《用26的乘法口诀求商》典型例题(最新编写)

《用26的乘法口诀求商》典型例题(最新编写)
《用26的乘法口诀求商》典型例题(最新编写)

典型例题

例. 看图解答图中的问题。

分析:这道题目是要解决每份3个,可以把15平均分成几份和把15

平均分成3份,每份是几的问题。

解:15÷3=5(串)

15÷3=5(个)

高一数学圆的方程、直线与圆位置关系典型例题

高一数学圆的方程典型例题 类型一:圆的方程 例1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系. 分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P 与圆的位置关系,只须看点P 与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内. 解法一:(待定系数法) 设圆的标准方程为2 2 2 )()(r b y a x =-+-.∵圆心在0=y 上,故0=b .∴圆的方程为 222)(r y a x =+-.又∵该圆过)4,1(A 、)2,3(B 两点. ∴?????=+-=+-2 22 24)3(16)1(r a r a 解之得:1-=a ,202 =r .所以所求圆的方程为20)1(22=++y x . 解法二:(直接求出圆心坐标和半径) 因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为 13 12 4-=--= AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为:23-=-x y 即01=+-y x . 又知圆心在直线0=y 上,故圆心坐标为)0,1(-C ∴半径204)11(2 2=++==AC r . 故所求圆的方程为20)1(2 2 =++y x .又点)4,2(P 到圆心)0,1(-C 的距离为 r PC d >=++==254)12(22.∴点P 在圆外. 例2 求半径为4,与圆04242 2 =---+y x y x 相切,且和直线0=y 相切的圆的方程. 解:则题意,设所求圆的方程为圆2 22)()(r b y a x C =-+-: . 圆C 与直线0=y 相切,且半径为4,则圆心C 的坐标为)4,(1a C 或)4,(2-a C . 又已知圆04242 2 =---+y x y x 的圆心A 的坐标为)1,2(,半径为3. 若两圆相切,则734=+=CA 或134=-=CA . (1)当)4,(1a C 时,2 2 2 7)14()2(=-+-a ,或2 2 2 1)14()2(=-+-a (无解),故可得 1022±=a .∴所求圆方程为2224)4()1022(=-+--y x ,或2224)4()1022(=-++-y x .

高中数学圆方程典型例题

高中数学圆的方程典型例题 类型一:圆的方程 例1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系. 分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P 与圆的位置关系,只须看点P 与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆. 解法一:(待定系数法) 设圆的标准方程为2 22)()(r b y a x =-+-. ∵圆心在0=y 上,故0=b . ∴圆的方程为222)(r y a x =+-. 又∵该圆过)4,1(A 、)2,3(B 两点. ∴?????=+-=+-22224)3(16)1(r a r a 解之得:1-=a ,202 =r . 所以所求圆的方程为20)1(2 2=++y x . 解法二:(直接求出圆心坐标和半径) 因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为13 124-=--=AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为:23-=-x y 即01=+-y x . 又知圆心在直线0=y 上,故圆心坐标为)0,1(-C ∴半径204)11(2 2=++==AC r . 故所求圆的方程为20)1(22=++y x . 又点)4,2(P 到圆心)0,1(-C 的距离为 r PC d >=++==254)12(22. ∴点P 在圆外. 说明:本题利用两种方法求解了圆的方程,都围绕着求圆的圆心和半径这两个关键的量,然后根据圆心与定点之间的距离和半径的大小关系来判定点与圆的位置关系,若将点换成直线又该如何来判定直线与圆的位置关系呢?

幂函数经典例题

例1、下列结论中,正确的是( ) A.幂函数的图象都通过点(0,0),(1,1) B.幂函数的图象可以出现在第四象限 C.当幂指数α取1,3,1 2 时,幂函数y=xα是增函数 D.当幂指数α=-1时,幂函数y=xα在定义域上是减函数 解析当幂指数α=-1时,幂函数y=x-1的图象不通过原点,故选项A 不正确;因为所有的幂函数在区间(0,+∞)上都有定义,且y=xα (α∈R),y>0,所以幂函数的图象不可能出现在第四象限,故选项B不正确;而当α=-1时,y=x-1在区间(-∞,0)和(0,+∞)上是减函数,但它在定义域上不是减函数. 答案C 例2、已知幂函数f(x)=(t3-t+1)x 1 5 (7+3t-2t2) (t∈Z)是偶函数且在(0,+ ∞)上为增函数,求实数t的值. 分析关于幂函数y=xα(α∈R,α≠0)的奇偶性问题,设p q (|p|、|q|互 质),当q为偶数时,p必为奇数,y=x p q 是非奇非偶函数;当q是奇数时,y= x p q 的奇偶性与p的值相对应. 解∵f(x)是幂函数,∴t3-t+1=1, ∴t=-1,1或0. 当t=0时,f(x)=x 7 5 是奇函数; 当t=-1时,f(x)=x 2 5 是偶函数; 当t=1时,f(x)=x 8 5 是偶函数,且 2 5 和 8 5 都大于0,在(0,+∞)上为增函数.

故t =1且f (x )=x 85或t =-1且f (x )=x 2 5 . 点评 如果题中有参数出现,一定要注意对参数的分类讨论,尤其对题中的条件 t ∈Z 给予足够的重视. 例3、如图是幂函数y =x m 与y =x n 在第一象限内的图象,则( ) A .-11 D .n <-1,m >1 解析 在(0,1)内取同一值x 0,作直线x =x 0,与各图象有交点,则“点低指数大”.如图,0x 1 3,求x 的取值范围. 错解 由于x 2 ≥0,x 1 3∈R ,则由x 2>x 1 3 ,可得x ∈R . 错因分析 上述错解原因是没有掌握幂函数的图象特征,尤其是y =x α 在 α>1和0<α<1两种情况下图象的分布. 正解 作出函数y=x2和y=3 1x 的图象(如右图所示),易得x<0或x>1. 例5、函数f (x )=(m 2-m -1)xm 2+m -3是幂函数,且当x ∈(0,+∞)时,f (x )

圆的方程经典题目带答案

圆的方程经典题目 1.求满足下列条件的圆的方程 (1)过点A(5,2)和B(3,-2),且圆心在直线32-=x y 上;(2)圆心在835=-y x 上,且与两坐标轴相切;(3)过ABC ?的三个顶点)5,5()2,2()5,1(C B A 、、---;(4)与y 轴相切,圆心在直线03=-y x 上,且直线 x y =截圆所得弦长为72;(5)过原点,与直线1:=x l 相切,与圆1)2()1(:2 2 =-+-y x C 相外切;(6)以C(1,1)为圆心,截直线2-=x y 所得弦长为22;(7)过直线042:=++y x l 和圆0142:2 2 =+-++y x y x C 的交点,且面积最小的圆的方程. (8)已知圆满足①截y 轴所得弦长为2;②被x 轴分成两段圆弧,其弧长的比为1:3③圆心到直线02:=-y x l 的距离为52.0,求该圆的方程. (9)求经过)3,1()2,4(-B A 两点且在两坐标轴上的四个截距之和是2的圆的方程 2、已知方程0916)41(2)3(24222=++-++-+m y m x m y x 表示一个圆(1)求实数m 的取值范围 (2)求该圆半径r 的取值范围(3)求面积最大的圆的方程(4)求圆心的轨迹方程 1. 已知圆252 2 =+y x , 求下列相应值

(1)过)4,3(-的切线方程(2)过)7,5(的切线方程、切线长;切点弦方程、切点弦长 (3)以)2,1(为中点的弦的方程 (4)过)2,1(的弦的中点轨迹方程 (5)斜率为3的弦的中点的轨迹方程 2. 已知圆 062 2 =+-++m y x y x 与直线032=-+y x 相交于Q P 、两点,O 为坐标原点,若OQ OP ⊥,求实数m 的值. 3、已知直线b x y l +=:与曲线21:x y C -=有两个公共点,求b 的取值范围 4、一束光线通过点)18,25(M 射到x 轴上,被反射到圆25)7(:2 2 =-+y x C 上.求: (1)通过圆心的反射线方程,(2)在x 轴上反射点A 的活动范围. 5、圆03422 2 =-+++y x y x 上到直线0=++m y x 的距离为2的点的个数情况 已知两圆01010:2 2 1=--+y x y x O 和04026:2 2 2=--++y x y x O (1)判断两圆的位置关系 (2)求它们的公共弦所在的方程 (3)求公共弦长 (4)求公共弦为直径的圆的方程. 题型五、最值问题 思路1:几何意义 思路2:参数方程 思路3、换元法 思路4、函数思想 1. 实数y x ,满足012462 2 =+--+y x y x (1)求 x y 的最小值 (2)求2 2y x ++32-y 的最值;(3)求y x 2-的最值(4)|143|-+y x 的最值 2. 圆25)2()1(:2 2=-+-y x C 与)(047)1()12(:R m m y m x m l ∈=--+++.(1)证明:不论m 取什么实数直线l 与圆C 恒相交(2)求直线l 被圆C 截得最短弦长及此时的直线方程 3、平面上有A (1,0),B (-1,0)两点,已知圆的方程为()()2 2 2342x y -+-=.⑴在圆上求一点1P 使△AB 1P 面积最大并求出此面积;⑵求使2 2 AP BP +取得最小值时的点P 的坐标. 4、已知P 是0843:=++y x l 上的动点,PB PA ,是圆01222 2 =+--+y x y x 的两条切线,A 、B 是切点, C 是圆心,那么四边形PACB 的面积的最小值为 5、已知圆的方程为0862 2=--+y x y x .设该圆过点(3,5)的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 的面积为_________ 6、已知圆的方程为0862 2=--+y x y x .设该圆过点(3,5)的互相垂直的弦分别为AC 和BD ,则四边形ABCD 的面积为_________

指对幂函数经典练习题

高一数学期末复习幂函数、指数函数和对数函数 1、若函数x a a a y ?+-=)33(2是指数函数,则有 ( ) A 、21==a a 或 B 、1=a C 、2=a D 、10≠>a a 且 2、下列所给出的函数中,是幂函数的是 ( ) A .3x y -= B .3-=x y C .32x y = D .13-=x y 3、1.指数式b c =a (b >0,b ≠1)所对应的对数式是 ( ) A .log c a =b B .log c b =a C .log a b =c D .log b a =c 4、若210,5100==b a ,则b a +2= ( ) A 、0 B 、1 C 、2 D 、3 5、若0≠xy ,那么等式y xy y x 2432-=成立的条件是 ( ) A 、0,0>>y x B 、0,0<>y x C 、0,0>x 时,函数x a y )8(2-=的值恒大于1,则实数a 的取值范围是_ _____.

指数函数、对数函数、幂函数练习题大全

一、选择题(每小题4分,共计40分) 1.下列各式中成立的一项是 ( ) A .71 7 7)(m n m n = B . 33 39= C .4 343 3 )(y x y x +=+ D .31243)3(-=- 2.化简)3 1 ()3)((65 61 3 12 12 13 2b a b a b a ÷-的结果 ( ) A .a 9- B .a - C .a 6 D .2 9a 3.设指数函数)1,0()(≠>=a a a x f x ,则下列等式中不正确... 的是 ( ) A .f (x +y )=f(x )·f (y ) B .) () (y f x f y x f =-) ( C .)()] ([)(Q n x f nx f n ∈= D .)()]([· )]([)]([+∈=N n y f x f xy f n n n 4.函数2 10 ) 2()5(--+-=x x y ( ) A .}2,5|{≠≠x x x B .}2|{>x x C .}5|{>x x D .}552|{><≤-=-0 ,0 ,12)(21x x x x f x ,满足1)(>x f 的x 的取值范围 ( ) A .)1,1(- B . ),1(+∞- C .}20|{-<>x x x 或 D .}11|{-<>x x x 或 9.已知2 )(x x e e x f --=,则下列正确的是 ( ) A .奇函数,在R 上为增函数 B .偶函数,在R 上为增函数 C .奇函数,在R 上为减函数 D .偶函数,在R 上为减函数

幂函数知识点及典型题

幂函数 知识点 一、幂函数的定义 一般地,形如y x α =(R x ∈)的函数称为幂孙函数,其中x 是自变量,α是常数.如1 12 3 4 ,,y x y x y x -===等 都是幂函数 二、幂函数的图像 幂函数n y x =随着n 的不同,定义域、值域都会发生变化,可以采取按性质和图像分类记忆的方法.熟练掌握n y x =,当11 2,1,,,323 n =±±± 的图像和性质,列表如下. ① 它们都过点()1,1,除原点外,任何幂函数图像与坐标轴都不相交,任何幂函数图像都不过第四象限. ② 11 ,,1,2,332a =时,幂函数图像过原点且在[)0,+∞上是增函数. ③ 1 ,1,22 a =---时,幂函数图像不过原点且在()0,+∞上是减函数. ④ 任何两个幂函数最多有三个公共点. 三、幂函数基本性质 (1)所有的幂函数在(0,+∞)都有定义,并且图象都过点(1,1); (2)α>0时,幂函数的图象都通过原点,并且在[0,+∞]上,是增函数 (3)α<0时,幂函数的图象在区间(0,+∞)上是减函数. 四、解题方法总结 1.在研究幂函数的性质时,通常将分式指数幂化为根式形式,负整指数幂化为分式形式再去进行讨论; 2.对于幂函数y =α x ,我们首先应该分析函数的定义域、值域和奇偶性,由此确定图象的位置,即所在象 限,其次确定曲线的类型,即α<0,0<α<1和α>1三种情况下曲线的基本形状,还要注意α=0,±1三个曲线的形状;对于幂函数在第一象限的图象的大致情况可以用口诀来记忆:“正抛负双,大竖小横”,即α>0(α≠1)时图象是抛物线型;α<0时图象是双曲线型;α>1时图象是竖直抛物线型;0<α<1时图象是横卧抛物线型. 典型题 类型一、求函数解析式 例1.已知幂函数2 223 (1)m m y m m x --=--,当(0)x ∈+, ∞时为减函数,则幂函数y =__________. 类型二、比较幂函数值大小 例2.比较下列各组数的大小. (1)4 3 3.14 -与43 π - (2)35 (- 与35 (- (3)比较0.5 0.8 ,0.5 0.9,0.5 0.9 -的大小 类型三、求参数的范围

高中理科椭圆的典型例题

典型例题一 例1 椭圆的一个顶点为()02, A ,其长轴长是短轴长的2倍,求椭圆的标准方程. 分析:题目没有指出焦点的位置,要考虑两种位置. 解:(1)当()02, A 为长轴端点时,2=a ,1=b , 椭圆的标准方程为:11 42 2=+ y x ; (2)当()02, A 为短轴端点时,2=b ,4=a , 椭圆的标准方程为:116 42 2=+ y x ; 说明:椭圆的标准方程有两个,给出一个顶点的坐标和对称轴的位置,是不能确定椭圆的横竖的,因而要考虑两种情况. 典型例题二 例2 一个椭圆的焦点将其准线间的距离三等分,求椭圆的离心率. 解:3 1 222??=c a c ∴223a c =, ∴3 331-= e . 说明:求椭圆的离心率问题,通常有两种处理方法,一是求a ,求c ,再求比.二是列含a 和c 的齐次方程,再化含e 的方程,解方程即可. 典型例题三 例3 已知中心在原点,焦点在x 轴上的椭圆与直线01=-+y x 交于A 、B 两点,M 为AB 中点, OM 的斜率为0.25,椭圆的短轴长为2,求椭圆的方程. 解:由题意,设椭圆方程为1222 =+y a x ,

由?????=+=-+1012 22y a x y x ,得()0212 22=-+x a x a , ∴222112a a x x x M +=+=,211 1a x y M M +=-=, 41 12=== a x y k M M OM ,∴42=a , ∴14 22 =+y x 为所求. 说明:(1)此题求椭圆方程采用的是待定系数法;(2)直线与曲线的综合问题,经常要借用根与系数的关系,来解决弦长、弦中点、弦斜率问题. 典型例题四 例4椭圆19252 2=+y x 上不同三点()11y x A ,,?? ? ??594,B ,()22y x C ,与焦点()04,F 的距离成等差数列. (1)求证821=+x x ; (2)若线段AC 的垂直平分线与x 轴的交点为T ,求直线BT 的斜率k . 证明:(1)由椭圆方程知5=a ,3=b ,4=c . 由圆锥曲线的统一定义知: a c x c a AF = -12 ,∴115 4 5x ex a AF -=-=. 同理2545x CF -=.∵BF CF AF 2=+,且5 9 =BF , ∴51854554521=??? ??-+??? ? ? -x x ,即821=+x x . (2)因为线段AC 的中点为??? ??+2421y y ,,所以它的垂直平分线方程为 ()422 12 121---= +- x y y x x y y y . 又∵点T 在x 轴上,设其坐标为()00,x ,代入上式,得() 212 2 21024x x y y x --=-

幂函数的典型例题.doc

经典例题透析 类型一、求函数解析式 例1.已知幕函数y = (nr-m-])x,,,2-2m~3,当xw(0, + 8)时为减函数,则幕函数y二___________________ . 解析:由于丁 =(加2—血—1)#宀2心为幕函数, 所以m2— \ = \,解得m = 2 ,或m = —\. 当ni = 2时,nr -2m-3 = -3 , y = x~3在(0, + 8)上为减函数; 当m = -l时,/7?2-2m-3 = 0, y = %° =1(x^0)在(0, + ?)上为常数函数,不合题意,舍去. 故所求幕函数为y = x-3. 总结升华:求慕函数的解析式,一般用待定系数法,弄明白需函数的定义是关键. 类型二、比较幕函数值大小 例2.比较下列各组数的大小. 4 4 _ 3 _ 3 (1)3」4万与兀了;(2)(-近门与(-73)^. 4 4_4 解:⑴由于幕函数y = ?亍(x>0)单调递减且3」4 <龙,???3.14万 > 兀了. _3 (2)由于y =兀5这个幕函数是奇函数.???f (-x) =-f (x) —_ 3 _ 3 _ 3 _ 3 _ _因此,(一血门二一(血)V,(―巧)V =—(內)V ,而y = (x>0)单调递减,且血 3 3 3 3 3 3 ???(血戸 >"门即(一血门v( 总结升华. (1)各题中的两个数都是“同指数”的幕,因此可看作是同一个幕函数的两个不同的函数值,从而可根据幕函数的单调性做出判断. (2)题(2)中,我们是利用幕函数的奇偶性,先把底数化为正数的幕解决的问题.当然,若直接利用x<0 上幕函数的单调性解决问题也是可以的. 举一反三 【变式一】比较O.805, O.905, 0.9皿的大小. 思路点拨:先利用幕函数)=兀"的增减性比较0?8°5与0.9°"的大小,再根据幕函数的图象比较0.9°"与0.9七5的大小. 解:y = x Q-5^.(0, + oo)上单调递增,且0.8 v 0.9 , .?,0.805 <0.905. 作出函数y = X05与歹=兀七5在第一象限内的图彖, 易知0.严< 0.9心.

幂函数练习题及答案

幂函数练习题及答案 一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(每小题5分,共50分). 1.下列函数中既是偶函数又是(,)-∞0上是增函数的是??( ) A .y x =43? B.y x =32 C .y x =-2 ? D.y x =- 14 2.函数2 -=x y 在区间]2,2 1 [ 上的最大值是???( ) A. 4 1 ?B.1-?C.4 D.4- 3.下列所给出的函数中,是幂函数的是? ?( ) A.3 x y -=?B.3 -=x y ? C.3 2x y =?D.13 -=x y 4.函数3 4x y =的图象是? ( ) A. B. C. D . 5.下列命题中正确的是? ? ( ) A.当0=α 时函数αx y =的图象是一条直线 B.幂函数的图象都经过(0,0)和(1,1)点 C.若幂函数αx y =是奇函数,则α x y =是定义域上的增函数 D.幂函数的图象不可能出现在第四象限 6.函数3 x y =和3 1x y =图象满足 ? ( ) A.关于原点对称 B.关于x 轴对称 C .关于y 轴对称 ? D.关于直线x y =对称 7. 函数R x x x y ∈=|,|,满足 ( ) A.是奇函数又是减函数 B.是偶函数又是增函数 C.是奇函数又是增函数 ?D .是偶函数又是减函数 8.函数 2422-+=x x y 的单调递减区间是 ( )

A .]6,(--∞ ? B .),6[+∞- C.]1,(--∞ ? D.),1[+∞- 9. 如图1—9所示,幂函数α x y =在第一象限的图象,比较1,,,,,04321αααα的大小( ) A.102431<<<<<αααα B.104321<<<<<αααα C.134210αααα<<<<< D .142310αααα<<<<< 10. 对于幂函数5 4 )(x x f =,若210x x <<,则 )2( 21x x f +,2 ) ()(21x f x f +大小关系是( ) A.)2( 21x x f +>2)()(21x f x f + ?B. )2(21x x f +<2) ()(21x f x f + C . )2( 21x x f +=2 ) ()(21x f x f + ? D. 无法确定 二、填空题:请把答案填在题中横线上(每小题6分,共24分). 11.函数y x =- 3 2 的定义域是 . 12.的解析式是?? . 13.9 42 --=a a x y 是偶函数,且在),0(+∞是减函数,则整数a 的值是 . 14.幂函数),*,,,()1(互质n m N k n m x y m n k ∈=-图象在一、二象限,不过原点,则n m k ,,的奇偶性为 . 三、解答题:解答应写出文字说明.证明过程或演算步骤(共76分) . 15.(12分)比较下列各组中两个值大小 (1)06072088089611 611 53 53 ..(.)(.).与;()与-- 1α 3α 4α 2α

(完整版)高中数学必修2圆与方程典型例题(可编辑修改word版)

标准方程(x - a )2 + (y - b )2 = r 2 ,圆心 (a , b ),半径为 r 11 11 11 11 0 0 第二节:圆与圆的方程典型例题 一、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径。二、圆的方程 (1) ; 点 M (x , y ) 与圆(x - a )2 + ( y - b )2 = r 2 的位置关系: 当(x - a )2 + ( y - b )2 > r 2 ,点在圆外 当(x - a )2 + ( y - b )2 = r 2 ,点在圆上 当(x - a )2 + ( y - b )2 < r 2 ,点在圆内 (2) 一般方程 x 2 + y 2 + Dx + Ey + F = 0 当 D 2 + E 2 - 4F > 0 时,方程表示圆,此时圆心为?- D E ? ,半径为r = 当 D 2 + E 2 - 4F = 0 时,表示一个点; 当 D 2 + E 2 - 4F < 0 时,方程不表示任何图形。 ,- ? ? 2 2 ? 2 (3) 求圆方程的方法: 一般都采用待定系数法:先设后求。确定一个圆需要三个独立条件,若利用圆的标准方程, 需求出 a ,b ,r ;若利用一般方程,需要求出 D ,E ,F ; 另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置。 例 1 已知方程 x 2 + y 2 - 2(m - 1)x - 2(2m + 3) y + 5m 2 + 10m + 6 = 0 . (1) 此方程表示的图形是否一定是一个圆?请说明理由; (2) 若方程表示的图形是是一个圆,当 m 变化时,它的圆心和半径有什么规律?请说明理由. 答案:(1)方程表示的图形是一个圆;(2)圆心在直线 y =2x +5 上,半径为 2. 练习: 1.方程 x 2 + y 2 + 2x - 4 y - 6 = 0 表示的图形是( ) A.以(1,- 2) 为圆心, 为半径的圆 B.以(1,2) 为圆心, 为半径的圆 C.以(-1,- 2) 为圆心, 为半径的圆 D.以(-1,2) 为圆心, 为半径的圆 2.过点 A (1,-1),B (-1,1)且圆心在直线 x +y -2=0 上的圆的方程是( ). A .(x -3)2+(y +1)2=4 B .(x +3)2+(y -1)2=4 C .(x -1)2+(y -1)2=4 D .(x +1)2+(y +1)2=4 3.点(1,1) 在圆(x - a )2 + ( y + a )2 = 4 的内部,则 a 的取值范围是( ) A. -1 < a < 1 B. 0 < a < 1 C. a < -1 或 a > 1 D. a = ±1 4.若 x 2 + y 2 + ( -1)x + 2y + = 0 表示圆,则的取值范围是 5. 若圆 C 的圆心坐标为(2,-3),且圆 C 经过点 M (5,-7),则圆 C 的半径为 . 6. 圆心在直线 y =x 上且与 x 轴相切于点(1,0)的圆的方程为 . 7. 以点 C (-2,3)为圆心且与 y 轴相切的圆的方程是 . 1 D 2 + E 2 - 4F

高中数学圆的方程典型例题及详细解答

新课标高中数学圆的方程典型例题 类型一:圆的方程 例1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系. 分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P 与圆的位置关系,只须看点P 与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内. 解法一:(待定系数法) 设圆的标准方程为2 2 2 )()(r b y a x =-+-. ∵圆心在0=y 上,故0=b . ∴圆的方程为2 2 2 )(r y a x =+-. 又∵该圆过)4,1(A 、)2,3(B 两点. ∴?????=+-=+-2 22 24)3(16)1(r a r a 解之得:1-=a ,202 =r . 所以所求圆的方程为20)1(2 2 =++y x . 解法二:(直接求出圆心坐标和半径) 因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为 13 12 4-=--= AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为:23-=-x y 即01=+-y x . 又知圆心在直线0=y 上,故圆心坐标为)0,1(-C ∴半径204)11(2 2= ++==AC r . 故所求圆的方程为20)1(2 2 =++y x . 又点)4,2(P 到圆心)0,1(-C 的距离为 r PC d >=++==254)12(22. ∴点P 在圆外. 说明:本题利用两种方法求解了圆的方程,都围绕着求圆的圆心和半径这两个关键的量,然后根据圆心与定点之间的距离和半径的大小关系来判定点与圆的位置关系,若将点换成直线又该如何来判定直线与圆的位置关系呢?

次函数与幂函数典型例题

二次函数与幂函数 1.求二次函数的解析式. 2.求二次函数的值域与最值. 3.利用幂函数的图象和性质分析解决有关问题. 【复习指导】 本节复习时,应从“数”与“形”两个角度来把握二次函数和幂函数的图象和性质,重点解决二次函数在闭区间上的最值问题,此类问题经常与其它知识结合命题,应注重分类讨论思想与数形结合思想的综合应用. 基础梳理 1.二次函数的基本知识 (1)函数f (x )=ax 2+bx +c (a ≠0)叫做二次函数,它的定义域是R . (2)二次函数f (x )=ax 2+bx +c (a ≠0)的图象是一条抛物线,对称轴方程为x = -b 2a ,顶点坐标是? ?? ?? -b 2a , 4ac -b 2 4a . ①当a >0时,抛物线开口向上,函数在? ????-∞,-b 2a 上递减,在?????? -b 2a ,+∞上递增,当x =-b 2a 时,f (x )min =4ac -b 2 4a ; ②当a <0时,抛物线开口向下,函数在? ????-∞,-b 2a 上递增,在?????? -b 2a ,+∞上递减,当x =-b 2a 时,f (x )max =4ac -b 2 4a . ③二次函数f (x )=ax 2+bx +c (a ≠0)当Δ=b 2-4ac >0时,图象与x 轴有两个交点M 1(x 1,0)、M 2(x 2,0),|M 1M 2|=|x 1-x 2|=Δ |a | . (3)二次函数的解析式的三种形式: ①一般式:f (x )=ax 2+bx +c (a ≠0); ②顶点式:f (x )=a (x -m )2+h (a ≠0); ③两根式:f (x )=a (x -x 1)(x -x 2)(a ≠0). 2.幂函数

高三数学专题复习总结-(幂函数)经典

高三数学专题复习总结-(幂函数)经典 1 / 1 2 高三数学专题复习 (幂函数)经典 1.设? ????? --∈3,2,1,21,1,2α,则使幂函数a y x =为奇函数且在(0,)+∞上单调递增的a 值的个数为( ) A .0 B .1 C .2 D .3 2.设11,0,,1,2,32a ? ?∈-???? ,则使函数a y x =的定义域为R 且为奇函数的所有a 的值有( ) A .1个 B .2个 C .3个 D .4个 3.对于幂函数f(x)=45x ,若0<x 1<x 2,则12( )2x x f +,12()()2 f x f x +的大小关系是( ) A. 12( )2x x f +>12()()2f x f x + B. 12()2x x f +<12()()2 f x f x + C. 12()2x x f +=12()()2 f x f x + D. 无法确定 4.设函数y =x 3与21()2x y -=的图像的交点为(x 0,y 0),则x 0所在的区间是( ) A .(0,1) B .(1,2) C .(2,3) D .(3,4) 5.下列说法正确的是( ) A .幂函数的图像恒过(0,0)点 B .指数函数的图像恒过(1,0)点 C .对数函数的图像恒在y 轴右侧 D .幂函数的图像恒在x 轴上方 6.若0>>n m ,则下列结论正确的是( ) A. 22m n < B. 22 m n < C. n m 22log log > D. 11m n > 7.若函数32)32()(-+=m x m x f 是幂函数,则m 的值为( ) A .1- B .0 C .1 D .2 8.幂函数y f x =()的图象经过点1 42 (,),则(2)f ( ) A. 14 B. 12 - 9.幂函数35m y x -=,其中m N ∈,且在(0,)+∞上是减函数,又()()f x f x -=, 则m =( ) A.0 B.1 C.2 D.3 10.已知幂函数()m f x x =的图象经过点(4,2),则(16)f =( )

高中数学圆的方程典型题型归纳总结

高中数学圆的方程典型题型归纳总结 类型一:巧用圆系求圆的过程 在解析几何中,符合特定条件的某些圆构成一个圆系,一个圆系所具有的共同形式的方程称为圆系方程。常用的圆系方程有如下几种: ⑴以为圆心的同心圆系方程 ⑵过直线与圆的交点的圆系方程 ⑶过两圆和圆的交点的圆系方程 此圆系方程中不包含圆,直接应用该圆系方程,必须检验圆是否满足题意,谨防漏解。 当时,得到两圆公共弦所在直线方程 例1:已知圆与直线相交于两点,为坐标原点,若,求实数的值。 分析:此题最易想到设出,由得到,利用设而不求的思想,联立方程,由根与系数关系得出关于的方程,最后验证得解。倘若充分挖掘本题的几何关系,不难得出在以为直径的圆上。而刚好为直线与圆的交点,选取过直线与圆交点的圆系方程,可极大地简化运算过程。

解:过直线与圆的交点的圆系方程为: ,即 ………………….① 依题意,在以为直径的圆上,则圆心()显然在直线上,则 ,解之可得 又满足方程①,则故 例2:求过两圆和的交点且面积最小的圆的方程。 解:圆和的公共弦方程为 ,即 过直线与圆的交点的圆系方程为 ,即 依题意,欲使所求圆面积最小,只需圆半径最小,则两圆的公共弦必为所求圆的直径,圆心 必在公共弦所在直线上。即,则代回圆系方程得所求圆方程 例3:求证:m为任意实数时,直线(m-1)x+(2m-1)y=m-5恒过一定点P,并求P点坐标。分析:不论m为何实数时,直线恒过定点,因此,这个定点就一定是直线系中任意两直线的交点。

解:由原方程得 m(x +2y -1)-(x +y -5)=0,① 即 ?? ?-==???=-+=-+4y 9 x 05y x 01y 2x 解得, ∴直线过定点P (9,-4) 注:方程①可看作经过两直线交点的直线系。 例4已知圆C :(x -1)2+(y -2)2=25,直线l :(2m +1)x +(m +1)y -7m -4=0(m ∈R ). (1)证明:不论m 取什么实数,直线l 与圆恒交于两点; (2)求直线被圆C 截得的弦长最小时l 的方程. 剖析:直线过定点,而该定点在圆内,此题便可解得. (1)证明:l 的方程(x +y -4)+m (2x +y -7)=0. 2x +y -7=0, x =3, x +y -4=0, y =1, 即l 恒过定点A (3,1). ∵圆心C (1,2),|AC |=5<5(半径), ∴点A 在圆C 内,从而直线l 恒与圆C 相交于两点. (2)解:弦长最小时,l ⊥AC ,由k AC =-2 1 , ∴l 的方程为2x -y -5=0. 评述:若定点A 在圆外,要使直线与圆相交则需要什么条件呢? 思考讨论 类型二:直线与圆的位置关系 ∵m ∈R ,∴ 得

高中数学幂函数考点及经典例题题型突破

幂函数、二次函数 考纲解读 1.结合函数y =x ,y =x 2,y =x 3,y =1x ,y =x 1 2的图象解决简单的幂函数问题; 2.用待定系数法求二次函数解析式,结合图象解决二次函数问题; 3.用二次函数、方程、不等式之间的关系解决综合问题. [基础梳理] 1.幂函数 (1)定义:一般地,函数y =x α叫作幂函数,其中底数x 是自变量,α是常数. (2)幂函数的图象比较: 2.二次函数 (1)解析式: 一般式:f (x )=ax 2+bx +c (a ≠0). 顶点式:f (x )=a (x -h )2+k (a ≠0). 两根式:f (x )=a (x -x 1)(x -x 2)(a ≠0). (2)图象与性质: (-∞,+∞) (-∞,+∞)

[三基自测] 1.已知幂函数f (x )=k ·x α的图象过点????12,2 2,则k +α=( ) A.1 2 B .1 C.32 D .2 答案:C 2.已知函数f (x )=x 2+4ax 在区间(-∞,6)内单调递减,则a 的取值范围是( ) A .a ≥3 B .a ≤3 C .a <-3 D .a ≤-3 答案:D 3.幂函数f (x )=xa 2-10a +23(a ∈Z )为偶函数,且f (x )在区间(0,+∞)上是减函数,则a 等于( ) A .3 B .4 C .5 D .6 答案:C 4.(必修1·第一章复习参考题改编)若g (x )=x 2+ax +b ,则g (2)与1 2[g (1)+g (3)]的大小关 系为________. 答案:g (2)<1 2 [g (1)+g (3)] 5.(2017·高考全国卷Ⅰ改编)函数y =x 2+1 x 的增区间为__________. 答案:? ?? ??132,+∞ [考点例题] 考点一 幂函数的图象和性质|易错突破 [例1] (1)已知幂函数f (x )=,若f (a +1)

《椭圆》方程典型例题20例(含标准答案)

《椭圆》方程典型例题20例 典型例题一 例1 椭圆的一个顶点为()02,A , 其长轴长是短轴长的2倍,求椭圆的标准方程. 分析:题目没有指出焦点的位置,要考虑两种位置. 解:(1)当()02,A 为长轴端点时,2=a ,1=b , 椭圆的标准方程为:11 42 2=+ y x ; (2)当()02,A 为短轴端点时,2=b ,4=a , 椭圆的标准方程为:116 42 2=+ y x ; 说明:椭圆的标准方程有两个,给出一个顶点的坐标和对称轴的位置,是不能确定椭圆的横竖的,因而要考虑两种情况. 典型例题二 例2 一个椭圆的焦点将其准线间的距离三等分,求椭圆的离心率. 解:3 1 222??=c a c ∴223a c =, ∴3 331- = e . 说明:求椭圆的离心率问题,通常有两种处理方法,一是求a ,求c ,再求比.二是列含a 和c 的齐次方程,再化含e 的方程,解方程即可. 典型例题三 例3 已知中心在原点,焦点在x 轴上的椭圆与直线01=-+y x 交于A 、B 两点, M 为AB 中点,OM 的斜率为0.25,椭圆的短轴长为2,求椭圆的方程. 解:由题意,设椭圆方程为1222 =+y a x , 由?????=+=-+1012 22y a x y x ,得()021222=-+x a x a , ∴22 2112a a x x x M +=+=,2111a x y M M +=-=,

4 1 12=== a x y k M M OM ,∴42=a , ∴14 22 =+y x 为所求. 说明:(1)此题求椭圆方程采用的是待定系数法;(2)直线与曲线的综合问题,经常要借用根与系数的关系,来解决弦长、弦中点、弦斜率问题. 典型例题四 例4椭圆19252 2=+y x 上不同三点()11y x A ,,?? ? ??594,B ,()22y x C ,与焦点()04,F 的 距离成等差数列. (1)求证821=+x x ; (2)若线段AC 的垂直平分线与x 轴的交点为T ,求直线BT 的斜率k . 证明:(1)由椭圆方程知5=a ,3=b ,4=c . 由圆锥曲线的统一定义知: a c x c a AF =-12 , ∴ 115 4 5x ex a AF -=-=. 同理 25 4 5x CF - =. ∵ BF CF AF 2=+,且5 9= BF , ∴ 51854554521=??? ??-+??? ? ? -x x , 即 821=+x x . (2)因为线段AC 的中点为??? ? ?+2421y y ,,所以它的垂直平分线方程为 ()422 12 121---= +- x y y x x y y y . 又∵点T 在x 轴上,设其坐标为()00,x ,代入上式,得 () 2122 21024x x y y x --=-

圆方程知识点总结典型例题

圆与方程 1. 圆的标准方程:以点),(b a C 为圆心,r 为半径的圆的标准方程是222)()(r b y a x =-+-. 特例:圆心在坐标原点,半径为r 的圆的方程是:222r y x =+. 2. 点与圆的位置关系: (1). 设点到圆心的距离为d ,圆半径为r : a.点在圆内 d <r ; b.点在圆上 d=r ; c.点在圆外 d >r (2). 给定点),(00y x M 及圆222)()(:r b y a x C =-+-. ①M 在圆C 内22020)()(r b y a x <-+-? ②M 在圆C 上22020)()r b y a x =-+-? ( ③M 在圆C 外22020)()(r b y a x >-+-? (3)涉及最值: ① 圆外一点B ,圆上一动点P ,讨论PB 的最值 min PB BN BC r ==- max PB BM BC r ==+ ② 圆内一点A ,圆上一动点P ,讨论PA 的最值 min PA AN r AC ==- max PA AM r AC ==+ 思考:过此A 点作最短的弦(此弦垂直AC ) 3. 圆的一般方程:022=++++F Ey Dx y x .

(1) 当042 2 >-+F E D 时,方程表示一个圆,其中圆心??? ??--2,2 E D C ,半径2 422F E D r -+= . (2) 当0422=-+F E D 时,方程表示一个点??? ??-- 2,2 E D . (3) 当0422<-+ F E D 时,方程不表示任何图形. 注:方程022=+++++F Ey Dx Cy Bxy Ax 表示圆的充要条件是:0=B 且0≠=C A 且 0422φAF E D -+. 4. 直线与圆的位置关系: 直线0=++C By Ax 与圆222)()(r b y a x =-+- 圆心到直线的距离2 2 B A C Bb Aa d +++= 1)无交点直线与圆相离??>r d ; 2)只有一个交点直线与圆相切??=r d ; 3)有两个交点直线与圆相交???时,直线与圆有2个交点,,直线与圆相交; (2)当0=?时,直线与圆只有1个交点,直线与圆相切; (3)当0

相关文档
最新文档