数据库函数依赖

合集下载

[总结]关系数据库设计基础(函数依赖、无损连接性、保持函数依赖、范式、……)

[总结]关系数据库设计基础(函数依赖、无损连接性、保持函数依赖、范式、……)

[总结]关系数据库设计基础(函数依赖、⽆损连接性、保持函数依赖、范式、……)≏≎≟≗≖≍≭∼∽≁≃≂≅≊≈≉≇≳⪞⪆⋧⪊≵≲⪝⪅⋦⪉≴⊂ subset ⋐⊄⊊ ⊈⊃⊇ ⋑⊅⊋ ⊉≺⪯≼⋞≾⪷⋨⪵⪹⊀≻⪰≽⋟≿⪸⋩⪶⪺⊁ in ∋∉∌∝≬⊸函数依赖(Function Dependency)定义设关系模式R(U),属性集合U= {A1,A2,…,An},X,Y为属性集合U的⼦集,如果对于关系模式R(U)的任⼀可能的关系r,r中的任意两个元组u、v,若有 u[X]=v[X],就有u[Y]=v[Y],则称X函数决定Y,或称Y函数依赖于X。

⽤符号X→Y表⽰。

其中X为决定因素,Y为被决定因素。

若对于R(U)的任意⼀个可能的关系r,r中不可能存在两个元组在X上的属性值性等,⽽在Y上的属性值不等。

 (1) 函数依赖是语义范畴的概念,只能根据语义来确定⼀个函数依赖关系。

 (2) 函数依赖X→Y的定义要求关系模式R的任何可能的关系r中的元组都满⾜函数依赖条件。

术语 (1)若X→Y,则X称作决定因素(Determinant) (2)若X→Y,Y→X,称作X<->Y。

 (3)若Y不函数依赖于X,称作X -/-> Y。

 (4)X→Y,若Y不包含X,即X ⊄ Y,则称X→Y为⾮平凡的函数依赖。

正常讨论的都是⾮平凡的函数依赖。

 (5)X→Y,若Y包含X,即X ⊂ Y,则称X→Y为平凡的函数依赖。

 (6)完全函数依赖(full functional dependency):在R(U)中,设X、Y是关系模式R(U)中不同的属性⼦集(即X ⊂ U,Y ⊂ U), 若存在 X→Y,且不存在 X的任何真⼦集X'(即 X' ⊊ X),使得 X'→Y,则称Y完全函数依赖 ( full functional dependency ) 于X。

记作 X-F->Y。

 (7)部分函数依赖:在关系模式R(U)中,X、Y是关系模式R(U)中不同的属性⼦集(即X ⊂ U,Y ⊂ U), 若X→Y成⽴,如果X中存在任何真⼦集X'(即 X' ⊊ X),⽽且有X'→Y也成⽴,则称Y对X是部分函数依赖,记作:X-P->Y。

部分函数依赖和传递函数依赖

部分函数依赖和传递函数依赖

部分函数依赖和传递函数依赖在数据库设计中,我们经常会遇到函数依赖这个概念。

函数依赖是指关系模式中某些属性的值能否从其他属性的值中推导出来。

像这样的关系被称为函数依赖关系。

部分函数依赖和传递函数依赖是函数依赖的两种情况。

在本文中,我们将对它们的定义、区别以及在数据库设计中的应用进行详细解析。

一、部分函数依赖部分函数依赖是指关系模式中的某个非主属性在主属性的部分取值下,与主属性存在函数依赖关系。

换句话说,就是非主属性依赖于关系模式的一部分主属性,而不是全部主属性。

举例来说,如果我们有一个关系模式如下:学生信息表(学号,姓名,专业,年级,性别)其中,学号是主属性,而其他属性则为非主属性。

如果我们知道某个学生的学号和年级,那么就能推断出他的专业和性别,这说明学生信息表中存在部分函数依赖关系。

二、传递函数依赖传递函数依赖是指非主属性通过一个或多个函数依赖于主属性的其他非主属性。

换句话说,就是属性之间的函数依赖形成了一个传递链条。

我们仍然以学生信息表为例:学生信息表(学号,姓名,专业,年级,性别)除了学号外,其他属性都是非主属性。

如果我们知道一个学生的专业,就能推断出这个学生的年级和性别。

这意味着属性之间存在一个传递链条,即关系模式中存在传递函数依赖关系。

三、部分函数依赖和传递函数依赖的区别部分函数依赖和传递函数依赖虽然都表明了函数依赖关系,但它们有着不同的定义和特点。

首先,部分函数依赖强调的是一个非主属性依赖于主属性的一部分取值。

也就是说,如果我们已经知道主属性的全部取值,那么非主属性的取值就能被唯一地确定。

而传递函数依赖则不同,它是指一个非主属性依赖于其他非主属性,可能会跨越多个主属性,这样的话,我们就需要通过多次推导才能确定非主属性的取值。

其次,部分函数依赖和传递函数依赖对于数据表的规范化和数据库设计都有着不同的影响。

对于部分函数依赖,我们需要将非主属性和部分主属性拆分到不同的数据表中,以避免数据的冗余和不一致性。

数据库-部分函数依赖,传递函数依赖,完全函数依赖,三种范式的区别

数据库-部分函数依赖,传递函数依赖,完全函数依赖,三种范式的区别

数据库-部分函数依赖,传递函数依赖,完全函数依赖,三种范式的区别要讲清楚范式,就先讲讲几个名词的含义吧:部分函数依赖:设X,Y是关系R的两个属性集合,存在X→Y,若X’是X的真子集,存在X’→Y,则称Y部分函数依赖于X。

举个例子:学生基本信息表R中(学号,身份证号,姓名)当然学号属性取值是唯一的,在R关系中,(学号,身份证号)->(姓名),(学号)->(姓名),(身份证号)->(姓名);所以姓名部分函数依赖与(学号,身份证号);完全函数依赖:设X,Y是关系R的两个属性集合,X’是X的真子集,存在X→Y,但对每一个X’都有X’!→Y,则称Y完全函数依赖于X。

例子:学生基本信息表R(学号,班级,姓名)假设不同的班级学号有相同的,班级内学号不能相同,在R关系中,(学号,班级)->(姓名),但是(学号)->(姓名)不成立,(班级)->(姓名)不成立,所以姓名完全函数依赖与(学号,班级);传递函数依赖:设X,Y,Z是关系R中互不相同的属性集合,存在X→Y(Y !→X),Y→Z,则称Z传递函数依赖于X。

例子:在关系R(学号 ,宿舍, 费用)中,(学号)->(宿舍),宿舍!=学号,(宿舍)->(费用),费用!=宿舍,所以符合传递函数的要求;在任何一个关系数据库中,第一范式(1NF)是对关系模式的基本要求,不满足第一范式(1NF)的数据库就不是关系数据库。

所谓第一范式(1NF)是指数据库表的每一列(即每个属性)都是不可分割的基本数据项,同一列中不能有多个值,即实体中的某个属性不能有多个值或者不能有重复的属性。

简而言之,第一范式就是无重复的列。

2、第二范式(2NF)第二范式(2NF)是在第一范式(1NF)的基础上建立起来的,即满足第二范式(2NF)必须先满足第一范式(1NF)。

第二范式(2NF)要求数据库表中的每个实例或行必须可以被唯一地区分。

为实现区分通常需要为表加上一个列,以存储各个实例的唯一标识。

第3-4讲函数依赖和公理

第3-4讲函数依赖和公理
练习1中函数依赖 AB→D是完全依赖还是部分依赖? 思考: 如果X只有一个属性, X→Y是否一定是完全函数依赖?
定义(传递FD):设关系模式R,X、Y、Z是R的属性子集, 若FD X→Y,Y → X,Y→Z,则有FD X→Z,称FD X→Z为 传递函数依赖。
函数依赖、完全依赖、传递依赖等基本概念是第四章关系 数据库范式的基础。
18
算法3.2.3
判定F是否蕴涵X→Y的成员测试算法
输入:函数依赖集F和FD X→Y。
输出:若F蕴涵X→Y输出为true,否则为false MEMBER(F, X→Y) begin if Y CLOSURE(X,F) then return(true) eles return(false) end.
={AB→E,E→G, BE→I, GI→H}
13
定义(函数依赖集F的闭包 F +)
设F是关系r(R)上的函数依赖集,F所蕴含的所有FD的集
合称为F的闭包,记作F +。 F
+
= { X→Y
|
所有F |= X→Y }
例:设F={AB→C,C→B}。 求F+
14
设F={AB→C,C→B}。 F+ 为: F+ = {A→A, AB→A, AC→A, ABC→A, B→B, AB→B, BC→B,ABC→B,C→C,AC→C,BC→C,ABC→C,AB→AB, ABC→AB,AC→AC,ABC→AC,BC→BC, ABC→BC, ABC→ABC, AB→C, AB→AC, AB→BC, AB→ABC,C→B,

(3)并比较两种方法更好用语言来实现。
21
(1)设F ={AB→C,B→D,CD→E,CE→GH,G→A},

数据库函数依赖的定义

数据库函数依赖的定义

数据库函数依赖的定义
数据库函数依赖的定义是当一个函数的计算结果依赖于其他函数或对象时,我们称之为函数依赖。

函数依赖可以分为直接函数依赖和间接函数依赖。

直接函数依赖是指一个函数的计算结果直接依赖于其他函数或对象的值。

函数A的计算结果依赖于函数B的返回值,那么我们可以说函数A直接依赖于函数B。

间接函数依赖是指一个函数的计算结果间接依赖于其他函数或对象的值。

函数A的计算结果依赖于函数B的返回值,而函数B的计算结果又依赖于函数C的返回值,那么我们可以说函数A间接依赖于函数C。

函数依赖是数据库中的一个重要概念,它可以帮助我们理解数据库中各个函数之间的关系,并且在数据库设计和查询优化等方面具有重要作用。

在进行函数依赖的定义时,为了避免出现真实名字和引用,我们通常使用抽象的变量或符号来表示函数或对象。

这样可以更好地保护数据的隐私和安全性。

无损连接和保持函数依赖的关系

无损连接和保持函数依赖的关系

无损连接和保持函数依赖的关系引言在数据库管理系统中,数据的一致性和完整性对于数据的正确性非常重要。

在设计和组织数据库时,无损连接和保持函数依赖是两个关键概念。

它们用于确保数据库中的数据能够正确地存储和检索。

在本文中,我们将深入探讨无损连接和保持函数依赖的关系,以及它们在数据库设计中的重要性。

无损连接什么是无损连接无损连接是指数据库中的数据能够在连接操作中保持完整性和一致性。

也就是说,当我们将数据拆分成多个表时,并通过连接操作将它们关联起来,数据之间的关系应该能够正确地重建。

无损连接确保了数据在表之间的关联上是完整的。

无损连接的实现方法无损连接的实现方法有两种:函数依赖和多值依赖。

函数依赖函数依赖是指一个数据集中的一组属性的取值能够决定另外一组属性的取值。

在数据库中,函数依赖用于建立关系数据库表之间的连接。

通过定义表之间的函数依赖关系,我们可以在数据插入、更新或删除时保持数据的一致性。

多值依赖多值依赖是指一个数据集中的一组属性的取值能够决定另外一组属性的取值,但不能由单个属性的取值决定。

与函数依赖不同,多值依赖处理的是属性之间的多对多关系。

保持函数依赖什么是保持函数依赖保持函数依赖是指在数据库设计中,通过分解关系数据库表来满足函数依赖的要求。

当一个关系数据库表中存在多个函数依赖时,我们可能需要对其进行拆分,以满足函数依赖的要求。

保持函数依赖的方法保持函数依赖的方法主要有:分解、合成和冗余消除。

分解分解是将一个关系数据库表拆分成两个或多个表的过程。

在分解时,我们需要确保新的表能够保持函数依赖关系。

通过分解,我们可以消除冗余和提高数据的一致性和完整性。

合成合成与分解相反,是将多个表合并成一个表的过程。

合成主要用于优化查询和降低数据访问的开销。

然而,在合成时,我们需要确保合并后的表能够保持函数依赖关系和数据的一致性。

冗余消除冗余消除是指通过合并表或优化表结构来消除冗余数据。

冗余数据可能会导致数据的不一致性和完整性问题。

数据库函数依赖及范式(最通俗易懂)

数据库函数依赖及范式(最通俗易懂)

数据库函数依赖及范式(最通俗易懂)⼀、基础概念 要理解范式,⾸先必须对知道什么是关系数据库,如果你不知道,我可以简单的不能再简单的说⼀下:关系数据库就是⽤⼆维表来保存数据。

表和表之间可以……(省略10W字)。

然后你应该理解以下概念: 实体:现实世界中客观存在并可以被区别的事物。

⽐如“⼀个学⽣”、“⼀本书”、“⼀门课”等等。

值得强调的是这⾥所说的“事物”不仅仅是看得见摸得着的“东西”,它也可以是虚拟的,不如说“⽼师与学校的关系”。

属性:教科书上解释为:“实体所具有的某⼀特性”,由此可见,属性⼀开始是个逻辑概念,⽐如说,“性别”是“⼈”的⼀个属性。

在关系数据库中,属性⼜是个物理概念,属性可以看作是“表的⼀列”。

元组:表中的⼀⾏就是⼀个元组。

分量:元组的某个属性值。

在⼀个关系数据库中,它是⼀个操作原⼦,即关系数据库在做任何操作的时候,属性是“不可分的”。

否则就不是关系数据库了。

码:表中可以唯⼀确定⼀个元组的某个属性(或者属性组),如果这样的码有不⽌⼀个,那么⼤家都叫候选码,我们从候选码中挑⼀个出来做⽼⼤,它就叫主码。

全码:如果⼀个码包含了所有的属性,这个码就是全码。

主属性:⼀个属性只要在任何⼀个候选码中出现过,这个属性就是主属性。

⾮主属性:与上⾯相反,没有在任何候选码中出现过,这个属性就是⾮主属性。

外码:⼀个属性(或属性组),它不是码,但是它别的表的码,它就是外码。

⼆、6个范式 好了,上⾯已经介绍了我们掌握范式所需要的全部基础概念,下⾯我们就来讲范式。

⾸先要明⽩,范式的包含关系。

⼀个数据库设计如果符合第⼆范式,⼀定也符合第⼀范式。

如果符合第三范式,⼀定也符合第⼆范式…第⼀范式(1NF):属性不可分。

在前⾯我们已经介绍了属性值的概念,我们说,它是“不可分的”。

⽽第⼀范式要求属性也不可分。

那么它和属性值不可分有什么区别呢?给⼀个例⼦:name tel age⼤宝136****567822⼩明139****6655010-123456721Ps:这个表中,属性值“分”了。

数据库函数依赖及范式(最通俗易懂)

数据库函数依赖及范式(最通俗易懂)

数据库函数依赖及范式(最通俗易懂)⼀、基础概念 要理解范式,⾸先必须对知道什么是关系数据库,如果你不知道,我可以简单的不能再简单的说⼀下:关系数据库就是⽤⼆维表来保存数据。

表和表之间可以……(省略10W字)。

然后你应该理解以下概念: 实体:现实世界中客观存在并可以被区别的事物。

⽐如“⼀个学⽣”、“⼀本书”、“⼀门课”等等。

值得强调的是这⾥所说的“事物”不仅仅是看得见摸得着的“东西”,它也可以是虚拟的,不如说“⽼师与学校的关系”。

属性:教科书上解释为:“实体所具有的某⼀特性”,由此可见,属性⼀开始是个逻辑概念,⽐如说,“性别”是“⼈”的⼀个属性。

在关系数据库中,属性⼜是个物理概念,属性可以看作是“表的⼀列”。

元组:表中的⼀⾏就是⼀个元组。

分量:元组的某个属性值。

在⼀个关系数据库中,它是⼀个操作原⼦,即关系数据库在做任何操作的时候,属性是“不可分的”。

否则就不是关系数据库了。

码:表中可以唯⼀确定⼀个元组的某个属性(或者属性组),如果这样的码有不⽌⼀个,那么⼤家都叫候选码,我们从候选码中挑⼀个出来做⽼⼤,它就叫主码。

全码:如果⼀个码包含了所有的属性,这个码就是全码。

主属性:⼀个属性只要在任何⼀个候选码中出现过,这个属性就是主属性。

⾮主属性:与上⾯相反,没有在任何候选码中出现过,这个属性就是⾮主属性。

外码:⼀个属性(或属性组),它不是码,但是它别的表的码,它就是外码。

⼆、6个范式 好了,上⾯已经介绍了我们掌握范式所需要的全部基础概念,下⾯我们就来讲范式。

⾸先要明⽩,范式的包含关系。

⼀个数据库设计如果符合第⼆范式,⼀定也符合第⼀范式。

如果符合第三范式,⼀定也符合第⼆范式…第⼀范式(1NF):属性不可分。

在前⾯我们已经介绍了属性值的概念,我们说,它是“不可分的”。

⽽第⼀范式要求属性也不可分。

那么它和属性值不可分有什么区别呢?给⼀个例⼦:name tel age⼤宝136****567822⼩明139****6655010-123456721Ps:这个表中,属性值“分”了。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例:
(sno-学生ID,tno-教师ID,cno-课程ID,sname-学生姓名,tname-教师姓名,cname-课程名称,grade-成绩)
1、sno→sname, cno→cname,(sno,cno)→grade √
2、sname→sno, tno→cno, sno→tname×
三、函数依赖是语义范畴
1、语义:数据所反映的现实在与否
3、函数依赖反映属性之间的一般规律,必须在关系模式下的任一个关系r中都满足约束条件。
四、属性间的联系决定函数依赖关系
设X、Y均是U的子集
1、X和Y间联系是1:1,则X→Y,Y→X。(相互依赖,可记作X←→Y)
2、X和Y间联系是M:1(M),则X→Y。
数据库函数依赖
一、函数依赖(Functional Dependency)的概念
数据依赖的一种,它反映属性或属性组之间相依存,互相制约的关系,即反映现实世界的约束关系。
二、定义
设R(U)是属性U上的一个关系模式,X和Y均为U={A1,A2,…,An}的子集,r为R的任一关系,如果对于r中的任意两个元组u,v,只要有u[X]=v[X],就有u[Y]=v[Y],则称X函数决定Y,或称Y函数依赖于X,记为X→Y。
X→W, W→Y为非平凡函数依赖
七、传递函数依赖X→Y,Y→Z则Z传递函数依赖于X
例:
学生ID,学生姓名,所修课程ID,课程名称,成绩
(学生ID,所修课程ID)→成绩
成绩既不能单独依赖于学生ID,也不能单独依赖于所修课程ID,因此成绩完全函数依赖于关键字。
(学生ID,所修课程ID)→学生姓名
学生ID→学生姓名
学生姓名可以依赖于关键字的一个主属性——学生ID,因此学生姓名部分函数依赖于(学生ID,所修课程ID)。
六、平凡函数依赖和非平凡函数依赖
设X,Y均为某关系上的属性集,且X→Y
1)若Y包含于X,则称X→Y为:平凡函数依赖;(Sno, Cno)→Sno (Sno, Cno)→Cno
2)若Y不包含于X,则称X→Y为:非平凡函数依赖。(Sno, Cno)→Grade
Y包含于X内,W于X相交,与Y无直接交集。
则:X→Y为平凡函数依赖
3、X和Y间联系是M:N(M,N),则X、Y间不存在函数依赖。
五、完全函数依赖和部分函数依赖
1、函数依赖分为完全函数依赖和部分函数依赖
2、定义:
在R(U)中,如果X→Y,并且对于X的任何真子集X'都有X'Y',则称Y完全依赖于X,记作X→Y;否则,如果X→Y,且X中存在一个真子集X',使得X'→Y成立,则称Y部分依赖于X。
相关文档
最新文档