函数依赖

合集下载

数据库函数依赖

数据库函数依赖

数据库函数依赖
数据库函数依赖是指在数据库系统中,一个属性的值取决于另一个属性的值,即函数依赖。

它是数据库设计中最重要的概念之一,可以帮助我们更好地理解数据库结构,并且有助于提高数据库系统的性能。

函数依赖可以帮助我们在设计数据库时,减少存储冗余,减少数据库中的冗余数据,从而提高数据库系统的性能。

函数依赖可以帮助我们更好地理解数据库结构,从而更好地管理数据库。

函数依赖是数据库设计的重要概念,可以帮助我们更好地管理数据库,提高数据库系统的性能。

数据库 函数依赖

数据库 函数依赖

数据库函数依赖
数据库函数依赖是指在一个关系数据库中,一个或多个属性的值可以通过其他属性的值确定。

函数依赖包括单值依赖、多值依赖、主属性和非主属性等。

单值依赖,即一个属性的值唯一地决定了另一个属性的值。

例如,如果我们知道学生的学号,就可以唯一确定学生的姓名和年龄。

多值依赖,指当一个属性集合的值可以唯一地决定另一个属性集合的值时。

例如,如果我们知道订单号和产品,就可以唯一确定订单的客户和地址。

主属性和非主属性,是指关系模式中的属性集合,其中主属性可以唯一地确定元组的唯一性,而非主属性则不能。

例如,在学生表中,学号是主属性,而姓名和年龄则是非主属性。

在实际的数据库设计中,了解这些函数依赖可以帮助我们更好地设计数据表,避免数据冗余和不一致性问题。

例如,在一个订单管理系统中,我们可以将订单号、产品、客户和地址分别作为属性,避免将这些信息重复存储在订单表和客户表中。

此外,函数依赖还可以指导我们进行数据的查询和更新操作。

例如,
在查询学生表时,我们可以根据学号查询出学生的所有信息;在更新
学生表时,如果要修改学生的姓名,必须保证该姓名对应的学号唯一。

总之,函数依赖是数据库设计中非常重要的概念,它可以帮助我们更
好地管理数据、提高数据的一致性和可信度,同时还可以优化数据库
的性能。

函数依赖理论第一讲

函数依赖理论第一讲

结果为closure=ABCGHI。
– 算法第二次循环后的结果为closure=ABCGHI,没有变化,算法终止。 – (AG)+=ABCGHI。
计算属性集闭包的作用
• 计算属性集闭包的作用可归纳如下: – 验证α→β是否在F+中:看是否有β⊆α+。 – 判断α是否为r(R)的超码:通过计算α+,看其是否包含R 的所有属性。例如,(AG)+=ABCGHI,则AG为r(R)的超码。 – 判断α是否为r(R)的候选码:若α是超码,可检验α包含 的所有子集的闭包是否包含R的所有属性。若不存在任 何这样的属性子集,则α是r(R)的候选码。 – 计算F+。对于任意γ⊆R,可通过找出γ+,对任意的S⊆γ+, 可输出一个γ→S。
函数依赖理论
郑子仪
函数依赖定义
函数依赖(functional dependency, 简称FD)是一种 完整性约束,是现实世界事物属性之间的一种制约 关系,它广泛地存在于现实世界之中。
为关系模式, 设r(R)为关系模式,α⊆R,β⊆R。对任意合法关系 及其 为关系模式 。对任意合法关系r及其 中任两个元组t 中任两个元组 i和tj,i≠j,若ti[α]=tj[α],则ti[β]=tj[β],则称α ≠, , , 函数确定β 或 β 函数依赖于α,记作α→β。
判断属性集是否为候选码举例
• r(R)和F定义同上例,判断AG是否为r(R)的候选码。 – 上例已计算出(AG)+=ABCGHI, 则还要进一步分 别计算A+和G+。 – 经计算得,A+=ABCH、G+=G,它们都不包含R的 所有属性。因此,AG为r(R)的候选码。
α β
图5-3 α→β 函数依赖图

数据库函数依赖的定义

数据库函数依赖的定义

数据库函数依赖的定义
数据库函数依赖的定义是当一个函数的计算结果依赖于其他函数或对象时,我们称之为函数依赖。

函数依赖可以分为直接函数依赖和间接函数依赖。

直接函数依赖是指一个函数的计算结果直接依赖于其他函数或对象的值。

函数A的计算结果依赖于函数B的返回值,那么我们可以说函数A直接依赖于函数B。

间接函数依赖是指一个函数的计算结果间接依赖于其他函数或对象的值。

函数A的计算结果依赖于函数B的返回值,而函数B的计算结果又依赖于函数C的返回值,那么我们可以说函数A间接依赖于函数C。

函数依赖是数据库中的一个重要概念,它可以帮助我们理解数据库中各个函数之间的关系,并且在数据库设计和查询优化等方面具有重要作用。

在进行函数依赖的定义时,为了避免出现真实名字和引用,我们通常使用抽象的变量或符号来表示函数或对象。

这样可以更好地保护数据的隐私和安全性。

名词解释:函数依赖

名词解释:函数依赖

名词解释:函数依赖
函数依赖是指在关系模型中,一个或多个属性的值可以唯一地确定其他属性的值。

具体来说,如果一个关系模式中,A 和 B 是属性集合,且对于 A 的任意两个元组,它们在 B 上的取值都必须相同,那么就称 B 函数依赖于 A。

可以简单地理解为,通过已知属性的值可以推出其他属性的值。

函数依赖是数据库设计中重要的概念,可以帮助设计者优化数据库结构,减少数据冗余和不一致性。

在实际应用中,函数依赖可以用于关系的分解、查询优化等方面。

需要注意的是,函数依赖只能描述属性之间的直接关系,而无法描述间接关系。

此外,函数依赖的正确性和适用性取决于实际应用场景和数据特征。

- 1 -。

《函数依赖》课件

《函数依赖》课件
,则有 X→YZ。
伪传递性
如果X→Y和WY→Z,则有 XW→Z。
02
函数依赖的推理规则
函数依赖推理规则的概述
函数依赖推理规则是关系型数据库中处理函数依赖的一种重要方法,它通过一系列 推理规则来推导和验证函数依赖的正确性。
这些规则基于函数依赖的定义,通过逻辑推理来验证关系模式中的函数依赖是否满 足某些特定的条件。
《函数依赖》ppt课件
目录 CONTENT
• 函数依赖的定义 • 函数依赖的推理规则 • 函数依赖在数据库设计中的应用 • 函数依赖的分解与合并 • 函数依赖的验证与求解
01
函数依赖的定义
函数依赖的定义
函数依赖
在关系模式R中,如果X→Y,则 称Y函数依赖于X。
完全函数依赖
如果X→Y,且Y中的每个值都至少 在X的一个值之后出现,则称Y完 全函数依赖于X。
它基于三个基本的公理:反身性、传 递性和合并性。
函数依赖的推理规则应用
函数依赖推理规则在数据库设计、数 据建模和数据完整性检查等方面具有 广泛的应用。
在数据建模方面,函数依赖推理规则 可以用于分析和验证数据模型中的函 数依赖关系,以确保数据模型的一致 性和完整性。
在数据库设计阶段,通过使用函数依 赖推理规则,可以验证关系模式的正 确性和数据的一致性,从而减少数据 冗余和数据不一致的问题。
在数据完整性检查方面,函数依赖推 理规则可以用于验证数据的完整性和 一致性,确保数据的准确性和可靠性 。
03
函数依赖在数据库设计中 的应用
数据库设计中的范式理论
范式理论是数据库设计中的重要 概念,它规定了数据库中表的结 构和关系,以减少数据冗余和提
高数据一致性。
范式理论包括第一范式(1NF) 、第二范式(2NF)、第三范式 (3NF)等,这些范式规定了表 中的列和行的要求,以确保数据

解释 平凡的函数依赖

解释 平凡的函数依赖

解释平凡的函数依赖
在关系数据库中,数据的一种重要约束是函数依赖。

简单地说,
函数依赖指的是两个数据集合之间的关系,其中一个数据集合的值可
以基于另一个数据集合的值来求得。

这种函数依赖关系可以被称为
“平凡的函数依赖”。

平凡的函数依赖通常与主键相关。

主键是一个唯一标识符,用于
标识关系数据库中的每一行记录。

每个主键都具有唯一性,因此可以
作为每个记录的标识符。

当一个数据集合的值可以基于主键的值来求
得时,就存在平凡的函数依赖。

例如,考虑一个名为“学生”的表格,其中包含每个学生的姓名、年龄和学号。

学号被定义为主键,因为它是唯一标识每个学生的唯一
标识符。

在这种情况下,姓名和年龄可以基于学号来求得,因此存在
平凡的函数依赖。

平凡的函数依赖是关系数据库中的常见约束之一。

它确保了数据
完整性和一致性,并允许数据库管理员更轻松地处理数据。

在管理和
维护关系数据库时,理解平凡的函数依赖是非常重要的。

更好地理解
平凡的函数依赖有助于数据管理人员更好地设计和优化表格和数据库,以提高数据插入、查询和更新的效率和准确性。

总之,平凡的函数依赖是关系数据库中的常见约束之一,用于确
保数据的一致性和完整性。

理解平凡的函数依赖是关系数据库管理人
员的重要任务,将有助于设计和优化数据库表格,以提高数据管理的效率和精确性。

关系模式基本函数依赖容易写错

关系模式基本函数依赖容易写错

关系模式基本函数依赖容易写错中的特定函数解释在关系数据库中,函数依赖是一种描述关系模式中属性之间的依赖关系的概念。

它描述了一个属性(或一组属性)的值如何决定另一个属性(或一组属性)的值。

在关系模式中,基本函数依赖是最常见和最基本的函数依赖类型。

函数依赖定义在讨论特定函数之前,我们首先来了解一下函数依赖的定义。

给定一个关系模式R,如果对于R中的两个元组t1和t2,如果它们具有相同的某些属性集X上的值,则它们也必须具有相同属性集Y上的值。

这时我们说X函数决定Y,记作X -> Y。

例如,假设我们有一个员工表格,其中包含员工ID、姓名、部门和工资等属性。

如果对于任意两个员工ID相同的员工来说,他们的姓名和部门也必须相同,则可以表示为{员工ID} -> {姓名, 部门}。

特定函数解释在基本函数依赖中,有几个特定的函数经常容易被写错。

这些特定函数包括:1.完全函数依赖(Fully Functional Dependency):完全函数依赖是指在一个函数依赖中,被函数决定的属性集合是最小的,即没有任何一个属性可以从这个函数依赖中删除而不改变依赖关系。

例如,如果我们有一个员工表格,并且{员工ID, 日期} -> {姓名},则该函数依赖是完全函数依赖。

2.部分函数依赖(Partial Functional Dependency):部分函数依赖是指在一个函数依赖中,被函数决定的属性集合可以通过删除其中某些属性而不改变依赖关系。

例如,如果我们有一个员工表格,并且{员工ID, 姓名} ->{部门},则该函数依赖是部分函数依赖。

3.传递函数依赖(Transitive Functional Dependency):传递函数依赖是指在一个函数依赖中,被决定的属性集合可以通过其他非主属性来决定。

例如,如果我们有一个员工表格,并且{员工ID} -> {部门}和{部门} -> {经理},则可以推断出{员工ID} -> {经理}这个传递函数依赖。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
张太红 2003-01
新疆农业大学计算机及信息工程系
第五章、函数依赖(Functional Dependency )
四、属性集的闭包 给定的关系变量R,R的一个属性集Z,以及R的 一个函数依赖集S,R中所有的函数依赖于Z的属性 集,即属性集Z关于函数依赖集S的闭包Z+。
/*计算属性集Z关于函数依赖集S的闭包Z+的算法*/ CLOSURE[Z,S] := Z; Do “forever”; for each FD X → Y in S do; if X <= CLOSURE[Z,S] then CLOSURE[Z,S] := CLOSURE[Z,S] ∪ Y; end; if CLOSURE[Z,S] did not change on this iteration then leave loop; End;
结论2:给定关系变量R的一个函数依赖集S和属 性子集Z,Z关于S的闭包Z+是R的属性集的一个子集, 对于该子集中的任意属性A,函数依赖Z→A都成立, 如果Z+包含R的所属性,则Z为超键,如果Z是不可约的 ,则Z是候选键。
新疆农业大学计算机及信息工程系 张太红 2003-01
第五章、函数依赖(Functional Dependency )
新疆农业大学计算机及信息工程系 张太红 2003-01
第五章、函数依赖(Functional Dependency )
4、A→B,B→C,C→D A+={A,B,C,D} B+={B,C,D} C+={C,D} D+={D} AB+={A,B,C,D} AC+={A,B,C,D} AD+={A,B,C,D} BC+={B,C,D} BD+={B,C,D} CD+={C,D}
ID Name Course 英语 Grade 85 994631201 李敏 994631201 李敏 994631202 马明磊 994631202 马明磊 994631203 陈燕红 994631204 徐景辉 994631204 徐景辉 994631204 徐景辉 {ID,Course} →{Grade} {ID,Course} →{Name} {ID,Course} →{Name,Grade} {ID,Course} →{ID} {ID,Course} →{Course,Grade} {ID} →{Name} . . .
新疆农业大学计算机及信息工程系
张太红
2003-01
第五章、函数依赖(Functional Dependency )
一、什么是函数依赖 设R是关系变量,X、Y是R的属性集的任意子 集,当且仅当对于R的所有可能的合法值,X的值 一但确定,Y的值也随之确定,即当两个元组的X 值相等时,Y值也相等,则Y函数依赖于X,表示 为:X→Y。
例:设R(A,B,C,D)是关系变量,对下列每 一个给定的函数依赖集,确定R的候选键: 1、B→C,D→A 2、AB→C,C→A,C→D 3、A→BC,C→AD 4、A→B,B→C,C→D 5、C→A,B→C,C→D 6、ABC→D,D→A 7、A→B,BC→D,A→C 8、AB→C,AB→D,C→A,D→B
新疆农业大学计算机及信息工程系 张太红 2003-01
第五章、函数依赖(Functional Dependency )
例:设A、B、C、D、E和F是给定的关系变量R的属性集,R满足下列 函数依赖:S = {A→BC ,E→CF ,B→E,CD→EF} 计算属性集{A,B}关于S的闭包{A,B}+ 1、初始化:令集合CLOSURE[Z,S] = {A,B}。 2、进行四次内循环,一次一个函数依赖。第一次循环(对于A→BC )时发 现它的左边是当前CLOSURE[Z,S]的子集,所以把它右边的属性(B和)C 加入集合CLOSURE[Z,S],这样集合CLOSURE[Z,S]就变为{A,B,C}。 3、第二次循环( 对于 E→CF )发现它的左边不是当前CLOSURE[Z,S]的子 集,因此该结果保持不变。 4、第三次循环( 对于 B→E ),把E加入集合CLOSURE[Z,S],这样集合 CLOSURE[Z,S]就变为{A,B,C,E}。 5、第四次循环( 对于 CD→EF )结果保持不变。 6、再一次经过四次内循环,第一次循环结果不变,第二次循环结果扩展到 {A,B,C,E,F},第三次和第四次不变 7、再一次经过四次内循环,集合CLOSURE[Z,S]保持不变,这样,整个过程 结束,结果: {A,B}+ = {A,B,C,E,F}
新疆农业大学计算机及信息工程系 张太红 2003-01
第五章、函数依赖(Functional Dependency )
例:设有关系模式R(ABCDE),其函数依赖集F={A→BC,BC→E,E→DA}, 试求此关系的键 A+={A,B,C,E,D} B+={B} C+={C} D+={D} E+={A,D,E,C,B,} AB+={A,B,C,D,E} AC+={A,B,C,E,D} AD+={A,D,B,C,E} AE+={A,E,B,C,D} BC+={B,C,E,A,D} BD+={B,D} BE+={B,E,A,D,C} CD+={C,D} CE+={C,E,A,D,B} DE+={D,E,A,D,C}
张太红
2003-01
第五章、函数依赖(Functional Dependency )
三、函数依赖集的闭包(CLOSURE)
有些函数依赖蕴涵另一些函数依赖, 如: {ID,Course} →{Name,Grade}蕴涵下面的函数 依赖: {ID,Course} →{Grade} {ID,Course} →{Name} 函数依赖集S所蕴涵的函数依赖全体称为函数 依赖集S的闭包S+。
新疆农业大学计算机及信息工程系 张太红 2003-01
第五章、函数依赖(Functional Dependency )
3、A→BC,C→AD A+={A,B,C,D} B+={B} C+={A,B,C,D} D+={D} AB+={A,B,C,D} AC+={A,B,C,D} AD+={A,B,C,D} BC+={A,B,C,D} BD+={B,D} CD+={A,B,C,D}
新疆农业大学计算机及信息工程系
张太红
2003-01
第五章、函数依赖(Functional Dependency )
设A、B、C和D是给定的关系变量R的属性集的任 意子集,并把A和B的并集记为AB,则: Armstrong公理 1、自反律:如果B是A的子集,则A→B 2、增广律:如果A→B,则AC→BC 3、传递律:如果A→B,B→C,则A→C 4、自含规则:A→A 5、分解规则:如果A→BC,则A→B,则A→C 6、合并规则:如果A→B且A→C,则A→BC 7、复合规则:如果A→B且C→D,则AC→BD Darwen通用一致性定理 8、通用定理:如果A→B且C→D,则A∪(C-B)→BD
新疆农业大学计算机及信息工程系 张太红 2003-01
第五章、函数依赖(Functional Dependency )
8、AB→C,AB→D,C→A,D→B A+={A} B+={B} C+={A,C} D+={B,D} AB+={A,B,C,D} AC+={A,C} AD+={A,B,C,D} BC+={A,B,C,D} BD+={B,D} CD+={A,B,C,D}
新疆农业大学计算机及信息工程系 张太红 2003-01
第五章、函数依赖(Functional Dependency )
例:设A、B、C、D、E和F是给定的关系变量R 的属性,R满足下列函数依赖: A→BC B→E CD→EF 证明AD→F ∴ ∵ ∵ ∴ ∵ ∵ A→BC A→C AD→CD CD→EF AD→EF AD→F (给定) (分解规律) (增广律) (给定) (传递律) (分解规律)
第五章、函数依赖(Functional Dependency ) 数据库逻辑设计的任务:
如果要把一组数据储存在数据库中,该如何 为这些数据设计一个合理的逻辑结构,即如何决 定存在那些关系变量,每个关系变量中应该有那 些属性,每个属性的类型及值域。
数据库逻辑设计的目标:
数据库设计首先是得到一个正确的数据结构 保证数据的完整性 应具有应用独立性
数据库原理 85 80 英语 数据库原理 80 78 英语
英语
90
数据库原理 90 90 专业外语
No FD
{ID} →{Grade} {Grade} →{ID} {Name} →{ID} {Name} →{Grade}
张太红 2003-01
新疆农业大学计算机及信息工程系
第五章、函数依赖(Functional Dependency )
二、平凡的函数依赖、非平凡的函数依赖
一个不可能不满足的函数依赖称为平凡的函 数依赖,如{ID,Course} →{ID},事实上,当 且仅当函数依赖的右边是左边的子集时,该函数 依赖才是平凡的函数依赖。 平凡的函数依赖并没有实际意义,只有非平 凡的函数依赖才和真正的完整性约束条件相关。
新疆农业大学计算机及信息工程系
新疆农业大学计算机及信息工程系 张太红 2003-01
第五章、函数依赖(Functional Dependency )
结论1:给定一个函数依赖集S,可以方便地判断 函数依赖X→Y是否可以从S中导出,因为当且仅当Y是 属性集X关于S的闭包的子集时, X→Y才能由S中导出 ,该方法不必精确计算S+就能判断函数依赖X→Y是否 属于函数依赖集S的闭包S+。
相关文档
最新文档