高中数学《基本不等式》公开课优秀教学设计
高中数学优质课说课基本不等式设计

2.2基本不等式(第1课时)教学设计一、教学内容解析1.内容“基本不等式”是人教版普通高中教科书数学必修1第二章第二节内容,分为两个课时,第1课时内容为基本不等式的定义、证明方法、几何解释及应用。
核心知识是基本不等式的定义;第二节课时内容为基本不等式的实际应用。
2.内容解析:相等关系、不等关系是数学中最基本的数量关系,是构建方程、不等式的基础。
基本不等式是一种重要且基本的不等式类型,在中学数学知识体系中是一个非常重要的、基础的内容。
基本不等式与很多重要的数学概念和性质相关。
从数与运算的角度,a+b 2是两个正数,a b 的“算术平均数”, √ab 是两个正数,a b 的“几何平均数”。
因此,不等式中涉及的是代数中的“基本量”和最基本的运算。
从几何图形的角度,“周长相等的矩形中,正方形的面积最大”“等圆中,半径不小于半弦”等,都是基本不等式的直观理解。
基本不等式的证明或推导方法很多,“分析法”的证明过程是“执果索因”,从数量关系的角度,利用不等式的性质来推导基本不等式,体现了代数证明的典型方法,是不等式性质应用的一个典型范例,“作差法”依据的是实数大小比较的基本事实,是最基本,最重要的不等式证明方法,学生在今后的学习中难免遇到代数证明的问题,而他们在初中又缺少代数证明的经验,有必要借助基本不等式的证明为学生打下这方面的基础。
从几何图形的角度,借助几何真观,通过数形结合来探究不等式的几何解释,加深对基本不等式的理解;在理解和应用基本不等式的过程中涉及变与不变、变量与常量,以及数形结合、数学模型等思想方法。
因此,基本不等式内容是培养学生逻辑推理、数学运算、直观想象和数学建模素养的重要载体。
基于以上分析,确定本节课的教学重点:基本不等式的定义、证明方法、几何解释及简单应用。
二、教学目标设置1.课程目标 掌握基本不等式)(0,02>>≥+b a ab b a 。
结合具体实例,能用基本不等式解决简单的最大值或最小值问题(这节内容课程目标与单元目标相同)。
人教版高中数学新教材必修第一册2.2基本不等式1公开课教案(优秀教案,表格式)

数学公开课教案科目授课班级授课时间授课地点讲课人数学课题§2.2基本不等式(第一课时)教学目标1.知识目标:掌握基本不等式及会应用基本不等式求最值2.知识与技能:体会基本不等式应用的条件:一正,二定,三相等;体会应用基本不等式求最值问题解题策略的构建过程。
3.情感态度价值观:通过解题后的反思逐步培养学生养成解题反思的习惯教学重点基本不等式在解决最值问题中的应用教学难点基本不等式在解决最值问题中的变形应用及等号成立的条件教法启发式、探究式学法合作探究课前准备多媒体教学过程主要内容及教师活动设计意图一.复习引入回顾重要不等式:如果Rba∈,,则abba222≥+(当且仅当ba=时,取“=”号)如果0,0a b>>,我们用,a b分别代替,a b,可得什么不等关系?巩固知识,导入新课二.新课讲解1.用分析法证明abba≥+2,0,0a b>>2.如果a,b都是正数,那么2baab+≤,当且仅当a=b时,等号成立。
我们称此不等式为均值不等式。
其中2ba+称为a,b的算术平均数,ab称为a,b的几何平均数。
文字叙述为:两个正数的算术平均数不小于它们的几何平均数3.探究:如图所示,AB是圆的直径,点C是AB上一点,AC=a,BC=b,过点C作垂直于AB的弦DE,连接AD,BD.你能根据图形对基本不等式作出几何解释吗?几何解释:圆的弦长的一半小于或等于圆的半径长,当且仅当弦过圆心时,二者相等学习新的知识点。
高一数学上册《基本不等式及其应用》优秀教学案例

本案例强调学习过程中的反思与评价,教师及时对学生的学习情况进行反馈,帮助学生总结经验、改进学习方法。同时,学生通过自我反思,能够更加清晰地认识到自己的优点和不足,从而在今后的学习中更有针对性地进行提高。
5. 注重学生个体差异,实施差异化教学
在教学过程中,教师关注学生的个体差异,针对不同学生的特点,给予个性化的指导。这种差异化教学策略有助于提高每个学生的潜能,使他们在原有基础上得到最大程度的发展。同时,教师鼓励学生提问、发表见解,充分调动他们的学习积极性,提高教学质量。
2. 运用问题驱动的教学方法,引导学生从实际问题中抽象出数学模型,学会用数学语言表达和解决问题。
3. 设计多样化的练习题,帮助学生巩固基本不等式的知识,提高解题技能。
4. 引导学生总结解题思路,培养他们举一反三、触类旁通的能力。
(三)情感态度与价值观
1. 激发学生学习数学的兴趣,培养他们勇于探索、克服困难的品质。
2. 培养学生运用数学知识解决实际问题的意识,使他们认识到数学在生活中的重要性。
3. 通过基本不等式的学习,让学生体会到数学的简洁、优美,增强他们对数学美的鉴赏能力。
4. 培养学生的批判性思维,使他们敢于对问题提出自己的见解,形成独立思考的习惯。
5. 引导学生树立正确的价值观,认识到数学学习不仅仅是为了考试,更是为了培养自己的逻辑思维和解决问题的能力,为未来的发展奠定基础。
3. 各小组汇报讨论成果,教师点评并总结。
(四)总结归纳
1. 教师引导学生回顾本节课所学的基本不等式的定义、性质和应用。
2. 总结基本不等式的解题思路和方法,强调关键步骤。
3. 提醒学生注意基本不等式的使用条件,避免滥用。
(五)作业小结
基本不等式教学设计(多篇)

基本不等式教学设计(多篇)第1篇:基本不等式教学设计基本不等式一、教学设计理念:注重学生自主、合作、探究学习,用新课程理念打造新的教学模式.二、教学设计思路: 1.教学目标确定这节课的目标定位分为三个层面:第一层面:知识与技能层面,①了解两个正数的算术平均数和几何平均数的概念;②要创设几何和代数两个方面的背景,从数形结合的高度让学生了解基本不等式;③引导学生从不同角度去证明基本不等式;④用基本不等式来证明一些简单不等式.第二层面:过程与方法,通过掌握公式的结构特点,适当运用公式的变形,能够提高学生分析问题和解决问题的能力,加强学生的实践能力,渗透数学的思想方法.第三层面:情感、态度与价值观,①通过具体问题的解决,让学生去感受日常生活中存在大量的不等关系,鼓励学生用数学观点进行归纳,抽象,使学生感受到数学美,走进数学,培养学生严谨的数学学习习惯和良好的思维方式;②通过问题的解决,激发学生探究精神和科学态度,同时去感受数学的运用性,体会数学的奥妙,数学的简洁美,激发学生学习数学的兴趣.2.教学过程本节课我设计了五个环节:第一个环节:创设情境,引入新课.我设计了两个情境:一个是天平测量的问题,另一个是让学生动手操作折纸试验,从不同的角度体验和理解基本不等式,让学生能够体会数学与生活紧密联系,激发学生学习兴趣,为后面学习作铺垫.第二个环节:探究交流,发现规律.我在问题的情境中,让学生带着不同的数据去比较几何平均数和算术平均数的大小,并通过小组折纸试验,通过这样合作交流的方式让学生初步感受到几何平均数和算术平均数之间的大小关系.第三个环节:启发引导、形成结论.本节课的重要任务就是对基本不等式进行严格的证明,包括了比较法,综合法和分析法,而学生对作差比较法是比较熟悉的,综合法和分析法的过程要加强引导,并组织学生去探究这两种方法之间的关系,并规范证明过程,为今后学习证明方法打下基础.第四个环节:训练小结,巩固深化.学习基本不等式最终的目的体现在它的运用上,首先在例题选择上,注重让学生充分认识和间的关系,给出一般的结论,在练习中我选择了题组形式,目的是与让学生强化对基本不等式成立条件包括等号成立的条件.第五个环节:研究拓展,提高能力.我设计了一道关于例题的变式题,目的是让学生感受到,通过适当的变形将其化为例题中出现的形式,体现化归的思想,最后设计三道思考题,两道进一步巩固化归思想及应用基本不等式的条件,一道需要分类讨论,让学有余力的学生提供更好展示自己能力的机会,得到进一步提高.最后我通过问题式的小结,让学生自行归纳我们这节课当中学到的知识,特别是最后一问中,让学生去总结在使用基本不等式的时候要注意哪些条件.虽然我没有点出“一正二定三相等”这样的结论,但已潜移默化为我们下一节课使用基本不等式求最值问题作了铺垫,起到承前启后的作用.三、本节课重点重点:应用数形结合的思想和日常生活中例子理解基本不等式,并从不同的角度探索不等式的证明过程.难点:灵活使用化归思想把问题转化为运用基本不等式,以及基本不等式成立条件中包括等号成立的条件.在这一节中的主要任务就是让学生从不同的角度去探索基本不等式的证明过程,包括它的成立条件,在这一节课中我的总体想法是通过互动,发现规律,直接猜想,指定验证,得出结论,最后灵活运用这个结论来解决问题.四、本节课亮点:1.积极引导学生自主探究问题,解决问题.2.灵活运用转化与化归的思想.3.实现课堂三大转变:①变教学生学会知识为指导学生会学知识;②变重视结论的记忆为重视学生获取结论的体验和感悟;③变模仿式学习为探究式学习.4.课堂小结采取问题式小结给学生留下满口香.导入新课探究:上图是在北京召开的第24届国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去像一个风车,代表中国人民热情好客,你能在这个图中找出一些相等关系或不等关系吗??(教师用投影仪给出第24届国际数学家大会的会标,并介绍此会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去像一个风车,代表中国人民热情好客.通过直观情景导入有利于吸引学生的注意力,激发学生的学习热情,并增强学生的爱国主义热情)?? 推进新课师同学们能在这个图中找出一些相等关系或不等关系吗?如何找??【三维目标】:一、知识与技能1.能够运用基本不等式解决生活中的应用问题2.进一步掌握用基本不等式求函数的最值问题;3.审清题意,综合运用函数关系、不等式知识解决一些实际问题.4.能综合运用函数关系,不等式知识解决一些实际问题.二、过程与方法本节课是基本不等式应用举例的延伸。
《基本不等式(一)》示范课教学设计【高中数学人教】

环节三 基本不等式(一)
1.理解基本不等式2b a ab +≤
(a >0,b >0),会利用不等式性质证明,发展逻辑推理素养;
2.了解基本不等式的几何解释,发展直观想象素养;
3.结合具体实例,形成用基本不等式解决简单的求最大值或最小值的问题的基本模型,发展数学运算核心素养. PPT 课件,及GEOGEBRA 制作的动画课件.
一、整体感知
问题1:请同学们阅读课本第44页,说一说今天我们将要学习的内容是什么?在不等式中起着怎样的作用?
师生活动:学生自主阅读课本,思考并回答,教师给予简单总结.
预设答案:类比代数式运算的研究,学习了一般运算之后,就要探索其特殊关系,这些特殊关系往往具有重要作用,比如乘法公式等等.那么学习了不等式的性质,我们就要尝试探索一些特殊的不等式——基本不等式.
它是一种重要而基本的不等式类型,与乘法公式在代数运算的地位一样,在解决不等式问题中有重要的作用,它之所以被称为“基本不等式”,主要是因为它可以作为不等式论的基本定理,成为支撑其他许多非常重要结果的基石.
设计意图:让学生从整体上把握本节内容,了解基本不等式在解决不等式问题有重要的作用.。
高中数学《基本不等式》公开课优秀教学设计

《§3.4.1基本不等式》的教学设计教材:人教版高中数学必修5第三章一、教学内容解析本节选自人教版必修五的第三章第四节的第一课时,它是在学生学习完“不等式的性质”、“一元二次不等式及其解法”及“二元一次不等式(组)与简单的线性规划问题”的基础上对不等式的进一步研究。
在探究基本不等式内涵和证明的过程中,能够培养学生观察问题、分析问题和解决问题的能力;培养学生形成数形结合的思想意识;在应用的过程中,通过对条件的转换和变式,有助于培养学生形成类比归纳的思想和习惯,进而形成严谨的思维方式。
二、教学目标设置1.通过探究“数学家大会的会标”及感受会标的变形,引导学生从几何图形中获得两个基本不等式,了解基本不等式的几何背景培养学生观察问题、分析问题和解决问题的能力;培养学生形成数形结合的思想意识;2.进一步让学生探究不等式的代数证明,加深对基本不等式的理解和认识,提高学生逻辑推理的能力和严谨的思维方式。
3.通过例题让学生学会用基本不等式求最大值和最小值。
三、学生学情分析对于高一的学生,不等式并不陌生,前面学习了不等式及不等式的性质,能够进行简单的数与式的比较,本节所学内容就用到了不等式的性质,所以学生可以在巩固不等式性质的前提下学习基本不等式,接受上是容易的,争取让学生真正意义上理解基本不等式。
四、教学策略分析在教学过程中学生往往会直接应用不等式而忽略成立的条件,因此本节课的重点内容是对基本不等式的理解和运用。
在运用过程中生成的规律,在学生做题时能灵活运用是难点,因此理解基本不等式和灵活应用基本不等式十本节课难点五、教学过程:(一)情景引入下图是2002年在北京召开的第24届国际数学家大会会议现场。
通过情境引发联想,学生深切感受到我国数学科学的悠久历史和深厚的文化底蕴,以及我国的数学成就对世界数学文明的影响和发展做出的卓越贡献,激发学生喜欢数学,学好数学的热情。
探究一:观察上面的会标。
会标是根据中国古代数学家赵爽的弦图设计的,该图给出了迄今为止对勾股定理最早、最简洁的证明,体现了以形证数、数形结合的思想。
基本不等式的教学设计一等奖

基本不等式的教学设计一等奖一等奖教学设计:基本不等式引言:基本不等式是数学中的重要概念,对于学生的数学思维能力和解决实际问题的能力有着重要的影响。
本教学设计旨在通过生动的教学方法和实际问题的引入,帮助学生理解和掌握基本不等式的概念和运用。
一、教学目标:1. 理解基本不等式的概念和性质;2. 掌握基本不等式的常见求解方法;3. 运用基本不等式解决实际问题。
二、教学内容:1. 基本不等式的定义和性质;2. 基本不等式的求解方法;3. 基本不等式在实际问题中的应用。
三、教学过程:1. 导入(5分钟)通过引入一个实际问题,如“小明要购买一款手机,他的预算为1000元,他希望买到性价比最高的手机。
请问他能够购买的手机价格范围是多少?”来引起学生的兴趣,并激发他们思考。
2. 概念讲解(10分钟)介绍基本不等式的概念和性质,如“对于任意实数a和b,如果a 大于b,那么a加上一个正数c后的结果仍大于b加上c,即a+c>b+c。
”通过具体的例子和图示,帮助学生理解不等式的含义和运算规则。
3. 求解方法演示(15分钟)讲解常见的基本不等式求解方法,如“对于不等式ax+b>c,可以先将b移到不等号的另一边再进行运算,得到ax>c-b,然后再将不等式两边除以a,即得到x>(c-b)/a。
”通过多个例子的演示,让学生掌握不等式的求解步骤和思路。
4. 练习与巩固(20分钟)给学生一些简单的练习题,要求他们运用所学的基本不等式求解方法解答。
引导学生分析和讨论解题方法,并及时给予指导和反馈。
同时,提供一些较难的综合性应用题,让学生将基本不等式运用到实际问题中,并培养他们解决实际问题的能力。
5. 拓展与应用(10分钟)引导学生思考基本不等式在实际生活中的应用,如“通过基本不等式,我们可以优化购物策略、解决经济问题等。
”鼓励学生积极思考并分享自己的观点和实际经验。
6. 总结与反思(5分钟)对本节课的内容进行总结,强调基本不等式的重要性和应用价值。
高中数学《基本不等式》公开课优秀教案

高中数学《基本不等式》公开课教案教学三维目标:1.知识与能力目标:掌握基本不等式及会应用基本不等式求最值 2.过程与方法目标:体会基本不等式应用的条件:一正,二定,三相等;体会应用基本不等式求最值问题解题策略的构建过程。
3.情感态度与价值观目标:通过解题后的反思逐步培养学生养成解题反思的习惯教学重难点:重点:基本不等式在解决最值问题中的应用难点:基本不等式在解决最值问题中的变形应用及等号成立的条件一、新课讲解1.基本不等式:①0,0>>b a ,ab ba ≥+2(当且仅当b a =时,取等号) 变形:ab b a 2≥+,ab b a ≥+2)2(,2≥+abb a②重要不等式:如果R b a ∈,,则ab b a 222≥+(当且仅当b a =时,取“=”号) 2.最值问题: 已知y x ,是正数,①如果积xy 是定值P ,则当y x =时,和y x +有最小值P 2;②如果和y x +是定值S ,则当y x =时,积xy 有最大值241S .利用基本不等式求最值时,要注意变量是否为正,和或积是否为定值,等号是否成立,以及添项、拆项的技巧,以满足均基本不等式的条件。
3.称2y x +为y x ,的算术平均数,称xy 为y x ,的几何平均数。
二、例题讲解:例1.已知0<x ,则xx 432++的最大值是________. 例2.已知0,0>>y x ,且082=-+xy y x ,求(1)xy 的最小值;(2)y x +的最小值。
例3.求下列函数的最小值(1))1(11072->+++=x x x x y (2)已知0,0>>y x ,且,1243=+y x 求y x lg lg +的最大值及相应的x ,y 的值。
例4. 围建一个面积为360m 2的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需维修),其它三面围墙要新建,在旧墙的对面的新墙上要留一个宽度为2m 的进出口,如图所示,已知旧墙的维修费用为45元/m,新墙的造价为180元/m,设利用的旧墙的长度为x (单位:元)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《§3.4.1基本不等式》的教学设计教材:人教版高中数学必修5第三章一、教学内容解析本节选自人教版必修五的第三章第四节的第一课时,它是在学生学习完“不等式的性质”、“一元二次不等式及其解法”及“二元一次不等式(组)与简单的线性规划问题”的基础上对不等式的进一步研究。
在探究基本不等式内涵和证明的过程中,能够培养学生观察问题、分析问题和解决问题的能力;培养学生形成数形结合的思想意识;在应用的过程中,通过对条件的转换和变式,有助于培养学生形成类比归纳的思想和习惯,进而形成严谨的思维方式。
二、教学目标设置1.通过探究“数学家大会的会标”及感受会标的变形,引导学生从几何图形中获得两个基本不等式,了解基本不等式的几何背景培养学生观察问题、分析问题和解决问题的能力;培养学生形成数形结合的思想意识;2.进一步让学生探究不等式的代数证明,加深对基本不等式的理解和认识,提高学生逻辑推理的能力和严谨的思维方式。
3.通过例题让学生学会用基本不等式求最大值和最小值。
三、学生学情分析对于高一的学生,不等式并不陌生,前面学习了不等式及不等式的性质,能够进行简单的数与式的比较,本节所学内容就用到了不等式的性质,所以学生可以在巩固不等式性质的前提下学习基本不等式,接受上是容易的,争取让学生真正意义上理解基本不等式。
四、教学策略分析在教学过程中学生往往会直接应用不等式而忽略成立的条件,因此本节课的重点内容是对基本不等式的理解和运用。
在运用过程中生成的规律,在学生做题时能灵活运用是难点,因此理解基本不等式和灵活应用基本不等式十本节课难点五、教学过程:(一)情景引入下图是2002年在北京召开的第24届国际数学家大会会议现场。
通过情境引发联想,学生深切感受到我国数学科学的悠久历史和深厚的文化底蕴,以及我国的数学成就对世界数学文明的影响和发展做出的卓越贡献,激发学生喜欢数学,学好数学的热情。
探究一:观察上面的会标。
会标是根据中国古代数学家赵爽的弦图设计的,该图给出了迄今为止对勾股定理最早、最简洁的证明,体现了以形证数、数形结合的思想。
将代数与几何紧密的结合在了一起。
【设计意图】1.培养学生识图和分析数据的能力,并通过对数量关系的分析得出基本不等式的雏形,进而逐步发现基本不等式的本质和成立条件。
2.鼓励学生独立思考,充分发挥学生的创新和想象能力,进而发现并理解基本不等式的实质。
师:从图形上你能观察到了什么?生:边、角、三角形、正方形师:我们根据弦图可知勾股定理,那么我们对三角形、正方形可以研究哪些数量关系呢? 生:正方形和三角形的面积、周长,根据给的边可以求。
师:那么面积之间又有怎样的关系呢?生:大正方形面积22a b +,四个直角三角形面积2ab ,并且22a b +>2ab 。
师:仅此而已吗?你还能发现怎样的关系?生:还会相等。
a b =时会相等。
(教师投影展示取等号的条件,证明学生的想法是正确的。
)结论:222a b ab +≥(当且仅当a b =时取等号)师:你能给出证明吗?(此问题学生口述即可)生:由222a b ab +≥,则2220a b ab +-≥⇒2()0a b -≥恒成立。
则a b =时取等号。
师:一般的我们都用a ,b 表示,那么若将上式中的a ,b,你又会得出什么结论?如何证明?【设计意图】用代数的方法证明基本不等式,进而使学生加深对基本不等式的理解,理解基本不等式中不等号和等号成立的条件;引导学生自己动手写出证明过程,并自我总结归纳基本不等式运用的条件,有利于学生准确、灵活应用。
生:0,0)a b a b +≥>> 当且仅当a b =时取等号。
师:很好,还可以写成(0,0)2a b a b +≤>>,如何证明这个结论成立呢?生投影展示:要证2a b +≥,只要证a b +≥,只要证0a b +-≥,只要证20≥,显然式子成立,当且仅当a b =取等号。
师:这样我们又一次得到了基本不等式。
根据以上证明学生已经基本了解了基本不等式的形式 和推导方法,同学们是否真正理解了基本不等式的含义。
探究二: 如右图,AB 是圆的直径,点C 是AB 上的一点,AC a =,BC b =。
过点C 作垂直于AB 的弦DE ,连接AD 、BD(0,0)2a b a b +≤>>的几何解释吗? 【设计意图】对图形进一步分析,引导学生发现几何平均数和算术平均数,让学生体会不仅能以数证形,寻找数量关系的几何解释,还可以通过对图形的观察分析以形识数,进而完善前面的代数结论。
(学生口述证明过程,教师给以引导)证明:因为ACD BCD ∆∆,所以CD =。
由于CD 小于或等于圆的半径,(0,0)2a b a b +≤>> 显然不等式当且仅当点C 与圆心结合,即当a b =时,等号成立 A B DCO结论:(教师投影展示学生口述结果)a 、b 的几何平均数,2a b +是a 、b 的算术平均数。
代数解释是几何平均数不大于算术平均数。
几何解释为半弦不大于半径。
师:以上利用代数法和几何法推导基本不等式,过程详细,内容明确,学生们对基本不等式理解了吗?我们来看看以下几个问题是否正确?例:判断对错(1)由,,a b R ∈则a b +≥。
( )(2)若0,x <则12x x+≥。
( )(3)当0,0a b ≥≥时,2a b +≥ ( ) (4)函数1y x x =+的最小值为2. ( ) 【设计意图】考查学生对所学知识点掌握的情况,是否真正理解了基本不等式并能注意运用公式时需要注意的条件,从而真正意义上理解不等式的含义。
(学生先独立思考,组内再探讨,最后小组派代表解答。
)师:基本不等式在解决实际问题中有广泛的应用,是解决最值问题的有力工具,看下面的例题。
合作探究:下面两道例题都由学生先独立完成,然后组内探讨,最后组内出代表完成。
例:(1)用篱笆围一个面积为100平方米的矩形菜园,问这个矩形的长、宽各为多少时,所用篱笆最短.最短的篱笆是多少?【设计意图】1.总结归纳利用基本不等式求最值问题,实现积与和的转化。
2.培养学生在实际生活中对不等式的感性认识提炼为理性认识的过程,感受不等式和生活的紧密联系和指导意义。
解:设矩形菜园的长为x m,宽为y m,则100xy =,篱笆的长为()2x y +m.由2x y +≥,可得x y +≥,()240x y +≥。
等号当且仅当x y =时成立,此时10x y ==.因此,这个矩形的长、宽都为10m 时,所用篱笆最短,最短篱笆是40m .师:完成此例题你有什么发现?生:乘积是定值的时候,和取最值,并且为最小值。
师:很好,那总结个规律该怎么说呢?(学生尝试说,最后教师完善)结论1:积定和最小。
师:看看下面这道例题,你又会得到什么结论呢?(2)一段长为36m 的篱笆围成一个矩形菜园,问这个矩形的长、宽各为多少时,菜园的面积最大.最大的面积是多少?解:设矩形菜园的长为x m,宽为y m,则()236x y +=,18x y +=,矩形菜园的面积为xy18922x y +≤==,可得81xy ≤, 当且仅当x y =,即9x y ==,等号成立。
因此,这个矩形的长、宽都为9m 时,菜园的面积最大,最大的面积是81㎡。
师:此题做完你又有什么想法呢?生:和定积最大。
(由上面的题引导学生会很快得出结论)师:由上面例题,同学们,能总结一下运用基本不等式解题需要满足的条件吗?(根据前面学习学生会说出至少两点)生:,a b 都为正数,取最值的条件是a b =师:例题中运用公式取到最值的前提必须有什么?(通过教师引导学生会想到定值)生:有一个是定值。
师:好,那我们给运用基本不等式满足的条件一个口诀吧?(生尝试去说,但不一定简便,但用自己的思维方式说印象会更深)师:一正、二定、三相等。
师:那我们如何运用基本不等式都能求哪些最值得题型呢?下节课我们再研究。
五、课堂总结1、本节课你学到了什么?2、你还有哪些疑问?【设计意图】通过提问让学生在头脑中形成自己的知识体系,自己总结检验本节课的听课效果,是否还有自己没听懂的问题一下就清楚了。
六、课后作业教材P113练习1、2、3.习题A 组2、3【设计意图】巩固训练本节课学习内容并且给学生一个完整的独立思考,自主学习的机会。
七、教学设计说明不等式对高中的学生来说不陌生,但基本不等式则是一个新的知识点出现在高中数学教材中,让学生又学会一种求函数最值得方法,所以学生只有真正理解了才会用起来得心应手。
基本不等式公式的引出利用了两种方法:代数法和几何法。
代数学通过图形展示,让学生自己找出不等式关系,从而引出结论。
又利用完全平方差公式更容易的看出公式成立的条件。
最后用几何法,移动弦的位置更直观的看出公式形成的过程。
两种方法就是希望学生真正理解公式的由来。
从而能够灵活运用。
基本不等式在解决实际问题中有广泛的应用,是解决最值问题的有力工具,所以一道求最值的实际问题引导学生理解运用不等式需要注意的三点:一正、二定、三相等。
为后面求最值的题型做了铺垫。
课堂总结和课后作业都是给学生一个独立思考,理顺自己思路,回顾学习的内容,从而检验自己学习情况。
《3.4.1基本不等式》课例点评稿一节好课,应该有老师高超的教学设计——既有学生数学知识的生成又要潜移默化的形成数学的逻辑思维,激发学生学习数学热情。
应该有学生充分的交流互动——既能发挥学生的主体作用又能学以致用的运用新知解决实际问题,体验到生活离不开数学。
《3.4.1基本不等式》一课,就完全诠释了一节好课的内涵。
情景引入环节以第24届国际数学家大会的徽标为切入点,引出徽标的原型---赵爽弦图,让学生真切的感受到了我国自古以来数学的突出成就,我国深厚丰盈的数学底蕴……以及我国数学为世界文明做出的巨大贡献,激发了学生的民族自豪感,激发了学生热爱数学,学习数学的热情,这体现了教师传承育人、文化育人的教育理念。
独立探究环节学生通过独立观察、思考和尝试探究,让学生充分的动眼观察,动脑思考,动口表达……放手学生遨游于数学的观察、想象、创新和自我感知、自我认可的自由空间。
问题设计层层递进,数形结合思想明线导引,数理逻辑思维暗线支撑……整堂课能够让学生切身感受到数学知识的渐次生成,逻辑思维的不断完善和数学思想的逐步成熟;充分感受到数学艺术和数学魅力的同时又潜移默化中培养了学生的数学思维,提高了学生的数学能力。
合作探究环节是在学生独立思考的基础上,让学生在学组之间互相争辩提升,互相感染促进,带动学生共同进步,体现了“以学为先”“以学生为主体”的教育思想和理念。
孔子曰:“弗学何以行?弗思何以得?”本节课最大的亮点就是本质上把握住了新课程改革的精髓,充分调动了学生学习的主动性和积极性,让学生在学习中学会思考,在思考中不断进步。