两角和与差的三角函数
两角和与差及二倍角的三角函数公式

两角和与差及二倍角的三角函数公式1.两角和公式:设角A和角B的三角函数值分别为sinA、cosA、tanA、cotA等,sinB、cosB、tanB、cotB等,且A和B的和(差)角也在三角函数的定义域内(常用定义域是[-π, π]或[0,2π]),则有以下两角和(差)公式:(1)sin(A ± B) = sinA*cosB ± cosA*sinB(2)cos(A ± B) = cosA*cosB ∓ sinA*sinB(3)tan(A ± B) = (tanA ± tanB) / (1 ∓ tanA*tanB)(4)cot(A ± B) = (cotA*cotB ∓ 1) / (cotB ± cotA)2.二倍角公式:设角A的三角函数值为sinA、cosA、tanA、cotA等,且2A在三角函数的定义域内,则有以下二倍角公式:(1)sin2A = 2*sinA*cosA(2)cos2A = cos^2A - sin^2A = 2*cos^2A - 1 = 1 - 2*sin^2A (3)tan2A = (2*tanA) / (1 - tan^2A)(4)cot2A = (cot^2A - 1) / (2*cotA)推导两角和与差公式和二倍角公式的方法通常有几种:三角函数的和差化积、三角恒等式推导法、欧拉公式推导法等。
这里以三角函数的和差化积为例,推导两角和公式和二倍角公式。
推导两角和公式:对于sin(A ± B),利用三角函数的和差化积公式,有:sin(A ± B) = sinA*cosB ± cosA*sinB其中,sinA*cosB表示A和B的正弦余弦积,cosA*sinB表示A和B 的余弦正弦积。
推导二倍角公式:对于sin2A,利用三角函数的和差化积公式,令A=B,有:sin(2A) = sin(A + A) = sinA*cosA + cosA*sinA = 2*sinA*cosA 同样地,对于cos2A,利用三角函数的和差化积公式,有:cos(2A) = cos^2A - sin^2A = 2*cos^2A - 1 = 1 - 2*sin^2Atan2A和cot2A的推导过程类似,利用两角和公式进行展开和化简即可。
两角和与差的正弦、余弦和正切公式

[典例] (2012· 广东高>0,x∈R)的最小正周期为 10π. 6
(1)求 ω 的值; π 5π 6 0, ,f5α+ =- ,f (2)设 α,β∈ 3 2 5
5β-5π=16,求 cos(α+β). 6 17
典题导入
Go the distance
sin α+cos α [例 3] (1)(2012· 温州模拟)若 =3,tan(α-β)=2,则 tan(β-2α)=________. sin α-cos α π 4 π (2)(2012· 江苏高考)设 α 为锐角,若 cos α+6=5,则 sin2α+12的值为________. sin α+cos α tan α+1 [自主解答] (1)由条件知 = =3, sin α-cos α tan α-1 则 tan α=2. 故 tan(β-2α)=tan [(β-α)-α] = tanβ-α-tan α -2-2 4 = = . 1+tanβ-αtan α 1+-2×2 3
Go the distance
的三角函数,在使用两角和与差的三角函数公式时,特别要注意角与角之间的关系,完成统 一角和角与角转换的目的. 以题试法 π 3 1.(1)已知 sin α= ,α∈ 2,π,则 5 cos 2α π 2sin α+4 =________.
(2)(2012· 济南模拟)已知 α 为锐角,cos α= A.-3 4 C.- 3 cos 2α 1 B.- 7 D.-7
三角函数公式的应用
典题导入 1 π [例 1] (2011· 广东高考)已知函数 f(x)=2sin 3x-6,x∈R. 5π (1)求 f 4 的值; π π 10 6 (2)设 α,β∈ 0,2,f3α+2=13,f(3β+2π)=5,求 cos(α+β)的值. 1 π [自主解答] (1)∵f(x)=2sin 3x-6, 5π π 5π π ∴f 4 =2sin12-6=2sin4= 2. π π 10 6 (2)∵α,β∈ 0,2,f3α+2=13,f(3β+2π)=5, π 6 10 β+ = . ∴2sin α= ,2sin 2 5 13 5 3 即 sin α= ,cos β= . 13 5 12 4 ∴cos α= ,sin β= . 13 5 ∴cos(α+β)=cos αcos β-sin αsin β = 12 3 5 4 16 × - × = . 13 5 13 5 65 由题悟法 两角和与差的三角函数公式可看作是诱导公式的推广,可用 α、β 的三角函数表示 α± β
两角和与差的三角函数(一)

年级 高一(下)学科 数学
学习内容:第四章 (第十五课时) 两角和与差的三角函数(一) 学习要求:1.能记住两面三刀角各与差的余弦和正弦公式
2.简单应用两角和与差的正余弦公式求值 学习过程:
一. 基础知识
1. 问题:如何计算?呢和 15cos 75cos
得βαβαβαsin sin cos cos )cos(-=+
βαβαβαsin sin cos cos )cos(+=-
2. 问题:如何计算?呢和 15sin 105sin
得βαβαβαsin cos cos sin )sin(+=+
βαβαβαsin cos cos sin )sin(-=-
二.例题讲解
例1.已知值求)3sin(),,2(
,53cos πθππθθ+∈-=
例2.)cos(),sin(),23,(,43cos ),,2(,32sin βαβαππββππαα+-∈-=∈=
求已知
三.学生练习
练习1计算 75sin
练习2已知),2(,1715sin ππαα∈=
,求的值)3cos(απ-
练习3已知)cos(),sin(,4
3cos ,32sin βαβαβαβα++-==
求都是二象限角且,
练习4C B A ,ABC cos ,135cos 53cos 求且中在==
∆
四.作业
1.计算值 105cos
2.已知值求)3sin(),6cos(),23,(,135cos πθπθππθθ-+∈-
=
3.已知)cos(),sin(,135cos ,1715sin βαβαβαβα-+-==
求为第二象限角且,
4.在C B A ,ABC sin ,135cos ,54cos 求若中-==∆。
两角和与差的正弦、余弦和正切公式

§4.3 两角和与差的正弦、余弦和正切公式 考试要求 1.会推导两角差的余弦公式.2.会用两角差的余弦公式推导出两角差的正弦、正切公式.3.掌握两角和与差的正弦、余弦、正切公式,并会简单应用. 知识梳理1.两角和与差的余弦、正弦、正切公式(1)公式C (α-β):cos(α-β)=cos αcos β+sin αsin β; (2)公式C (α+β):cos(α+β)=cos αcos β-sin αsin β;(3)公式S (α-β):sin(α-β)=sin αcos β-cos αsin β;(4)公式S (α+β):sin(α+β)=sin αcos β+cos αsin β;(5)公式T (α-β):tan(α-β)=tan α-tan β1+tan αtan β; (6)公式T (α+β):tan(α+β)=tan α+tan β1-tan αtan β. 2.辅助角公式a sin α+b cos α=a 2+b 2sin(α+φ),其中sin φ=b a 2+b 2,cos φ=a a 2+b 2. 知识拓展两角和与差的公式的常用变形:(1)sin αsin β+cos(α+β)=cos αcos β.(2)cos αsin β+sin(α-β)=sin αcos β.(3)tan α±tan β=tan(α±β)(1∓tan αtan β).tan αtan β=1-tan α+tan βtan (α+β)=tan α-tan βtan (α-β)-1. 思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)存在实数α,β,使等式sin(α+β)=sin α+sin β成立.( √ )(2)在锐角△ABC 中,sin A sin B 和cos A cos B 大小不确定.( × )(3)公式tan(α+β)=tan α+tan β1-tan αtan β可以变形为tan α+tan β=tan(α+β)(1-tan αtan β),且对任意角α,β都成立.( × )(4)32sin α+12cos α=sin ⎝⎛⎭⎫α+π3.( × ) 教材改编题1.若cos α=-45,α是第三象限角,则sin ⎝⎛⎭⎫α+π4等于( ) A .-210 B.210C .-7210 D.7210答案 C解析 ∵α是第三象限角,∴sin α=-1-cos 2α=-35, ∴sin ⎝⎛⎭⎫α+π4=sin αcos π4+cos αsin π4=-35×22+⎝⎛⎭⎫-45×22=-7210. 2.计算:sin 108°cos 42°-cos 72°sin 42°= . 答案 12解析 原式=sin(180°-72°)cos 42°-cos 72°sin 42°=sin 72°cos 42°-cos 72°sin 42°=sin(72°-42°)=sin 30°=12. 3.若tan α=13,tan(α+β)=12,则tan β= . 答案 17解析 tan β=tan[(α+β)-α]=tan (α+β)-tan α1+tan (α+β)tan α=12-131+12×13=17.题型一 两角和与差的三角函数公式例1 (1)(2022·包头模拟)已知cos α+cos ⎝⎛⎭⎫α-π3=1,则cos ⎝⎛⎭⎫α-π6等于() A.13 B.12C.22D.33 答案 D解析 ∵cos α+cos ⎝⎛⎭⎫α-π3=1,∴cos α+12cos α+32sin α=32cos α+32sin α=3⎝⎛⎭⎫32cos α+12sin α=3cos ⎝⎛⎭⎫α-π6=1,∴cos ⎝⎛⎭⎫α-π6=33.(2)化简:①sin x +3cos x = .答案 2sin ⎝⎛⎭⎫x +π3解析 sin x +3cos x =2⎝⎛⎭⎫12sin x +32cos x=2sin ⎝⎛⎭⎫x +π3. ②24sin ⎝⎛⎭⎫π4-x +64cos ⎝⎛⎭⎫π4-x = .答案 22sin ⎝⎛⎭⎫7π12-x解析 原式=22⎣⎡⎦⎤12sin ⎝⎛⎭⎫π4-x +32cos ⎝⎛⎭⎫π4-x=22sin ⎝⎛⎭⎫π4-x +π3 =22sin ⎝⎛⎭⎫7π12-x . 教师备选1.(2020·全国Ⅲ)已知sin θ+sin ⎝⎛⎭⎫θ+π3=1,则sin ⎝⎛⎭⎫θ+π6等于( ) A.12 B.33 C.23 D.22答案 B解析 因为sin θ+sin ⎝⎛⎭⎫θ+π3 =sin ⎝⎛⎭⎫θ+π6-π6+sin ⎝⎛⎭⎫θ+π6+π6 =sin ⎝⎛⎭⎫θ+π6cos π6-cos ⎝⎛⎭⎫θ+π6sin π6+sin ⎝⎛⎭⎫θ+π6cos π6+cos ⎝⎛⎭⎫θ+π6sin π6=2sin ⎝⎛⎭⎫θ+π6cos π6=3sin ⎝⎛⎭⎫θ+π6=1. 所以sin ⎝⎛⎭⎫θ+π6=33. 2.已知sin α=35,α∈⎝⎛⎭⎫π2,π,tan(π-β)=12,则tan(α-β)的值为( ) A .-211 B.211 C.112 D .-112答案 A解析 ∵α∈⎝⎛⎭⎫π2,π,∴cos α=-45,tan α=-34, 又tan(π-β)=12, ∴tan β=-12, ∴tan(α-β)=tan α-tan β1+tan α·tan β=-34+121+⎝⎛⎭⎫-34×⎝⎛⎭⎫-12=-211. 思维升华 两角和与差的三角函数公式可看作是诱导公式的推广,可用α,β的三角函数表示α±β的三角函数,在使用两角和与差的三角函数公式时,特别要注意角与角之间的关系,完成统一角和角与角转换的目的.跟踪训练1 (1)函数y =sin ⎝⎛⎭⎫2x +π4+sin ⎝⎛⎭⎫2x -π4的最小值为( ) A. 2B .-2C .- 2 D. 3答案 C解析 y =sin ⎝⎛⎭⎫2x +π4+sin ⎝⎛⎭⎫2x -π4 =sin 2x cos π4+cos 2x sin π4+sin 2x cos π4-cos 2x sin π4=2sin 2x . ∴y 的最小值为- 2.(2)已知cos ⎝⎛⎭⎫α+π6=3cos α,tan β=33,则tan(α+β)= . 答案 -33 解析 因为cos ⎝⎛⎭⎫α+π6=32cos α-12sin α=3cos α,所以-sin α=3cos α,故tan α=-3, 所以tan(α+β)=tan α+tan β1-tan αtan β=-3+331+3×33 =-2332=-33.题型二 两角和与差的三角函数公式的逆用与变形例2 (1)(多选)已知α,β,γ∈⎝⎛⎭⎫0,π2,sin α+sin γ=sin β,cos β+cos γ=cos α,则下列说法正确的是( ) A .cos(β-α)=12B .cos(β-α)=13C .β-α=-π3D .β-α=π3答案 AD解析 由题意知,sin γ=sin β-sin α,cos γ=cos α-cos β,将两式分别平方后相加,得1=(sin β-sin α)2+(cos α-cos β)2=2-2(sin βsin α+cos βcos α),∴cos(β-α)=12,即选项A 正确,B 错误;∵γ∈⎝⎛⎭⎫0,π2,∴sin γ=sin β-sin α>0,∴β>α,而α,β∈⎝⎛⎭⎫0,π2,∴0<β-α<π2,∴β-α=π3,即选项D 正确,C 错误.(2)在△ABC 中,C =120°,tan A +tan B =233,则tan A tan B 的值为( )A.14 B.13C.12 D.53答案 B解析 ∵C =120°,∴tan C =- 3.∵A +B =π-C ,∴tan(A +B )=-tan C .∴tan(A +B )=3,tan A +tan B =3(1-tan A tan B ),又∵tan A +tan B =233,∴tan A tan B =13.延伸探究 若将本例(2)的条件改为tan A tan B =tan A +tan B +1,则C 等于() A .45° B .135°C .150°D .30°答案 A解析 在△ABC 中,因为tan A tan B =tan A +tan B +1, 所以tan(A +B )=tan A +tan B1-tan A tan B =-1=-tan C , 所以tan C =1,所以C =45°.教师备选1.若α+β=-3π4,则(1+tan α)(1+tan β)= . 答案 2解析 tan ⎝⎛⎭⎫-3π4=tan(α+β)=tan α+tan β1-tan αtan β=1,所以1-tan αtan β=tan α+tan β, 所以1+tan α+tan β+tan αtan β=2,即(1+tan α)·(1+tan β)=2.2.已知sin α+cos β=1,cos α+sin β=0,则sin(α+β)= .答案 -12解析 ∵sin α+cos β=1,①cos α+sin β=0,②∴①2+②2得1+2(sin αcos β+cos αsin β)+1=1,∴sin αcos β+cos αsin β=-12, ∴sin(α+β)=-12. 思维升华 运用两角和与差的三角函数公式时,不但要熟练、准确,而且要熟悉公式的逆用及变形.公式的逆用和变形应用更能开拓思路,增强从正向思维向逆向思维转化的能力. 跟踪训练2 (1)设a =cos 50°cos 127°+cos 40°cos 37°,b =22(sin 56°-cos 56°),c =1-tan 239°1+tan 239°,则a ,b ,c 的大小关系是( )A .a >b >cB .b >a >cC .c >a >bD .a >c >b答案 D 解析 由两角和与差的正、余弦公式及诱导公式,可得a =cos 50°cos 127°+cos 40°cos 37°=cos 50°cos 127°+sin 50°sin 127°=cos(50°-127°)=cos(-77°)=cos 77°=sin 13°,b =22(sin 56°-cos 56°) =22sin 56°-22cos 56° =sin(56°-45°)=sin 11°,c =1-tan 239°1+tan 239°=1-sin 239°cos 239°1+sin 239°cos 239°=cos 239°-sin 239°=cos 78°=sin 12°.因为函数y =sin x 在x ∈⎣⎡⎦⎤0,π2上单调递增, 所以sin 13°>sin 12°>sin 11°,所以a >c >b .(2)(1+tan 20°)(1+tan 21°)(1+tan 24°)(1+tan 25°)= .答案 4解析 (1+tan 20°)(1+tan 25°)=1+tan 20°+tan 25°+tan 20°tan 25°=1+tan(20°+25°)(1-tan 20°tan 25°)+tan 20°tan 25°=2,同理可得(1+tan 21°)(1+tan 24°)=2,所以原式=4. 题型三 角的变换问题例3 (1)已知α,β∈⎝⎛⎭⎫π3,5π6,若sin ⎝⎛⎭⎫α+π6=45,cos ⎝⎛⎭⎫β-5π6=513,则sin(α-β)的值为( ) A.1665B.3365C.5665D.6365答案 A解析 由题意可得α+π6∈⎝⎛⎭⎫π2,π, β-5π6∈⎝⎛⎭⎫-π2,0, 所以cos ⎝⎛⎭⎫α+π6=-35, sin ⎝⎛⎭⎫β-5π6=-1213, 所以sin(α-β)=-sin ⎣⎡⎦⎤⎝⎛⎭⎫α+π6-⎝⎛⎭⎫β-5π6 =-45×513+⎝⎛⎭⎫-35×⎝⎛⎭⎫-1213 =1665. (2)(2022·青岛模拟)若tan(α+2β)=2,tan β=-3,则tan(α+β)= ,tan α= .答案 -1 12解析 ∵tan(α+2β)=2,tan β=-3,∴tan(α+β)=tan(α+2β-β)=tan (α+2β)-tan β1+tan (α+2β)tan β=2-(-3)1+2×(-3) =-1.tan α=tan(α+β-β)=-1-(-3)1+(-1)×(-3)=12.教师备选(2022·华中师范大学第一附属中学月考)已知α,β为锐角,tan α=43,cos(α+β)=-55. (1)求cos 2α的值;(2)求tan(α-β)的值.解 (1)因为tan α=43, tan α=sin αcos α, 所以sin α=43cos α. 因为sin 2α+cos 2α=1,所以cos 2α=925, 因此,cos 2α=2cos 2α-1=-725. (2)因为α,β为锐角,所以α+β∈(0,π).又因为cos(α+β)=-55, 所以sin(α+β)=1-cos 2(α+β)=255, 因此tan(α+β)=-2. 因为tan α=43, 所以tan 2α=2tan α1-tan 2α=-247, 因此,tan(α-β)=tan[2α-(α+β)]=tan 2α-tan (α+β)1+tan 2αtan (α+β) =-211. 思维升华 常用的拆角、配角技巧:2α=(α+β)+(α-β);α=(α+β)-β=(α-β)+β;β=α+β2-α-β2=(α+2β)-(α+β);α-β=(α-γ)+(γ-β);15°=45°-30°;π4+α=π2-⎝⎛⎭⎫π4-α等.跟踪训练3 (1)已知sin α=55,sin(α-β)=-1010,α,β均为锐角,则β= . 答案 π4 解析 因为α,β均为锐角, 所以-π2<α-β<π2. 又sin(α-β)=-1010, 所以cos(α-β)=31010. 又sin α=55, 所以cos α=255, 所以sin β=sin[α-(α-β)]=sin αcos(α-β)-cos αsin(α-β)=55×31010-255×⎝⎛⎭⎫-1010=22. 所以β=π4. (2)已知0<α<π2<β<π,tan α=43,cos(β-α)=210,则sin α= ,cos β= . 答案 45 -22解析 因为0<α<π2,且tan α=43, 所以sin α=45,cos α=35, 由0<α<π2<β<π, 则0<β-α<π,又因为cos(β-α)=210, 则sin(β-α)=7210, 所以cos β=cos[(β-α)+α]=cos(β-α)cos α-sin(β-α)sin α =210×35-7210×45=-22. 课时精练1.(2022·北京模拟)tan 105°等于( )A .2- 3B .-2- 3C.3-2 D .- 3答案 B解析 tan 105°=tan(60°+45°)=tan 60°+tan 45°1-tan 60°·tan 45°=3+11-3=(3+1)2(1-3)(1+3)=4+23-2=-2- 3.2.已知点P (x ,22)是角α终边上一点,且cos α=-13,则cos ⎝⎛⎭⎫π6+α等于() A .-3+226 B.3+226C.3-226D.22-36答案 A解析 因为点P (x ,22)是角α终边上一点,则有cos α=x x 2+(22)2=x x 2+8,而cos α=-13,于是得x x 2+8=-13,解得x =-1,则sin α=22x 2+8=223,因此,cos ⎝⎛⎭⎫π6+α=cos π6cos α-sin π6sin α=32×⎝⎛⎭⎫-13-12×223=-3+226,所以cos ⎝⎛⎭⎫π6+α=-3+226.3.sin 10°1-3tan 10°等于( )A .1 B.14C.12 D.32 答案 B解析 sin 10°1-3tan 10°=sin 10°cos 10°cos 10°-3sin 10° =2sin 10°cos 10°4⎝⎛⎭⎫12cos 10°-32sin 10°=sin 20°4sin (30°-10°)=14.4.已知锐角α,β满足sin α=55,cos β=31010,则α+β等于() A.3π4 B.π4或3π4C.π4 D .2k π+π4(k ∈Z )答案 C解析 由sin α=55,cos β=31010, 且α,β为锐角,可知cos α=255,sin β=1010, 故cos(α+β)=cos αcos β-sin αsin β =255×31010-55×1010 =22, 又0<α+β<π,故α+β=π4. 5.(多选)下列四个选项中,化简正确的是( )A .cos(-15°)=6-24B .cos 15°cos 105°+sin 15°sin 105°=cos(15°-105°)=0C .cos(α-35°)cos(25°+α)+sin(α-35°)sin(25°+α)=cos[(α-35°)-(25°+α)]=cos(-60°)=cos 60°=12D .sin 14°cos 16°+sin 76°cos 74°=12答案 BCD解析 对于A ,方法一 原式=cos(30°-45°)=cos 30°·cos 45°+sin 30°sin 45°=32×22+12×22=6+24. 方法二 原式=cos 15°=cos(45°-30°)=cos 45°cos 30°+sin 45°sin 30°=22×32+22×12=6+24,A 错误. 对于B ,原式=cos(15°-105°)=cos(-90°)=cos 90°=0,B 正确.对于C ,原式=cos[(α-35°)-(25°+α)]=cos(-60°)=cos 60°=12,C 正确.对于D ,原式=cos 76°cos 16°+sin 76°sin 16°=cos(76°-16°)=cos 60°=12,D 正确. 6.(多选)已知cos(α+β)=-55,cos 2α=-513,其中α,β为锐角,以下判断正确的是( ) A .sin 2α=1213B .cos(α-β)=19565C .cos αcos β=8565D .tan αtan β=118答案 AC解析 因为cos(α+β)=-55, cos 2α=-513,其中α,β为锐角, 所以sin 2α=1-cos 22α=1213,故A 正确; 因为sin(α+β)=255, 所以cos(α-β)=cos [2α-(α+β)]=cos 2αcos(α+β)+sin 2αsin(α+β)=⎝⎛⎭⎫-513×⎝⎛⎭⎫-55+1213×255=29565,故B 错误; cos αcos β=12[cos(α+β)+cos(α-β)] =12⎝⎛⎭⎫-55+29565=8565, 故C 正确;sin αsin β=12[cos(α-β)-cos(α+β)] =12⎣⎡⎦⎤29565-⎝⎛⎭⎫-55=21565, 所以tan αtan β=218,故D 错误. 7.化简:sin(α+β)cos(γ-β)-cos(β+α)sin(β-γ)= .答案 sin(α+γ)解析 sin(α+β)cos(γ-β)-cos(β+α)sin(β-γ)=sin(α+β)cos(β-γ)-cos(α+β)sin(β-γ)=sin[(α+β)-(β-γ)]=sin(α+γ).8.已知α,β∈⎝⎛⎭⎫3π4,π,sin(α+β)=-35,sin ⎝⎛⎭⎫β-π4=1213,则cos ⎝⎛⎭⎫α+π4= . 答案 -5665解析 因为α,β∈⎝⎛⎭⎫3π4,π,所以3π2<α+β<2π, π2<β-π4<3π4, 因为sin(α+β)=-35, sin ⎝⎛⎭⎫β-π4=1213, 所以cos(α+β)=45, cos ⎝⎛⎭⎫β-π4=-513, 所以cos ⎝⎛⎭⎫α+π4 =cos ⎣⎡⎦⎤(α+β)-⎝⎛⎭⎫β-π4 =cos(α+β)cos ⎝⎛⎭⎫β-π4+sin(α+β)sin ⎝⎛⎭⎫β-π4 =45×⎝⎛⎭⎫-513+⎝⎛⎭⎫-35×1213=-5665. 9.已知0<β<π2<α<π,且cos ⎝⎛⎭⎫α-β2=-19,sin ⎝⎛⎭⎫α2-β=23,求cos(α+β)的值. 解 ∵0<β<π2<α<π, ∴-π4<α2-β<π2, π4<α-β2<π, ∴cos ⎝⎛⎭⎫α2-β=1-sin 2⎝⎛⎭⎫α2-β=53,sin ⎝⎛⎭⎫α-β2=1-cos 2⎝⎛⎭⎫α-β2=459, ∴cos α+β2=cos ⎣⎡⎦⎤⎝⎛⎭⎫α-β2-⎝⎛⎭⎫α2-β =cos ⎝⎛⎭⎫α-β2cos ⎝⎛⎭⎫α2-β+sin ⎝⎛⎭⎫α-β2sin ⎝⎛⎭⎫α2-β =⎝⎛⎭⎫-19×53+459×23=7527, ∴cos(α+β)=2cos 2α+β2-1=2×49×5729-1=-239729. 10.已知α,β均为锐角,且sin α=35,tan(α-β)=-13. (1)求sin(α-β)的值;(2)求cos β的值.解 (1)∵α,β∈⎝⎛⎭⎫0,π2,∴-π2<α-β<π2. 又∵tan(α-β)=-13<0, ∴-π2<α-β<0. ∴sin(α-β)=-1010. (2)由(1)可得,cos(α-β)=31010. ∵α为锐角,且sin α=35,∴cos α=45. ∴cos β=cos [α-(α-β)]=cos αcos(α-β)+sin αsin(α-β)=45×31010+35×⎝⎛⎭⎫-1010=91050.11.已知cos ⎝⎛⎭⎫π2-α=2cos(π-α),则tan ⎝⎛⎭⎫π4+α等于( ) A .-3 B.13C .-13D .3答案 C解析 由cos ⎝⎛⎭⎫π2-α=2cos(π-α)得sin α=-2cos α,即tan α=-2,∴tan ⎝⎛⎭⎫π4+α=tan π4+tan α1-tan π4tan α =1-21-1×(-2)=-13. 12.(多选)下列结论正确的是( )A .sin(α-β)sin(β-γ)-cos(α-β)cos(γ-β)=-cos(α-γ)B .315sin x +35cos x =35sin ⎝⎛⎭⎫x +π6 C .f (x )=sin x 2+cos x 2的最大值为2 D .tan 12°+tan 33°+tan 12°tan 33°=1答案 AD解析 对于A ,左边=-[cos(α-β)cos(β-γ)-sin(α-β)·sin(β-γ)]=-cos[(α-β)+(β-γ)]=-cos(α-γ),故A 正确;对于B , 315sin x +35cos x =65⎝⎛⎭⎫32sin x +12cos x =65sin ⎝⎛⎭⎫x +π6,故B 错误; 对于C ,f (x )=sin x 2+cos x 2=2sin ⎝⎛⎭⎫x 2+π4, 所以f (x )的最大值为2,故C 错误;对于D ,tan 12°+tan 33°+tan 12°tan 33°=tan(12°+33°)·(1-tan 12°tan 33°)+tan 12°tan 33°=1,故D 正确.13.已知方程x 2+3ax +3a +1=0(a >1)的两根分别为tan α,tan β,且α,β∈⎝⎛⎭⎫-π2,π2,则α+β= .答案 -3π4解析 依题意有⎩⎪⎨⎪⎧ tan α+tan β=-3a ,tan α·tan β=3a +1, 所以tan(α+β)=tan α+tan β1-tan α·tan β =-3a 1-(3a +1)=1. 又⎩⎪⎨⎪⎧tan α+tan β<0,tan α·tan β>0, 所以tan α<0且tan β<0,所以-π2<α<0且-π2<β<0, 即-π<α+β<0,结合tan(α+β)=1,得α+β=-3π4. 14.(2022·阜阳模拟)设α,β∈[0,π],且满足sin αcos β-cos αsin β=1,则sin(2α-β)+sin(α-2β)的取值范围为 .答案 [-1,1]解析 由sin αcos β-cos αsin β=1,得sin(α-β)=1,又α,β∈[0,π],∴-π≤α-β≤π,∴α-β=π2, ∴⎩⎪⎨⎪⎧0≤α≤π,0≤β=α-π2≤π,即π2≤α≤π, ∴sin(2α-β)+sin(α-2β)=sin ⎝⎛⎭⎫2α-α+π2+sin(α-2α+π) =cos α+sin α=2sin ⎝⎛⎭⎫α+π4. ∵π2≤α≤π, ∴3π4≤α+π4≤5π4, ∴-1≤2sin ⎝⎛⎭⎫α+π4≤1,即sin(2α-β)+sin(α-2β)的取值范围为[-1,1].15.(2022·河北五校联考)已知x ,y ∈⎝⎛⎭⎫0,π2,sin(x +y )=2sin(x -y ),则x -y 的最大值为( ) A.π3 B.π6 C.π4 D.π8 答案 B解析 由sin(x +y )=2sin(x -y )得sin x cos y +cos x sin y=2sin x cos y -2cos x sin y ,则tan x =3tan y ,所以tan(x -y )=tan x -tan y 1+tan x tan y=2tan y 1+3tan 2y =21tan y+3tan y ≤33, 当且仅当tan y =33时等号成立, 由于f (x )=tan x 在x ∈⎝⎛⎭⎫0,π2上单调递增, 又x ,y ∈⎝⎛⎭⎫0,π2, 则x -y 的最大值为π6. 16.如图,在平面直角坐标系Oxy 中,顶点在坐标原点,以x 轴非负半轴为始边的锐角α与钝角β的终边与单位圆O 分别交于A ,B 两点,x 轴的非负半轴与单位圆O 交于点M ,已知S △OAM=55,点B 的纵坐标是210.(1)求cos(α-β)的值;(2)求2α-β的值.解 (1)由题意知,|OA |=|OM |=1,因为S △OAM =12|OA |·|OM |sin α=55, 所以sin α=255, 又α为锐角,所以cos α=55. 因为点B 是钝角β的终边与单位圆O 的交点,且点B 的纵坐标是210, 所以sin β=210,cos β=-7210, 所以cos(α-β)=cos αcos β+sin αsin β=55×⎝⎛⎭⎫-7210+255×210=-1010. (2)因为sin α=255,cos α=55, cos(α-β)=-1010, sin(α-β)=sin αcos β-cos αsin β=255×⎝⎛⎭⎫-7210-55×210=-31010, 所以sin(2α-β)=sin[α+(α-β)]=sin αcos(α-β)+cos αsin(α-β)=-22, 因为α为锐角,sin α=255>22, 所以α∈⎝⎛⎭⎫π4,π2,所以2α∈⎝⎛⎭⎫π2,π, 又β∈⎝⎛⎭⎫π2,π, 所以2α-β∈⎝⎛⎭⎫-π2,π2,所以2α-β=-π4.。
两角和与差的余弦、正弦、正切公式

= × + × = = .∵0<β< ,所以β= .
变式3.(1)已知tanα=2,tanβ=3,且α,β都是锐角,求α+β;
(2)已知α,β均为锐角,sinα= ,cosβ= ,求α-β.
解析:(1)tan = = =-1.
∵α,β都是锐角,∴0<α+β<π,由上式知α+β= .
课堂练习:
练习1:cos(450+300)=
练习2:cos200cos700-sin200sin700=
练习3: 练习4:
1.下列式子中,正确的个数为()
①sin =sinα-sinβ;②cos =cosα-cosβ;
③sin =sinαcosβ-cosαsinβ;④cos =cosαcosβ+sinαsinβ.
解析:(1)原式=sin 14°cos 16°+cos 14°sin 16°=sin =sin 30°= .
(2)原式=sinxcos +cosxsin +2sinxcos -2cosxsin - cos cosx- sin sinx=3sinxcos -cosxsin - cos cosx- sin sinx= sinx- cosx
=- × + × =- ,故得-sin =- ,即sin = .
变式2.化简求值:
(1)sin 75°;(2)sin 15°;
(3)若α,β均为锐角,sinα= ,sin(α+β)= ,求cosβ.
解析:(1)原式=sin =sin 45°cos 30°+cos 45°sin 30°= × + × = .
课题
两角和与差的余弦、正弦、正切公式
1.注意到 ,由公式C(α+β).,可以推出:
第28课时____两角和与差的三角函数

215课题:教学目标:掌握两角和与差的三角函数公式,掌握二倍角公式;能运用这些公式进行三角化简,求值等有关运算问题.教学重点:公式的灵活运用.(一) 主要知识:1.两角和与差的三角函数公式;二倍角公式;2.降次公式:21cos 2cos 2αα+=,21cos 2sin 2αα-=.(二)主要方法:1.寻求所求结论中的角与已知条件中的角的关系,把握式子的变形方向,准确运用公式;2.三角变换主要体现在:函数名称的变换、角的变换、1的变换、和积的变换、幂的变换等方面;3.掌握基本技巧:切割化弦,异名化同名,异角化同角等;4.应注意的几点:()1熟悉公式的正用、逆用,还要熟练掌握公式的变形应用.()2注意拆角、凑角技巧,如()ααββ=+-,()()2ααβαβ=++-等.()3注意倍角的相对性,如3α是23α的倍角.()4要时时注意角的范围的讨论.(三)典例分析:问题1.()1(07江西文)若tan 3α=,4tan 3β=,则tan()αβ-等于 .A 3- .B 13- .C 3.D 13()2(06重庆)3,,4παβπ⎛⎫∈ ⎪⎝⎭,()3sin 5αβ+=-,12sin 413πβ⎛⎫-= ⎪⎝⎭,则cos 4πα⎛⎫+= ⎪⎝⎭问题2.(07四川)已知1cos 7α=,13cos()14αβ-=,02πβα<<<, (Ⅰ)求α2tan 的值.(Ⅱ)求β.216问题3.求值:()1cot104cos10︒-︒;()2cos 20cos 40cos 60cos80︒︒︒︒ ()3(06江苏)cot 20cos10tan702cos40︒︒︒-︒问题4.已知A 为三角形的内角,求222cos cos ()3y A A π=++的取值范围.问题5.已知1sin sin 4αβ+=,1cos cos 3αβ+=,求值: ()1()cos αβ-; ()2()tan αβ+217(四)巩固练习:1.(05重庆文)=+-)12sin12)(cos12sin12(cosππππ.A 23-.B 21-.C 21.D 232.(05江西文)已知tan32α=,则cos α= .A 54 .B 45-.C 154.D 35-3.已知4cos 5θ=,(),2θππ∈,则sin 2θ= .A .B .C .D4.若α为锐角,且1sin 63πα⎛⎫-= ⎪⎝⎭,则cos α=.A 16.B 16.C 14.D 145.(05江苏)1sin 63πα⎛⎫-= ⎪⎝⎭,则2cos 23πα⎛⎫+= ⎪⎝⎭ .A 79-.B 13-.C 13.D 796.(07南通九校联考)已知2sin sin 3x y -=-,2cos cos 3x y -=,且,x y 为锐角,则()tan x y -的值是 .A.B.C.D7.(五)课后作业:8.(07届西安地区高三八校联考)设sin15cos15a=︒+︒,sin17cos17b=︒+︒,则下列各式正确的是.A222a ba b+<<.B222a bb a+<<.C222a ba b+<<.D222a bb a+<<9.(六)走向高考:10.(07陕西)已知sinα=,则44sin cosαα-的值为.A15-.B35-.C15.D3511.(07江苏)若1cos()5αβ+=,3cos()5αβ-=,则tan tanαβ=12.(07浙江)已知1sin cos5θθ+=,且324θππ≤≤,则cos2θ的值是21821913.(06福建)已知3(,),sin ,25παπα∈=则tan()4πα+=.A 17.B 7.C 17-.D 7-14. (06湖北)已知2sin 23A =,()0,A π∈,则sin cos A A += .A 3 .B 3- .C 53 .D 53-15.(06重庆文)若,(0,)2παβ∈,cos()2βα-=,1sin()22αβ-=-,则cos()αβ+=.A .B 12- .C 12 .D16.(06陕西)cos 43cos77sin 43cos167︒︒+︒︒=17.在ABC △中,(1cot )(1cot )2A B ++=,则2log sin C =22018.已知sin 2cos 0αα+=,则sin 2cos 2αα+=19.(06安徽文)已知40,sin 25παα<<=求值:()122sin sin 2cos cos 2αααα++;()25tan()4πα-20.(06天津文)已知5tan cot ,(,),242ππααα+=∈求cos 2α和sin(2)4πα+的值。
两角和与差的公式
两角和与差的正弦、余弦、正切公式1.两角和与差的余弦、正弦、正切公式 cos(α-β)=cos αcos β+sin αsin β (C (α-β)) cos(α+β)=cos_αcos_β-sin_αsin_β (C (α+β)) sin(α-β)=sin_αcos_β-cos_αsin_β (S (α-β)) sin(α+β)=sin_αcos_β+cos_αsin_β (S (α+β)) tan(α-β)=tan α-tan β1+tan αtan β (T (α-β))tan(α+β)=tan α+tan β1-tan αtan β (T (α+β))2.二倍角公式 sin 2α=2sin_αcos_α;cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α; tan 2α=2tan α1-tan 2α.3.在准确熟练地记住公式的基础上,要灵活运用公式解决问题:如公式的正用、逆用和变形用等.如T (α±β)可变形为tan α±tan β=tan(α±β)(1∓tan_αtan_β), tan αtan β=1-tan α+tan βtan (α+β)=tan α-tan βtan (α-β)-1.【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)存在实数α,β,使等式sin(α+β)=sin α+sin β成立.( √ ) (2)在锐角△ABC 中,sin A sin B 和cos A cos B 大小不确定.( × ) (3)公式tan(α+β)=tan α+tan β1-tan αtan β可以变形为tan α+tan β=tan(α+β)(1-tan αtan β),且对任意角α,β都成立.( × )(4)存在实数α,使tan 2α=2tan α.( √ )(5)设sin 2α=-sin α,α∈(π2,π),则tan 2α= 3.( √ )1.(2013·浙江)已知α∈R ,sin α+2cos α=102,则tan 2α等于( ) A.43 B.34 C .-34 D .-43 答案 C解析 ∵sin α+2cos α=102, ∴sin 2α+4sin αcos α+4cos 2α=52.化简得:4sin 2α=-3cos 2α, ∴tan 2α=sin 2αcos 2α=-34.故选C.2.若sin α+cos αsin α-cos α=12,则tan 2α等于( )A .-34 B.34 C .-43 D.43答案 B解析 由sin α+cos αsin α-cos α=12,等式左边分子、分母同除cos α得,tan α+1tan α-1=12,解得tan α=-3,则tan 2α=2tan α1-tan 2α=34.3.(2013·课标全国Ⅱ)设θ为第二象限角,若tan ⎝⎛⎭⎫θ+π4=12,则sin θ+cos θ=________. 答案 -105解析 ∵tan ⎝⎛⎭⎫θ+π4=12,∴tan θ=-13, 即⎩⎪⎨⎪⎧3sin θ=-cos θ,sin 2θ+cos 2θ=1,且θ为第二象限角,解得sin θ=1010,cos θ=-31010. ∴sin θ+cos θ=-105.4.(2014·课标全国Ⅱ)函数f (x )=sin(x +2φ)-2sin φcos(x +φ)的最大值为________. 答案 1解析 ∵f (x )=sin(x +2φ)-2sin φcos(x +φ) =sin [(x +φ)+φ]-2sin φcos(x +φ)=sin(x +φ)cos φ+cos(x +φ)sin φ-2sin φcos(x +φ) =sin(x +φ)cos φ-cos(x +φ)sin φ =sin [(x +φ)-φ]=sin x , ∴f (x )的最大值为1.题型一 三角函数公式的基本应用例1 (1)设tan α,tan β是方程x 2-3x +2=0的两根,则tan(α+β)的值为( ) A .-3 B .-1 C .1D .3(2)若0<α<π2,-π2<β<0,cos(π4+α)=13,cos(π4-β2)=33,则cos(α+β2)等于( )A.33B .-33 C.539D .-69答案 (1)A (2)C解析 (1)由根与系数的关系可知 tan α+tan β=3,tan αtan β=2. ∴tan(α+β)=tan α+tan β1-tan αtan β=31-2=-3.故选A. (2)cos(α+β2)=cos[(π4+α)-(π4-β2)]=cos(π4+α)cos(π4-β2)+sin(π4+α)sin(π4-β2).∵0<α<π2,则π4<π4+α<3π4, ∴sin(π4+α)=223.又-π2<β<0,则π4<π4-β2<π2, 则sin(π4-β2)=63.故cos(α+β2)=13×33+223×63=539.故选C.思维升华 三角函数公式对使公式有意义的任意角都成立.使用中要注意观察角之间的和、差、倍、互补、互余等关系.(1)若α∈(π2,π),tan(α+π4)=17,则sin α等于( )A.35 B.45 C .-35D .-45(2)计算:1+cos 20°2sin 20°-sin 10°(1tan 5°-tan 5°)=________.答案 (1)A (2)32解析 (1)∵tan(α+π4)=tan α+11-tan α=17,∴tan α=-34=sin αcos α,∴cos α=-43sin α.又∵sin 2α+cos 2α=1, ∴sin 2α=925.又∵α∈(π2,π),∴sin α=35.(2)原式=2cos 210°4sin 10°cos 10°-sin 10°·cos 25°-sin 25°sin 5°cos 5°=cos 10°2sin 10°-sin 20°sin 10°=cos 10°-2sin 20°2sin 10°=cos 10°-2sin (30°-10°)2sin 10°=cos 10°-2sin 30°cos 10°+2cos 30°sin 10°2sin 10°=32. 题型二 三角函数公式的灵活应用例2 (1)sin(65°-x )cos(x -20°)+cos(65°-x )·cos(110°-x )的值为( ) A. 2 B.22 C.12D.32(2)化简:2cos 4x -2cos 2x +122tan (π4-x )sin 2(π4+x )=________.(3)求值:cos 15°+sin 15°cos 15°-sin 15°=________.答案 (1)B (2)12cos 2x (3) 3解析 (1)原式=sin(65°-x )·cos(x -20°)+cos(65°-x )cos [90°-(x -20°)]=sin(65°-x )cos(x -20°)+cos(65°-x )sin(x -20°)=sin [(65°-x )+(x -20°)]=sin 45°=22.故选B. (2)原式=12(4cos 4x -4cos 2x +1)2×sin (π4-x )cos (π4-x )·cos 2(π4-x )=(2cos 2x -1)24sin (π4-x )cos (π4-x )=cos 22x 2sin (π2-2x )=cos 22x 2cos 2x =12cos 2x .(3)原式=1+tan 15°1-tan 15°=tan 45°+tan 15°1-tan 45°tan 15°=tan(45°+15°)= 3.思维升华 运用两角和与差的三角函数公式时,不但要熟练、准确,而且要熟悉公式的逆用及变形,如tan α+tan β=tan(α+β)·(1-tan αtan β)和二倍角的余弦公式的多种变形等.公式的逆用和变形应用更能开拓思路,培养从正向思维向逆向思维转化的能力.(1)已知α∈(0,π),化简:(1+sin α+cos α)·(cos α2-sin α2)2+2cos α=________.(2)在△ABC 中,已知三个内角A ,B ,C 成等差数列,则tan A 2+tan C 2+3tan A 2tan C2的值为________.答案 (1)cos α (2) 3解析 (1)原式=(2cos 2α2+2sin α2cos α2)·(cos α2-sin α2)4cos 2α2.因为α∈(0,π),所以cos α2>0,所以原式=(2cos 2α2+2sin α2cos α2)·(cos α2-sin α2)2cosα2=(cos α2+sin α2)·(cos α2-sin α2)=cos 2α2-sin 2α2=cos α.(2)因为三个内角A ,B ,C 成等差数列,且A +B +C =π,所以A +C =2π3,A +C 2=π3,tanA +C2=3, 所以tan A 2+tan C 2+3tan A 2tan C2=tan ⎝⎛⎭⎫A 2+C 2⎝⎛⎭⎫1-tan A 2tan C 2+3tan A 2tan C 2 =3⎝⎛⎭⎫1-tan A 2tan C 2+3tan A 2tan C2= 3. 题型三 三角函数公式运用中角的变换例3 (1)已知α,β均为锐角,且sin α=35,tan(α-β)=-13.则sin(α-β)=________,cos β=________.(2)(2013·课标全国Ⅱ)已知sin 2α=23,则cos 2⎝⎛⎭⎫α+π4等于( ) A.16 B.13 C.12 D.23 答案 (1)-1010 95010 (2)A 解析 (1)∵α,β∈(0,π2),从而-π2<α-β<π2.又∵tan(α-β)=-13<0,∴-π2<α-β<0.∴sin(α-β)=-1010,cos(α-β)=31010. ∵α为锐角,sin α=35,∴cos α=45.∴cos β=cos [α-(α-β)] =cos αcos(α-β)+sin αsin(α-β) =45×31010+35×(-1010)=91050. (2)因为cos 2⎝⎛⎭⎫α+π4=1+cos2⎝⎛⎭⎫α+π42=1+cos ⎝⎛⎭⎫2α+π22=1-sin 2α2,所以cos 2⎝⎛⎭⎫α+π4=1-sin 2α2=1-232=16,选A.思维升华 1.解决三角函数的求值问题的关键是把“所求角”用“已知角”表示.(1)当“已知角”有两个时,“所求角”一般表示为两个“已知角”的和或差的形式;(2)当“已知角”有一个时,此时应着眼于“所求角”与“已知角”的和或差的关系,然后应用诱导公式把“所求角”变成“已知角”.2.常见的配角技巧:2α=(α+β)+(α-β),α=(α+β)-β,β=α+β2-α-β2,α=α+β2+α-β2,α-β2=(α+β2)-(α2+β)等. (1)设α、β都是锐角,且cos α=55,sin(α+β)=35,则cos β等于( ) A.2525 B.255C.2525或255D.55或525(2)已知cos(α-π6)+sin α=453,则sin(α+7π6)的值是________.答案 (1)A (2)-45解析 (1)依题意得sin α=1-cos 2α=255, cos(α+β)=±1-sin 2(α+β)=±45.又α,β均为锐角,所以0<α<α+β<π,cos α>cos(α+β). 因为45>55>-45,所以cos(α+β)=-45.于是cos β=cos [(α+β)-α] =cos(α+β)cos α+sin(α+β)sin α =-45×55+35×255=2525.(2)∵cos(α-π6)+sin α=453,∴32cos α+32sin α=453, 3(12cos α+32sin α)=453, 3sin(π6+α)=453,∴sin(π6+α)=45,∴sin(α+7π6)=-sin(π6+α)=-45.高考中的三角函数求值、化简问题典例:(1)若tan 2θ=-22,π<2θ<2π,则2cos 2θ2-sin θ-12sin (θ+π4)=________.(2)(2014·课标全国Ⅰ)设α∈(0,π2),β∈(0,π2),且tan α=1+sin βcos β,则( )A .3α-β=π2B .2α-β=π2C .3α+β=π2D .2α+β=π2(3)(2012·大纲全国)已知α为第二象限角,sin α+cos α=33,则cos 2α等于( ) A .-53 B .-59 C.59 D.53(4)(2012·重庆)sin 47°-sin 17°cos 30°cos 17°等于( )A .-32 B .-12 C.12 D.32思维点拨 (1)注意和差公式的逆用及变形.(2)“切化弦”,利用和差公式、诱导公式找α,β的关系. (3)可以利用sin 2α+cos 2α=1寻求sin α±cos α与sin αcos α的联系. (4)利用和角公式将已知式子中的角向特殊角转化. 解析 (1)原式=cos θ-sin θsin θ+cos θ=1-tan θ1+tan θ,又tan 2θ=2tan θ1-tan 2θ=-22,即2tan 2θ-tan θ-2=0, 解得tan θ=-12或tan θ= 2. ∵π<2θ<2π,∴π2<θ<π.∴tan θ=-12,故原式=1+121-12=3+2 2.(2)由tan α=1+sin βcos β得sin αcos α=1+sin βcos β,即sin αcos β=cos α+cos αsin β, ∴sin(α-β)=cos α=sin(π2-α).∵α∈(0,π2),β∈(0,π2),∴α-β∈(-π2,π2),π2-α∈(0,π2),∴由sin(α-β)=sin(π2-α),得α-β=π2-α,∴2α-β=π2.(3)方法一 ∵sin α+cos α=33,∴(sin α+cos α)2=13, ∴2sin αcos α=-23,即sin 2α=-23.又∵α为第二象限角且sin α+cos α=33>0, ∴2k π+π2<α<2k π+34π(k ∈Z ),∴4k π+π<2α<4k π+32π(k ∈Z ),∴2α为第三象限角, ∴cos 2α=-1-sin 22α=-53. 方法二 由sin α+cos α=33两边平方得1+2sin αcos α=13, ∴2sin αcos α=-23.∵α为第二象限角,∴sin α>0,cos α<0, ∴sin α-cos α=(sin α-cos α)2=1-2sin αcos α=153.由⎩⎨⎧ sin α+cos α=33,sin α-cos α=153,得⎩⎪⎨⎪⎧ sin α=3+156,cos α=3-156.∴cos 2α=2cos 2α-1=-53. (4)原式=sin (30°+17°)-sin 17°cos 30°cos 17°=sin 30°cos 17°+cos 30°sin 17°-sin 17°cos 30°cos 17° =sin 30°cos 17°cos 17°=sin 30°=12. 答案 (1)3+22 (2)B (3)A (4)C温馨提醒 (1)三角函数的求值化简要结合式子特征,灵活运用或变形使用公式.(2)三角求值要注意角的变换,掌握常见的配角技巧.方法与技巧1.巧用公式变形:和差角公式变形:tan x ±tan y =tan(x ±y )·(1∓tan x ·tan y );倍角公式变形:降幂公式cos 2α=1+cos 2α2,sin 2α=1-cos 2α2, 配方变形:1±sin α=⎝⎛⎭⎫sin α2±cos α22, 1+cos α=2cos 2α2,1-cos α=2sin 2α2. 2.重视三角函数的“三变”:“三变”是指“变角、变名、变式”;变角:对角的分拆要尽可能化成同名、同角、特殊角;变名:尽可能减少函数名称;变式:对式子变形一般要尽可能有理化、整式化、降低次数等.在解决求值、化简、证明问题时,一般是观察角度、函数名、所求(或所证明)问题的整体形式中的差异,再选择适当的三角公式恒等变形. 失误与防范1.运用公式时要注意审查公式成立的条件,要注意和、差、倍角的相对性,要注意升次、降次的灵活运用,要注意“1”的各种变通.2.在(0,π)范围内,sin(α+β)=22所对应的角α+β不是唯一的.3.在三角求值时,往往要估计角的范围后再求值.A组专项基础训练(时间:30分钟)1.已知tan(α+β)=25,tan⎝⎛⎭⎫β-π4=14,那么tan⎝⎛⎭⎫α+π4等于() A.1318 B.1322 C.322 D.16答案 C解析因为α+π4+β-π4=α+β,所以α+π4=(α+β)-⎝⎛⎭⎫β-π4,所以tan⎝⎛⎭⎫α+π4=tan⎣⎡⎦⎤(α+β)-⎝⎛⎭⎫β-π4=tan(α+β)-tan⎝⎛⎭⎫β-π41+tan(α+β)tan⎝⎛⎭⎫β-π4=322.2.若θ∈[π4,π2],sin 2θ=378,则sin θ等于()A.35 B.45 C.74 D.34答案 D解析由sin 2θ=387和sin2θ+cos2θ=1得(sin θ+cos θ)2=378+1=(3+74)2,又θ∈[π4,π2],∴sin θ+cos θ=3+74.同理,sin θ-cos θ=3-74,∴sin θ=34.3.已知tan α=4,则1+cos 2α+8sin 2αsin 2α的值为( ) A .4 3B.654 C .4 D.233答案 B解析 1+cos 2α+8sin 2αsin 2α=2cos 2α+8sin 2α2sin αcos α, ∵tan α=4,∴cos α≠0,分子、分母都除以cos 2α得2+8tan 2α2tan α=654. 4.(2013·重庆)4cos 50°-tan 40°等于( )A. 2B.2+32 C. 3 D .22-1 答案 C解析 4cos 50°-tan 40°=4sin 40°cos 40°-sin 40°cos 40°=2sin 80°-sin 40°cos 40°=2sin (50°+30°)-sin 40°cos 40°=3sin 50°+cos 50°-sin 40°cos 40°=3sin 50°cos 40°= 3. 5.已知cos(x -π6)=-33,则cos x +cos(x -π3)的值是( ) A .-233B .±233C .-1D .±1 答案 C解析 cos x +cos(x -π3)=cos x +12cos x +32sin x =32cos x +32sin x =3(32cos x +12sin x )=3cos(x -π6)=-1. 6. sin 250°1+sin 10°=________. 答案 12解析 sin 250°1+sin 10°=1-cos 100°2(1+sin 10°)=1-cos(90°+10°)2(1+sin 10°)=1+sin 10°2(1+sin 10°)=12.7.已知α、β均为锐角,且cos(α+β)=sin(α-β),则tan α=________. 答案 1解析根据已知条件:cos αcos β-sin αsin β=sin αcos β-cos αsin β,cos β(cos α-sin α)+sin β(cos α-sin α)=0,即(cos β+sin β)(cos α-sin α)=0.又α、β为锐角,则sin β+cos β>0,∴cos α-sin α=0,∴tan α=1.8.3tan 12°-3(4cos212°-2)sin 12°=________.答案-4 3解析原式=3sin 12°cos 12°-32(2cos212°-1)sin 12°=23⎝⎛⎭⎫12sin 12°-32cos 12°cos 12°2cos 24°sin 12°=23sin(-48°)2cos 24°sin 12°cos 12°=-23sin 48°sin 24°cos 24°=-23sin 48°12sin 48°=-4 3.9.已知1+sin α1-sin α-1-sin α1+sin α=-2tan α,试确定使等式成立的α的取值集合.解因为1+sin α1-sin α-1-sin α1+sin α=(1+sin α)2cos2α-(1-sin α)2cos2α=|1+sin α||cos α|-|1-sin α||cos α|=1+sin α-1+sin α|cos α|=2sin α|cos α|, 所以2sin α|cos α|=-2tan α=-2sin αcos α. 所以sin α=0或|cos α|=-cos α>0.故α的取值集合为{α|α=k π或2k π+π2<α<2k π+π或2k π+π<α<2k π+3π2,k ∈Z }. 10.已知α∈⎝⎛⎭⎫π2,π,且sin α2+cos α2=62. (1)求cos α的值;(2)若sin(α-β)=-35,β∈⎝⎛⎭⎫π2,π,求cos β的值. 解 (1)因为sin α2+cos α2=62, 两边同时平方,得sin α=12. 又π2<α<π,所以cos α=-32. (2)因为π2<α<π,π2<β<π, 所以-π<-β<-π2,故-π2<α-β<π2. 又sin(α-β)=-35,得cos(α-β)=45. cos β=cos [α-(α-β)]=cos αcos(α-β)+sin αsin(α-β) =-32×45+12×⎝⎛⎭⎫-35=-43+310. B 组 专项能力提升(时间:25分钟)11.已知tan(α+π4)=12,且-π2<α<0,则2sin 2α+sin 2αcos (α-π4)等于( ) A .-255 B .-3510 C .-31010 D.255答案 A解析 由tan(α+π4)=tan α+11-tan α=12,得tan α=-13.又-π2<α<0,所以sin α=-1010.故2sin 2α+sin 2αcos (α-π4)=2sin α(sin α+cos α)22(sin α+cos α)=22sin α=-255.12.若α∈⎝⎛⎭⎫0,π2,且sin 2α+cos 2α=14,则tan α的值等于() A.22 B.33 C. 2 D. 3答案 D解析 ∵α∈⎝⎛⎭⎫0,π2,且sin 2α+cos 2α=14,∴sin 2α+cos 2α-sin 2α=14,∴cos 2α=14,∴cos α=12或-12(舍去),∴α=π3,∴tan α= 3.13.若tan θ=12,θ∈(0,π4),则sin(2θ+π4)=________.答案 7210解析 因为sin 2θ=2sin θcos θsin 2θ+cos 2θ=2tan θtan 2θ+1=45,又由θ∈(0,π4),得2θ∈(0,π2),所以cos 2θ=1-sin 22θ=35,所以sin(2θ+π4)=sin 2θcos π4+cos 2θsin π4=45×22+35×22=7210.14.已知函数f (x )=sin ⎝⎛⎭⎫x +7π4+cos ⎝⎛⎭⎫x -3π4,x ∈R .(1)求f (x )的最小正周期和最小值;(2)已知cos(β-α)=45,cos(β+α)=-45,0<α<β≤π2,求证:[f (β)]2-2=0. (1)解 ∵f (x )=sin ⎝⎛⎭⎫x +7π4-2π+cos ⎝⎛⎭⎫x -π4-π2 =sin ⎝⎛⎭⎫x -π4+sin ⎝⎛⎭⎫x -π4=2sin ⎝⎛⎭⎫x -π4, ∴T =2π,f (x )的最小值为-2.(2)证明 由已知得cos βcos α+sin βsin α=45, cos βcos α-sin βsin α=-45, 两式相加得2cos βcos α=0,∵0<α<β≤π2,∴β=π2, ∴[f (β)]2-2=4sin 2π4-2=0. 15.已知f (x )=(1+1tan x )sin 2x -2sin(x +π4)·sin(x -π4). (1)若tan α=2,求f (α)的值;(2)若x ∈[π12,π2],求f (x )的取值范围. 解 (1)f (x )=(sin 2x +sin x cos x )+2sin ⎝⎛⎭⎫x +π4·cos ⎝⎛⎭⎫x +π4 =1-cos 2x 2+12sin 2x +sin ⎝⎛⎭⎫2x +π2 =12+12(sin 2x -cos 2x )+cos 2x =12(sin 2x +cos 2x )+12. 由tan α=2,得sin 2α=2sin αcos αsin 2α+cos 2α=2tan αtan 2α+1=45. cos 2α=cos 2α-sin 2αsin 2α+cos 2α=1-tan 2α1+tan 2α=-35. 所以,f (α)=12(sin 2α+cos 2α)+12=35.(2)由(1)得f (x )=12(sin 2x +cos 2x )+12=22sin ⎝⎛⎭⎫2x +π4+12. 由x ∈⎣⎡⎦⎤π12,π2,得5π12≤2x +π4≤5π4. 所以-22≤sin ⎝⎛⎭⎫2x +π4≤1,0≤f (x )≤2+12, 所以f (x )的取值范围是⎣⎢⎡⎦⎥⎤0,2+12.。
高三数学两角和与差的三角函数试题答案及解析
高三数学两角和与差的三角函数试题答案及解析1.已知0<α<π,sin 2α=sin α,则tan=________.【答案】-2-【解析】由sin 2α=sinα,可得2sin αcos α=sin α,又0<α<π,所以cos α=.故sin α=,tan α=.所以tan===-2-.2.函数y=sin(+x)cos(-x)的最大值为()A.B.C.D.【答案】B【解析】∵sin(+x)cos(-x)=cosx(cos cosx+sin sinx)=cos2x+sinxcosx=(1+cos2x)+sin2x=+cos2x+sin2x=+(cos2x+sin2x)=+sin(2x+)∴函数y=sin(+x)cos(-x)的最大值为3.在中,.(1)求的值;(2)求的值.【答案】(1)(2)【解析】(1)解三角形问题,通常利用正余弦定理进行边角转化.由正弦定理得:,.(2)由(1)及条件知三角形三边,故用余弦定理求角. 由,得,由同角三角函数关系,可得,再由二倍角公式得到,,因此=.试题解析:(1)因为 ,(2)=所以 ,【考点】正余弦定理, 同角三角函数关系, 二倍角公式4.已知,,则.【答案】3【解析】因为,所以【考点】两角和的正切公式5.已知,,则.【答案】3【解析】因为,所以【考点】两角和的正切公式6.已知向量,,,函数.(1)求函数的表达式;(2)求的值;(3)若,,求的值.【答案】(1) (2) (3)【解析】(1)利用两向量内积的坐标计算公式(两向量的横纵坐标对应相乘再相加)即可得到的函数解析式.(2)由(1)可得的函数解析式,把带入函数即可得到的值.(3)把等式带入,利用诱导公式(奇变偶不变符号看象限)化简等式即可得到的值,正余弦的关系即可求出的值,再把带入函数即可得到,再利用和差角和倍角公式展开并把的值带入即可得到的值.试题解析:(1)∵,,,∴,即函数. (3分)(2)(6分)(3)∵,又,∴,即. (7分)∵,∴. (8分)∴,(9分). (10分)∴(11分). (12分)【考点】正余弦和差角与倍角公式诱导公式内积公式7.若sinα=,sinβ=,且α、β为锐角,则α+β的值为__________.【答案】【解析】(解法1)依题意有cosα==,cosβ==,∴cos(α+β)=>0.∵α、β都是锐角,∴ 0<α+β<π,∴α+β=.(解法2)∵α、β都是锐角,且sinα=<,sinβ=<,∴ 0<α,β<,0<α+β<,∴cosα==,cosβ==,sin(α+β)=.∴α+β=.8.已知0<β<<α<π,cos(-α)=,sin(+β)=,求sin(α+β)的值.【答案】【解析】∵<α<,∴-<-α<-,∴-<-α<0.又cos(-α)=,∴ sin(-α)=-.∵ 0<β<,∴<+β<π.又sin(+β)=,∴ cos(+β)=-.∴sin(α+β)=-cos =-cos[(+β)-(-α)]=-cos cos-sin(+β)·sin=9.已知α、β∈,sinα=,tan(α-β)=-,求cosβ的值.【答案】【解析】∵ α、β∈,∴-<α-β<.又tan(α-β)=-<0,∴-<α-β<0.∴=1+tan2(α-β)=.∴ cos(α-β)=,sin(α-β)=-.又sinα=,∴ cosα=.∴ cosβ=cos[α-(α-β)]=cosαcos(α-β)+sinαsin(α-β)=×+×=10.设当x=θ时,函数f(x)=sin x-2cos x取得最大值,则cos θ=________.【答案】-(x)=,【解析】f(x)=sin(x-φ),则fmax依题意sin θ-2cos θ=,即sin θ=+2cos θ,代入sin2θ+cos2θ=1,得(cos θ+2)2=0.∴cos θ=-.11.如图所示,A,B分别是单位圆与x轴、y轴正半轴的交点,点P在单位圆上,∠AOP=θ(0<θ<π),C点坐标为(-2,0),平行四边形OAQP的面积为S.(1)求·+S的最大值;(2)若CB∥OP,求sin的值.【答案】(1)+1(2)【解析】(1)由已知,得A(1,0),B(0,1),P(cos θ,sin θ),因为四边形OAQP是平行四边形,所以=+=(1,0)+(cos θ,sin θ)=(1+cos θ,sin θ).所以·=1+cos θ.又平行四边形OAQP的面积为S=||·| |sin θ=sin θ,所以·+S=1+cos θ+sin θ=sin +1.又0<θ<π,所以当θ=时,·+S的最大值为+1.(2)由题意,知=(2,1),=(cos θ,sin θ),因为CB∥OP,所以cos θ=2sin θ.又0<θ<π,cos2θ+sin2θ=1,解得sin θ=,cos θ=,所以sin2 θ=2sin θcos θ=,cos2θ=cos2θ-sin2θ=.所以sin=sin 2θcos-cos 2θsin=×-×=.12.若α,β∈(0,π),cos α=-,tan β=-,则α+2β=________.【答案】【解析】由条件得α∈,β∈,所以α+2β∈(2π,3π),且tan α=-,tan β=-,所以tan 2β==-,tan(α+2β)==-1,所以α+2β=.13.求证:(1)(2)【答案】证明见解析.【解析】三角恒等式的证明也遵循从繁化简的原则,当然三角函数还有函数名称的转化与角的转化.(1)本题从左向右变化,首先把左边分子用两角差的正弦公式展开,就能证明,当然也可从右向左转化(切化弦),;(2)这个证明要求我们善于联想,首先左边的和怎么求?能否变为两数的差(利用裂项相消的思想方法)?这个想法实际上在第(1)小题已经为我们做了,只要乘以(因为每个分母上的两角的差都是),每个分式都化为两数的差,而且恰好能够前后项相消.试题解析:证明:(1) 3分6分(2)由(1)得() 8分可得10分12分即. 14分【考点】两角差的正弦公式,同角三角函数关系.14.若对∀a∈(-∞,0),∃θ∈R,使asin θ≤a成立,则cos的值为 ().A.B.C.D.【答案】A【解析】∵asin θ≤a⇔a(sin θ-1)≤0,依题意,得∀a∈(-∞,0),有asin θ≤a.∴sin θ-1≥0,则sin θ≥1.又-1≤sin θ≤1,因此sin θ=1,cos θ=0.故cos=sin θsin+cos θcos=.15.已知向量,,函数(Ⅰ)求的最大值;(Ⅱ)在中,设角,的对边分别为,若,且,求角的大小.【答案】(Ⅰ);(Ⅱ).【解析】(Ⅰ)由向量数量积的定义只需将其化为一个角的三角函数就能求出的最大值.(Ⅱ)由(Ⅰ)的结果和正弦定理:,又 ,所以,,由以上两式即可解出,.试题解析:(Ⅰ) 2分4分(注:也可以化为)所以的最大值为. 6分(注:没有化简或化简过程不全正确,但结论正确,给4分)(Ⅱ)因为,由(1)和正弦定理,得. 7分又,所以,即, 9分而是三角形的内角,所以,故,, 11分所以,,. 12分【考点】1.正弦定理;2、两角和与差的在角函数公式、倍角公式;3、三角函数的性质.16.已知是方程的两根,则=_______.【答案】1【解析】本题考查两角和的正切公式,,而与可由韦达定理得.【考点】韦达定理与两角和的正切公式.17.在中,角的对边分别为,已知:,且.(Ⅰ)若,求边;(Ⅱ)若,求的面积.【答案】(Ⅰ);(Ⅱ).【解析】(Ⅰ)先由条件用和差公式化简,再根据三角形内角范围得到角.再由得到角,最后由正弦定理得到;(Ⅱ)先由余弦定理及条件得到,又因为,从而可知为直角三角形,其中角为直角.又,所以.既而得到三角形的面积.试题解析:(Ⅰ)由已知,所以,故,解得. (4分)由,且,得.由,即,解得. (7分)(Ⅱ)因为,所以,解得. (10分)由此得,故为直角三角形.其面积. (12分)【考点】1.两角和差公式;2.正弦定理;3.余弦定理.18.设向量,,其中,若,则.【答案】【解析】两边平方化简得,,又,是单位向量,所以即,又,所以.【考点】三角函数、平面向量.19.如图,在半径为、圆心角为60°的扇形的弧上任取一点,作扇形的内接矩形,使点在上,点在上,设矩形的面积为.(Ⅰ) 按下列要求写出函数关系式:①设,将表示成的函数关系式;②设,将表示成的函数关系式.(Ⅱ) 请你选用(Ⅰ)中的一个函数关系式,求的最大值.【答案】(Ⅰ)详见解析;(Ⅱ).【解析】(Ⅰ)①要用表示矩形的面积,关键是把用表示,在中可表示出,在中可表示出,即得;②在中,可用表示和,在在中可用即表示出,即得;(Ⅱ)对(Ⅰ)中函数,是常见的函数或三角函数问题,较为容易解答,求出其最大值.试题解析:(Ⅰ) ①因为,所以,又,所以 2分故() 4分②当时, ,则,又,所以6分故() 8分(Ⅱ)由②得= 12分故当时,取得最大值为 15分【考点】函数的应用、三角函数.20.设是锐角三角形,分别是内角所对边长,并且.(1)求角的值;(2)若,求(其中).【答案】(1) ;(2) .【解析】(1) 利用两角和与差的正弦公式展开化简得,又为锐角,所以;(2)由可得,即,然后利用余弦定理得的另一个关系,从而解出.试题解析:(1)因为,所以,又为锐角,所以.(2)由可得①由(1)知,所以②由余弦定理知,将及①代入,得③③+②×2,得,所以因此,是一元二次方程的两个根.解此方程并由知.【考点】两角和与差的正弦定理、平面向量的数量积、余弦定理.21.,,则的值为( )A.B.C.D.【答案】D【解析】,因为,所以,则.【考点】两角和与差的正余弦公式.22.设是方程的两个根,则的值为A.-3B.-1C.1D.3【答案】A【解析】因为是方程的两个根,所以由二次方程根与系数的关系可以得到,所以【考点】本题主要考查二次方程的根与系数的关系,以及两角和的正切公式。
015两角和与差的三角函数及二倍角公式
页眉内容两角和与差的三角函数及二倍角公式、三角恒等式证明1.两角和的余弦公式的推导方法:2.基本公式sin(α±β)=sinα cosβ±cosα sinβcos(α±β)= ;tan(α±β)= .3.公式的变式tanα+tanβ=tan (α+β)(1-tanα tanβ)1-tanα tanβ=)tan(tan tan βαβα++ 4.常见的角的变换:2α=(α+β)+(α-β);α=2βα++2βα- α=(α+β)-β =(α-β)+β2βα+=(α-2β)-(2α-β); )4()4(x x ++-ππ=2π 5.二倍角公式sin2α= ;cos2α= = = ;tan2α= .6.公式的变用:1+cos2α= ;1-cos2α= .7.三角函数式的化简的一般要求:① 函数名称尽可能少;② 项数尽可能少;③ 尽可能不含根式;④ 次数尽可能低、尽可能求出值.8.常用的基本变换方法有:异角化同角、异名化同名、异次化同次.9.求值问题的基本类型及方法① “给角求值”一般所给的角都是非特殊角,解题时应该仔细观察非特殊角与特殊角之间的关系,通常是将非特殊角转化为特殊角或相互抵消等方法进行求解.② “给值求值”即给出某些角的三角函数(式)的值,求另外的一些角的三角函数值,解题关键在于:变角,使其角相同;③ “给值求角”关键也是:变角,把所求的角用含已知角的式子表示,由所求得的函数值结合该函数的单调区间求得角.基础过关10.三角恒等式的证明实质是通过恒等变形,消除三角恒等式两端结构上的差异(如角的差异、函数名称的差异等).11.证三角恒等式的基本思路是“消去差异,促成同一”,即通过观察、分析,找出等式两边在角、名称、结构上的差异,再选用适当的公式,消去差异,促进同一.12.证明三角恒等式的基本方法有:⑴ 化繁为简;⑵ 左右归一;⑶ 变更问题.13.三角条件等式的证明就是逐步将条件等价转化为结论等式的过程,须注意转化过程确保充分性成立.14.三角条件等式的证明,关键在于仔细地找出所附加的条件和所要证明的结论之间的内在联系,其常用的方法有:⑴ 代入法:就是将结论变形后将条件代入,从而转化为恒等式的证明.⑵ 综合法:从条件出发逐步变形推出结论的方法.⑶ 消去法:当已知条件中含有某些参数,而结论中不含这些参数,通过消去条件中这些参数达到证明等式的方法.⑷ 分析法:从结论出发,逐步追溯到条件的证明方法,常在难于找到证题途径时用之.例1.求[2sin50°+sin10°(1+3tan10°)]· 80sin 22的值.变式训练1:(1)已知α∈(2π,π),sin α=53,则tan(4πα+)等于( ) A.71 B.7 C.- 71 D.-7 (2) sin163°sin223°+sin253°sin313°等于 ( )A.-21B.21 C.-23 D.23 例2. 已知α∈(4π,43π),β∈(0,4π),cos (α-4π)=53,sin(43π+β)=135,求sin(α+β)的值.典型例题变式训练2:设cos (α-2β)=-91,sin (2α-β)=32,且2π<α<π,0<β<2π, 求cos (α+β).例3. 若sinA=55,sinB=1010,且A,B 均为钝角,求A+B 的值.例4.化简sin 2α·sin 2β+cos 2αcos 2β-21cos2α·cos2β.变式训练4:化简:(1)2sin ⎪⎭⎫ ⎝⎛-x 4π+6cos ⎪⎭⎫ ⎝⎛-x 4π; (2)⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛--απαπα4sin 4tan 21cos 222.1.三角函数式的化简、求值、证明等是三角变形常见的题型,三角函数式变形的过程就是分析矛盾、发现差异,进而消除差异的过程。
高三数学两角和与差的三角函数试题答案及解析
高三数学两角和与差的三角函数试题答案及解析1.已知,,则()A.B.C.D.【答案】B【解析】∵,,,∴,∴,∴.【考点】平方关系、商数关系、两角差的正切.2. [2014·太原模拟]已知锐角α,β满足sinα=,cosβ=,则α+β等于() A.B.或C.D.2kπ+(k∈Z)【答案】C【解析】由sinα=,cosβ=且α,β为锐角,可知cosα=,sinβ=,故cos(α+β)=cosαcosβ-sinαsinβ=×-×=,又0<α+β<π,故α+β=.3.设,且.则的值为.【答案】【解析】由题意,又,∴且,由于,且,∴,∴,∴.【考点】三角函数的恒等变形与求值.4.函数y=sin(+x)cos(-x)的最大值为()A.B.C.D.【答案】B【解析】∵sin(+x)cos(-x)=cosx(cos cosx+sin sinx)=cos2x+sinxcosx=(1+cos2x)+sin2x=+cos2x+sin2x=+(cos2x+sin2x)=+sin(2x+)∴函数y=sin(+x)cos(-x)的最大值为5.已知,,且,则=.【答案】【解析】∵,∴,∴,,∴====.【考点】两角和与差的余弦.6.【答案】【解析】,.【考点】两角和与差的正切公式.7.已知,,则的值为.【答案】【解析】因为,所以.【考点】两角和与差正切8.计算:=________.【答案】2-【解析】sin7°=sin(15°-8°)=sin15°cos8°-cos15°sin8°,cos7°=cos(15°-8°)=cos15°cos8°+sin15°sin8°,∴原式=tan15°=tan(45°-30°)==2-9.已知α、β均为锐角,且tanβ=,则tan(α+β)=________.【答案】1【解析】∵tanβ=,∴tanβ==tan .又∵α、β均为锐角,∴β=-α,即α+β=,∴tan(α+β)=tan=1.10.设α∈,若tan=2cos 2α,则α=________.【答案】【解析】解析:∵tan=2cos 2α,∴=2(cos2α-sin2α),整理得=2(cos α+sin α)(cos α-sin α).因为α∈,所以sin α+cos α≠0.因此(cos α-sin α)2=,即sin 2α=.由α∈,得2α∈,所以2α=,即α=.11.若α,β∈,cos =,sin =-,则cos (α+β)=________.【答案】-【解析】∵α,β∈,∴-<α-<,-<-β<,由cos =和sin =-得α-=±,-β=-,当α-=-,-β=-时,α+β=0,与α,β∈矛盾;当α-=,-β=-时,α=β=,此时cos (α+β)=-.12.已知向量,,函数(Ⅰ)求的最大值;(Ⅱ)在中,设角,的对边分别为,若,且,求角的大小.【答案】(Ⅰ);(Ⅱ).【解析】(Ⅰ)由向量数量积的定义只需将其化为一个角的三角函数就能求出的最大值.(Ⅱ)由(Ⅰ)的结果和正弦定理:,又 ,所以,,由以上两式即可解出,.试题解析:(Ⅰ) 2分4分(注:也可以化为)所以的最大值为. 6分(注:没有化简或化简过程不全正确,但结论正确,给4分)(Ⅱ)因为,由(1)和正弦定理,得. 7分又,所以,即, 9分而是三角形的内角,所以,故,, 11分所以,,. 12分【考点】1.正弦定理;2、两角和与差的在角函数公式、倍角公式;3、三角函数的性质.13.已知向量,.(1)若,求的值;(2)若,,求的值.【答案】(1);(2).【解析】(1)由易得,代入式子中可约去为求出其值;(2)先求出,再对两边平方化简可得关于和的关系式,联立正弦余弦的平方关系解方程组可得和的值,代入的展开式,就可求出其值.试题解析:⑴由可知,,所以, 2分所以. 6分(2)由可得,,即,① 10分又,且②,由①②可解得,, 12分所以. 14分【考点】向量的数量积、模的计算,同角三角函数的关系、两角和与差的正弦.14.已知是方程的两根,则=_______.【答案】1【解析】本题考查两角和的正切公式,,而与可由韦达定理得.【考点】韦达定理与两角和的正切公式.15.已知a,b,c分别为ABC的三个内角A,B,C的对边,=(sinA,1),=(cosA,),且//.(I)求角A的大小;(II)若a=2,b=2,求ABC的面积.【答案】(I).(II)ABC的面积为或.【解析】(I)根据//,可得到注意到,得到.(II)首先由正弦定理可得:通过讨论,得到,从而或.根据,,分别计算进一步确定ABC的面积.试题解析:(I)因为//,所以因为,所以.(II)由正弦定理可得:因为,所以,或.当时,所以;当时,所以.故ABC的面积为或.【考点】平面向量的坐标运算,两角和差的三角函数,正弦定理的应用,三角形面积公式.16.已知圆O的半径为R(R为常数),它的内接三角形ABC满足成立,其中分别为的对边,求三角形ABC面积S的最大值.【答案】【解析】本题主要考查解三角形中的正弦定理余弦定理的应用以及运用倍角公式、两角和与差的正弦公式等三角公式进行三角变换的能力和利用三角形面积求最值,考查基本运算能力.先利用正弦定理将角换成边,再利用余弦定理求出,得到特殊角的值,利用三角形面积公式列出表达式,利用正弦定理将边换成角,将用表示,利用两角和与差的正弦公式、倍角公式化简表达式,求三角函数的最值.试题解析:由,由正弦定理得代入得,由余弦定理---6分所以=当且仅当时, 12分【考点】1.正弦定理;2.余弦定理;3.两角和与差的正弦公式;4.三角形面积公式;5.三角函数最值.17.函数的最小正周期为.【答案】【解析】由,得函数的最小正周期为.【考点】三角函数的周期.18.已知函数,将函数的图象向左平移个单位后得到函数的图象,且,则( )A.B.C.D.【答案】D【解析】∵,∴,∵,∴ (),即 (),∵,∴.【考点】1.倍角公式;2.两角和与差的余弦公式;3.三角方程的解法.19.设是锐角三角形,分别是内角所对边长,并且.(1)求角的值;(2)若,求(其中).【答案】(1) ;(2) .【解析】(1) 利用两角和与差的正弦公式展开化简得,又为锐角,所以;(2)由可得,即,然后利用余弦定理得的另一个关系,从而解出.试题解析:(1)因为,所以,又为锐角,所以.(2)由可得①由(1)知,所以②由余弦定理知,将及①代入,得③③+②×2,得,所以因此,是一元二次方程的两个根.解此方程并由知.【考点】两角和与差的正弦定理、平面向量的数量积、余弦定理.20.已知,且,,则______.【答案】【解析】由,,得,所以,又由,知.【考点】同角三角函数的关系、两角和与差的三角函数.21.设的内角的对边分别为,且,则 ,的面积 .【答案】;.【解析】为的内角,且,,由正弦定理得,,.【考点】两角和的三角函数、正弦定理、三角形的面积22.在中,分别是角的对边,,,且(1)求角的大小;(2)设,且的最小正周期为,求在上的最大值和最小值,及相应的的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三第一轮复习数学---两角和与差的三角函数
一、教学目标:掌握两角和与差的三角函数公式,掌握二倍角公式;能运用这些公式进行三角化简,求值等有关运算问题 二、教学重点:公式的灵活运用. 三、教学过程:
(一)主要知识: (一)两角和与差公式
()βαβαβ
αsin cos cos sin sin ±=
±
()βαβαβαsin sin cos cos cos =± ()β
αβαβ
αtan tan 1tan tan tan ±=
±
(二)倍角公式
βααcos sin 22sin = 2cos 2α=1+cos2α 2sin 2
α=1-cos2α
ααααα2
2
2
2
sin 211cos 2sin cos 2cos -=-=-=
α
αα2
tan
1tan 22tan -=
ααα
αα
sin cos 1cos 1sin 2
tan -=
+=
)s i n (c o s s i n 2
2
ϕααα++=+b a
b a )s i n ,(
c o s 2
2
2
2
b
a
a b a
b +=
+=ϕϕ
注:倍角公式揭示了具有倍数关系的两个角的三角函数的运算规律,可实现函数式的降幂的
变化。
注: (1)两角和与差的三角函数公式能够解答的三类基本题型:求值题,化简题,证明题。
(2)对公式会“正用”,“逆用”,“变形使用”。
(3)掌握“角的演变”规律,
(4)将公式和其它知识衔接起来使用。
(二)主要方法:
1.寻求所求结论中的角与已知条件中的角的关系,把握式子的变形方向,准确运用公式; 2.三角变换主要体现在:函数名称的变换、角的变换、1的变换、和积的变换、幂的变换等方面;
3.掌握基本技巧:切割化弦,异名化同名,异角化同角等.
(三)例题分析: 例1、求值
()
555
sin
1(=
4
6
2-)
()⎪⎭
⎫ ⎝⎛-125cot
2π(=
23-)
()16
7sin
16
sin 34
4
ππ
+
()。
的值求
α
αα
α2cos 2sin 1,62
5tan 1tan 14-+=-+(=5-2
2)
解(4)由题知6254tan +=⎪⎭
⎫
⎝
⎛+
πα
⎪⎭
⎫ ⎝⎛+=⎪
⎭
⎫ ⎝⎛++⎪
⎭
⎫ ⎝⎛+=
-απαπαπα
α4tan 22cos 122sin 2sin 12cos
62
54tan 12cos 2sin 1-=⎪
⎭
⎫ ⎝⎛+=-∴
απ
α
α
例2、已知
()()
,4
3tan tan tan tan tan =
+⋅--
+βααβ
αβα且(),0cos >+βπ求()πβ3sin -
分析:涉及βα+与α及β的正切和差与积,通常用正切公式的变形公式。
解:原式=
()()()
()
4
3tan tan
tan tan tan 1tan tan =
=+
⋅⋅-
+-+ββααβ
αβαβ
α
又,0cos <β所以β为第三象限角,所以()5
3sin 3sin =
-=-βπβ
例3、设,322sin ,912cos =⎪⎭
⎫
⎝⎛--=⎪⎭⎫
⎝
⎛-
βαβα,20,2πβπαπ<<<<().cos βα+求 分析:观察已知角和所求角,可作出⎪⎭
⎫
⎝⎛--⎪⎭⎫ ⎝⎛-=+βαβαβ
α222
,然后利用余弦的倍角公式求解。
解:因为
,2
0,2
π
βπαπ
<
<<<所以
2
2
4
,2
4
π
βα
π
πβ
απ
<
-<
-
<-
<
所以9
5
42sin =
⎪⎭
⎫
⎝
⎛-
βα,3
52cos =⎪⎭
⎫
⎝⎛-βα
,
所以275722cos 2cos =⎥⎦⎤
⎢⎣⎡⎪⎭⎫
⎝⎛--⎪⎭⎫ ⎝
⎛-=⎪⎭⎫
⎝⎛+βαβαβα 故()7292391.2cos 2cos 2
-=-⎪⎭
⎫
⎝⎛+=+βαβα
例4、设()()12sin sin ≠+=m m βαβ,求证:()αβαtan 11tan m
m -+=
+
分析:若从角的差异出发,令()αβαβ-+=,()αβαβα++=+2,代入条件式即可。
证明:由()()12sin sin ≠+=m m βαβ可得
()[]()[]αβ
α
αβα++=
-+sin
sin
m
展开合并同类项得()()()()αβααβαsin cos 1cos sin 1++=+-m m 又1≠m ,所以()αβαtan 11tan m
m -+=
+
例5 求函数f(x)=sin 2
x+2sinxcosx+3cos 2x 的最大值、最小值,并求取得此值的相应x 的值
解:f(x)=1+sin2x+2cos 2x=1+sin2x+1+cos2x =2+)4
2sin(2π
+x
当)4
2sin(π
+x =1,即2
24
2π
ππ
+
=+
k x ,
即)(,8
Z k k x ∈+
=π
π.22)(max +
=x f
)42sin(π
+
x =-1,即2
24
2π
ππ
-
=+
k x ,
即)(,8
3Z k k x ∈-
=π
π.22)(max -
=x f
例6、设函数()()()π<<+⎪
⎭
⎫ ⎝⎛
-++
=x x
x x x x x f 0cos 222cos 2sin cos sin 1
(1)化函数为最简形式
()()()().22
的图象
作出设x g x f
x g =
解:(1)()()()π<<+⎪
⎭
⎫ ⎝⎛
-++
=
x x
x x x x x f 0cos 222cos 2sin cos sin 1
x
x x x x x x x x x x x x cos 2
cos
22cos 2sin 2sin 2cos 2cos 22
cos
222cos 2sin 2cos
2
sin
22
cos 22
2
-=⎪
⎭
⎫
⎝⎛-⎪⎭⎫ ⎝⎛+=
⋅⎪
⎭
⎫
⎝⎛-⎪⎭⎫ ⎝
⎛
⋅+=
(2)()()π<<-
==x x x x g 02cos 2
12
1cos
2
图略。
(四)巩固练习:
1.化简1ta n 15
1ta n 15
+-等于
( A )
()
A
()
B 2
()C 3 ()D 1
2.已知sin 2cos 0αα+=,则sin 2co s 2αα+=75
-
.
3.在A B C ∆中,(1co t )(1co t )2A B ++=,则2lo g s in C =12
-
.
四、小结:
在运用公式时,要注意公式成立的条件,熟练掌握公式的顺用、逆用、变形用,还要注意各种的做题技巧。
五、作业:。