线性代数考研讲义完整版

合集下载

考研数学之线性代数讲义

考研数学之线性代数讲义

线性代数讲义目录第一讲基本概念线性方程组矩阵与向量初等变换和阶梯形矩阵线性方程组的矩阵消元法第二讲行列式完全展开式化零降阶法其它性质克莱姆法则第三讲矩阵乘法乘积矩阵的列向量和行向量矩阵分解矩阵方程逆矩阵伴随矩阵第四讲向量组线性表示向量组的线性相关性向量组的极大无关组和秩矩阵的秩第五讲方程组解的性质解的情况的判别基础解系和通解第六讲特征向量与特征值相似与对角化特征向量与特征值—概念,计算与应用相似对角化—判断与实现附录一内积正交矩阵施密特正交化实对称矩阵的对角化第七讲二次型二次型及其矩阵可逆线性变量替换实对称矩阵的合同标准化和规范化惯性指数正定二次型与正定矩阵附录二向量空间及其子空间附录三两个线性方程组的解集的关系附录四06,07年考题第一讲基本概念1.线性方程组的基本概念线性方程组的一般形式为:a11x1+a12x2+…+a1n x n=b1,a21x1+a22x2+…+a2n x n=b2,…………a m1x1+a m2x2+…+a mn x n=b m,其中未知数的个数n和方程式的个数m不必相等.线性方程组的解是一个n维向量(k1,k2, …,k n)(称为解向量),它满足:当每个方程中的未知数x i都用k i替代时都成为等式.线性方程组的解的情况有三种:无解,唯一解,无穷多解.对线性方程组讨论的主要问题两个:(1)判断解的情况.(2)求解,特别是在有无穷多接时求通解.b1=b2=…=b m=0的线性方程组称为齐次线性方程组.n维零向量总是齐次线性方程组的解,称为零解.因此齐次线性方程组解的情况只有两种:唯一解(即只要零解)和无穷多解(即有非零解).把一个非齐次线性方程组的每个方程的常数项都换成0,所得到的齐次线性方程组称为原方程组的导出齐次线性方程组,简称导出组.2.矩阵和向量(1)基本概念矩阵和向量都是描写事物形态的数量形式的发展.由m⨯n个数排列成的一个m行n列的表格,两边界以圆括号或方括号,就成为一个m⨯n 型矩阵.例如2 -1 0 1 11 1 1 0 22 5 4 -2 93 3 3 -1 8是一个4⨯5矩阵.对于上面的线性方程组,称矩阵a11 a12… a1n a11 a12… a1n b1A= a21 a22… a2n 和(A|)= a21 a22… a2n b2…………………a m1 a m2… a mn a m1 a m2… a mnb m为其系数矩阵和增广矩阵.增广矩阵体现了方程组的全部信息,而齐次方程组只用系数矩阵就体现其全部信息.一个矩阵中的数称为它的元素,位于第i行第j列的数称为(i,j)位元素.元素全为0的矩阵称为零矩阵,通常就记作0.两个矩阵A和B相等(记作A=B),是指它的行数相等,列数也相等(即它们的类型相同),并且对应的元素都相等.由n个数构成的有序数组称为一个n维向量,称这些数为它的分量.书写中可用矩阵的形式来表示向量,例如分量依次是a1,a2,⋯ ,a n的向量可表示成a1(a1,a2,⋯ ,a n)或 a2 ,┆a n请注意,作为向量它们并没有区别,但是作为矩阵,它们不一样(左边是1⨯n矩阵,右边是n⨯1矩阵).习惯上把它们分别称为行向量和列向量.(请注意与下面规定的矩阵的行向量和列向量概念的区别.)一个m⨯n的矩阵的每一行是一个n维向量,称为它的行向量; 每一列是一个m维向量, 称为它的列向量.常常用矩阵的列向量组来写出矩阵,例如当矩阵A的列向量组为1,A=(1,2,⋯ ,n).2,⋯ ,n时(它们都是表示为列的形式!)可记矩阵的许多概念也可对向量来规定,如元素全为0的向量称为零向量,通常也记作0.两个向量和相等(记作=),是指它的维数相等,并且对应的分量都相等.(2) 线性运算和转置线性运算是矩阵和向量所共有的,下面以矩阵为例来说明.加(减)法:两个m⨯n的矩阵A和B可以相加(减),得到的和(差)仍是m⨯n矩阵,记作A+B (A-B),法则为对应元素相加(减).数乘: 一个m⨯n的矩阵A与一个数c可以相乘,乘积仍为m⨯n的矩阵,记作c A,法则为A 的每个元素乘c.这两种运算统称为线性运算,它们满足以下规律:①加法交换律:A+B=B+A.②加法结合律:(A+B)+C=A+(B+C).③加乘分配律:c(A+B)=c A+c B.(c+d)A=c A+d A.④数乘结合律: c(d)A=(cd)A.⑤ c A=0⇔ c=0 或A=0.转置:把一个m⨯n的矩阵A行和列互换,得到的n⨯m的矩阵称为A的转置,记作A T(或A').有以下规律:① (A T)T=A.② (A+B)T=A T+B T.③ (c A)T=c A T.转置是矩阵所特有的运算,如把转置的符号用在向量上,就意味着把这个向量看作矩阵了.当是列向量时, T表示行向量,当是行向量时, T表示列向量.向量组的线性组合:设1,2,…,s是一组n维向量, c1,c2,…,c s是一组数,则称c11+c22+…+c s s为1,2,…,s的(以c1,c2,…,c s为系数的)线性组合.n维向量组的线性组合也是n维向量.(3) n阶矩阵与几个特殊矩阵行数和列数相等的矩阵称为方阵,行列数都为n的矩阵也常常叫做n阶矩阵.把n阶矩阵的从左上到右下的对角线称为它对角线.(其上的元素行号与列号相等.)下面列出几类常用的n阶矩阵,它们都是考试大纲中要求掌握的.对角矩阵: 对角线外的的元素都为0的n阶矩阵.单位矩阵: 对角线上的的元素都为1的对角矩阵,记作E(或I).数量矩阵: 对角线上的的元素都等于一个常数c的对角矩阵,它就是c E.上三角矩阵: 对角线下的的元素都为0的n阶矩阵.下三角矩阵: 对角线上的的元素都为0的n阶矩阵.对称矩阵:满足A T=A矩阵.也就是对任何i,j,(i,j)位的元素和(j,i)位的元素总是相等的n阶矩阵.(反对称矩阵:满足A T=-A矩阵.也就是对任何i,j,(i,j)位的元素和(j ,i)位的元素之和总等于0的n阶矩阵.反对称矩阵对角线上的元素一定都是0.)3. 矩阵的初等变换和阶梯形矩阵矩阵有以下三种初等行变换:①交换两行的位置.②用一个非0的常数乘某一行的各元素.③把某一行的倍数加到另一行上.(称这类变换为倍加变换)类似地, 矩阵还有三种初等列变换,大家可以模仿着写出它们,这里省略了. 初等行变换与初等列变换统称初等变换.阶梯形矩阵:一个矩阵称为阶梯形矩阵,如果满足:①如果它有零行,则都出现在下面.②如果它有非零行,则每个非零行的第一个非0元素所在的列号自上而下严格单调递增.把阶梯形矩阵的每个非零行的第一个非0元素所在的位置称为台角.简单阶梯形矩阵:是特殊的阶梯形矩阵,特点为:③台角位置的元素为1.④并且其正上方的元素都为0.每个矩阵都可以用初等行变换化为阶梯形矩阵和简单阶梯形矩阵.这种运算是在线性代数的各类计算题中频繁运用的基本运算,必须十分熟练.请注意: 1.一个矩阵用初等行变换化得的阶梯形矩阵并不是唯一的,但是其非零行数和台角位置是确定的.2. 一个矩阵用初等行变换化得的简单阶梯形矩阵是唯一的.4. 线性方程组的矩阵消元法线性方程组的基本方法即中学课程中的消元法:用同解变换把方程组化为阶梯形方程组(即增广矩阵为阶梯形矩阵的方程组).线性方程组的同解变换有三种:①交换两个方程的上下位置.②用一个非0的常数乘某个方程.③把某个方程的倍数加到另一个方程上.以上变换反映在增广矩阵上就是三种初等行变换.线性方程组求解的基本方法是消元法,用增广矩阵或系数矩阵来进行,称为矩阵消元法.对非齐次线性方程组步骤如下:(1)写出方程组的增广矩阵(A|),用初等行变换把它化为阶梯形矩阵(B|γ).(2)用(B|γ)判别解的情况:如果最下面的非零行为(0,0, ⋯,0|d),则无解,否则有解.有解时看非零行数r(r不会大于未知数个数n),r=n时唯一解;r<n时无穷多解.(推论:当方程的个数m<n时,不可能唯一解.)(3)有唯一解时求解的初等变换法:去掉(B|γ)的零行,得到一个n×(n+1)矩阵(B0|γ0),并用初等行变换把它化为简单阶梯形矩阵(E|η),则η就是解.对齐次线性方程组:(1)写出方程组的系数矩阵A,用初等行变换把它化为阶梯形矩阵B.(2)用B判别解的情况:非零行数r=n时只有零解;r<n时有非零解(求解方法在第五章讲). (推论:当方程的个数m<n时,有非零解.)讨论题1.设A是n阶矩阵,则(A) A是上三角矩阵⇒A是阶梯形矩阵.(B) A是上三角矩阵⇐A是阶梯形矩阵.(C) A是上三角矩阵⇔A是阶梯形矩阵.(D) A是上三角矩阵与A是阶梯形矩阵没有直接的因果关系.2.下列命题中哪几个成立?(1) 如果A是阶梯形矩阵,则A去掉任何一行还是是阶梯形矩阵.(2) 如果A是阶梯形矩阵,则A去掉任何一列还是是阶梯形矩阵.(3) 如果(A|B)是阶梯形矩阵,则A也是阶梯形矩阵.(4) 如果(A|B)是阶梯形矩阵,则B也是阶梯形矩阵.(5) 如果 A 是阶梯形矩阵,则A和B都是阶梯形矩阵.B第二讲 行列式一.概念复习1. 形式和意义形式:用n 2个数排列成的一个n 行n 列的表格,两边界以竖线,就成为一个n 阶行列式:a 11 a 12 … a 1na 21 a 22 … a 2n… … … .a n1 a n2 … a nn 如果行列式的列向量组为1,2, … ,n ,则此行列式可表示为|1,2, … ,n |.意义:是一个算式,把这n 2个元素按照一定的法则进行运算,得到的数值称为这个行列式的值.请注意行列式和矩阵在形式上和意义上的区别.当两个行列式的值相等时,就可以在它们之间写等号! (不必形式一样,甚至阶数可不同.)每个n 阶矩阵A 对应一个n 阶行列式,记作|A |.行列式这一讲的的核心问题是值的计算,以及判断一个行列式的值是否为0.2. 定义(完全展开式)2阶和3阶行列式的计算公式:a 11 a 12a 21 a 22 = a 11a 22-a 12a 21 .a 11 a 12 a 13a 21 a 22 a 23 = a 11a 22a 33+ a 12a 23a 31+ a 13a 21a 32-a 13a 22a 31- a 11a 23a 32-a 12a 21a 33.a 31 a 32 a 33一般地,一个n 阶行列式a 11 a 12 … a 1na 21 a 22 … a 2n… … …a n1 a n2 … a nn 的值是许多项的代数和,每一项都是取自不同行,不同列的n 个元素的乘积,其一般形式为:n nj j j a a a 2121,这里把相乘的n 个元素按照行标的大小顺序排列,它们的列标j 1j 2…j n 构成1,2, …,n 的一个全排列(称为一个n 元排列),共有n!个n 元排列,每个n 元排列对应一项,因此共有n!个项. 所谓代数和是在求总和时每项先要乘+1或-1.规定(j 1j 2…j n )为全排列j 1j 2…j n 的逆序数(意义见下面),则项n nj j j a a a 2121所乘的是.)1()(21n j j j τ-全排列的逆序数即小数排列在大数右面的现象出现的个数.逆序数可如下计算:标出每个数右面比它小的数的个数,它们的和就是逆序数.例如求436512的逆序数:023********,(436512)=3+2+3+2+0+0=10.至此我们可以写出n 阶行列式的值:a 11 a 12 … a 1na 21 a 22 … a 2n =.)1(21212121)(n n n nj j j j j j j j j a a a τ-∑ … … …a n1 a n2 … a nn这里∑n j j j 21表示对所有n 元排列求和.称此式为n 阶行列式的完全展开式.用完全展开式求行列式的值一般来说工作量很大.只在有大量元素为0,使得只有少数项不为0时,才可能用它作行列式的计算.例如对角行列式,上(下)三角行列式的值就等于主对角线上的元素的乘积,因为其它项都为0.2. 化零降阶法把n 阶行列式的第i 行和第j 列划去后所得到的n-1阶行列式称为(i,j)位元素a ij 的余子式,记作M ij .称A ij =(-1)i+j M ij 为元素a ij 的代数余子式.定理(对某一行或列的展开)行列式的值等于该行(列)的各元素与其代数余子式乘积之和.命题 第三类初等变换(倍加变换)不改变行列式的值.化零降阶法 用命题把行列式的某一行或列化到只有一个元素不为0,再用定理.于是化为计算一个低1阶的行列式.化零降阶法是实际计算行列式的主要方法,因此应该熟练掌握.3.其它性质行列式还有以下性质:① 把行列式转置值不变,即|A T |=|A | .② 某一行(列)的公因子可提出.于是, |c A |=c n |A |.③ 对一行或一列可分解,即如果某个行(列)向量则原行列式等于两个行列式之和,这两个行列式分别是把原行列式的该行(列)向量换为或所得到的行列式.例如|,1+2|=|,1|+|,2|.④ 把两个行(列)向量交换, 行列式的值变号.⑤ 如果一个行(列)向量是另一个行(列)向量的倍数,则行列式的值为0.⑥ 某一行(列)的各元素与另一行(列)的对应元素的代数余子式乘积之和=0.⑦ 如果A 与B 都是方阵(不必同阶),则A * = A O =|A ||B |.O B * B范德蒙行列式:形如1 1 1 (1)a 1 a 2 a 3 … a na 12 a 22 a 32 … a n 2… … … …a 1n-i a 2n-i a 3n-i … a n n-i的行列式(或其转置).它由a 1,a 2 ,a 3,…,a n 所决定,它的值等于 ).(i j ji a a -∏< 因此范德蒙行列式不等于0⇔ a 1,a 2 ,a 3,…,a n 两两不同.对于元素有规律的行列式(包括n 阶行列式),常常可利用性质简化计算,例如直接化为三角行列式等.4.克莱姆法则克莱姆法则 应用在线性方程组的方程个数等于未知数个数n (即系数矩阵为n 阶矩阵)的情形.此时,如果它的系数矩阵的行列式的值不等于0,则方程组有唯一解,这个解为(D 1/D, D 2/D,⋯,D n /D),这里D 是系数行列式的值, D i 是把系数行列式的第i 个列向量换成常数列向量所得到的行列式的值.说明与改进:按法则给的公式求解计算量太大,没有实用价值.因此法则的主要意义在理论上,用在对解的唯一性的判断,而在这方面法则不够. 法则的改进:系数行列式不等于0是唯一解的充分必要条件.实际上求解可用初等变换法:对增广矩阵(A |)作初等行变换,使得A 变为单位矩阵: (A |)→(E |η),η就是解.用在齐次方程组上 :如果齐次方程组的系数矩阵A 是方阵,则它只有零解的充分必要条件是|A |≠0.二. 典型例题1.利用性质计算元素有规律的行列式例1 ① 2 a a a a ② 1+x 1 1 1 ③ 1+a 1 1 1 a 2 a a a 1 1+x 1 1 2 2+a 2 2a a 2 a a . 1 1 1+x 1 . 3 3 3+a 3 .a a a 2 a 1 1 1 1+x 4 4 4 4+aa a a a 2例2 1 2 3 4 52 3 4 5 13 4 5 1 2 .4 5 1 2 35 1 2 3 4例3 1+x 1 1 1 11 1+x2 1 1 .1 1 1+x 3 11 1 1 1+x 4例4 a 0 b c0 a c b .b c a 0c b 0 a例5 1-a a 0 0 0-1 1-a a 0 00 -1 1-a a 0 . (96四)0 0 -1 1-a a0 0 0 -1 1-a2. 测试概念与性质的题例6 x 3-3 1 -3 2x+2多项式f(x)= -7 5 -2x 1 ,求f(x)的次数和最高次项的系数.X+3 -1 3 3x 2-29 x 3 6 -6例7 求 x-3 a -1 4f(x)= 5 x-8 0 –2 的x 4和x 3的系数.0 b x+1 12 2 1 x例8 设4阶矩阵A =(, 1, 2 ,3),B =(, 1, 2 ,3),|A | =2, |B |=3 ,求|A +B | .例9 a b c d已知行列式 x -1 -y z+1 的代数余子式A 11=-9,A 12=3,A 13=-1,A 14=3,求x,y,z. 1 -z x+3 yy-2 x+1 0 z+3例10 求行列式 3 0 4 0 的第四行各元素的余子式的和.(01)2 2 2 20 -7 0 05 3 -2 23.几个n 阶行列式两类爪形行列式及其值:例11 a 1 a 2 a 3 … a n-1 a nb 1c 2 0 … 0 0证明 0 b 2 c 3 0 0 =11111(1)n i i i i n i b b a c c --+=-∑.… … … …0 0 0 … b n-1 c n提示: 只用对第1行展开(M 1i 都可直接求出).例12 a 0 a 1 a 2 … a n-1 a nb 1c 1 0 … 0 0证明 b 2 0 c 2 … 0 0 =011111n n ii i i i n i i a c c c a b c c -+==-∑∏.… … … …b n … 0c n提示: 只用对第1行展开(M 1i 都可直接求出).另一个常见的n 阶行列式:例13 证明a+b b 0 … 0 0a a+b b … 0 0… … … … = 110n n n n i ii a b a b a b ++-=-=-∑(当a ≠b 时). 0 0 0 … a+b b0 0 0 a a+b提示:把第j 列(行)的(-1)j-1倍加到第1列(行)上(j=2,…,n),再对第1列(行)展开.4.关于克莱姆法则的题例14设有方程组 x 1+x 2+x 3=a+b+c,ax 1+bx 2+cx 3=a 2+b 2+c 2,bcx 1+acx 2+abx 3=3abc.(1)证明此方程组有唯一解的充分必要条件为a,b,c 两两不等.(2)在此情况求解.参考答案例1 ①(2+4a)(2-a)4.② x 3(x+4). ③ a 3(a+10).例2 1875.例3 x 1x 2x 3x 4+x 2x 3x 4+x 1x 3x 4+x 1x 2x 4+x 1x 2x 3.例4 (a+b+c)(a+b-c)(a-b+c)(a-b-c).例5 1-a+a 2-a 3+a 4-a 5.例6 9,-6例7 1,-10.例8 40.例9 x=0,y=3,z=-1.例10 -28.例14 x 1=a,x 2=b,x 3=c..第三讲矩阵一.概念复习1. 矩阵乘法的定义和性质定义2.1 当矩阵A的列数和B的行数相等时,和A和B可以相乘,乘积记作AB. AB的行数和A相等,列数和B相等. AB的(i,j)位元素等于A的第i个行向量和B的第j个列向量(维数相同)对应分量乘积之和.设 a11 a12... a1n b11 b12... b1s c11 c12 (1)A= a21 a22... a2n B= b21 b22... b2s C=AB=c21 c22 (2)………………………a m1 a m2… a mn ,b n1 b n2… b ns ,c m1 c m2… c ms ,则c ij=a i1b1j+a i2b2j+…+a in b nj.矩阵的乘法在规则上与数的乘法有不同:①矩阵乘法有条件.②矩阵乘法无交换律.③矩阵乘法无消去律,即一般地由AB=0推不出A=0或B=0.由AB=AC和A≠0推不出B=C.(无左消去律)由BA=CA和A≠0推不出B=C. (无右消去律)请注意不要犯一种常见的错误:把数的乘法的性质简单地搬用到矩阵乘法中来.矩阵乘法适合以下法则:①加乘分配律 A(B+C)= AB+AC,(A+B)C=AC+BC.②数乘性质 (c A)B=c(AB).③结合律 (AB)C= A(BC).④ (AB)T=B T A T.2. n阶矩阵的方幂和多项式任何两个n阶矩阵A和B都可以相乘,乘积AB仍是n阶矩阵.并且有行列式性质:|AB|=|A||B|.如果AB=BA,则说A和B可交换.方幂设k是正整数, n阶矩阵A的k次方幂A k即k个A的连乘积.规定A 0=E.显然A的任何两个方幂都是可交换的,并且方幂运算符合指数法则:①A k A h= A k+h.② (A k)h= A kh.但是一般地(AB)k和A k B k不一定相等!n阶矩阵的多项式设f(x)=a m x m+a m-1x m-1+…+a1x+a0,对n阶矩阵A规定f(A )=a m A m +a m-1A m-1+…+ a 1A+a 0E .称为A 的一个多项式.请特别注意在常数项上加单位矩阵E .乘法公式 一般地,由于交换性的障碍,小代数中的数的因式分解和乘法公式对于n 阶矩阵的不再成立.但是如果公式中所出现的n 阶矩阵互相都是乘法交换的,则乘法公式成立.例如当A 和B 可交换时,有:(A ±B )2=A 2±2AB +B 2;A 2-B 2=(A +B )(A -B )=(A +B )(A -B ).二项展开式成立: B AC B A -=∑=+1)(等等.前面两式成立还是A 和B 可交换的充分必要条件.同一个n 阶矩阵的两个多项式总是可交换的. 一个n 阶矩阵的多项式可以因式分解.3. 分块法则矩阵乘法的分块法则是简化矩阵乘法的一种方法.对两个可以相乘的矩阵A 和B ,可以先用纵横线把它们切割成小矩阵(一切A 的纵向切割和B 的横向切割一致!),再用它们来作乘法.(1)两种常见的矩阵乘法的分块法则A 11 A 12B 11 B 12 = A 11B 11+A 12B 21 A 11B 12+A 12B 22 A 21 A 22 B 21 B 22 A 21B 11+A 22B 21 A 21B 12+A 22B 22 要求A ij 的列数B jk 和的行数相等. 准对角矩阵的乘法: 形如A 1 0 ... 0 A = 0 A 2 0… … … 0 0 … A n的矩阵称为准对角矩阵,其中A 1,A 2,…,A k 都是方阵.两个准对角矩阵A 1 0 ... 0 B 1 0 0A = 0 A 2 … 0 ,B = 0 B 2 … 0 … … … … … … 0 0 … A k 0 0 … B k 如果类型相同,即A i 和B i 阶数相等,则A 1B 1 0 0AB = 0 A 2B 2 … 0 . … … …0 0 … A k B k(2)乘积矩阵的列向量组和行向量组设A 是m ⨯n 矩阵B 是n ⨯s 矩阵. A 的列向量组为1,2,…,n ,B 的列向量组为1,AB的列向量组为1,2,…,s,则根据矩阵乘法的定义容易看出(也是2,…,s,分块法则的特殊情形):①AB的每个列向量为:i=A i,i=1,2,…,s.即A(1,2,…,s)=(A1,A2,…,A s).②=(b1,b2,…,b n)T,则A= b11+b22+…+b n n.应用这两个性质可以得到:如果i=(b1i,b2i,…,b ni)T,则A I=b1i1+b2i2+…+b ni n.i=即:乘积矩阵AB的第i个列向量i是A的列向量组1,2,…,n的线性组合,组合系数就是B的第i个列向量i的各分量.类似地, 乘积矩阵AB的第i个行向量是B的行向量组的线性组合,组合系数就是A的第i个行向量的各分量.以上规律在一般教材都没有强调,但只要对矩阵乘法稍加分析就不难得出.它们无论在理论上和计算中都是很有用的.(1) 当两个矩阵中,有一个的数字很简单时,直接利用以上规律写出乘积矩阵的各个列向量或行向量,从而提高了计算的速度.(2) 利用以上规律容易得到下面几个简单推论:用对角矩阵从左侧乘一个矩阵,相当于用矩阵的各行向量; 用对角矩阵从右侧乘一个矩阵,相当于用元素依次乘此矩阵的各列向量.数量矩阵k E乘一个矩阵相当于用k乘此矩阵;单位矩阵乘一个矩阵仍等于该矩阵.两个同阶对角矩阵的相乘只用把对角线上的对应元素相乘.求对角矩阵的方幂只需把对角线上的每个元素作同次方幂.(3) 矩阵分解:当一个矩阵C的每个列向量都是另一个A的列向量组的线性组合时,可以构造一个矩阵B,使得C=AB.例如设A=(α,β,γ), C=(α+2β-γ,3α-β+γ,α+2γ),令1 3 1B= 2 -1 0 ,则C=AB.-1 1 2(4) 初等矩阵及其在乘法中的作用对单位矩阵E作一次初等(行或列)变换,所得到的矩阵称为初等矩阵.有三类初等矩阵:E(i,j):交换E的i,j两行(或列)所得到的矩阵.E(i(c)):用非0数c乘E的第i行(或列)所得到的矩阵.也就是把E的对角线上的第i 个元素改为c.E(i,j(c))(i≠j):把E的第j行的c倍加到第i行上(或把第i列的c倍加到第j列上)所得到的矩阵, 也就是把E的(i,j)位的元素改为c.命题对矩阵作一次初等行(列)变换相当于用一个相应的初等矩阵从左(右)乘它.4. 矩阵方程和可逆矩阵(伴随矩阵)(1) 矩阵方程矩阵不能规定除法,乘法的逆运算是解下面两种基本形式的矩阵方程:(I) AX=B.(II) XA=B.这里假定A是行列式不为0的n阶矩阵,在此条件下,这两个方程的解都是存在并且唯一的.(否则解的情况比较复杂.)当B只有一列时,(I)就是一个线性方程组.由克莱姆法则知它有唯一解.如果B有s列,设 B=(1,2,…,s),则 X也应该有s列,记X=(X1,X2,…,X s),则有AX i=i,i=1,2,…,s,这是s个线性方程组.由克莱姆法则,它们都有唯一解,从而AX=B有唯一解.这些方程组系数矩阵都是A,可同时求解,即得(I)的解法:将A和B并列作矩阵(A|B),对它作初等行变换,使得A变为单位矩阵,此时B变为解X.(A|B)→(E|X)(II)的解法:对两边转置化为(I)的形式:A T X T=B T.再用解(I)的方法求出X T,转置得X..(A T|B T)→(E|X T)矩阵方程是历年考题中常见的题型,但是考试真题往往并不直接写成(I)或(II)的形式,要用恒等变形简化为以上基本形式再求解.(2) 可逆矩阵的定义与意义定义设A是n阶矩阵,如果存在n阶矩阵B,使得AB=E, BA=E,则称A为可逆矩阵.此时B是唯一的,称为A的逆矩阵,通常记作A-1.如果A可逆,则A在乘法中有消去律:AB=0⇒B=0;AB=AC⇒B=C.(左消去律);BA=0⇒B=0;BA=CA⇒B=C. (右消去律)如果A可逆,则A在乘法中可移动(化为逆矩阵移到等号另一边):AB=C⇔B=A-1C. BA=C⇔B=CA-1.由此得到基本矩阵方程的逆矩阵解法:(I) AX=B的解X=A-1B .(II) XA=B的解X= BA-1.这种解法想法自然,好记忆,但是计算量比初等变换法大(多了一次矩阵乘积运算).(3) 矩阵可逆性的判别与性质定理 n阶矩阵A可逆⇔|A|≠0.证明“⇒”对AA-1=E两边取行列式,得|A||A-1|=1,从而|A|≠0. (并且|A-1|=|A|-1.) “⇐”因为|A|≠0,矩阵方程AX=E和XA=E都有唯一解.设B,C分别是它们的解,即AB=E, CA=E. 事实上B=C(B=EB=CAB=CE=C),于是从定义得到A可逆.推论如果A和B都是n阶矩阵,则AB=E⇔BA=E.于是只要AB=E(或BA=E)一式成立,则A和B都可逆并且互为逆矩阵.可逆矩阵有以下性质:①如果A可逆,则A-1也可逆,并且(A-1)-1=A.A T也可逆,并且(A T)-1=(A-1)T.当c≠0时, c A也可逆,并且(c A)-1=c-1A-1.对任何正整数k, A k也可逆,并且(A k)-1=(A-1)k.(规定可逆矩阵A的负整数次方幂A-k=(A k)-1=(A-1)k.)②如果A和B都可逆,则AB也可逆,并且(AB)-1=B-1A-1.(请自己推广到多个可逆矩阵乘积的情形.)初等矩阵都是可逆矩阵,并且E(i,j)-1= E(i,j), E(i(c))-1=E(i(c-1)), E(i,j(c))-1= E(i,j(-c)).(4) 逆矩阵的计算和伴随矩阵①计算逆矩阵的初等变换法当A可逆时, A-1是矩阵方程AX=E的解,于是可用初等行变换求A-1:(A|E)→(E|A-1)这个方法称为求逆矩阵的初等变换法.它比下面介绍的伴随矩阵法简单得多.②伴随矩阵若A是n阶矩阵,记A ij是|A|的(i,j)位元素的代数余子式,规定A的伴随矩阵为 A11 A21… A n1A*= A12 A22… A n2 =(A ij)T.………A1n A2n… A mn请注意,规定n阶矩阵A的伴随矩阵并没有要求A可逆,但是在A可逆时, A*和A-1有密切关系.基本公式: AA*=A*A=|A|E.于是对于可逆矩阵A,有A-1=A*/|A|, 即A*=|A|A-1.因此可通过求A*来计算A-1.这就是求逆矩阵的伴随矩阵法.和初等变换法比较, 伴随矩阵法的计算量要大得多,除非n=2,一般不用它来求逆矩阵.对于2阶矩阵a b * d -bc d = -c a ,因此当ad-bc≠0时,a b -1 d -bc d = -c a (ad-bc) .伴随矩阵的其它性质:①如果A是可逆矩阵,则A*也可逆,并且(A*)-1= A/|A|=(A-1)*.② |A*|=|A|n-1.③ (A T)*=(A*)T.④ (c A)*=c n-1A*.⑤ (AB)*=B*A*;(A k)*=(A*)k.⑥当n>2时,(A*)*=|A|n-2A; n=2时,(A*)*=A.二典型例题1.计算题例1=(1,-2,3) T,=(1,-1/2,1/3)T, A= T,求A6.讨论:(1)一般地,如果n阶矩阵A= T,则A k=(T)k-1A=(tr A)k-1A .(2)乘法结合律的应用:遇到形如T的地方可把它当作数处理.① 1 -1 1T = -1 1 -1 ,求T.(2003一)②设=(1,0,-1)T, A=T,求|a E-A n|.③n维向量=(a,0,⋯,0,a)T, a<0, A=E-T, A-1=E+a-1 T,求a. (03三,四)④ n维向量=(1/2,0,⋯,0,1/2)T, A=E- T, B=E+2 T,求AB. (95四)⑤ A=E- T,其中,都是n维非零列向量,已知A2=3E-2A,求T.例2(1999三) 1 0 1设A = 0 2 0 ,求A n-2A n-1.(n>1)例3 1 0 0设A = 1 0 1 ,(1)证明当n>1时A n=A n-2+A2-E. (2) 求A n.例4A为3阶矩阵, 1,2,3是线性无关的3维列向量组,满足A 1=1+2+3, A2=22+3, A3=22+33.求作矩阵B,使得A(1,2,3)=(1,2,3)B. (2005年数学四)例5设3阶矩阵A=(1,2,3),|A|=1,B=(1+2+3,1+22+33,1+42+9 B|.(05)3),求|例6 3维向量1,2,3,1,2,3满足1+3+21-2=0,31-2+1-3=0,2+3-2+3=0,1,2,3|=a,求|1,2,3|.例7设A是3阶矩阵,是3维列向量,使得P=(,A,A2)可逆,并且A3=3A-2A2.又3阶矩阵B满足A=PBP-1.(1)求B.(2)求|A+E|.(01一)2 1 0例8 3阶矩阵A,B满足ABA*=2BA*+E,其中A= 1 2 0 ,求|B|.(04一)0 0 1例9 3 -5 1设3阶矩阵A= 1 -1 0 , A-1XA=XA+2A,求X.-1 0 2例10 1 1 -1设3阶矩阵A= -1 1 1 , A*X=A-1+2X,求X.1 -1 1例11 4阶矩阵A,B满足ABA-1=BA-1+3E,已知1 0 0 0A*= 0 1 0 0 ,求B. (00一)1 0 1 00 -3 0 8例12 3 0 0 1 0 0已知A= 2 1 0 , B= 0 0 0 , XA+2B=AB+2X,求X11.2 13 0 0 -1例13设1=(5,1,-5)T,2=(1,-3,2)T,3=(1,-2,1)T,矩阵A满足A1=(4,3) T, A2=(7,-8) T, A3=(5,-5) T,求A.2.概念和证明题例14 设A是n阶非零实矩阵,满足A*=A T.证明:(1)|A|>0.(2)如果n>2,则|A|=1.例15 设矩阵A=(a ij)3 3满足A*=A T,a11,a12,a13为3个相等的正数,则它们为(A) 3/3.(B) 3. (C)1/3. (D) 3. (2005年数学三)例16 设A和B都是n阶矩阵,C= A 0 ,则C*=0 B(A) |A|A* 0 . (B) |B|B * 0 .0 |B|B * 0 |A|A*(C) |A|B* 0 . (D ) |B|A* 0 .0 |B|A* 0 |A|B*例17 设A是3阶矩阵,交换A的1,2列得B,再把B的第2 列加到第3 列上,得C.求Q,使得C=AQ.例18 设A是3阶可逆矩阵,交换A的1,2行得B,则(A) 交换A*的1,2行得到B*.(B) 交换A*的1,2列得到B*.(C) 交换A*的1,2行得到-B*.(D) 交换A*的1,2列得到-B*.(2005年)例19 设A是n阶可逆矩阵, 交换A的i,j行得到B.(1) 证明B可逆.(2) 求AB-1.例20设n阶矩阵A满足A2+3A-2E=0.(1)证明A可逆,并且求A-1.(2)证明对任何整数c,A-c E可逆.讨论: 如果f(A)=0,则(1) 当f(x)的常数项不等于0时,A可逆.(2) f(c)≠0时,A-c E可逆.(3) 上述两条的逆命题不成立.例21设是n维非零列向量,记A=E-T.证明(1) A2=A⇔T =1.(2)T =1⇒ A不可逆. (96一)讨论: (2)的逆命题也成立.例22 设A,B都是n阶矩阵,证明E-AB可逆⇔ E-BA可逆.例23设3阶矩阵A,B满足AB=A+B.(1) 证明A-E可逆.(2) 设 1 -3 0B= 2 1 0 ,求A.0 0 2 (91)例24设A,B是3阶矩阵, A可逆,它们满足2A-1B=B-4E.(1) 证明A-2E可逆.(2) 设 1 -2 0B= 1 2 0 ,求A.0 0 2 (2002)例25设n阶矩阵A,B满足AB=a A+b B.其中ab≠0,证明(1) A-b E和B-a E都可逆.(2) A可逆⇔ B可逆.(3) AB=BA.例26设A,B都是n阶对称矩阵, E+AB可逆,证明(E+AB)-1A也是对称矩阵.例27 设A,B都是n阶矩阵使得A+B可逆,证明(1) 如果AB=BA,则B(A+B)-1A=A(A+B)-1B.(2) 如果A.B都可逆,则B(A+B)-1A=A(A+B)-1B.(3) 等式B(A+B)-1A=A(A+B)-1B总成立.例28设A,B,C都是n阶矩阵,满足B=E+AB,C=A+CA,则B-C为(A) E.(B) -E. (C) A. (D) -A. (2005年数学四)参考答案1 -1/2 1/3例1 35A=35 -2 1 –2/3 .3 -3/2 1① 3.② a2(a-2n). ③ -1. ④ E. ⑤ 4.例2 O.例3 (1)提示: A n=A n-2+A2-E⇔A n-2(A2-E)=A2-E ⇔ A(A2-E)=A2-E.(2)n=2k时, 1 0 0A n = k 1 0 .k 0 1n=2k+1时, 1 0 0A n = k+1 0 1 .k 1 0例 4 1 0 0B= 1 2 2 .1 1 3例5 2.例 6 –4a.例 7 0 0 0B= 1 0 3 . |E+A|=-40 1 -2例8 1/9.例 9 -6 10 4X= -2 4 2 .-4 10 0例 10 1 1 0(1/4) 0 1 1 .1 0 1例 11 6 0 0 0B= 0 6 0 0 .6 0 6 00 3 0 -1例 12 1 0 02 0 0 .6 -1 -1例 13 2 -1 1-4 -2 -5 .例15 (A).例16 (D).例 17 0 1 1Q= 1 0 0 .0 0 1例18 (D).例19E(i,j).例22提示:用克莱姆法则.例如证明⇒,即在E-AB可逆时证明齐次方程组(E-BA)X=0只有零解.例23 1 1/2 0A= -1/3 1 0 .0 0 2例 24 0 2 0A= -1 -1 0 .0 0 -2例25 提示:计算(A-b E)(B-a E).例28 (A).第四讲向量组的线性关系与秩一.概念复习1. 线性表示关系设1,2,…,s是一个n维向量组.如果n维向量等于1,2,…,s的一个线性组合,就说可以用1,2,…,s 线性表示.如果n维向量组1,2,…,t可以用1,2,…, s线性表示,就说向量1,2,…,t可以用1,2,…,s线性表示.判别“是否可以用1,2,…,s线性表示? 表示方式是否唯一?”就是问:向量方程x11+x22+…+x s s=是否有解?解是否唯一?用分量写出这个向量方程,1,2,…,s增广矩阵的线性方程组.反之,判别“以A否唯一?”的问题又可转化为“是否可以用A的列向量组线性表示? 表示方式是否唯一?”的问题.向量组之间的线性表示问题与矩阵乘法有密切关系: 乘积矩阵AB的每个列向量都可以表示为A的列向量组的线性组合,从而AB的列向量组可以用A的列向量组线性表示;反之,如果向量组1,2,…,t可以用1,2,…,s线性表示,则矩阵(1,2,…,C的乘积.C可以这样构造: 它的第i个列t)等于矩阵(1,2,…,s)和一个s⨯t矩阵向量就是i对1,2,…,s的分解系数(C不是唯一的).向量组的线性表示关系有传递性,即如果向量组1,2,…,t可以用1,2,…,s 线性表示,而1,2,…,s可以用γ1,γ2,…,γr线性表示,则1,2,…,t可以用γ1,γ2,…,γr线性表示.当向量组1,2,…,s1,2,…,t等价1,2,…,s≅1,2,…,t.等价关系也有传递性.2. 向量组的线性相关性(1) 定义(从三个方面看线性相关性)线性相关性是描述向量组内在关系的概念,它是讨论向量组1,2,…,s有向量可以用其它的s-1个向量线性表示的问题.定义设1,2,…,s n维向量组,如果存在不全为0的一组数c1,c2,…,c s使得c11+c22+…+c s s=0,。

考研数一线性代数讲义

考研数一线性代数讲义
(B) -(m+n) (C) n-m (D) m-n
(A) m+n
(5) 已知 α 1 , α 2 为 2 维列向量,矩阵 A= ( 2α 1 + α 2 , α 1 − α 2 ) , B = (α 1 , α 2 ) 若行列式|A|=6,则|B|=_______ (-2)
(6) 设 A 为 n 阶正定阵,证明 A+E 的行列式大于 1 (7) 设 A 为 m 阶矩阵,B 为 n 阶矩阵,并且|A|=a,|B|=b, |C|=_____ (8)已知实矩阵 A=(aij)3×3 满足条件 (1)aij=Aij,其中 Aij 是 aij 的代数余子式;(2)a11 ≠ 0 计算行列式 |A|(提示:利用伴随矩阵行列式公 式和行列式按行或列展开的公式) (9) 设 A 为 n 阶非零方阵,A 是 A 的伴随矩阵,A 是 A 的转置矩阵,当 A = A 时,证明: | A |≠ 0
−1 −1
2 2
= A (2) (kA) −1 =
1 −1 −1 −1 −1 (3) ( AB) = B A ;反之, B −1 A−1 = ( AB)−1 A k
−1 −1 ( A1 A2 ... As ) −1 = As As −1 ... A1 −1 ; 注意等式 AB −1 = ( BA−1)−1 的应用。
a11 a 22 a nn =
a11 a 22 * a nn =
a11 a 22 * a nn = a11 .a 22 ...a nn
3
副对角行列式 D =
a11 a 21 a n1 1 x1
n −1 x1
a12 a 22
0
a1,n −1 a 2,n −1
0
a1n
0 0

线代第一章讲义

线代第一章讲义

线性代数与几何(A)主讲教师殷洪友E-mail: hyyin@第一章n 阶行列式1.1二阶和三阶行列式1.2排列1.3n阶行列式的概念1.4行列式的性质1.5行列式的展开定理1.6Cramer法则求解如下二元线性方程组)1.1(,,22221211212111⎩⎨⎧=+=+b x a x a b x a x a 1.1 二阶和三阶行列式其中a 11, a 12, a 21, a 22 称为方程组(1.1)的系数,b 1, b 2 称为常数项.方程组(1.1)的系数按所在的位置排成了一个两行两列的数表,称为(1.1)的系数矩阵.⎟⎟⎠⎞⎜⎜⎝⎛22211211a a a a;212221*********b a a b x a a a a −=−)(根据消元法,可得.211211*********a b b a x a a a a −=−)(时,当021122211≠−a a a a 方程组(1.1)有唯一解:,211222112122211a a a a b a a b x −−=.211222112112112a a a a a b b a x −−=由系数矩阵确定.⎟⎟⎠⎞⎜⎜⎝⎛22211211a aa a设是一个两行两列的数表,则表达式称为该数表所确定的二阶行列式,记作⎟⎟⎠⎞⎜⎜⎝⎛22211211a a a a 21122211a a a a −.2112221122211211a a a a a a a a −=其中称为行列式的元素,下标i j 表示该元素位于第i 行,第j 列.ij a11a 12a 22a 21a 主对角线副对角线2211a a =.2112a a −注意二阶行列式的计算满足对角线法则根据二阶行列式的定义,有.,211211221111212221222121a b b a b a b a b a a b a b a b −=−=若记,22211211a a a a D =对于二元线性方程组(1.1),,2221211a b a b D =.2211112b a b a D =则当系数行列式D ≠0时,方程组有唯一解:,2221121122212111a a a a a b a b D D x ==.2221121122111122a a a a b a b a D D x ==,333213232212312111⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛a a a a a a a a a 记,312213332112322311322113312312332211a a a a a a a a a a a a a a a a a a −−−++=333231232221131211a a a a a a a a a 则称其为该数表所确定的三阶行列式.类似地,设有9 个数排成的三行三列的数表333231232221131211a a a a a a a a a 332211a a a =.322311a a a −计算三阶行列式的对角线法则注意 1. 红线上三元素的乘积冠以正号,蓝线上三元素的乘积冠以负号;2. 对角线法则只适用于二阶与三阶行列式.322113a a a +312312a a a +312213a a a −332112a a a −如果三元线性方程组⎪⎩⎪⎨⎧=++=++=++333323213123232221211313212111,,bx a x a x a b x a x a x a b x a x a x a 的系数行列式333231232221131211a a a a a a a a a D =,0≠利用三阶行列式求解三元线性方程组若记,3332323222131211a a b a a b a a b D =,3333123221131112a b a a b a a b a D =,3323122221112113b a a b a a b a a D =2-43-122-4-21D =计算三阶行列式例1.1则三元线性方程组有唯一解:,11DD x =,22DD x =.33DD x =.094321112=xx 求解方程例1.2例1.3 解线性方程组⎪⎩⎪⎨⎧=−+−=−+−=+−.0,132,22321321321x x x x x x x x x 解方程组的系数行列式111312121−−−−=D 5−=,0≠所以方程组有唯一解.因为113111221−−−−=D ,5−=113121212−−−−=D ,10−=0111122213−−−=D ,5−=故方程组的唯一解为:,111==DD x ,222==DD x .133==DD x思考题使得求一个二次多项式),(x f ()()().283,32,01=−==f f f定义1.1由自然数组成的一个有序数组称为一个n 阶排列.通常用表示n 阶排列.n ,,2,1"n j j j "21 定义1.2在一个排列中,如果一个较大数排在一个较小数之前,就称这两个数构成一个逆序.一个排列的逆序总个数称为这个排列的逆序数.排列具有自然顺序,即逆序数为0,称之为自然排列.n "3 2 1 1.2排列排列的逆序数记为).(21n j j j t " n j j j "21如果一个排列的逆序数为偶数,则称这个排列为偶排列,否则称为奇排列.计算排列的逆序数有两种方法:向前记数法和向后记数法.()2179863541()()()321212"−−n n n ()()()()()()kk k k k k 11322212123+−−−"例1.4计算下列排列的逆序数,并讨论它们的奇偶性.定理1.1对换改变排列的奇偶性.在一个排列中,把其中两个数的位置互换,而保持其余数的位置不动,这种变换称为一个对换.定理1.2在全部n 阶排列中,奇偶排列各占一半.()2≥n 定理1.3任意一个n 阶排列可经过一系列对换变成自然排列,并且所作对换次数的奇偶数与这个排列的奇偶性相同.1.3n 阶行列式的概念考察三阶行列式333231232221131211a a a a a a a a a D =332112322311312213aa a a a a a a a −−−(1)三阶行列式的展开式共有3!=6项;(2)每项都是位于不同行不同列的三个元素的乘积,并且每个这样的乘积都出现在展开式中;322113312312332211a a a a a a a a a ++=不难发现以下特征:.)1(321321321321)(333231232221131211∑−=j j j j j j j j j t a a a a a a a a a a a a (4)如果以表示对所有3阶排列求和,则有∑321j j j (3)每项的行指标按自然顺序排列,其正负号取决于列指标构成的排列的奇偶性;其中表示对所有n 阶排列求和.∑nj j j "21定义1.3由数表所确定的n 阶行列式定义为:⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎝⎛nn n n n n a a a a a a a a a """""""212222111211()(),121212121212222111211n n nnj j j j j j t j j j nnn n n n a a a a a a a a a a a a """"""""""∑−=n 阶行列式的展开式主对角线副对角线几点说明:(1)行列式是一种特定的算式,它是为求解线性方程组而定义的;(2)n 阶行列式是项的代数和;!n (3)n 阶行列式的每项都是位于不同行不同列的n 个元素的乘积;(5)一阶行列式不要与绝对值记号相混淆;a a =(4)一般项前面所带符号为n nj j j a a a "2121();1)(21nj j j t "−(6)定义中的n 阶行列式可以简记为.n ij a D =例1.5证明上三角行列式nnnna a a a a a D """""""0022211211=.2211nn a a a "=同理可证下三角行列式和对角行列式nnn n a a a a a a """""""21222111000.2211nn a a a "=nna a a """""""0000002211=例1.6试证0000000052514241323125242322211514131211==a a a a a a a a a a a a a a a a D思考题已知()1211123111211xx x xx f −=.3的系数求x注意n 阶行列式的展开式也可表为:()()ni i i i i i t i i i nnn n n nn n n a a a a a a a a a a a a """"""""212122221112112121211∑−==′D ,nna a a %2211"#n n a a a 2112#""2121n n a a a 1.4行列式的性质行列式D'称为行列式D 的转置行列式.记#""n na a a 2112"#2121n n a a a =D nna a a %2211性质1.1行列式与它的转置行列式相等.注意性质1.1表明:行列式中行与列具有同等的地位,因此行列式的性质凡是对行成立的对列也同样成立.性质1.2互换行列式的两行(列)的位置,行列式反号,即推论1.1如果行列式有两行(列)完全相同,则此行列式等于0..111111111111nnn pn p qn q n nn n qn q pn p n a a a a a a a a a a a a a a a a "##"##"##""##"##"##"−=性质1.3用数k 乘行列式的某一行(列),等于用数k 乘此行列式,即nnn n pn p p na a a ka ka ka a a a """""""""""""""""212111211推论1.2如果行列式的某一行(列)元素全为0,则此行列式等于0..212111211nnn n pn p p na a a a a a a a a k """""""""""""""""=推论1.3如果行列式中有两行(列)元素成比例,则此行列式等于0.性质1.4若行列式的某一行(列)的元素都是两数之和,则此行列式等于两个行列式之和,即nn n n pnpn p p p p na a a a a a a a a a a a """""""""""21221111211′+′+′+.212111211212111211nnn n pn p p nnnn n pn p p na a a a a a a a a a a a a a a a a a """"""""""""""""""""""′′′+=nn n qn q pn p n a a a a a a a a "##"##"##"111111.1111111nnn qnq qnpn q p n a a a a ka a ka a a a "##"##"##"++=×k 性质1.5 把行列式的某一行(列)的倍数加到另一行(列)上去,行列式的值不变,即例1.7计算四阶行列式2421164214112111−−−−−=D 例1.8试证3332221113333332222221111112c b a c b a c b a a c c b b a a c c b b a a c c b b a =+++++++++例1.9计算n 阶行列式abbbba b b bbabb b b a D """""""""=具有如下形式的行列式称为反对称行列式,0000321323132231211312"""""""""nnnn n n a a a a a a a a a a a a D −−−−−−=证明:奇数阶反对称行列式等于0.例1.101.5行列式的展开定理312213332112322311322113312312332211a a a a a a a a a a a a a a a a a a −−−++=333231232221131211a a a a a a a a a 注意到三阶行列式可以改写为:()3223332211a a a a a −=()3123332112a a a a a −−()3122322113a a a a a −+323122211333312321123332232211a a a a a a a a a a a a a a a +−=()ij ji ij M A +−=1叫做元素a ij 的代数余子式.例如44434241343332312423222114131211a a a a a a a a a a a a a a a a D =44424134323114121123a a a a a a a a a M =()2332231M A +−=.23M −=行第j 列,由余下的元素按原来的排法构成的n -1 阶行列式叫做元素的余子式,记作ij a .M ij 定义1.4在n 阶行列式中,划去元素所在的第i ij a,44434241343332312423222114131211a a a a a a a a a a a a a a a a D =,33323123222113121144a a a a a a a a a M =().144444444M M A =−=+注意 1.行列式的每个元素都对应一个余子式和一个代数余子式;2.每个元素的余子式和代数余子式只与这个元素的位置有关,而与这个元素的大小无关.n 阶行列式nnn n n n a a a a a a a a a D """""""212222111211=等于它的任意一行(列)的所有元素与其对应的代数余子式乘积之和,即ni A a A a A a D in in i i i i ,,2,1,2211""=+++=),,2,1,(2211n j A a A a A a D nj nj j j j j ""=+++=定理1.4中任一行(列)的所有元素与另一行(列)相应元素的代数余子式乘积之和等于0,即n 阶行列式nnn jn j in i n a a a a a a a a D "##"##"##"111111=.j i ,A a A a A a jn in j i j i ≠=+++02211").,0(2211j i A a A a A a nj ni j i j i ≠=+++"定理1.5关于代数余子式的重要性质⎩⎨⎧≠===∑=.,0,,1j i j i D D A a ij nk kj ki 当当δ⎩⎨⎧≠===∑=;,0,,1j i j i D D A a ij nk jk ik 当当δ则当当如果记⎩⎨⎧≠===,,0,,1,j i j i a D ij nij δ例1.11计算n 阶行列式xyy x y x y x D n 000000000000""#####""=例1.12证明范德蒙德(Vandermonde)行列式.2,)(1111112112222121≥−==∏≤<≤−−−n x xxxxxx xx x x D ni j j in nn n nn n "###"""例1.13计算三对角行列式βααβαββααββα+++=11%%%%%%%n D例1.14,000111111111111nnn n nkn k kk k k b b b b c c c c a a a a D "##""##""##""##"=设,11111kkk ka a a a D "##"=,11112nnn nb b b b D "##"=.21D D D =证明:例1.14中的行列式D 称为准下三角行列式..00011111111111111111111nnn nkk k k nnn nknk nkk k k b b b b a a a a b b b b c c c c a a a a "##""##""##""##""##""##"⋅=同理可以证明准上三角行列式思考题阶行列式设n )1(10001030012321"#%###"""n nD n −−−=求第一行各元素的代数余子式之和.11211n A A A +++"(2)设计一个n 阶行列式D n ,使得并计算这个行列式.,12+++=n n n D D D1.6Cramer法则⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++,,,22112222212111212111n n nn n n n n n n b x a x a x a b x a x a x a b x a x a x a """""""""""""""设线性方程组,,,,21不全为零若常数项n b b b "则称此方程组为非齐次线性方程组;此时称方程组为齐次线性方程组.,,,,21全为零若常数项n b b b "如果线性方程组)2.1(22112222212111212111⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++nn nn n n n n n n b x a x a x a b x a x a x a b x a x a x a """""""""""""""的系数行列式,0212222111211≠=nnn n nna a a a a a a a a D """"""""""定理1.7则该线性方程组有唯一解:)3.1(.,,,2211D D x D D x DD x n n ===".,,2,1,1,1,121,221,22111,111,111n j a a b a a a a b a a a a b a a D nnj n nj n n nj j nj j j """"""""""""""==+−+−+−其中推论2推论1)4.1(000221122221211212111⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++n nn n n nn n n x a x a x a x a x a x a x a x a x a """""""""""""""的系数行列式,0≠D 如果齐次线性方程组则其只有零解;若(1.4)有非零解,.0=D 则必有如果线性方程组(1.2)无解或有两个不同的解,则它的系数行列式必为零.。

线性代数基础讲义

线性代数基础讲义

2015考研数学线性代数基础讲义第一章 行列式一.基本内容1.排列与逆序定义 :由 n 个自然数1, 2,3,..., n 组成的无重复有序实数组 称为一个 n 级排列。

定义 :在一个 n 级排列中,如果一个较大数排在一个较小数前面,我们就称这两个数构成一个逆序。

对于逆序,我们感兴趣的是一个 n 级排列中逆序的总数,称为 n 级排列的逆序数,记作。

2. 行列式的定义个数 ( )排成的行列的方形表称为一个n 阶行列式。

它表示所有取自不同行不同列的个元素乘积的代数和。

3.行列式的性质(1)转置不改变行列式的值(2)行列式某行(列)元素的公因子可以提到行列式之外(3)行列式的分行(列)可加性(4)行列式两行(列)元素成比例,则行列式值为0(5)互换行列式的某两行(列)行列式的值改变符号(6)行列式某行(列)的倍加到另外一行(列),行列式值不变4.行列式的余子式、代数余子式划去元素 所在的行、列,剩下的元素按照原来的顺序排成的n-1阶行列式称为 的余子式,记为 ,称 为 的代数余子式。

5.行列式的展开(1)展开定理(2)行列式某一行(列)每个元素与另一行(列)对应元素的代数余子式乘积的和等于0 。

二.基本结论(1)(2)12,,n i i i 12,,n i i i ()12,,n i i i τ2n ij a ,1,2,,i j n =⋅⋅⋅1212121112121222(,,,)12,,,12(1)n n n n n j j j j j nj j j j n n nn a a a a a a D a a a a a a τ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅==-⋅⋅⋅⋅⋅⋅⋅⋅⋅∑ij a ij a ij M (1)i j ij ij A M +=-ij a 1122i i i i in in D a A a A a A =++1,2,,i n =1122j j j j nj nj a A a A a A =++1,2,,j n =11220k i k i kn in a A a A a A ++=k i≠11220k i k i nk ni a A a A a A ++=k i ≠1122nn a a a =11112222******nn nn a a a a a a ==1112(1)2(1)2(1)111******n n n n n n n n n a a a a a a a a a ---===三. 基本题型与基本方法题型1:行列式的计算:行列式基本方法:利用性质及展开具体方法:方法一 :三角法(利用性质将行列式化为三角型行列式)例方法二:降阶法(利用展开降阶)例第二章 矩阵第一节 矩阵及其运算一. 基本内容1.矩阵概念1)定义2)特殊矩阵:(1)零矩阵:(2)阶方阵:(3)行矩阵(向量)、列矩阵(向量):(4)对角矩阵、单位矩阵、上三角矩阵、下三角矩阵:(5)对称矩阵、反对称矩阵:2.矩阵的运算1)线性运算:加法与数乘2)乘法:(1)乘法法则:(2)运算律:3)方阵的运算(1)方阵的幂及其运算律:(2)方阵的行列式4)转置:性质5)伴随矩阵性质:二、基本结论1.伴随矩阵的相关结论2.分块矩阵的逆 4124120233200112D =0111111n n a a D a +=12344000000a x a a a x x D x x x x +-=--()111212122212n n ij m n m m mn a a a a a a A a a a a ⨯⋅⋅⋅⎛⎫ ⎪⋅⋅⋅ ⎪== ⎪⋅⋅⋅⋅⋅⋅ ⎪⎝⎭第二节 可逆矩阵一、基本内容1.可逆的定义:2.阶矩阵可逆的充要条件:3.性质:二、基本题型与基本方法题型1:逆矩阵的计算与证明(具体矩阵、抽象矩阵)方法一:公式法求逆方法二:初等变换求逆:方法:例方法四:利用定义,求(证明)逆矩(抽象矩阵的情形中常见)例:n 阶矩阵满足 求第三节 矩阵的初等变换与秩一、基本内容1.初等变换的定义:2.初等矩阵(1)定义:由单位矩阵经过一次初等变换得到的矩阵(2)三种初等矩阵:(3)性质:初等矩阵都是可逆的,其逆仍是初等矩阵3.初等变换的本质(初等变换与初等矩阵的关系)4.矩阵等价1)定义:2)性质:5.矩阵的秩(1)定义:(2)性质:初等变换不改变矩阵的秩二、基本题型与基本方法题型:求矩阵的秩基本方法:初等变换法对矩阵作初等行变换,化为阶梯形,阶梯形中非零行的个数即为矩阵的秩。

线性代数讲义(第一章)

线性代数讲义(第一章)


an1 an2 ann
解 展开式的一般项为 (-1)t( j1 j2jn ) a1 j1 a2 j2 anjn .
不为零的项只有 (-1)t(12n) a11a22 ann.
a11 0
0
a21 a22 0 1 t12na11a22 ann

1
1
a2 a a 1
1
1
b2 b b 1
1
1
c2 c c 1
1
1
d2 d d 1
a
b abcd
c
d
11
1 a2 a
a
1
1 b2
1
1 c2
1
b
b 1
13
c
c
1
1 d2
1 d
d
11 1 a2 a
1
1 b2
1 b
1
1 c2
1 c
1
1 d2
1 d
0.
性质5 把行列式的某一列(行)的各元素乘以 同一数然后加到另一列(行)对应的元素上去,行 列式不变.
当 a11a22 a12a21 0 时, 方程组的解为
x1

b1a22 a11a22
a12b2 , a12a21
x2

a11b2 a11a22
b1a21 . a12a21
(3)
由方程组的四个系数确定.
为便于记忆,引入记号
a D 11
a21
a 12
a a11 22 a a 12 21
三阶行列式的计算: 对角线法则
a11 a12 a13 a21 a22 a23 a31 a32 a33

考研线性代数讲义及其答案

考研线性代数讲义及其答案

例 4 设 A, B, I 为同阶矩阵,下列命题哪些是正确的? (1) ( A + B ) 2 = A2 + 2 AB + B 2 不正确 正确 正确
(2) ( A + λ I )3 = A3 + 3λ A2 + 3λ 2 A + λ 3 I ( λ 为数)
(3)若 A, B 可交换,则 ( A + B ) 与 ( A − B ) 相乘也可交换. (4) ( AB ) 2 = A2 B 2 当且仅当 AB = BA
也即 ( A − E ) ⋅
2012 届普鸣学员个性化学习方案 例 11 下列矩阵 A, B 是否可逆?若可逆,求其逆矩阵,其中
⎛ 3 2 1⎞ ⎛ b1 ⎜ ⎟ A = ⎜ 1 1 1⎟ , B = ⎜ b2 ⎜ ⎜ 1 0 1⎟ ⎜ ⎝ ⎠ ⎝
⎞ ⎟ ⎟ b3 ⎟ ⎠
解: A = 2 ≠ 0 ,故 A 可逆,记 A = ( aij )3×3 ,各元素的代数余子式分别为
答案: An = ( −8) n −1 A
⎛λ ⎜ 例9 A= ⎜ ⎜ ⎝
⎞ n λ 1⎟ ⎟ ,求 A λ⎟ ⎠
1
⎛λ 1 ⎞ ⎛0 1 ⎞ ⎛0 1 ⎞ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ 解: A = λ 1 ⎟ = λE + ⎜ 0 1 ⎟ ,记 B = ⎜ 0 1⎟ ⎜ ⎜ ⎜ ⎜ λ⎟ 0⎟ 0⎟ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎛0 0 1⎞ ⎛0 0 0⎞ ⎜ ⎟, 3 ⎜ ⎟ B =⎜ 0 0⎟ B = ⎜ 0 0⎟ ⎜ ⎜ 0⎟ 0⎟ ⎝ ⎠ ⎝ ⎠
例 4 设行列式
⋯ ⋯
⋱ ⋮ ⋯ an
, ai ≠ 0, i = 1, 2,⋯ , n
1 1 a1 − − ⋯ − ⋯ 1 a2 an ⋯ 0 0 = ⋱ ⋮ ⋮ ⋯ an 0

《线性代数》部分讲义(Word版)

《线性代数》部分讲义(Word版)

《线性代数》部分讲义(Word版)GCT 线性代数辅导第一讲行列式一. 行列式的定义● 一阶行列式定义为1111a a =● 二阶行列式定义为2112221122211211a a a a a a a a -=● 在n 阶行列式中,划去元素ij a 所在的第i 行第j 列,剩余元素构成1-n 阶行列式,称为元素ij a 的余子式,记作ij M .● 令ij j i ij M A +-=)1(,称ij A 为ij a 的代数余子式.●n 阶行列式定义为n n nnn n nn A a A a A a a a a a a a a a a 1112121111212222111211+++=.二. 行列式的性质1.行列式中行列互换,其值不变.=333231232221131211a a a a a a a a a 332313322212312111a a a a a a a a a 2.行列式中两行对换,其值变号.=333231232221131211a a a a a a a a a –333231131211232221a a a a a a a a a 3.行列式中如果某行元素有公因子,可以将公因子提到行列式外.=333231232221131211a a a ka ka ka a a a 333231232221131211a a a a a a a a a k4.行列式中如果有一行每个元素都由两个数之和组成,行列式可以拆成两个行列式的和.=+++333231232322222121131211a a a b a b a b a a a a +333231232221131211a a a a a a a a a 333231232221131211a a a b b b a a a 由以上四条性质,还能推出下面几条性质5.行列式中如果有两行元素对应相等,则行列式的值为0.6.行列式中如果有两行元素对应成比例,则行列式的值为0.7.行列式中如果有一行元素全为0,则行列式的值为0.8.行列式中某行元素的k 倍加到另一行,其值不变.=333231232221131211a a a a a a a a a 133312321131232221131211ka a ka a ka a a a a a a a +++三.n 阶行列式展开性质nnn n nn a a a a a a a a a D212222111211= 等于它的任意一行的各元素与其对应代数余子式的乘积的和,即in in i i i i A a A a A a D +++= 2211 n i ,,2,1 = ● 按列展开定理nj nj j j j j A a A a A a D +++= 2211 n j ,,2,1 =●n 阶行列式D 的某一行的各元素与另一行对应元素的代数余子式的乘积的和等于零.即02211=+++jn in j i j i A a A a A a j i ≠ ● 按列展开的性质02211=+++nj ni j i j i A a A a A a j i ≠四.特殊行列式●nn nna a a a a a22112211=;()11212)1(11211n n n n n n n na a a a a a ----=● 上(下)三角行列式和上面的对角行列式的结果相同.五.计算行列式● 消零降阶法.● 消为特殊行列式(上(下)三角行列式或和对角行列式)..典型习题1. =3D xx x 121332=()。

考研数学线性代数讲义

考研数学线性代数讲义

1。

题设条件与代数余子式Aij或A*有关,则立即联想到用行列式按行(列)展开定理以及AA*=A*A=|A|E.2。

若涉及到A。

B是否可交换,即AB=BA,则立即联想到用逆矩阵的定义去分析。

3.若题设n阶方阵A满足f(A)=0,要证aA+bE可逆,则先分解出因子aA+bE再说。

4。

若要证明一组向量a1,a2,…,as线性无关,先考虑用定义再说。

5。

若已知AB=0,则将B的每列作为Ax=0的解来处理再说.6。

若由题设条件要求确定参数的取值,联想到是否有某行列式为零再说。

7。

若已知A的特征向量ζ0,则先用定义Aζ0=λ0ζ0处理一下再说。

8.若要证明抽象n阶实对称矩阵A为正定矩阵,则用定义处理一下再说.2010考研基础班线性代数主讲:尤承业第一讲 基本概念线性代数的主要的基本内容:线性方程组 矩阵 向量 行列式等一.线性方程组的基本概念线性方程组的一般形式为:⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++,,,22112222212111212111m n mn m m n n n n b x a x a x a b x a x a x a b x a x a x a其中未知数的个数n 和方程式的个数m 不必相等.线性方程组的解是一个n 个数1C ,2C , …, n C 构成,它满足:当每个方程中的未知数1x 都用1C 替代时都成为等式。

对线性方程组讨论的主要问题两个:(1)判断解的情况。

线性方程组的解的情况有三种:无解,唯一解,无穷多解.⎩⎨⎧=+=+f ey dx cby ax如果两条直线是相交的则有一个解;如果两条直线是重合的则有无穷多个解;如果两条直线平行且不重合则无解.(2)求解,特别是在有无穷多解时求通解。

齐次线性方程组: 021====n b b b 的线性方程组。

0,0,…,0 总是齐次线性方程组的解,称为零解.因此齐次线性方程组解的情况只有两种:唯一解(即只要零解)和无穷多解(即有非零解).二.矩阵和向量1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

线性代数考研讲义完整版
前言
线性代数是数学中的重要分支,也是计算机科学和物理学等领域中不可或缺的基础知识。

在考研数学中,线性代数是必考内容,因此对线性代数的掌握程度也是考生考研数学成绩的重要指标之一。

在本篇文章中,我们将介绍线性代数考研讲义的完整版,包括向量、矩阵、行列式、线性方程组、特征值、特征向量等知识点,帮助考生全面掌握线性代数的基本原理和应用。

第一章向量
1.1 向量的基本概念
•向量是有大小和方向的量,在平面和空间中表示为有向线段。

•向量的大小称为模长,方向由箭头所指示。

•向量之间可以进行加、减、数乘等运算。

1.2 向量的几何意义
•向量可以表示平移和旋转等变换。

•向量运算可以表示点与直线、点与面的关系。

1.3 向量的坐标表示
•向量的坐标表示可以转化为矩阵的形式。

•两个向量的数量积可以表示为它们坐标的点积。

1.4 向量的线性运算
•向量加、减、数乘的线性运算满足交换律、结合律、分配律等基本性质。

•向量组的线性运算可以表示为矩阵的形式。

第二章矩阵
2.1 矩阵的基本概念
•矩阵是一个由数个数排成的矩形数表。

•矩阵可以表示为行向量和列向量的组合形式。

•矩阵的大小也称为维数,行数和列数分别表示为矩阵的行数和列数。

2.2 矩阵的运算
•矩阵加法、减法、数乘等运算满足基本性质。

•矩阵乘法满足结合律,但不满足交换律。

•矩阵的转置、伴随矩阵等运算也具有重要的应用意义。

2.3 矩阵的初等变换
•矩阵的初等变换包括交换矩阵的两行(列)、某行(列)乘以一个非零数、某行(列)乘以非零数加到另一行(列)上等三种操作。

•矩阵的初等变换可以通过矩阵乘法表示为简单矩阵的乘积,也称为初等矩阵。

第三章行列式
3.1 行列式的定义
•行列式是一个数值函数,是一个方阵中各行各列对应元素的代数和。

•若行列式的值为零,则该矩阵为奇异矩阵,否则为非奇异矩阵。

3.2 行列式的性质
•行列式可以表示为对角线元素的乘积形式。

•行列式的任意两行(列)互换改变行列式的符号,相同的两行(列)使行列式为零。

•互换矩阵的任意两行(列)的操作可以用初等矩阵构成。

•矩阵的逆存在的充分必要条件是该矩阵的行列式不等于零。

第四章线性方程组
4.1 线性方程组的基本概念
•线性方程组是一个形如Ax=b的方程组,其中A是一个已知的矩阵,b是已知的向量,x是未知的向量。

•线性方程组的解可以表示为向量的线性组合形式。

4.2 线性方程组的解法
•初等变换法可以通过矩阵的初等变换求解线性方程组。

•矩阵的逆可以求解线性方程组的唯一解。

•行列式可以判断线性方程组是否有解,有多少个解等信息。

4.3 线性方程组的应用
•线性方程组可以用于投影变换、最小二乘拟合等问题。

第五章特征值与特征向量
5.1 特征值的定义
•对于一个n阶矩阵A,如果存在一个数λ和一个n维非零列向量x,使得Ax=λx,则λ称为A的特征值,x称为A对应于λ的特征向量。

5.2 特征值与特征向量的性质
•特征值是一个数值。

•特征向量是一个非零向量。

•特征值和特征向量是成对出现的,每个特征值对应一个特征向量。

•特征向量可以表示为Ax=λx的形式。

•特征值和特征向量的个数与矩阵的大小相同。

•矩阵的不同特征值对应的特征向量是线性无关的。

5.3 特征值与特征向量的应用
•特征值与特征向量在图像压缩、数据降维等领域中具有广泛的应用。

本篇文章简要介绍了线性代数考研讲义的完整版,由向量、矩阵、行列式、线性方程组和特征值等五大部分组成。

希望该讲义对考研数学复习有所帮助。

相关文档
最新文档