(整理)100t水泥罐验算.

(整理)100t水泥罐验算.
(整理)100t水泥罐验算.

水泥罐矩形板式基础计算书计算依据:

1、《混凝土结构设计规范》GB50010-2010

2、《建筑地基基础设计规范》GB50007-2011

一、水泥罐属性

二、水泥罐荷载

1、水泥罐传递至基础荷载标准值

2、水泥罐传递至基础荷载设计值

三、基础验算

矩形板式基础布置图

基础及其上土的自重荷载标准值:

G k=blhγc=4×4×1.25×25=500kN

基础及其上土的自重荷载设计值:G=1.35G k=1.35×500=675kN

荷载效应标准组合时,平行基础边长方向受力:

M k''=235.2kN·m

F vk''=F vk'/1.2=16.8/1.2=14kN

荷载效应基本组合时,平行基础边长方向受力:

M''=317.52kN·m

F v''=F v'/1.2=22.68/1.2=18.9kN

基础长宽比:l/b=4/4=1≤1.1,基础计算形式为方形基础。

W x=lb2/6=4×42/6=10.67m3

W y=bl2/6=4×42/6=10.67m3

相应于荷载效应标准组合时,同时作用于基础X、Y方向的倾覆力矩:M kx=M k b/(b2+l2)0.5=235.2×4/(42+42)0.5=166.31kN·m

M ky=M k l/(b2+l2)0.5=235.2×4/(42+42)0.5=166.31kN·m

1、偏心距验算

满罐时:相应于荷载效应标准组合时,基础边缘的最小压力值:

P kmin=(F k+G k)/A-M kx/W x-M ky/W y

=(1150+500)/16-166.31/10.67-166.31/10.67=71.94kPa≥0偏心荷载合力作用点在核心区内。

空罐时,相应于荷载效应标准组合时,基础边缘的最小压力值:P kmin=(F k+G k)/A-M kx/W x-M ky/W y

(150+500)/16-166.31/10.67-166.31/10.67=9.45kPa≥0

=

偏心荷载合力作用点在核心区内。

2、基础底面压力计算

满罐时:

P kmin=71.94kPa

P kmax=(F k+G k)/A+M kx/W x+M ky/W y

=(1150+500)/16+166.31/10.67+166.31/10.67=134.31kPa

空罐时:

P kmin=9.45kPa

P kmax=(F k+G k)/A+M kx/W x+M ky/W y

=(150+500)/16+166.31/10.67+166.31/10.67=71.80kPa

3、基础轴心荷载作用应力

P k=(F k+G k)/(lb)=(1150+500)/(4×4)=103.12kN/m2

4、基础底面压力验算

(1)、修正后地基承载力特征值

f a=f ak+ηbγ(b-3)+ηdγm(d-0.5)

=100.00+0.30×19.00×(4.00-3)+1.60×19.00×(1.25-0.5)=128.50kPa (2)、轴心作用时地基承载力验算

P k=103.12kPa≤f a=128.5kPa

满足要求!

(3)、偏心作用时地基承载力验算

P kmax=134.31kPa≤1.2f a=1.2×128.5=154.2kPa

满足要求!

5、基础抗剪验算

基础有效高度:h0=h-δ=1250-(40+20/2)=1200mm

X轴方向净反力:

P xmin=γ(F k/A-(M k''+F vk''h)/W x)=1.35×(1150.000/16.000-(235.200+14.000×1.250)/10.667)=65 .049kN/m2

P xmax=γ(F k/A+(M k''+F vk''h)/W x)=1.35×(1150.000/16.000+(235.200+14.000×1.250)/10.667)=1 29.014kN/m2

P1x=P xmax-((b-B)/2)(P xmax-P xmin)/b=129.014-((4.000-2.1210)/2)(129.014-65.049)/4.000=113.9 9kN/m2

Y轴方向净反力:

P ymin=γ(F k/A-(M k''+F vk''h)/W y)=1.35×(1150.000/16.000-(235.200+14.000×1.250)/10.667)=65 .049kN/m2

P ymax=γ(F k/A+(M k''+F vk''h)/W y)=1.35×(1150.000/16.000+(235.200+14.000×1.250)/10.667)=1 29.014kN/m2

P1y=P ymax-((l-B)/2)(P ymax-P ymin)/l=129.014-((4.000-2.1210)/2)(129.014-65.049)/4.000=113.99 kN/m2

基底平均压力设计值:

p x=(P xmax+P1x)/2=(129.01+113.99)/2=121.5kN/m2

p y=(P ymax+P1y)/2=(129.01+113.99)/2=121.5kPa

基础所受剪力:

V x=|p x|(b-B)l/2=121.5×(4-2.121)×4/2=456.597kN

V y=|p y|(l-B)b/2=121.5×(4-2.121)×4/2=456.597kN

X轴方向抗剪:

h0/l=1200/4000=0.3≤4

0.25βc f c lh0=0.25×1×11.9×4000×1200=14280kN≥V x=456.597kN

满足要求!

Y轴方向抗剪:

h0/b=1200/4000=0.3≤4

0.25βc f c bh0=0.25×1×11.9×4000×1200=14280kN≥V y=456.597kN

满足要求!

6、软弱下卧层验算

基础底面处土的自重压力值:p c=dγm=1.25×19=23.75kPa

下卧层顶面处附加压力值:

p z=lb(P k-p c)/((b+2ztanθ)(l+2ztanθ))

=(4×4×(103.12-23.75))/((4+2×1×tan0°)×(4+2×1×tan0°))=79.38kPa

软弱下卧层顶面处土的自重压力值:p cz=zγ=1×19=19kPa

软弱下卧层顶面处修正后地基承载力特征值

f az=f azk+ηbγ(b-3)+ηdγm(d+z-0.5)

=100.00+0.30×19.00×(4.00-3)+1.60×19.00×(1.00+1.25-0.5)=158.90kPa 作用在软弱下卧层顶面处总压力:p z+p cz=79.38+19=98.38kPa≤f az=158.9kPa 满足要求!

7、地基变形验算

倾斜率:tanθ=|S1-S2|/b'=|30-10|/4000=0.005>0.001

不满足要求!请增大基础尺寸。

四、基础配筋验算

1、基础弯距计算

基础X向弯矩:

MⅠ=(b-B)2p x l/8=(4-2.121)2×121.5×4/8=214.486kN·m

基础Y向弯矩:

MⅡ=(l-B)2p y b/8=(4-2.121)2×121.5×4/8=214.486kN·m

2、基础配筋计算

(1)、底面长向配筋面积

αS1=|MⅡ|/(α1f c bh02)=214.486×106/(1×11.9×4000×12002)=0.003

ζ1=1-(1-2αS1)0.5=1-(1-2×0.003)0.5=0.003

γS1=1-ζ1/2=1-0.003/2=0.9985

A S1=|MⅡ|/(γS1h0f y1)=214.486×106/(0.9985×1200×300)=597mm2

基础底需要配筋:A1=max(597,ρbh0)=max(597,0.0015×4000×1200)=7200mm2 基础底长向实际配筋:A s1'=7292mm2≥A1=7200mm2

满足要求!

(2)、底面短向配筋面积

αS2=|MⅠ|/(α1f c lh02)=214.486×106/(1×11.9×4000×12002)=0.003

ζ2=1-(1-2αS2)0.5=1-(1-2×0.003)0.5=0.003

γS2=1-ζ2/2=1-0.001/2=0.9985

A S2=|MⅠ|/(γS2h0f y2)=214.486×106/(0.9985×1200×300)=597mm2

基础底需要配筋:A2=max(597,ρlh0)=max(597,0.0015×4000×1200)=7200mm2 基础底短向实际配筋:A S2'=7292mm2≥A2=7200mm2

满足要求!

(3)、顶面长向配筋面积

基础顶长向实际配筋:A S3'=4220mm2≥0.5A S1'=0.5×7292=3646mm2

满足要求!

(4)、顶面短向配筋面积

基础顶短向实际配筋:A S4'=4220mm2≥0.5A S2'=0.5×7292=3646mm2

满足要求!

(5)、基础竖向连接筋配筋面积

基础竖向连接筋为双向Φ10@500。

五、配筋示意图

矩形板式基础配筋图

结论和建议:

1.地基变形验算,不满足要求!请增大基础尺寸。

水泥罐基础计算书

水泥罐及粉煤灰罐基础计算书 1、千灯湖站地层情况 自上而下分布如下:杂填土:0~;粉细砂层:0~;粉砂岩:0~。 该地层经过了φ550@400 深约14m的深层搅拌桩加固。 2、荷载分析 静荷载:支架;水泥罐装水泥60t; 粉煤灰可装40T。 动荷载:施工不考虑; 风荷载:根据气象资料,按10级台风计算。 3、水泥罐及粉煤灰罐基础设计 承台砼为C30,承台尺寸为:8900mm×4400mm×600mm。 4、受力及变形验算 (1)基础竖向承载力验算 静荷载: V=405+1000=1405kN G =×××25= 式中 V—为水泥罐自重 水泥罐空壳及支架自重,水泥罐可装60T水泥,粉煤灰可装40T; G—为基础重量; 深层搅拌桩复合地基承载力: f——复合地基承载力特征值(kPa) spk m——面积置换率,桩的截面积除以设计要求每一根桩所承担的处理面积;

a R ——单桩竖向承载力特征值(KN ) p A ——桩的截面积(2m ) β——桩间土承载力折减系数,当桩端土未经修正的承载力特征值大于桩周土的承载力特征值的平均值时,可取~,差值大时取低值;当桩端土未经修正的承载力特征值小于或等于桩周土的承载力特征值的平均值时,可取~,差值大时或设置褥垫层时均取高值; 桩竖向承载力特征值a R 可按下列二式进行估算,由水泥强度确定的a R 宜大于地基抗力所提供的a R 。 1P n a p si i p i R u q l q A α==+∑ ① a cu P R f A η= ② 式中: p u ——桩的周长(m ); n ——桩长范围内的土层数; si q ——桩周第i 层土的侧阻力特征值,淤泥可取4~7kpa ;淤泥质土可取6~ 12kpa ;软塑状的黏性土可取10~15kpa ;对可塑状的黏性土、稍密 中粗砂可取12~18kpa ;对稍密粉土和稍密的粉细砂可取8~15kpa ; p q ——桩端地基土未经修正的承载力特征值(kpa ),可按现行广东省标准《建 筑地基基础设计规范》DBJ-15-31有关规定取值; i l ——第i 层土层的厚度(m ); α——桩端天然地基土的承载力折减系数,可取~;承载力高时取低值; η——桩身水泥土强度折减系数; cu f ——桩身水泥标准抗压强度;

拌合楼基础验算修终(DOC)

拌和楼、水泥罐基础验算 一、基础布置 1、搅拌主楼 主楼和水泥罐基础基坑共用一个,采用一体开挖成:29x18.5x2.8m基坑。其中主楼两处基础顶受力600KN,柱高0.43m,横截面尺寸1.1m×0.8m,预埋钢板H20mm×600mm×900mm;四处基础顶受力300KN,柱高0.43m,横截面尺寸0.8m×0.8m,预埋钢板H20mm×600mm×600mm。 2、水泥罐基础 水泥罐三十二处基础受力20KN,柱高1.2m,横截面尺寸0.8m×0.8m,预埋钢板H20mm×600mm ×600mm。 3、配料机基础 配料机基础(共20个)单墩受力P2=200KN; 预埋钢板12mm×400mm×400mm;墩柱高0.80m,设横截面尺寸0.8m× 0.8m。 4、传送带机基础 斜皮带机基础(共28个)单墩受力P3=50KN; 预埋钢板12mm×400mm×400mm; 12个设横截面尺寸1.65m×0.5m,设基础高0.50m的条形基础,4个横截面尺寸0.8m×0.8m,预埋钢板12mm×400mm×400mm。 5、控制室 控制室八处基础受20KN,柱高0.60m,横截面尺寸0.4m×0.5m,预埋钢板H12mm×400mm×400mm;

二、验算资料 1、抗风等级: 风力10级左右,最大风速达34m/s。 2、扩大基础尺寸: 扩大基础尺寸:长29 m、宽18.5 m、高2.8m,缺口为4.5x4m的基础,厚度0.8m,采用0.2m 砂垫层,基底采用Φ165mmx6mm钢管桩加固,钢管桩深入扩大基础里0.2m,下层基础1.5x1.5x1.3m。(详见上示意图) 3、设计荷载: ⑴水泥罐自重装满水泥180Tx8=1440T; ⑵拌和楼主楼自重30Tx4+60Tx2=240T; ⑶控制室自重2Tx8=16T; ⑷C25钢筋混凝土扩大基础自重 ((29x18.5)-(4x4.5))x0.8x2.6T/m3=1078.5T; ⑸下层基础墩一共38个自重1.5x1.5x1.8x2.6x38(水泥罐32个、拌和楼6个)=400T; ⑹砼基础与水泥罐、主楼、控制室全部自重=14400+2400+160+10785+4000=31745KN。

100吨水泥粉罐抗风强度计算书

1、校核依据 《建筑结构荷载规》 GB50009-2012 《钢结构设计规》 GB50017-2003 2、主要参数 2.1 设计参数 粉罐直径:φ2900mm; 粉罐高度:13500mm(不含底锥); 底部支腿高度:7230mm; 上栏杆高度:1000mm; 罐体板材材料:δ6钢板; 支腿材料:φ219mm×6焊接管; 支腿横、斜撑材料:10#槽钢。 2.2 环境参数 风速:70m/s(十二级风) 3、基本载荷 =9200 Kg=92000N 3.1 粉罐自重: G 1 水泥重量:G =100000 Kg=1000000N 2 3.2 风载荷P W P CK qA h W P ---- 作用在水泥罐上的风载荷,N; W C ---- 风力系数, C=1.3; υ---- 风速,υ=70m/s K ---- 风压高度变化系数, h

q ---- 计算风压2 /m N, q=0.613υ2 A---- 水泥罐垂直于风向的迎风面积,2m P 1 W =CK h qA=0.613 CK h υ2A C=1.3 K h =1.39 υ=70 A=1㎡,代入上式得: P 1 W =5428N P 2 W =CK h qA=0.613 CK h υ2A C=1.3 K h =1.23 υ=70 A=60㎡,代入上式得: P 2 W =288175N P 3 W =CK h qA=0.613 CK h υ2A C=1.3 K h =1 υ=70 A=4㎡,代入上式得: P 3 W =15620N 4、强度计算 水泥罐受力部分主要为罐体底部支腿,支腿竖向承受水泥粉罐自重和散装水泥的重量,同时横向承受罐体受风的侧压力而对支腿产生的拉力。检算过程依据《起重机设计手册》第三章中风载荷计算的相关容。 4.1 支腿强度计算 支腿强度计算分两种情况进行,第一种风正面吹向水泥粉罐,即方向垂直与支腿连接线;第二种风斜面吹向水泥粉罐,即支腿对角线方向。 4.1.1 风向垂直于支腿连接线

水泥罐安装方案

水泥罐安装方案
中国建筑一局(集团)有限公司 东莞轨道交通 R2 线 2311 标项目经理部

一、编制依据 1、《水泥机械设备安装工程施工及验收规范》(JCJ03-90); 2、《建筑机械使用安全技术规程》(JGJ33-2001); 3、《现场设备、工业管道焊接工程施工规范》(GB50236-2011); 4、R2 线施工图设计展览中心站~虎门火车站区间第一册隧道平纵断面及特殊地段处
理措施 CAD(中铁二院) 5、广州市祥达金属制品有限公司提供的水泥罐参数资料。
二、编制范围 本方案适用于东莞轨道交通 R2 线 2311 标展~虎区间盾构到达端虎门火车站北端头地
层加固水泥罐安装施工。 三、施工部署
(一)施工流程
施工准备
基础施工
罐体安装
图 3-1 水泥罐安装施工流程图
检验验收
(二)水泥罐规格
基础槽开挖
根据本工程结构狭长、工点多的特点,采用 30 吨水泥罐,水泥罐形式见投下入图使。水用泥 埋件加工
罐基础采用 C30 混凝土,基础中央安装 14mm 厚预埋钢板,基础大样图详见下图。
四、基础承载力及抗风验算 混凝土浇筑
1、地基基础现场情况
地质报告标明反映持力层地养基护承载力为 120Kpa,无回填土。 2、水泥罐基础尺寸
根据罐体确定为 4 个 1000*1000*1000 钢筋混凝土基础,按照此尺寸检验承载力。
(1)竖向荷载计算
作用在基础顶面的荷载有竖向力、水平剪力、弯矩,统一按照中心受压基础检算。
荷载计算:
Fk=G 罐+G 水泥 =2t+30t=32t=320KN G 罐—罐体重量,
G 水泥—罐储存水泥重量
最大应力:320/4=80Kpa
GK =基础自重=4*=10t=100KN

水泥罐基础验算

水泥罐基础验算 公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

集料拌和站基础及立柱设计计算书 汉十铁路客运专线HSSG-6标段一工区砼拌和站设置两台HZS-180型拌合机,每台拌合机配备6个罐,共4个水泥罐,每个拌和站的两个水泥罐基础联体设置。 一、设计资料 (1)每个水泥罐自重8t,装满水泥重100t,合计108t;水泥罐直径。水泥罐基础采用C25钢筋砼条形承台基础满足两个水泥罐同时安装。6个罐放置在圆环形基础上,圆环内径7米,外径米,基础高,外露。基础采用φ18@300mm×300mm上下两层钢筋网片,架立筋采用φ18@450mm×450mm钢筋双排双向布置,基础顶预埋地脚钢板与水泥罐支腿满焊。 (2)水泥罐总高米,罐高米,罐径米,柱高5m,柱子为4根正方形布置,柱子间距为米,柱子材料为厚度8mm的钢管柱。 施工前先对地基进行处理,处理后现场检测,测得地基承载力超过350kpa。 二、水泥罐基础计算书 1、计算基本参数 水泥罐自重8t,装满水泥共重108t。 水泥罐总高米,罐高米,柱高5m。 2、地基承载力计算 水泥罐基础要求的承载力

1)砼基础面积:S=; 砼体积:V=×=; 底座自重:Gd=×2500×=(砼自重按2500kg/m3); 2)装满水泥的水泥罐自重:Gsz=6×108×=; 3)总自重为:Gz=Gd+Gsz=+=; 4)基底承载力:P=Gz/S==102kpa; 5) 基底经处理后检测的承载力P’≥140kpa; 6) P≤P’ 经验算,地基承载力满足要求。 水泥罐基础满足地基承载力要求,则主机也同时满足承载力要求。 3、抗倾覆计算 抗倾覆计算以空罐计算,空罐计算满足则抗倾覆满足。 由于水泥搅拌机属于受风敏感且筒体高度较大,为确保筒体和施工人员的安全,根据《高耸结构设计规范》(GBJ135-2006以下简称高规),应考虑风荷载对结构的影响。 1)风荷载强度计算:跟全国风压表,枣阳地区最大风荷载取值为㎡。 2)风力计算: 平均作用高度为:H=2+5=; 单根水泥罐的风力大小为F=A×W=××=; 1个水泥罐的叠加倾覆力矩

100t水泥罐基础设计计算

3.8m*3.8m*120k n/m 2 =1732.8kn J01 地面标高3.5m ① 素填土 0.88m J02 地面标高3.5m ① 素填土 0.44m J03 地面标高3.5m ① 素填土 0.41m ③ 淤泥质粉质粘土 ③ 淤泥质粉质粘土 ③ 淤泥质粉质粘土 -5.79m 粉土 loot 水泥罐基础设计计算 1、 水泥罐自重 G1: 200kn (20t)估 2、 水泥自重 G2: 1000kn (100t) 3、 基础承台自重 G3: 3.8m*3.8m*1.2m*26=451kn 4、荷载组合:(G1+G2+G3)*1.2 (分项系数)=1981.2kn 、受力分析 1、承台地基承载力:按12t/m 2估算,承台地基承载力为 2、桩承载力需达到 1981.2k n-1732.8k n=248.4kn 三、单桩承载力计算 1、土层极限侧摩阻力系数 -1.72m -4.76m ④ 粉土 粉土 根据上述柱状图,打入桩范围内平均层厚:素填土 2.92m 、淤泥质粉质粘土 4.67m 、 荷载

粉土1.41m。打入桩的极限侧摩阻力标准值为:20Kpa、14Kpa、30Kpa,故打入桩桩身范围内(9m) 土层平均极限侧摩阻力为:(2.92m*20+4.67m*14+1.41m*30) /9m=18.45Kpa 2、单根桩承载力计算 单桩的容许承载力为:[P]=1/1.5*( U* a *H* T)(不计桩端承载力) 式中:[P]------沉桩容许承载力 U ----- 桩周长, a——震动沉桩影响系数,锤击沉桩取1.0 H——桩入土深度,9.0m T -----桩侧土的极限摩阻力,取18.45Kpa; ①如采用直径 273钢管桩,则单桩的 容许承载力为:[P]=1/1.5* ( U* a *H* T) =1/1.5*0.273*3.14*1.0*9*18.45=94.89kn,需打入的根数为248.4kn/94.89kn=2.61 根,取3 根, 布置如图: 3.8m ②如采用直径 630钢管桩,则单桩的 容许承载力为:[P]=1/1.5* ( U* a *H* T)

120吨水泥粉罐抗风强度计算书

青岛市红岛—胶南城际(井冈山路—大珠山段) 轨道交通工程 朝两区间1号竖井水泥罐抗风强度计算 编制: 审核: 批准: 中国交建青岛轨道交通R3线工程五工区项目经理部 二○一四年十二月十六日

1、校核依据 《建筑结构荷载规范》 GB50009-2012 《钢结构设计规范》 GB50017-2003 2、主要参数 2.1 设计参数 粉罐直径:φ2900mm; 粉罐高度:13500mm(不含底锥); 底部支腿高度:7230mm; 上栏杆高度:1000mm; 罐体板材材料:δ6钢板; 支腿材料:φ219mm×6焊接管; 支腿横、斜撑材料:10#槽钢。 2.2 环境参数 风速:70m/s(十二级风) 3、基本载荷 =9200 Kg=92000N 3.1 粉罐自重: G 1 水泥重量: G =120000 Kg=1200000N 2 3.2 风载荷P W P CK qA h W P ---- 作用在水泥罐上的风载荷,N; W C ---- 风力系数, C=1.3; υ---- 风速,υ=70m/s K ---- 风压高度变化系数, h

q ---- 计算风压2 /m N, q=0.613υ2 A---- 水泥罐垂直于风向的迎风面积,2m P 1 W =CK h qA=0.613 CK h υ2A C=1.3 K h =1.39 υ=70 A=1㎡,代入上式得: P 1 W =5428N P 2 W =CK h qA=0.613 CK h υ2A C=1.3 K h =1.23 υ=70 A=60㎡,代入上式得: P 2 W =288175N P 3 W =CK h qA=0.613 CK h υ2A C=1.3 K h =1 υ=70 A=4㎡,代入上式得: P 3 W =15620N 4、强度计算 水泥罐受力部分主要为罐体底部支腿,支腿竖向承受水泥粉罐自重和散装水泥的重量,同时横向承受罐体受风的侧压力而对支腿产生的拉力。检算过程依据《起重机设计手册》第三章中风载荷计算的相关内容。 4.1 支腿强度计算 支腿强度计算分两种情况进行,第一种风正面吹向水泥粉罐,即方向垂直与支腿连接线;第二种风斜面吹向水泥粉罐,即支腿对角线方向。 4.1.1 风向垂直于支腿连接线

水泥罐基础承载力验算

大沽河特大桥水泥罐基础承载力验算 一、工程简介 大沽河特大桥中心桩号为K13+040,大沽河特大桥起讫桩号为k12+095.5~k13+984.5,桥全长1889m。本桥跨径布置为47×40m,共12联,桥跨组合为11×(4×40)+1×(3×40)m,交角1000角,桥净宽2×12m。上部结构采用跨径40装配式后张法预应力简支转连续箱梁,半幅4片,共376片箱梁。 我部拟在K14+295~K14+405路基左侧布置两个拌和站,拌和站水泥罐满装水泥100吨,水泥罐自重10吨。 水泥罐基础采用扩大基础,扩大基础设计为4.2*4.2*0.6 m3的单片钢筋网片基础,扩大基础上布置四个立柱钢筋混凝土基础,立柱顶预埋与水泥罐相连接的钢板。 青岛属于海洋性季风气候,冬季受西伯利亚地区移来的冷高压影响,夏季受西太平洋副热带高压控制。两者为不同属性的半永久性高压。3月中旬开始,由于冷高压在海上停留,维持稳定的东南流场,东南风显占优势。仲秋开始,极地冷空气活跃,北向风重占优势。受地形影响,我市终年多东南和西北两个风向。年平均风速4.9m/s,各月平均风速以3月最强为5.6m/s,9月最弱为4.1m/s。设计水泥罐基础时风速考虑为20 m/s。

二、计算依据 (1)《公路桥涵施工技术规范》(JTJ041-2000); (2)《公路施工技术》人民交通出版社 2003; (3)《路桥施工计算手册》人民交通出版社 2001; 二、承载力验算 (1)水泥罐满装重量及自重:G1=1100KN (2)水泥罐底立柱混凝土及钢筋重量: G2=0.6m*0.6m *1.5m*4*26KN/ m3+2KN =58.2 KN (3)水泥罐扩大基础混凝土及钢筋重量: G3=4.2m*4.2 m *0.6m*26KN/m3+2.6KN =278 KN (4)风速作用力:F=v2/1600*8*2.2=202/1600*8*2.2=44 KN (5)荷载组合:按照地基承载能力极限状态组合原则,基本组合为:G=G1+G2+G3 =1100+58.2+278=1436.2KN (6)基础底面积:S=4.2*4.2=17.64m2 (7)基础底面的抵抗矩: W=1/6bl2=1/6*4.2*4.22=12.348 m3 (8)作用在基础底面中心的弯矩:M=44KN*6.1m=268.4 KN〃m (9)基底压力P max=G/S+M/W =1436.2KN/17.64 m2+268.4KN〃m /12.348 m3=103.2KPa (10)采用轻型触探仪检测路基承载力为150KPa,后附承载力检测试验资料。 (11)Pく150KPa,故地基承载力符合要求.

150吨水泥罐基础设计计算书教案资料

一、水泥罐基础设计 盾构区间砂浆拌合站投入一个100t 型和一个150t 型两个水泥罐,100t 型水泥罐直径3m ,支腿邻边间距2.05m ;150t 型水泥罐直径3.3m ,支腿邻边间距2.2m 。根据以往盾构区间砂浆拌合站施工经验、现场地质条件以及基础受力验算,水泥罐基础采用C30钢筋砼条形承台基础满足两个水泥罐同时安装。基础尺寸8m (长)×4m (宽)×0.8m (高),基础埋深0.6m ,外漏0.2m ,承台基础采用Φ16@150mm ×150mm 上下两层钢筋网片,架立筋采用450mm ×450mm φ12钢筋双排双向布置,基础顶预埋地脚钢板与水泥罐支腿满焊。具体布置见下图: . 水泥罐平面位置示意图

二、水泥罐基础计算书 1、计算基本参数 水泥罐自重约20t ,水泥满装150t ,共重170t 。 水泥罐支腿高3m ,罐身高18m ,共高21m 。 单支基础4m ×4m ×0.8m 钢筋砼。 2、地基承载力计算 计算时按单个水泥罐计算 单个水泥罐基础要求的地基承载力为: δ1= 21700 +0.825106.3+20126.3k /m 0.1344 N MPa ?===? 根据资料可知:原设计路面按汽一超20级设计,汽一超20级后轴标准荷载为130KN,单轴轮胎和路面接触面积为:460mm ×200mm ,通过受力计算,其地基承载力为: δ2= ()1301000 1.413460200MPa ???=????? 因δ1≤δ2,即地基承载力复核要求。 3、抗倾覆计算 武汉地区按特大级风荷载考虑,风力水平 荷载为500N/m 2, 抗倾覆计算以空罐计算,空罐计算满足则抗倾覆满足。 水平风荷载产生的弯矩为: 0.5 3.3182+3=356.4KN M =???÷(18)?M 水泥罐空罐自重20t ,则基础及水泥罐总重为:

水泥罐抗风验算计算书

京新高速公路临河至白疙瘩段三标一分部(K532+150~K565+000段) 水泥罐抗风验算计算书 中国交通建设股份有限公司 京新高速公路LBAMSG-3项目总承包管理部第一项目部 二〇一五年四月

水泥罐抗风验算计算书 一、验算内容及验算依据 为保证我项目水泥罐安全性对我分部拌合站筒仓的抗风性能进行了验算。主要从拌合站筒仓支撑构件的强度、稳定性及基础的倾覆性进行了验算,并提出相应的抗风加固措施。 验算依据为:《公路桥涵设计通用规范》(JTG D60-2004)及《公路桥梁钢结构设计规范》。 二、风荷载大小的确定 根据现场调研及相关工区提供的资料,检算时取罐体长度为12m ,支腿长度为9.0m 。罐体直径为5.0m, 自重为10 t ,满载时料重300 t 。 根据《公路桥涵设计基本规范》中的4.4.1条确定风荷载的大小。 根据资料显示,我项目部施工范围内混凝土搅拌站在沿线大风区分区范围、风向、最大风速分别为主导风向NW ,最大风速53m/s 。相关抗风的设计计算以此为依据。 表1 风级风速换算表 《公路桥涵设计基本规范》中的4.4.1条规定,作用于结构物上的风荷载强度可按下式计算: 0321W K K K W = (1) 式中 W —风荷载强度(Pa ); 0W —基本风压值(Pa ),2 06 .11ν= W ,系按平坦空旷地面,离地面20m 高,频率1/100的10min 平均最大风速ν(m/s )计算确定;一般情况0W 可按《铁路桥涵设计基本规范》中附录D “全国基本风压分布图”,并通过实地调查核实

后采用; K—风载体形系数,对桥墩可参照《铁路桥涵设计基本规范》中表4.4.1-1,1 其它构件为1.3; K—风压高度变化系数,可参照《铁路桥涵设计基本规范》中表4.4.1-2,2 风压随离地面或常水位的高度而异,除特殊高墩个别计算外,为简化计算,桥梁工程中全桥均取轨顶高度处的风压值; K—地形、地理条件系数,可参照《铁路桥涵设计基本规范》中表4.4.1-3。 3 针对本工程场地实际特点,取k1=1.3,k2=1.0 ,k3=1.3。取风级11下的风速为30m/s,风级13下的风速为39m/s,风级15下的风速为48m/s;风级17下的风速为58m/s。计算得罐体每延米的荷载强度见表2。 表2 风级与风荷载强度大小 三、不同工况下立柱强度、稳定性及整体倾覆检算 为了考虑罐体支架的内力,检算过程采用有限元数值计算方法。根据工程的实际使用情况及受力最不利原则,验算时重点对罐体满载的情况进行了立柱的强度及稳定性验算。罐体立柱采用φ330mm(壁厚8mm),立柱间横撑采用槽钢120x40 x4.5mm。有限元模型见图1及图2。 3.1 风级11结构性能抗风验算 风级11时的风荷载和罐体满载时的恒荷载(包括自重)组合进行立柱的强度、稳定性验算。同时对风级11时的风荷载和罐体空载时的恒荷载组合进行了基础的稳定性验算。 (1)罐体满载状态下立柱的强度及稳定性验算 在11级风荷载作用下,按照风荷载+罐体满载时计算得到的立柱应力见图3。

水泥罐计算书.doc

福民站 80T 水泥罐基础设计计算书 一、水泥罐基础及承台设计 1、水泥罐基础根据现场实际情况,采用人工素填土基础; 2、基础承台设计为:承台砼C35、承台尺寸为 5000*5000*600mm,水泥罐的预埋件规格为: 450*450*20mm,由厂家提供,施工安装。 二、水泥罐基础、承台计算 1、基础竖向承载力验算 根据设计资料,本基础位置的持力层为素填土,该层土的承载力特征值为 100Kpa。 V=80+7=87t=870KN,G=5*5***10=375KN, A=5*5=25m 2 σ地 =(G+V) /A=( 870+375) / 25= m 2< [ σ地 ]=100KN/ m2 经计算地基承载满足要求。 其中式中: V——为水泥罐满载时总重量87T,根据厂家提供; G——为基础承台重量; A——为基础承台接触面积。 2、基础抗倾覆验算 w k =βzμNμz w o =1***= KN/ m 2 2 ); w ——风荷载标准值( KN/ m k βz ——高度z处的风振系数,查《建筑结构荷载规范》低于30m取1; μN——风荷载形体系数,查《建筑结构荷载规范》圆形取; μz——风压高度变化系数,查《建筑结构荷载规范》靠近海边取; 2 50 年一 w ——基本风压( KN/m),查《建筑结构荷载规范》风压深圳地区按o 遇,取; 只需计算水泥罐空载情况下抗倾覆即可: M稳= P1×1/2 ×基础宽 =(70+375)/2*5= KN?M M倾=P2×受风面× (7+7)= ***7*7= KN?M M稳/ M 倾≥即满足要求 ==>

M稳—抵抗弯距 KN?M M倾—抵抗弯距 KN?M P1—储蓄罐与基础自重KN P2—风荷载 KN 经计算满足抗倾覆要求。 为了提高储料罐的抗倾覆能力,水泥罐采用三根直径16mm的缆风绳三角对称加固,每根长度约15 米。 三、注意事项 1、水泥罐的安装必须以厂家提供的底座尺寸及预埋件为准,如机型有所变 更时,本方案的定位尺寸须重新进行调整。 2、水泥罐基础砼强度必须达到90%后方可投入安装及使用。 3、基础土质要求承载力必须达到100kPa,当开挖基础土质不能达到承载力 要求时,应挖除不合格土层并采用碎石土进行换填或掺入水泥或粉煤灰,对土体进行改良,夯实后经现场试验达到要求时,方可进行基础承台施工。 4、水泥罐应设有避雷针接地和保护接地措施。

吨水泥罐基础设计计算书

一、水泥罐基础设计 盾构区间砂浆拌合站投入一个100t 型和一个150t 型两个水泥罐,100t 型水泥罐直径3m ,支腿邻边间距2.05m ;150t 型水泥罐直径3.3m ,支腿邻边间距2.2m 。根据以往盾构区间砂浆拌合站施工经验、现场地质条件以及基础受力验算,水泥罐基础采用C30钢筋砼条形承台基础满足两个水泥罐同时安装。基础尺寸8m (长)×4m (宽)×0.8m (高),基础埋深0.6m ,外漏0.2m ,承台基础采用Φ16@150mm ×150mm 上下两层钢筋网片,架立筋采用450mm ×450mm φ12钢筋双排双向布置,基础顶预埋地脚钢板与水泥罐支腿满焊。具体布置见下图: . 1 单支基础4m ×4m ×0.8m 钢筋砼。 2、地基承载力计算 计算时按单个水泥罐计算 单个水泥罐基础要求的地基承载力为: δ1=21700+0.825106.3+20126.3k /m 0.1344 N MPa ?===? 根据资料可知:原设计路面按汽一超20级设计,汽一超 20级后轴标准荷载为130KN,单轴轮胎和路面接触面积为:460mm ×200mm ,通过受力计算,其地基承载力为: 水泥罐平面位置示意图

δ2= ()1301000 1.413460200MPa ???=????? 因δ1≤δ2,即地基承载力复核要求。 3、抗倾覆计算 武汉地区按特大级风荷载考虑,风力水平 荷载为500N/m 2, 抗倾覆计算以空罐计算,空罐计算满足则 抗倾覆满足。 水平风荷载产生的弯矩为: 0.5 3.3182+3=356.4KN M =???÷(18)?M 水泥罐空罐自重20t ,则基础及水泥罐总重为: 抗倾覆极限比较: 即水泥罐的抗倾覆满足要求,水泥罐是安全的。 4、基础配筋 基础配筋属于构造配筋,配筋率必须满足§≥ 0.15%,经计算断面配筋, @150Φ16钢筋满足要求。

水泥罐抗风验算计算书

混凝土搅拌站罐体抗风 验算计算书 (二工区2#搅拌站大罐) 兰州交通大学 土木工程学院岩土与地下工程系 2010.5

一、验算内容及验算依据 受中铁21局兰新指挥部的委托,对兰新铁路第二双线(新疆段)风区的拌合站筒仓的抗风性能进行了验算。主要从拌合站筒仓支撑构件的强度、稳定性及基础的倾覆性进行了验算,并提出相应的抗风加固措施。 验算依据为:《铁路桥涵设计基本规范》(TB 10002.1-2005)及《铁路桥梁钢结构设计规范》(TB 10002.2-2005)。 二、风荷载大小的确定 根据现场调研及相关工区提供的资料,检算时取罐体长度为12m ,支腿长度为9.0m 。罐体直径为5.0m, 自重为10 t ,满载时料重300 t 。 根据《兰新铁路新疆有限公司文件》(新铁安质2010 33号)提供的风级凤速换算表(见表1)及《铁路桥涵设计基本规范》中的4.4.1条确定风荷载的大小。 根据《兰新铁路新疆有限公司文件》(新铁安质2010 47号)附件中兰新铁路第二双线(新疆段)大风区工程分区说明,资料显示,中铁二十一局(7标)项目部施工范围内混凝土搅拌站在沿线大风区分区范围、风向、最大风速分别为:三十里风区:DK1656+000~DK1746+227长86.398km ,主导风向NW ,最大风速53m/s 。相关抗风的设计计算以此为依据。 表1 风级风速换算表 《铁路桥涵设计基本规范》中的4.4.1条规定,作用于结构物上的风荷载强度可按下式计算: 0321W K K K W = (1) 式中 W —风荷载强度(Pa ); 0W —基本风压值(Pa ),2 06 .11ν= W , 系按平坦空旷地面,离地面20m 高,频率1/100的10min 平均最大风速ν(m/s )计算确定;一般情况0W 可按《铁路桥涵设计基本规范》中附录D “全国基本风压分布图”,并通过实地调查核实后采用;

水泥罐基础方案

.. . .. . . 一、编制依据 (2) 二、工程概况 (2) 三、基础设计 (3) 一)、基础 (3) 二)、防雷接地 (4) 四、土方开挖、基础施工 (5) 五、基础计算书 (6) 一)、荷载计算 (6) 二)、基础验算 (7) 三)、基础配筋验算 (11) S. . . . . ..

水泥罐基础方案 一、编制依据 《建筑地基基础设计规》(GB50007-2011); 《建筑结构荷载规》(GB 50009-2012); 《混凝土结构设计规》(GB 50010-2010); 省《建筑地基基础设计规》(DBJ 15-31-2003); XXXXXXX场地岩土工程详细勘察报告; 参《塔式起重机混凝土基础工程技术规程》JGJ/T187-2009 水泥罐厂家提供资料 二、工程概况 拟建XXXXXXX工程场地位于市金湾区红旗镇红旗中学北面,场地南侧为白藤二路,西侧为“美景新村”住宅小区。三期工程场地围共布置建筑物14栋,分为A、B区。A区拟建6栋7F建筑(22-27栋)和4栋17F建筑(36-39栋),B区拟建4栋33F建筑(50-53栋)。 其中基坑支护工程采用钻孔灌注桩(支护桩)、双管旋喷桩、水泥土搅拌桩、冠梁及支撑、喷砼护面等支护方式。双管旋喷桩、水泥土搅拌桩加固材料为pc32.5、pc42.5硅酸盐水泥,拟在现场设5-6个水泥灰罐安放场地,确保覆盖全场周围,具体位置见详施工现场平面布置图。 每个安放场地设1个50-60T的散装水泥罐,水泥罐四角部位长宽为 2.7M*2.7M,高约8.2m,按厂家提供的尺寸定位图设计基础图。

三、基础设计 查阅地质勘察报告,水泥灰罐选址所参考的勘探孔为ZK2、ZK19、ZK38、ZK67、ZK89,地表以下有层厚5.8~7.9m的人工填土,因场地开挖平整,后测取填土平均值为4.8m。 地质勘察资料中各土层特性指标建议值如下表 根据详勘报告柱状表中显示,填土下为淤泥,但结合整个场地地质特点,验算时需按有软弱下卧层考虑。 注 的影响。 2)抗剪强度为直接快剪指标 水泥罐定位时,已现场查看,尽量避开回填区。在开挖基础时,若发现地质松软或有垃圾等杂物时要求换填石粉,并用机械分层夯实,每层厚度不大于400㎜。 一)、基础 结合本公司以往项目的成功经验,及厂家提供的相关数据,水泥罐顶离地面高度为8.2米,拟采用筏板基础,基础尺寸为4米x 4米,基础布置拟采用2排

100t水泥罐基础设计计算

100t水泥罐基础设计计算 一、荷载 1、水泥罐自重G1:200kn(20t)估 2、水泥自重G2:1000kn(100t) 3、基础承台自重G3:3.8m*3.8m*1.2m*26=451kn 4、荷载组合:(G1+G2+G3)*1.2(分项系数)=1981.2kn 二、受力分析 1、承台地基承载力:按12t/m2估算,承台地基承载力为3.8m*3.8m*120kn/m2=1732.8kn 2、桩承载力需达到1981.2kn-1732.8kn=248.4kn 三、单桩承载力计算 1、土层极限侧摩阻力系数 J01 J02 J03地面标高3.5m 地面标高3.5m 地面标高3.5m ①素填土①素填土①素填土 0.44m 0.41m 0.88m ③淤泥质粉质粘土③淤泥质粉质粘土③淤泥质粉质粘土 -1.72m -4.76m ④粉土-5.79m ④粉土④粉土 根据上述柱状图,打入桩范围内平均层厚:素填土2.92m、淤泥质粉质粘土4.67m、粉土1.41m。打入桩的极限侧摩阻力标准值为:20Kpa、14Kpa、30Kpa,故打入桩桩身范

围内(9m)土层平均极限侧摩阻力为:(2.92m*20+4.67m*14+1.41m*30)/9m=18.45Kpa 2、单根桩承载力计算 单桩的容许承载力为:[P]=1/1.5*(U*а*H*τ)(不计桩端承载力) 式中:[P]------沉桩容许承载力 U--------桩周长, а-----震动沉桩影响系数,锤击沉桩取1.0 H------桩入土深度,9.0m τ-----桩侧土的极限摩阻力,取18.45Kpa; ①如采用直径273钢管桩,则单桩的容许承载力为:[P]=1/1.5*(U*а*H*τ)=1/1.5*0.273*3.14*1.0*9*18.45=94.89kn,需打入的根数为248.4kn/94.89kn=2.61根,取3根,布置如图: 3.8m 0.650m 2.5m 0.650m 3.8m ②如采用直径630钢管桩,则单桩的容许承载力为:[P]=1/1.5*(U*а*H*τ)=1/1.5*0.63*3.14*1.0*9*18.45=218.99kn,需打入的根数为248.4kn/218.99kn=1.1根,取2根。

水泥罐基础方案

水泥罐基础方案 GE GROUP system office room 【GEIHUA16H-GEIHUA GEIHUA8Q8-

一、工程概况 建设单位:广州市东建实业集团有限公司 勘察单位:广东省华南工程物探技术开发总公司 设计单位:广州珠江外资建筑设计院有限公司 监理单位:广州市东建工程建设监理有限公司 施工单位:广州市住宅建设发展有限公司 广州市菠萝山保障性住房项目工程施工总承包二标(即中区)属“广州市菠萝山保障性住房项目工程”的一部分,位于广州市天河区沐陂西路以北,科韵路以东,岑村龙船头菠萝山地段。 本工程由7栋公租房(G-1至G-7)、7栋廉租房(L-1a至L-7a),公租房(G-1至G-7)负一层地下室,C-8垃圾房及部分公建组成。总建筑面积175771.9平方米,其中地下:16509.5平方米,地上:159262.4平方米。 G1-G3栋现场需要安装两个水泥罐储备水泥。水泥罐安装位置如附图,水泥罐容量为50吨,空载时毛重2吨,满载时52吨。水泥罐全罐露出地面高9米,直径 2.5米,卸料口离地面0.8米。 二、水泥罐基础做法

水泥罐基础采用C30混凝土,基础平面尺寸为2.6m×2.6m,基础底板厚度300mm,配筋为双层双向φ12@200。水泥罐基础放在地下室顶板面上,对地下室顶板用方法进行回顶加固。 基础周边做好排水措施,避免积水。 水泥罐四个柱脚采用埋件预埋螺栓在基础内,水泥罐吊装定位后将螺栓收紧,每个柱脚螺栓采用4φ25,如附图。 螺栓安装前请与水泥罐提供厂家的图纸核对确认无误方可安装埋件。 砼强度达到75%方可安装水泥罐,并及时做好防雷接地(≤4欧)施工和验收。 三、基础计算书 水泥罐可满载50吨水泥,因水泥罐基础位置为地下室顶板面上,承载力较好,基础按水泥罐装载水泥50吨进行验算。 计算相关数据: 水泥罐空载时重量:2吨 水泥罐满载时重量:2+50=52吨 水泥罐高度:9米 水泥罐卸料口高度:0.8米

(完整版)拌合站粉罐地基计算

粉罐基础承载力简算书 编制: 审核: 审批: 中铁xx局xx铁路xx标项目部拌合站 二〇一六年六月

目录 一、计算公式 (1) 1、地基承载力 (1) 2、风荷载强度 (1) 3、基础抗倾覆计算 (2) 4、基础抗滑稳定性验算 (2) 5、基础承载力 (2) 二、储料罐基础验算 (2) 1、储料罐地基开挖及浇筑 (2) 2、储料罐基础验算过程 (3) 2.1 地基承载力 (3) 2.2 基础抗倾覆 (4) 2.3 基础滑动稳定性 (5) 2.4 储蓄罐支腿处混凝土承压性 (5)

拌合站粉仓基础承载力计算书 xx铁路标混凝土拌和站配备2HZS120拌和机,拌合楼处位于线路DKxxx+xxx右侧,占地面积21亩,靠近有公路、县道和乡道。每台拌和机配5个粉罐,每个水泥罐自重8t,装满水泥重100t,合计108t;水泥罐直径2.8m。水泥罐基础采用C25钢筋砼扩大基础满足5个水泥罐同时安装。5个罐放置在圆环形基础上,圆环内圆弧长14.651米,外圆弧长21.026米,立柱基础高3.3m,外露0.3m,埋入扩大基础1m。扩大基础采用φ18@300mm×300mm上下两层钢筋网片,架立筋采用φ18@450mm×450mm钢筋双排双向布置,基础顶预埋地脚钢板与水泥罐支腿满焊。 水泥罐总高18.5米,罐高13.5米,罐径2.8米,柱高5m,柱子为4根正方形布置,柱子间距为2.06米,柱子材料为D21.9cm厚度8mm的钢管柱。 施工前先对地基进行换填处理,处理后现场检测,测得地基承载力超过350kpa。 一、计算公式 1、地基承载力 P/A=σ≤σ0 P—储蓄罐重量 KN A—基础作用于地基上有效面积mm2 σ—土基受到的压应力 MPa σ0—土基容许的应力 MPa 通过地质触探并经过计算得出土基容许的应力σ0=140Kpa 2、风荷载强度 W=K1K2K3W0= K1K2K31/1.6v2

水泥罐混凝土桩基础设计计算书-30m

水泥罐桩基础计算书 1.水泥罐基础设计 拌合站投入8个200t 型水泥罐,水泥罐直径4.8m ,支腿临边间距3.395m ,每4个为一组,见图附1。根据以往砂浆拌合站施工经验、现场地质条件以及基础受力验算,水泥罐基础采用8根C30混凝土灌注桩桩基础,钢筋笼见附图4。桩直径1.2m ,桩长30m ,平面布置见附图1。基础承台厚0.8m ,采用C30混凝土浇筑。承台采用Φ14200mm ×200mm 上下两层钢筋网片。架立筋采用2000mm ×2000mm φ14钢筋双排双向布置,平面图见附图2,立面图见附图3。基础顶预埋地脚钢板与水泥罐支腿满焊。 承台及单桩工程量见附图5。 2.计算基本参数 单个水泥罐自重约20t ,水泥满装200t ,共重220t 。 桩直径1.2m ,桩长30m 。 水泥罐罐身高18.6m ,总高21m 。 基础承台0.8m (高)。 3.单桩轴向受压承载力容许值计算 单桩轴向受压承载力容许值为: q A l q r p i n 1i ik μ21R + =∑=a 上式中q r 为桩端处土的承载力容许值 [] []kPa 5.478)330(195.118072.07.0)(=-??+??=-+=3h λγK f m q 2 2a0 r u ---桩身周长(m ); A p ---桩端截面积(m 2); n ---土的层数 l i ---承台底面以下各土层的厚度(m ); q ik ---与l i 层对应的各土层与桩侧的侧摩阻力标准值(kPa ); q r ---桩端处土的承载力容许值; [f a0] ---桩端处土的承载力基本容许值(kPa ); h ---桩端的埋置深度(m ),h>40时按40计算;

水泥罐基础设计计算书

水稳拌合站投入两个100t 型水泥罐,100t 型水泥罐直径3m ,支腿邻边间距2.05m 。根据以往水稳拌合站施工经验、现场地质条件以及基础受力验算,水泥罐基础采用C30钢筋砼条形承台基础满足两个水泥罐同时安装。基础尺寸8m (长)×4m (宽)×1.5m (高),基础埋深1.2m ,外漏0.3m ,承台基础采用Φ16@250mm ×250mm 上下两层钢筋网片,架立筋采用750mm ×750mm φ12钢筋双排双向布置,基础顶预埋地脚钢板与水泥罐支腿满焊。具体布置见下图: . 架立筋-1号 11 1-1剖面1号 3号 50700 50 基础配筋图 2号8000 4000 35 450 2050 ?320罐支脚 8000 4000 22 00 60 600 ?3300 3700 水泥罐平面位置示意图

1、计算基本参数 水泥罐自重约20t ,水泥满装150t ,共重170t 。 水泥罐支腿高3m ,罐身高18m ,共高21m 。 单支基础4m ×4m ×0.8m 钢筋砼。 2、地基承载力计算 计算时按单个水泥罐计算 单个水泥罐基础要求的地基承载力为: δ1= 21700 +0.825106.3+20126.3k /m 0.1344 N MPa ?===? 根据资料可知:原设计路面按汽一超20级设计,汽一超20级后轴标准荷载为130KN,单轴轮胎和路面接触面积为:460mm ×200mm ,通过受力计算,其地基承载力为: δ2= ( )1301000 1.413460200MPa ???=????? 因δ1≤δ2,即地基承载力复核要求。 3、抗倾覆计算 武汉地区按特大级风荷载考虑,风力水平 荷载为500N/m 2, 抗倾覆计算以空罐计算,空罐计算满足则抗倾覆满足。 水平风荷载产生的弯矩为: 0.5 3.3182+3=356.4KN M =??? ÷(18)?M 水泥罐空罐自重 20t ,则基础及水泥罐总重为: 风荷载(500N/m2)

混凝土搅拌站水泥罐基础设计

1 0 0 t 水泥罐基础设计计算书 一、工程概况 某大型工程混凝土搅拌站采用loot水泥罐,水泥罐直径2.7m,顶面高度20m 水泥罐基础采用C25钢筋混凝土整体式扩大基础,基础断面尺寸为 4.2mx 0.5m+3.2m x 1.0m。 二、设计依据: 1、《建筑结构荷载规范(2006版)》(GB50009-2001 2、《混凝土结构设计规范》 ( GB50010-2010) 3、《建筑地基基础设计规范》 (GB50007-2011) 4、《钢结构设计规范》 (GB50017-2003)。 三、荷载计算 1、水泥罐自重:8t ;满仓时水泥重量为100t。 2、风荷载计算: 宜昌市50年一遇基本风压:①°=0.3kN/ m2, 风荷载标准值:3 k= B z [1 s卩z 3 0 其中:B z=1.05 , 1 z=1.25 , 1 s=0.8,贝U:

3k=B z1s1z 30=1.05x0.8x1.25x0.3=0.315 kN/ m 四、水泥罐基础计算 1地基承载力验算 考虑水泥罐满仓时自重荷载和风荷载作用。 水泥罐满仓时自重荷载:G =1000+80=1080kN 混凝土基础自重荷载:G Ck= (3.2 X3.2 X 1. 0+4.2 X3.2 X 0.5 )X2 4=407kN 风荷载:风荷载作用点高度离地面12.5m,罐身高度15m直径2.7m。 F wk=0.315 X 15X 2.7=12.8kN 风荷载对基底产生弯矩:M Wk=12.8 X( 12.5+2 ) =185.6kN ?m 基础底面最大应力: G k+G M Wk 407+1080 185.6 i bh W 4.2 X3.2 9.408 2、基础配筋验算 (1)基础配筋验算 混凝土基础底部配置①16钢筋网片,钢筋间距250mm按照简支梁验算。 1 2 混凝土基础承受弯矩:ML=1.2 X( X 207X3.2 X 1.9 12)=362kN 8

相关文档
最新文档