为x 轴上一动点,当直线l的倾斜角变化时,若∠PDQ为锐角,求t的取值范围.【答案】(1)2;(2)(﹣∞,﹣2)∪(4,+∞).【解答】解:(1)由l⊥x轴,△AMN为等腰直角三角形,可得|AF|=|NF|=|MF|,所以a+c=,即c2﹣ac﹣2a2=0,可得e2﹣e﹣2=0,解得e=2或e=﹣1(舍),所以双曲线的离心率为2;(2)由AB=4,可得2a=4,即a=2,所以直线PQ的方程为:x=1,由(1)可得离心率为2,可得c=4,b==2,所以双曲线的方程为:﹣=1;由题意可得直线l的斜率不为0,设直线l的方程为x=my+4,m≠±,设M(x1,y1),N(x2,y2),联立,整理可得:(3m2﹣1)y2+24my+36=0,可得y1+y2=﹣,y1y2=,x1+x2=m(y1+y2)+8=,x1x2=(my1+4)(my2+4)=m2y1y2+4m(y1+y2)+16=,直线AM的方程为y=(x+2),直线AN的方程为:y=(x+2),令x=1,可得P(1,),Q(1,),∵D(t,0),∴=(1﹣t,),=(1﹣t,),∵•=(1﹣t)2+×=(1﹣t)2+=(1﹣t)2+=(1﹣t)2﹣9,∵∠PDQ为锐角,∴•>0,∴(1﹣t)2﹣9>0,∴t<﹣2或t>4.∴t的取值范围为(﹣∞,﹣2)∪(4,+∞).4.(2022•南京模拟)已知点F1,F2分别为双曲线C:的左、右焦点,点A为双曲线C的右顶点,已知,且点F2到一条渐近线的距离为2.(1)求双曲线C的方程;(2)若直线l:y=mx+n与双曲线C交于两点M,N,直线OM,ON的斜率分别记为k OM,k ON,且,求证:直线l过定点,并求出定点坐标.【答案】(1);(2)证明解析;定点为(﹣2,0)或(2,0).【解答】解:(1)由题知,F2(c,0),其中一条渐近线为,即bx﹣ay=0,所以,解得,所以,(2)证明:设M(x1,y1),N(x2,y2),将y=mx+n代入,整理得:(5m2﹣4)x2+10mnx+5n2+20=0,则,由Δ=100m2n2﹣4(5m2﹣4)(5n2+20)=80(n2﹣5m2+4)>0得n2﹣5m2+4>0,因为=,所以,得n2=4m2,即n=±2m,所以直线l的方程为y=m(x±2),所以当n2﹣5m2+4>0,且n=2m时,直线l过定点(﹣2,0);所以当n2﹣5m2+4>0,且n=﹣2m时,直线l过定点(2,0).5.(2022春•开福区校级月考)已知双曲线C的渐近线方程为,且过点P(3,).(1)求C的方程;(2)设Q(1,0),直线x=t(t∈R)不经过P点且与C相交于A,B两点,若直线BQ 与C交于另一点D,过Q点作QN⊥AD于N,证明:直线AD过定点M,且点N在以QM为直径的圆上.【答案】(1)﹣y2=1.(2)直线AD过定点(3,0).点N在以QM为直径的圆上.【解答】解:(1)因为双曲线C的渐近线方程为,故设C的方程为﹣y2=λ(λ≠0),又C过点P(3,).所以﹣()2=λ,解得λ=1,所以C的方程为﹣y2=1.(2)证明:显然直线BQ的斜率不为0,设直线BQ为x=my+1,B(x1,y1),D(x2,y2),A(x1,﹣y1),联立,消去x整理得(m2﹣3)y2+2my﹣2=0,依题意m2﹣3≠0且Δ=4m2+8(m2﹣3)>0,即m2>2且m2≠3,所以y1+y2=﹣,y1y2=﹣,直线AD的方程为y+y1=(x﹣x1),令y=0,得x=+x1=====3,所以直线AD过定点(3,0).过Q点作QN⊥AD于N,设QM的中点为R,若N和M不重合,则△QNM为直角三角形,所以|RN|=|MQ|,若N和M重合,|RN|=|MQ|,所以点N在以QM为直径的圆上.6.(2022秋•皇姑区校级月考)已知椭圆Γ的方程为,圆C与x轴相切于点T(2,0),与y轴正半轴相交于A,B两点,且|AB|=3,如图.(1)求圆C的方程;(2)如图,过点(0,1)的直线l与椭圆Γ相交于P,Q两点,求证:射线AO平分∠PAQ.【答案】(1);(2)证明见解析.【解答】解:(1)依题意,设圆心C(2,b),r=b,,解得,所以所求圆方程为:.(2)证明:x=0代入圆C方程,得y=1或y=4,所以B(0,1),A(0,4),若过B点的直线斜率不存在,此时A,P,Q在y轴上,∠PAB=∠QAB=0,射线AO平分∠PAQ;若过B(0,1)的直线l斜率存在,设其方程为y=kx+1,联立整理得(2k2+1)x2+4kx﹣6=0,Δ=16k2+24(2k2+1)=8(8k2+3)>0,设P(x1,y1),Q(x2,y2),,=,∴∠PAB=∠QAB.所以射线AO平分∠PAQ.综上,射线AO平分∠PAQ.7.(2022秋•开福区校级月考)已知双曲线经过点(2,﹣3),两条渐近线的夹角为60°,直线l交双曲线于A,B两点.(1)求双曲线C的方程;(2)若动直线l经过双曲线的右焦点F2,是否存在x轴上的定点M(m,0),使得以线段AB为直径的圆恒过M点?若存在,求实数m的值;若不存在,请说明理由.【答案】(1);(2)存在M(﹣1,0),使得以线段AB为直径的圆恒过M点.【解答】解:(1)∵两条渐近线的夹角为60°,∴渐近线的斜率或,即或;当时,由,得:a2=1,b2=3,∴双曲线C的方程为:;当时,方程无解;综上所述:双曲线C的方程为:.(2)由题意得:F2(2,0),假设存在定点M(m,0)满足题意,则恒成立;①当直线l斜率存在时,设l:y=k(x﹣2),A(x1,y1),B(x2,y2),由得:(3﹣k2)x2+4k2x﹣(4k2+3)=0,∴,∴,,∴==0,∴(4k2+3)(1+k2)﹣4k2(2k2+m)+(m2+4k2)(k2﹣3)=0,整理可得:k2(m2﹣4m﹣5)+(3﹣3m2)=0,由,得:m=﹣1;∴当m=﹣1时,恒成立;②当直线l斜率不存在时,l:x=2,则A(2,3),B(2,﹣3),当M(﹣1,0)时,,,∴成立;综上所述:存在M(﹣1,0),使得以线段AB为直径的圆恒过M点.8.(2022秋•锦州期中)已知双曲线C:=1(a>0,b>0)与双曲线=1有相同的焦点;且C的一条渐近线与直线x﹣2y+2=0平行.(1)求双曲线C的方程;(2)若直线l与双曲线C右支相切(切点不为右顶点),且l分别交双曲线C的两条渐近线于A、B两点,O为坐标原点,试判断△AOB的面积是否为定值,若是,请求出;若不是,请说明理由.【答案】(1);(2)△AOB的面积为定值2,理由见解答.【解答】解:(1)∵双曲线C:=1(a>0,b>0)与双曲线=1有相同的焦点,∴c=,又C的一条渐近线与直线x﹣2y+2=0平行,∴=,又a2+b2=c2=5,解得a=2,b=1,∴双曲线C的方程为;(2)设直线l的方程为y=kx+m,联立,可得(4k2﹣1)x2+8kmx+4m2﹣4=0,∴Δ=64k2m﹣16(4k2﹣1)(m2+1)=0,∴4k2=m2+1,设直线l与x轴交点为D,则OD=||,=S△OAD+S△OBD==,∴S△AOB又双曲线的渐近线方程为y=±x,联立直线l:y=kx+m,可得A(,),B(,),===,∴S△AOB又4k2=m2+1,=2,∴△AOB的面积为定值.∴S△AOB9.(2022秋•湖北期中)在△ABC中,已知A(﹣1,0),B(﹣2,0),且sin B=sin A.(1)求顶点C的轨迹E的方程;(2)曲线E与y轴交于P,Q两点,T是直线y=2上一点,连TP,TQ分别与E交于M,N两点(异于P,Q两点),试探究直线MN是否过定点,若是求定点,若不是说明理由.【答案】(1)x2+y2=2(y≠0);(2)直线MN恒过点(0,).【解答】解:(1)A(﹣1,0),B(﹣2,0),由sin B=sin A,得,即,设C(x,y),则,整理得x2+y2=2(y≠0);(2)曲线E:x2+y2=2(y≠0),由题意不妨设P(0,),Q(0,﹣),T(m,)(m≠0),TP:y=,TQ:y=,联立,得(m2+2)x2+4mx=0,得M(,);联立,得(m2+18)x2﹣12mx=0,得N(,).当m≠±3时,直线MN方程为y=.∴直线MN恒过点(0,).10.(2022秋•南阳期中)已知动点P到两个定点的距离之和为4,记点P的轨迹为Γ.(1)求Γ的方程;(2)若点Q(0,﹣3),过点T(0,1)的直线l与Γ交于M,N两点,求△QMN面积的最大值.【答案】(1);(2).【解答】解:(1)由题意可知,P点轨迹为Γ是以,为焦点,长轴长为4的椭圆,即2a=4,,所以a=2,b=1,所以Γ的方程为:;(2)因为直线l的斜率存在,设直线l的方程:y=kx+1,设M(x1,y1),N(x2,y2),,消去y,整理得:(k2+4)x2+2kx﹣3=0,Δ=(2k)2+4(k2+4)×3=16(k2+3)>0,所以,,所以,所以△QMN面积,设,所以在上单调递减,故当,即k=0时,△BMN面积取得最大值,最大值为,所以△QMN面积的最大值.11.(2022•临澧县校级开学)已知椭圆C的方程为+=1(a>0),斜率为k(k≠0)的直线与C交于M,N两点.(1)若G为MN的中点,O为坐标原点,且直线OG的斜率为﹣,求椭圆C的方程;(2)在(1)的条件下,若P是椭圆C的左顶点,直线PM的斜率为k PM,直线PN的斜率为k PN,k PM•k PN=﹣,F是椭圆的左焦点,要使F在以MN为直径的圆内,求k 的取值范围.【答案】(1);(2).【解答】解:(1)设M,N两点坐标分别为M(x1,y1),N(x2,y2),G(x0,y0),代入椭圆方程,得,则,可得,因为,所以,所以a2=4,椭圆C的方程为.(2)设MN方程为y=kx+m,则,所以(3+4k2)x2+8kmx+4m2﹣12=0,所以,,所以,所以=,所以=,解得m=2k(舍)或m=﹣k,若F在以MN为直径的圆内,则,即,,即4k2﹣12+8k2+3k2﹣12k2+3+4k2=0,即7k2﹣9<0,且k≠0,解得且k≠0,所以k的取值范围为.12.(2022秋•辽宁期中)如图所示:已知椭圆C:的长轴长为4,离心率.A是椭圆的右顶点,直线l过点M(﹣1,0)交椭圆于C,D两点,记△ACD的面积为S.(1)求椭圆C的标准方程;(2)求S的最大值.【答案】(1);(2).【解答】解:(1)令椭圆E的半焦距为c,依题意,a=2,=,解得c=,则b2=a2﹣c2=1,所以椭圆E的标准方程为.(2)依题意,设直线l:x=ty﹣1,设C(x1,y1),D(x2,y2),由,消去x并整理得:(t2+4)y2﹣2ty﹣3=0,则y1+y2=,y1y2=﹣,|y1﹣y2|===,由(1)知A(2,0),|AM|=3,则有S===,令u=,显然函数y=在[,+∞)上单调递增,,当且仅当,即=±1时取等号.显然取等号情况不成立,故当=时S取得最大值,即S≤,所以S的最大值为.13.(2022•烟台三模)已知椭圆C:+=1(a>b>0)的离心率为,(,1)为C与抛物线x2=2py的交点.(1)求椭圆C的方程;(2)设椭圆的上顶点为A,斜率为k的直线过抛物线的焦点F且与椭圆交于M,N两点,试探究直线AM,AN的斜率之积是否为定值?若是,求出此定值;若不是,说明理由.【答案】(1);(2)直线AM,AN的斜率之积为定值.【解答】解:(1)由题意可知,,可得a2=2c2,又a2=b2+c2,可得a2=2b2,所以椭圆方程为,将代入方程得:,解得b2=4,所以a2=8,所以椭圆C的方程:;(2)直线AM,AN的斜率之积为定值,且定值为.由(1)可得A(0,2),将代入抛物线可得6=2p,p=3,所以抛物线方程为x2=6y,所以,则设直线MN的方程为,设M(x1,y1),N(x2,y2),联立直线MN的方程,,消去y,整理得(2+4k2)x2+12kx﹣7=0,所以,,,所以=,所以,直线AM,AN的斜率之积为定值.14.(2022•雨花区校级模拟)如图,已知椭圆,其左、右焦点分别为F1,F2,过右焦点F2且垂直于x轴的直线交椭圆于第一象限的点P,且.(1)求椭圆C的方程;(2)过点且斜率为k的动直线l交椭圆于A,B两点,在y轴上是否存在定点M,使以AB为直径的圆恒过这个点?若存在,求出点M的坐标;若不存在,说明理由.【答案】(1),(2)(0,1).【解答】解:(1)∵,∴,∵,∴,∵a2=c2+1,∴,∴椭圆方程为:.(2)动直线l的方程为:,由得,设A(x1,y1),B(x2,y2),则..由对称性可设存在定点M(0,m)满足题设,则,⇒6(m2﹣1)k2+(3m2+2m﹣5)=0,由题意知上式对∀k∈R成立,∴m2﹣1=0且3m2+2m﹣5=0,解得m=1.∴存在定点M,使得以AB为直径的适恒过这个点,且点M的坐标为(0,1).15.(2022•鞍山模拟)已知O为坐标原点,F1、F2为椭圆C的左、右焦点,|F1F2|=2,P 为椭圆C的上顶点,以P为圆心且过F1、F2的圆与直线相切.(1)求椭圆C的标准方程;(2)若过点F2作直线l,交椭圆C于M,N两点(l与x轴不重合),在x轴上是否存在一点T,使得直线TM与TN的斜率之积为定值?若存在,请求出所有满足条件的点T的坐标;若不存在,请说明理由.【答案】(1);(2)存在;.【解答】解:(1)依题意,F1(﹣1,0),F2(1,0),,由椭圆定义知:椭圆长轴长,即,而半焦距c=1,即有短半轴长b=1,所以椭圆C的标准方程为:.(2)依题意,设直线l方程为x=my+1,由消去x并整理得(m2+2)y2+2my﹣1=0,设M(x1,y1),N(x2,y2),则,,假定存在点T(t,0),直线TM与TN的斜率分别为,,=,要使k TM⋅k TN为定值,必有﹣1﹣2(1﹣t)+(1﹣t)2=0,即,当时,∀m∈R,,当时,∀m∈R,,所以存在点,使得直线TM与TN的斜率之积为定值.16.(2022•洛阳模拟)已知抛物线C:y2=2px(p>0),A是C上位于第一象限内的动点,它到点B(3,0)距离的最小值为.直线AB与C交于另一点D,线段AD的垂直平分线交C于E,F两点.(1)求p的值;(2)若中,证明A,D,E,F四点共圆,并求该圆的方程.【答案】(1)2;(2)(x﹣9)2+(y﹣2)2=64.【解答】解:(1)设A(2py2,2py),则,令t=y2∈[0,+∞),则,对于二次函数m=4p2t2+(4p2﹣12p)t+9,其对称轴为,当p≥3时,在[0,+∞)上单调递增,其最小值为9,即|AB|的最小值为3,不满足题意,当0<p<3时,,所以当时m=4p2t2+(4p2﹣12p)t+9取得最小值,即所以,解得p=2或p=4(舍),所以p=2;(2)由(1)可得,当时,,点A(1,2),所以,直线AB的方程为y=﹣x+3,由可得x2﹣10x+9=0,解得x=1或x=9,所以D(9,﹣6),所以AD的中点为N(5,﹣2),所以直线EF的方程为y+2=1⋅(x﹣5),即y=x﹣7,设E(x1,y1),F(x2,y2),由可得y2﹣4y﹣28=0,所以y1+y2=4,y1y2=﹣28,所以线段EF的中点为,因为,所以d,D,E,F四点共圆,圆心为M(9,2),半径为8,所以该圆的方程为(x﹣9)2+(y﹣2)2=64.17.(2022•德州二模)已知△ABC的两个顶点A,B的坐标分别为(﹣,0),(,0),圆E是△ABC的内切圆,在边AC,BC,AB上的切点分别为P,Q,R,,动点C的轨迹为曲线G.(1)求曲线G的方程;(2)设直线l与曲线G交于M、N两点,点D在曲线G上,O是坐标原点,判断四边形OMDN的面积是否为定值?若为定值,求出该定值;如果不是,请说明理由.【答案】;(2)四边形OMDN的面积是定值,其定值为.【解答】解:(1)因为圆E为△ABC的内切圆,所以|CA|+|CB|=|CP|+|CQ|+|PA|+|QB|=2|CP|+|AR|+|BR|=2|CP|+|AB|=4>|AB|,所以点C的轨迹为以点A和点B为焦点的椭圆,所以,a=2,则b=1,所以曲线G的方程为.(2)由y≠0可知直线l的斜率存在,设直线l方程是y=kx+m,由平面图形OMDN是四边形,可知m≠0,代入到,得(1+4k2)x2+8kmx+4m2﹣4=0,所以Δ=16(4k2+1﹣m2)>0,,.所以,所以,又点O到直线MN的距离,由,得,,因为点D在曲线G上,所以将D点坐标代入椭圆方程得1+4k2=4m2.由题意四边形OMDN为平行四边形,所以OMDN的面积为,由1+4k2=4m2,代入得,故四边形OMDN的面积是定值,其定值为.18.(2022•襄城区校级四模)已知抛物线C:x2=2py(p>0)的焦点为F,抛物线上一点到F点的距离为.(1)求抛物线的方程及点A坐标;(2)设斜率为k的直线l过点B(2,0)且与抛物线交于不同的两点M、N,若且,求斜率k的取值范围.【答案】(1),(2).【解答】解:(1)由抛物线定义可知:,得p=2,∴抛物线方程为x2=4y,将点坐标代入抛物线方程得:∴点A坐标为,(2)直线l的方程为y=k(x﹣2),设M、N两点的坐标分别为(x1,y1),(x2,y2).联立消去y,整理得:x2﹣4kx+8k=0,由Δ>0⇒16k2﹣32k>0⇒k<0或k>2.且x1+x2=4k,x1x2=8k,又即(x1﹣2,y1)=λ(x2﹣2,y2)∴,∵,∴,又,令,∴,又:k<0或k>2.∴k的取值范围是.19.(2021秋•淄博期末)已知O为坐标原点,A(x1,y1),B(x2,y2)是直线l与抛物线C:y2=4x的两个交点,满足.试求y1y2的值,并证明直线l恒过定点.【答案】y1y2=﹣8,证明见解析.【解答】证明:设l:x=my+n,A(x1,y1),B(x2,y2).由得y2﹣4my﹣4n=0.∴y1+y2=4m,y1y2=﹣4n,∴x1+x2=4m2+2n,x1x2=n2.又•=﹣4,∴x1x2+y1y2=n2−4n=−4,解得n=2,∴y1y2=﹣8.∴直线l方程为x=my+2,∴直线l恒过点(2,0).20.(2021秋•十堰期末)已知抛物线,,点M(x0,y0)在C2上,且不与坐标原点O重合,过点M作C1的两条切线,切点分别为A,B.记直线MA,MB,MO的斜率分别为k1,k2,k3.(1)当x0=1时,求k1+k2的值;(2)当点M在C2上运动时,求的取值范围.【答案】(1)k1+k2=4.(2)(﹣∞,﹣4]∪[4,+∞).【解答】解:(1)因为x0=1,所以y0=﹣1.设过点M并与C1相切的直线方程为y=k(x﹣1)﹣1.联立方程组整理得x2﹣kx+k+1=0,则Δ=(﹣k)2﹣4(k+1)=k2﹣4k﹣4=0.由题可知,k1,k2即方程k2﹣4k﹣4=0的两根,故k1+k2=4.(2)因为,所以可设过点M并与C1相切的直线的方程为.联立方程组整理得,则.由题可知,k1+k2=4x0,.又,所以.当x0>0时,,所以,当且仅当时,等号成立.当x0<0时,,所以,当且仅当时,等号成立.故的取值范围为(﹣∞,﹣4]∪[4,+∞).21.(2021秋•武汉期末)已知双曲线的左、右焦点分别为,动点M满足|MF2|﹣|MF1|=2.(1)求动点M的轨迹方程;(2)若动点M在双曲线C上,设双曲线C的左支上有两个不同的点P,Q,点N(4,0),且∠ONP=∠ONQ,直线NQ与双曲线C交于另一点B.证明:动直线PB经过定点.【答案】(1)x2﹣=1(x≤﹣1);(2)证明过程见详解,定点(,0).【解答】解:(1)动点M满足|MF2|﹣|MF1|=2<|F1F2|,所以动点M的轨迹为双曲线的左支,且2a=2,c=,所以可得a=1,b2=c2﹣a2=10﹣1=9,所以双曲线的方程为:x2﹣=1(x≤﹣1);(2)证明:由题意可得P,Q关于x轴对称,设直线PB的方程为:y=kx+t,设P(x1,y1),B(x2,y2),则Q(x1,﹣y1),联立,整理可得:(9﹣k2)x2﹣2ktx﹣t2﹣9=0,则x1+x2=,x1x2=,则直线BQ的方程为:y=(x﹣x2)+y2,因为直线过N(4,0)点,所以0=(4﹣x2)+y2,整理可得:(x2﹣4)(y2+y1)=y2(x2﹣x1),即2kx1x2+(t﹣4k)(x1+x2)﹣8t=0,所以+﹣8t=0,整理可得:﹣2kt2﹣18k+2kt2﹣8k2t﹣72t+8tk2=0,即k=﹣4t,所以直线PB的方程为:y=﹣4tx+t=﹣4t(x﹣),可证得:直线PB恒过定点(,0)22.(2021秋•菏泽期末)已知Rt△ABC中,A(﹣1,0),B(1,0),∠CAB=90°,,曲线E过C点,动点P在E上运动,且保持|PA|+|PB|的值不变.(1)求曲线E的方程;(2)过点(1,0)的直线l与曲线E交于M,N两点,则在x轴上是否存在定点Q.使得的值为定值?若存在,求出点Q的坐标和该定值;若不存在,请说明理由.【答案】(1).(2)存在点.【解答】解:(1)由题意,可得,而,所以点P的轨迹为以A,B为焦点,长轴长为的椭圆,由,故,所以曲线E的方程为.(2)当直线l的斜率为不为0时,设直线l的方程为x=my+1,设定点Q(t,0),联立方程组消x可得(m2+2)y2+2my﹣1=0,设M(x1,y1),N(x2,y2),可得,所以=(my1+1﹣t)(my2+1﹣t)+y1y2==,要使上式为定值,则,解得,此时,当直线l的斜率为0时,,此时,也符合;所以,存在点,使得为定值.23.(2021秋•南京月考)已知双曲线E:﹣=1(a>0,b>0)过点D(3,1),且该双曲线的虚轴端点与两顶点A1,A2的张角为120°.(1)求双曲线E的方程;(2)过点B(0,4)的直线l与双曲线E左支相交于点M,N,直线DM,DN与y轴相交于P,Q两点,求|BP|+|BQ|的取值范围.【答案】(1).;(2)|BP|+|BQ|的取值范围是(,18﹣6).【解答】解:(1)由已知可得,结合a2+b2=c2,解得,故双曲线E的方程;.(2)设直线方程y=kx+4,M(x1,y1),N(x2,y2),直线DM的方程为y﹣1=(x﹣3),可得P(0,1﹣),直线DN的方程为y﹣1=(x﹣3),可得Q(0,1﹣),联立,消去y,整理可得(1﹣3k2)x2﹣24kx﹣54=0,则,可得,|BP|+||BQ|=4﹣y M+4﹣y N=6+=6+3×=6+3×=6+3×===8﹣,又,∴3k+5∴|BP|+|BQ|的取值范围是(,18﹣6).24.(2018秋•福田区校级期末)已知椭圆C的中心是坐标原点O,它的短轴长2,焦点F(c,0),点A(﹣c,0),且=2.(1)求椭圆C的标准方程;(2)是否存在过点A的直线与椭圆C相交于P、Q两点,且以线段PQ为直径的圆过坐标原点O,若存在,求出直线PQ的方程;不存在,说明理由.【答案】见试题解答内容【解答】解:(1)由题意知,b=,F(c,0),A(﹣c,0),则,,由=2,得c=,解得:c=2.∴a2=b2+c2=6,∴椭圆的方程为,离心率为;(2)A(3,0),设直线PQ的方程为y=k(x﹣3),联立,得(1+3k2)x2﹣18k2x+27k2﹣6=0,设P(x1,y1),Q(x2,y2),则,.∴=k2()=.由已知得OP⊥OQ,得x1x2+y1y2=0,即,解得:k=,符合Δ>0,∴直线PQ的方程为y=.25.(2021•辽宁模拟)已知抛物线C1:y2=2px(p>0),椭圆C2:=1(a>b>0),抛物线与椭圆有共同的焦点F(4,0),且椭圆C2的离心率e=.(Ⅰ)求椭圆与抛物线的方程;(Ⅱ)直线l1的方程为x=﹣4,若不经过点P(4,8)的直线l2与抛物线交于A,B(A,B分别在x轴两侧),与直线l1交于点M,与椭圆交于点C,D,设PA,PM,PB的斜率分别为k1,k2,k3,若k1+k3=2k2.(ⅰ)证明:直线l2恒过定点;(ⅱ)点D关于x轴的对称点为D′,试问△CFD′的面积是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.【答案】(Ⅰ)椭圆C2的方程为,抛物线C1的方程为y2=16x;(Ⅱ)(i)证明见解析;(ii)△CFD'的面积存在最大值,最大值为.【解答】(Ⅰ)解:设椭圆的半焦距为c,因为抛物线与椭圆有共同的焦点F(4,0),则y2=16x且c=4,因为椭圆C2的离心率为e=,解得a=5,所以b2=a2﹣c2=9,故椭圆C2的方程为,抛物线C1的方程为y2=16x;(Ⅱ)(i)证明:当直线l2的斜率k=0时,不符合题意;当直线l2的存在且不为0时,设直线l2:y=kx+b,令x=﹣4,可得y=﹣4k+b,则点M(﹣4,﹣4k+b),设A(x1,y1),B(x2,y2),联立,可得ky2﹣16y+16b=0,则Δ>0,所以,直线PA的斜率,同理可得直线PB的斜率为,直线PM的斜率为,因为k1+k3=2k2,所以,即,整理可得,,所以b=4k或b=﹣4k,当b=4k时,y1y2=64,与A,B在x轴两侧矛盾;当b=﹣4k时,直线l2的方程为y=kx﹣4k,即直线l2恒过定点(4,0);(ii)解:设C(x3,y3),D(x4,y4),D'(x4,﹣y4),设直线CD的方程为x=ty+4(t≠0),代入椭圆C2的方程可得,(9t2+25)y2+72ty﹣81=0,。
2023届高考数学(解析几何)专项练习(附答案)

)
A.点 P 到直线 AB 的距离小于 10
B.点 P 到直线 AB 的距离大于 2
C.当∠PBA 最小时,|PB|=3√2
D.当∠PBA 最大时,|PB|=3√2
2作体联考)若双曲线 C:
2
=1,F1,F2 分别为左、右焦点,设点
5
P 在双
曲线上且是第一象限内的动点,点 I 为△PF1F2 的内心,点 G 为△PF1F2 的重心,则下列说法正确的是
2023 届高考数学(解析几何)专项练习
一、选择题:本题共 8 小题,每小题 5 分,共 40 分.在每小题给出的四个选项中,只有一项是符合题
目要求的.
1.(历年ꞏ浙江杭州二中月考)已知双曲线的实轴长为 10,焦点到一条渐近线的距离为 4,则它的离心率
为
A.
3
5
5
3
√41
B.
C.
D.
5
(
)
(
)
5
4
2.(历年ꞏ浙江宁波三模)“点(a,b)在圆 x2+y2=1 外”是“直线 ax+by+2=0 与圆 x2+y2=1 相交”的
5
x+2y-8=0 的距离为
.
14.(历年ꞏ江苏连云港模拟)圆锥曲线有丰富的光学性质,从椭圆焦点发出的光线,经过椭圆反射后,反
射光线经过另一个焦点;从抛物线焦点发出的光线,经过抛物线上一点反射后,反射光线平行于抛物线
2
2
的对称轴.已知椭圆 C:
2
2 =1(a>b>0)过点(3,1).由点
P(2,1)发出的平行于 x 轴的光线经过抛物线
牛的形象.已知抛物线 Z:x2=4y 的焦点为 F,圆 F:x2+(y-1)2=4 与抛物线 Z 在第一象限的交点为