双足步行机器人转弯步态规划及其实现

合集下载

双足步行机器人的步态规划

双足步行机器人的步态规划
稳定 步 行 的基 础
运动学和动, 学 特征。对于动态步行而言 , 丁 曾经有过 l2、 8 、 4、、
9 l 5个 自 由度 的经 典机 械 结 构 E 考 虑 到 项 目 的 具体 运 动 、2 l 行 为 要 求 : 地 行 走 、 坡 步 行 . 下 台阶 等 等 动 作 . 平 斜 上 选用 腿 部
维普资讯
双足步行机器人的步态规划
张 伟 杜 继 宏
( 清华 大学 自动化 系, 京 10 8 ) 北 00 4
E mal z a g e 9 @mal i g u .d .n — i:h n w i 9 i t n要 研 究 了双 足 步 行 机 器人 的基 本 步 态的 建 立过 程 .进 行 了参数 化 北理 .提 出 了一 种 简 单 可 行 的 步 态 规 划 方
器 , 参 考 开 关 和 眼制 开 关 。 出为 到 伺 服放 大 器 的数 字 信 号 . 零 输 用 来 控制 关 节 的角 度 值 。
2 双 足 步 行 机 器 人 的 本 体 结 构
3 数学模 型 的建 立
坐 标 系 系 统 的 建 立 采 用 标 准 D nv e ai t和 H r n r 准 at b g eo 则 用 齐 移 变 换矩 阵来 描 述 参 照 前 一 连杆 的 坐标 系统 来 建立 采 (
下 一 个连 杆 的 坐标 系 统 :
lo0 s e0 s i . . sOic %oO1 c l—n c i n. cs. ns  ̄

A =
lO。 -eo l:  ̄。 clt _ n s oia o i n sn si TT
p o o e , i h e e ae B sc rp s d wh c g n r t s a i Ga s f h l g e r b t s n i o t e e g d o o u i g t s e ih e p o e s a d a a ti s h g i p ca z d r c s n p r merz t e at e

双足行走机器人运动轨迹规划

双足行走机器人运动轨迹规划

双足行走机器人运动轨迹规划林保蛟;华云松;顾岩秀【摘要】针对双足行走机器人数学描述复杂,分析较为困难等问题,采用五次多项式插值法规划机器人的关节运动轨迹,为每个关节设计相应的轨迹,达到运动学求解过程中所得出的转动角度,使机器人从起始位置运动到某个规定的目标位置,实现机器人在作业空间的行走.通过对机器人运动轨迹的分析,结果表明了用五次多项式插值法是一种规划双足机器人步态行走的较好方法,得到的机器人关节运动轨迹图更加光滑平稳.【期刊名称】《电子科技》【年(卷),期】2017(030)002【总页数】4页(P45-48)【关键词】双足机器人;运动轨迹;五次多项式插值法【作者】林保蛟;华云松;顾岩秀【作者单位】上海理工大学光电信息与计算机工程学院,上海200093;上海理工大学光电信息与计算机工程学院,上海200093;上海理工大学光电信息与计算机工程学院,上海200093【正文语种】中文【中图分类】TP242双足行走机器人是一个多自由度、非线性、具有复杂动力学特性的多体系统, 21世纪以来,国内外许多个人和单位相继推出了各自研制的双足机器人,各国研究学者认为机器人技术对未来新兴产业的兴起和发展具有重要意义[1]。

因其外形和功能形似人类。

适合在人类生活和工作的环境中与人类协同工作[2-3],还可代替人类在危险环境中作业,拓宽人类的活动空间[4],有高度的适应性与灵活性。

实现稳定步行是双足机器人研究的首要任务[5],合理的步态规划是机器人稳定步行的基础。

欧盟在第七框架计划(FP7)中规划了“认知系统与机器人技术”研究、美国启动了“国家机器人计划”、日本和韩国则针对服务型方面的机器人制定了主要的研究策略。

最具代表性的有日本早稻田大学加藤一郎教授研制的WAP系列样机,日本东京大学研制的HS、H6型仿人型双足步行机器人等。

我国同时在国家高技术研究发展计划(863计划)、国家科技重大专项、国家自然科学基金等规划中对机器人技术的研究与发展应用给予重视[6]。

双足机器人动态步态规划

双足机器人动态步态规划

me t h o d i s a p p l i e d t o t h e a n k l e j o i n t t r a j e c t o r y p l a n n i n g . C o mb i n e d w i t h k n o w n h i p mo t i o n t r a j e c t o r y , t h e g e o me t r i c c o n - s t r a i n t me t h o d i s u s e d t o g e t t h e k n e e mo t i o n t r a j e c t o r y . Wh o l e g a i t c y c l e w i t h i n t h e j o i n t mo v e me n t i s g o t . T h e d y n a mi c s
第二炮兵工程大学 , 西安 7 1 0 0 2 5
Th e Se c o nd Ar t i l l e r y En gi n e e r i n g Un i v e r s i t y , Xi ’ a n 7 1 0 0 25 , Ch i n a
CH EN Le i , ZH AN G Gu o l i a ng ,ZH ANG W e i p i n g , e t a 1 .Dyn a mi c g a i t pl a n n i n g o f r o bo t NA O.Com p u t e r En g i n e e r i n g
C o m p u t e r E n g i n e e r i n g a n d A p p l i c a t i o n s 计 算机 工程 与应 用

双足机器人步行原理

双足机器人步行原理

双足机器人步行原理双足机器人作为一种具有高度仿生性的机器人,其步行原理是其设计和运动的核心。

双足机器人的步行原理主要包括步态规划、动力学控制和传感器反馈三个方面。

下面将对这三个方面逐一进行介绍。

首先,步态规划是双足机器人步行的基础。

在步态规划中,需要确定双足机器人的步行轨迹、步频和步幅。

通过对双足机器人的步行轨迹进行规划,可以确保机器人在行走过程中保持平衡,避免摔倒和碰撞。

而步频和步幅的规划则可以使机器人在行走过程中保持稳定的速度和节奏。

通过合理的步态规划,双足机器人可以实现稳定、高效的步行运动。

其次,动力学控制是双足机器人步行的关键。

在动力学控制中,需要考虑双足机器人的力学特性和运动学特性,以实现对机器人步行过程中的力和力矩的精确控制。

动力学控制可以通过对双足机器人的关节和驱动器进行精确的控制,使机器人在行走过程中保持平衡和稳定。

同时,动力学控制还可以实现双足机器人在不同地形和环境中的适应性,使其能够应对各种复杂的行走场景。

最后,传感器反馈是双足机器人步行的重要保障。

通过搭载各种传感器,如惯性传感器、视觉传感器、力觉传感器等,可以实时获取双足机器人的姿态、速度、力和力矩等信息,从而为动力学控制提供准确的反馈。

传感器反馈可以使双足机器人实现实时的自适应控制,及时调整步行姿态和步行速度,保证机器人在行走过程中保持稳定和安全。

综上所述,双足机器人的步行原理涉及步态规划、动力学控制和传感器反馈三个方面,通过这三个方面的协同作用,可以实现双足机器人稳定、高效的步行运动。

未来,随着步行机器人技术的不断发展和完善,相信双足机器人将在更广泛的领域发挥重要作用,为人类生活和工作带来更多的便利和可能。

一种双足步行机器人的步态规划方法

一种双足步行机器人的步态规划方法
前 景 。 行机 器 人 最 大 的特 征是 步行 , 步 步
前 向运 动模 型 如下 图一 :
态 是在 步行 运 动 过程 中 , 行 体 的 身 体 步 各 部 位 在 时序 和 空 间上 的一 种 协调 关 系

步态 规划 是 双足 步行 机 器 人 研 究 中的
个 关 键 技 术 实 现 和 提 高 机 器 人 的 要
维普资讯
2 0 年第3 02 期
《 器人技术与应I》 机 I 1

种双 足 步行机器 人 的步 态规划 方法
] 胡洪志 马宏 绪
国防科技大学机 电工程与 自动化学院
【 摘
要 ] 本 文介 绍 了一种 双 足步行 机器 人 的步 态规 划方 法 , 以前 向运动 为例 细介 绍 了先分 阶段 规划 然 后合 成 的方 法 详 并 步态规 划 减 振
走 的 基本 姿 态 , 划各 关 节 的运 动 , 规 将各 关 节 的转 角 信 息写 入数 据 文件 , 走 时小 板机将 数 据文件 中 的数 行
据写 入 双 口 R M, S ^ l D P控 制 器从 双 口 I ̄ 读 出 规 划 LM _
可近 似算得 侧扭 角 度 :日=oa (/ ) .9 t1a b =53 ̄ I
p r n n i u ainr s l v r e h aia i f emeh d e me t i a sm l o ut e f dtev l t n o t t e i i d o h to
【 e w r s bpd o o;a l nt ; ba o er s K y o d l i b t ip n igv r ln ce e er gt a t i t d a
为了使关节 的转动角度平滑改变 , 用正弦曲线来

双足机器人步行原理

双足机器人步行原理

双足机器人步行原理
双足机器人步行原理基于仿生学和机器人控制理论,旨在模拟人类的步行运动。

它主要基于以下原理和控制策略:
1. 动态平衡控制:双足机器人在行走过程中需要保持动态平衡,这意味着机器人需要时刻根据自身的姿态、行走速度和地面情况来调整步态和控制力矩,以保持机体的稳定。

2. 步态规划:双足机器人的步态规划决定了每一步腿的运动轨迹和步频。

一般来说,机器人上半身的重心会向前倾斜,然后交替迈步。

步态规划需要考虑腿部的受力、身体姿态、地面摩擦力等多个因素。

3. 步态控制:基于步态规划,机器人需要实现对每一步的力矩控制和低级关节控制。

这意味着机器人需要根据颈部、腰部、髋部、膝关节和脚踝关节的传感器反馈信息来调整关节的输出力和控制策略。

4. 感知与反馈:双足机器人需要运用各种传感器来感知自身的状态和周围环境,例如倾斜传感器、压力传感器、陀螺仪等。

这些传感器的数据能够提供给控制系统供其根据需要调整步行姿势和控制力矩。

5. 动力学控制:双足机器人需要考虑自身的动力学特性,以及地面反作用力的影响。

动力学控制通过综合各种传感器信息和动力学模型来计算机器人每一步所需的力矩,以提供足够的力量来维持步行。

综上所述,双足机器人步行的原理涉及动态平衡控制、步态规划、步态控制、感知与反馈以及动力学控制等多个方面。

通过精确的控制策略和高度集成的感知系统,机器人能够模拟人类的步行运动,并具备稳定的步行能力。

双足竞步机器人设计与制作技术报告

双足竞步机器人设计与制作技术报告

双足竞步机器人设计与制作技术报告一、引言二、设计原理1.动力系统2.传感系统3.平衡控制系统平衡是双足机器人最基本的功能之一、平衡控制系统基于双足机器人的运动状态及传感器信息,通过反馈控制算法实现平衡控制,使机器人能够保持稳定的步态。

4.步态控制系统步态控制系统主要通过控制机器人的下肢运动,完成双足的协调步行。

常见的步态控制算法有离散控制、预先编程控制、模型预测控制等。

三、制作过程1.机械结构设计2.电子系统设计电子系统设计主要包括电路设计和控制系统设计。

电路设计需要根据机器人的运行需求进行电源和信号处理电路的设计。

控制系统设计需要根据机器人的传感信息和控制算法,选择合适的控制器和通信模块。

3.程序开发与调试程序开发是制作双足竞步机器人不可或缺的一步。

在程序开发过程中,需要针对平衡控制、步态控制和传感器数据处理等方面进行编程,并进行相应的调试与优化。

四、技术难点与解决方案1.平衡控制技术2.步态规划与控制技术步态控制是双足竞步机器人实现协调步行的关键。

根据机器人的设计和运行需求,选取合适的步态控制算法,并进行动态规划和控制,可以实现优化的步态控制。

3.动力系统设计与电路优化机器人的动力系统设计要考虑电机选择、电机驱动电路和电源供应等多个方面。

同时,还需要对电子电路进行优化,减小功耗和提高效率,以提高机器人的运行时间和性能。

五、总结双足竞步机器人的设计与制作技术包括机械结构设计、电子系统设计、程序开发与调试等多个环节。

通过充分考虑机器人的平衡控制和步态控制等关键技术,可以设计出性能优良的双足竞步机器人。

但是,在设计与制作过程中还需要不断尝试与改进,以逐步优化机器人的性能。

小型双足机器人设计及步态规划

小型双足机器人设计及步态规划
即踝 关 节 前 向和扭 转 两 个 自由度 ,膝 关 节前 向 4 自由 个 度 , 关节 前 向和 转 向两个 自由度 。 髋 下面分析上 肢 自由度 。 人 类运 动 时 ,手 臂 的摆 动 对
运 动 有很 重 要 的影 响 ,机 器
直流 电机 , 当其接收到一个位置指令 , 就会运动到指定 的 位置 。 微型伺服马达具有高力矩 、 高性 能、 控制简单 、 装配 灵活 、 价格低等优点。 微 型伺 服 马 达 内部 包括 了一个 小 型 直 流 马达 、一 组
大腿 : 身 : = : :.: 。 上 头 2 2 25 1
节 扭 矩 最 小 条 件 下 的 两 足 步 行 结 构 自由 度 配 置 器人 在 不平 的地 面上 站立 , 部 再增 加 1 扭 转 自由度 , 髋 个 可 以改 变行 走 方 向 , 关节 处 再 增加 1 回转 自由度 , 踝 个 可
士从仿生 学 的角度对仿 模仿来复制和再造某些生物特性和功能 ,将极大地提高
人 机 器 人 腿 部 自由 度 配
置进 行 了研 究 , 出 了关 得
人 类对 自然 的适 应 和 改造 能 力 ,产 生 巨大 的 社会 经 济效
益l 3 ] 。依据仿生学原理 , 我们按照人体 比例对机器人各部 分的比例和尺寸进行了设计。 人 由头 、 手臂、 上体 、 、 、 腰 腿 足等部分组成 , 各个部分 稍有不 同, 但差别不大 。人体 的比例以头长为单位 , 国 我 的人体通常为七个到七个半头长 , 古代画论 中, 曾有“ 立 七、 坐五、 盘三半” 的说法。 人体各部分 比例大致为: 小腿 :
所设计 的机器人身高为 3 0 m,小腿长 1O m, 3m m 大 l
根 据 郑元 芳 理论 ,我们 可 以规划 出所设 计 的类 人 机 腿 长 lO m, 身 8 m , Om 上 2 m 头部 3 m 手臂 长 10 m。 8 m, 4m . 器 人 的运 动 过程 ( 向 ) 行走 步 骤 : 前 和 重心 右 移 ( 设 先 右 23 驱 动元 件及 机 器人 材料 选 择 假 腿 支撑 )左腿 抬起 、 腿 放 下 、 心 移 到 双 腿 中 间 、 心 、 左 重 重 左 移 、 腿 抬起 、 腿放 下 、 右 右 重心 移 到 双腿 间 , 共分 八 个 阶
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档