高中数学概率统计知识万能公式文科
高中文科数学公式总结大全

高中文科数学公式总结大全1500字数学是一门基础性学科,它的理论体系和方法论在科学研究和生产实践中扮演着重要角色。
在高中阶段,学习数学有助于培养学生的逻辑思维、分析问题和解决问题的能力。
而数学公式则是数学知识的核心,它们能够帮助我们快速理解和解决问题。
以下是高中文科数学公式的总结大全:1. 代数- 求根公式:二次方程:$x=\\frac{-b\\pm\\sqrt{b^2-4ac}}{2a}$三次方程:$x=\\sqrt[3]{-d+\\sqrt{d^2-4e^3}}+\\sqrt[3]{-d-\\sqrt{d^2-4e^3}}$四次方程:$x=\\pm\\frac{1}{2a}(b\\pm\\sqrt{b^2-4ac}+2\\sqrt{\\frac{2b^2-4ac}{b\\pm\\sqrt{b^2-4ac}}})$- 平方差公式:$(a-b)^2=a^2-2ab+b^2$$(a+b)^2=a^2+2ab+b^2$- 平方和公式:$a^2+b^2=(a+b)^2-2ab$$a^2-b^2=(a+b)(a-b)$- 二次函数顶点坐标:对于二次函数$y=ax^2+bx+c$,其顶点坐标为$(-\\frac{b}{2a}, -\\frac{D}{4a})$ 其中,$D=b^2-4ac$2. 几何- 勾股定理:$c^2=a^2+b^2$- 正弦定理:$\\frac{a}{\\sin A}=\\frac{b}{\\sin B}=\\frac{c}{\\sin C}$- 余弦定理:$a^2=b^2+c^2-2bc\\cos A$$b^2=a^2+c^2-2ac\\cos B$$c^2=a^2+b^2-2ab\\cos C$- 面积公式:三角形面积:$S=\\frac{1}{2}ab\\sin C$四边形面积:$S=\\frac{1}{2}d_1d_2\\sin\\theta$圆的面积:$S=\\pi r^2$3. 概率与统计- 排列组合:排列:$A_n^m=\\frac{n!}{(n-m)!}$组合:$C_n^m=\\frac{A_n^m}{m!}=\\frac{n!}{m!(n-m)!}$ - 排列公式:重复排列:$P_n=n^n$不重复排列:$P_n^n=n!$- 组合公式:重复组合:$C_{n+m-1}^{m}=\\frac{(n+m-1)!}{m!(n-1)!}$ 不重复组合:$C_n^m=\\frac{n!}{m!(n-m)!}$- 概率公式:概率:$P(A)=\\frac{N(A)}{N(S)}$加法原则:$P(A\\cup B)=P(A)+P(B)-P(A\\cap B)$乘法原则:$P(A\\cap B)=P(A)P(B|A)$4. 三角函数- 弧度与角度的转换:弧度制:$\\theta=\\frac{\\pi}{180}\\times\\text{角度}$角度制:$\\text{角度}=\\frac{180}{\\pi}\\times\\theta$- 三角函数的定义:正弦函数:$\\sin\\theta=\\frac{y}{\\text{半径}}$余弦函数:$\\cos\\theta=\\frac{x}{\\text{半径}}$正切函数:$\\tan\\theta=\\frac{y}{x}$反正弦函数:$\\sin^{-1}(\\frac{y}{\\text{半径}})=\\theta$ 反余弦函数:$\\cos^{-1}(\\frac{x}{\\text{半径}})=\\theta$反正切函数:$\\tan^{-1}(\\frac{y}{x})=\\theta$- 三角函数的平方和与差:$\\sin^2\\theta+\\cos^2\\theta=1$$\\sin(\\theta\\pm\\phi)=\\sin\\theta\\cos\\phi\\pm\\cos\\theta\\sin\\phi$$\\cos(\\theta\\pm\\phi)=\\cos\\theta\\cos\\phi\\mp\\sin\\theta\\sin\\phi$5. 矩阵与行列式- 二阶矩阵的行列式:$\\begin{vmatrix} a & b \\\\ c & d \\end{vmatrix}=ad-bc$- 二元一次方程组的解:设$\\begin{vmatrix} a & b \\\\ c & d \\end{vmatrix}\eq0$,则方程组的解为$x=\\frac{\\begin{vmatrix} e & b \\\\ f & d\\end{vmatrix}}{\\begin{vmatrix} a & b \\\\ c & d \\end{vmatrix}}$,$y=\\frac{\\begin{vmatrix} a & e \\\\ c & f \\end{vmatrix}}{\\begin{vmatrix} a & b \\\\ c & d \\end{vmatrix}}$- 行列式的性质:交换行列式的两行(列):行列式的值不变某行(列)全部乘以常数k:行列式的值乘以k某行(列)的倍加到另一行(列)上去:行列式的值不变以上只是文科数学常见的一些公式总结,各个学校或老师的教学内容可能会有所不同。
概率与统计学公式大全

概率与统计学公式大全概率与统计学是一门关于随机事件发生规律及其数学描述的学科。
在实际问题的分析和决策中,概率与统计学都起着重要的作用。
本文将汇总一些常用的概率与统计学公式,帮助读者更好地理解和应用这门学科。
一、概率公式1. 概率的基本概念:概率是指某个特定事件发生的可能性大小。
用P(A)表示事件A发生的概率,有以下公式:P(A) = N(A) / N(S)其中,N(A)表示事件A包含的基本样本点的个数,N(S)表示全样本空间的基本样本点的个数。
2. 随机变量的概率分布:随机变量是指在某个随机实验中可能取得不同值的变量。
其概率分布可由概率质量函数(离散随机变量)或概率密度函数(连续随机变量)来描述。
离散随机变量的概率质量函数为:P(X = x) = f(x)连续随机变量的概率密度函数为:P(a ≤ X ≤ b) = ∫[a, b] f(x)dx其中,f(x)表示概率质量函数或概率密度函数。
3. 事件的和与积:对于两个事件A和B,其和与积的概率表示如下:P(A ∪ B) = P(A) + P(B) - P(A ∩ B)P(A ∩ B) = P(A)P(B|A) = P(B)P(A|B)其中,P(A ∪ B)表示事件A和B至少其中一个发生的概率,P(A ∩ B)表示事件A和B同时发生的概率,P(B|A)表示在事件A发生的条件下事件B发生的概率,P(A|B)表示在事件B发生的条件下事件A发生的概率。
二、统计学公式1. 样本均值和总体均值:样本均值的公式为:X = (x₁ + x₂ + ... + xn) / n其中,x₁,x₂,...,xn是样本中的个体值,n是样本的大小。
总体均值的公式为:μ = (x₁ + x₂ + ... + xn) / N其中,x₁,x₂,...,xn是总体中的个体值,N是总体的大小。
2. 样本方差和总体方差:样本方差的公式为:s² = ((x₁ - X)² + (x₂ - X)² + ... + (xn - X)²) / (n - 1)其中,x₁,x₂,...,xn是样本中的个体值,X是样本均值,n是样本的大小。
高中文科数学公式及知识点总结大全(精华版)

高中文科数学公式及知识点速记一、函数、导数1、函数的单调性(1)设2121],,[x x b a x x <∈、那么],[)(0)()(21b a x f x f x f 在⇔<-上是增函数; ],[)(0)()(21b a x f x f x f 在⇔>-上是减函数.(2)设函数)(x f y =在某个区间内可导,若0)(>'x f ,则)(x f 为增函数;若0)(<'x f ,则)(x f 为减函数.2、函数的奇偶性对于定义域内任意的x ,都有)()(x f x f =-,则)(x f 是偶函数; 对于定义域内任意的x ,都有)()(x f x f -=-,则)(x f 是奇函数。
奇函数的图象关于原点对称,偶函数的图象关于y 轴对称。
3、函数)(x f y =在点0x 处的导数的几何意义函数)(x f y =在点0x 处的导数是曲线)(x f y =在))(,(00x f x P 处的切线的斜率)(0x f ',相应的切线方程是))((000x x x f y y -'=-.*二次函数: (1)顶点坐标为24(,)24b ac b a a --;(2)焦点的坐标为241(,)24b ac b a a-+- 4、几种常见函数的导数①'C 0=;②1')(-=n n nxx ; ③x x cos )(sin '=;④x x sin )(cos '-=;⑤a a a xx ln )('=;⑥x x e e =')(; ⑦a x x a ln 1)(log '=;⑧xx 1)(ln '= 5、导数的运算法则(1)'''()u v u v ±=±. (2)'''()uv u v uv =+. (3)'''2()(0)u u v uv v v v -=≠. 6、会用导数求单调区间、极值、最值7、求函数()y f x =的极值的方法是:解方程()0f x '=.当()00f x '=时: (1) 如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么()0f x 是极大值; (2) 如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么()0f x 是极小值. 指数函数、对数函数分数指数幂(1)m na =0,,a m n N *>∈,且1n >).(2)1m nm naa-==(0,,a m n N *>∈,且1n >).根式的性质(1)当na =; 当n,0||,0a a a a a ≥⎧==⎨-<⎩.有理指数幂的运算性质(1) r sa a⋅=(2) ()r s rsa a=(3)()r rab a b=注:若a>0数指数幂都适用..(0,1,0)a a N>≠>..1a≠,0m>,且1m≠,0N>).对数恒等式:).推论logmnab).常见的函数图象822sin cosθθ+9απ±kα看成锐角时该函数的符号;αππ±+2kα看成锐角时该函数的符号。
高考数学文科二轮专题复习第三部分专题二溯源回扣七概率与统计PPT优质PPT资料

5.独立性检验. 利 用 随 机 变 量 K2 = (a+b)(cn+(da)d-(bac+)c2)(b+d)来判断“两个分类变 量有关系”的方法称为独立性检验.如果 K2 的观测值 k 越大,说明“两个分类变量有关系”的这种判断犯错误 的可能性越小.
1.混淆频率分布条形图和频率分布直方图,误把频 率分布直方图纵轴的几何意义当成频率,导致样本数据 的频率求错.
(4)几何概型的概率计算公式
P(A)=
构成事件A的区域长度(面积或体积) 试验的全部结果所构成的区域长度(面积或体积). 2.抽样方法: 简单随机抽样、分层抽样、系统抽样. (1)从容量为 N 的总体中抽取容量为 n 的样本,则每 个个体被抽到的概率都为Nn. (2)分层抽样实际上就是按比例抽样,即按各层个体 数占总体的比确定各层应抽取的个体数,这些抽取的个体 数总和即为样本容量.
3.统计中的四个数据特征: (1)众数:在样本数据中,出现次数最多的那个数据. (2)中位数:在样本数据中,将数据按大小顺序排列, 位于最中间的数据.如果数据的个数为偶数,就取中间 两个数据的平均数作为中位数. (3)平均数:样本数据的算术平均数,即 -x =n1(x1+x2+…+xn).
(4)方差与标准差.
数的含义,导致回归分析中致误.
高考数学文科二轮专题复习课件第[三回部扣分专问题二题溯源回4扣] 七概(率20与1统7计·P山PT东卷改编)为了研究某班学生
高考数学文科二轮专题复习课件第三部分专题二溯源回扣七概率与统计PPT 高考数学文科二轮专题复习课件第三部分专题二溯源回扣七概率与统计PPT
[回扣问题 2] 某医疗研究所为了检验某种血清能起 到预防感冒的作用,把 500 名使用血清的人与另外 500 名未使用血清的人一年中的感冒记录作比较,利用 2×2 列联表计算得 K2 的观测值 k≈3.918.
文科数学高考知识点公式

文科数学高考知识点公式在文科数学高考中,知识点很多,其中公式是我们必须牢记的重要内容。
这些公式不仅能够帮助我们解决各类数学问题,还能提高解题效率。
本文将介绍一些常见的文科数学高考知识点公式,并探讨其应用。
1. 几何平均数公式几何平均数是一组数的乘积开方。
在高考中,我们经常需要用到平均数解题,而几何平均数公式是计算几何平均数的重要工具。
公式如下:对于正数a_1、a_2、...、a_n,它们的几何平均数G满足以下公式:G = (a_1 * a_2 * ... * a_n)^(1/n)例如,求1、2、3、4、5的几何平均数,可以应用该公式:G = (1 * 2 * 3 * 4 * 5)^(1/5) = 2.6052. 排列组合公式在高考中,排列组合是一个常见的考点。
排列组合公式可以帮助我们快速计算排列和组合的数量。
(1)排列公式:对于n个元素中取出r个元素进行排列,排列数用P表示,计算公式为:P(n,r) = n!/(n-r)!例如,从5个数中取出3个数进行排列,可以应用该公式:P(5,3) = 5!/(5-3)! = 60(2)组合公式:对于n个元素中取出r个元素进行组合,组合数用C表示,计算公式为:C(n,r) = n!/((n-r)! * r!)例如,从5个数中取出3个数进行组合,可以应用该公式:C(5,3) = 5!/((5-3)! * 3!) = 103. 相似三角形的比例公式在几何学中,相似三角形的比例是非常重要的。
相似三角形的比例公式可以帮助我们求解未知边长的三角形问题。
设两个相似三角形的对应边长比为m: n,那么这两个相似三角形的面积比为m²: n²。
例如,已知两个相似三角形的一个边长比为2:3,求其面积比,可以应用该公式:面积比 = 2²:3² = 4:94. 等差数列求和公式在高考中,等差数列是一个常见的数列类型。
等差数列求和公式可以帮助我们快速计算等差数列的和。
高中数学公式大全文科

高中数学公式大全文科1.代数运算公式:(1) 二项式公式:(a + b)^2 = a^2 + 2ab + b^2,(a - b)^2 = a^2 - 2ab + b^2,(a + b)(a - b) = a^2 - b^2(2) 平方差公式:(a + b)^2 - (a - b)^2 = 4ab(3) 证明等式:(a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3,(a -b)^3 = a^3 - 3a^2b + 3ab^2 - b^3(4)等比数列求和:S_n=a(1-q^n)/(1-q),其中a为首项,q为公比,n为项数(5) 二次根式相加:√a + √b = √(a + b + 2√ab)(6)三次方程和四次方程的求根公式2.几何公式:(1) 三角形面积公式:S = 1/2 * a * b * sinC,其中a,b为两边的长度,C为两边夹角的度数(2) 三角形边长关系:a/sinA = b/sinB = c/sinC = 2R,其中R为外接圆半径(3) 三角函数的和与差的公式:sin(A ± B) = sinAcosB ± cosAsinB,cos(A ± B) = cosAcosB ∓ sinAsinB,tan(A ± B) = (tanA ± tanB)/(1 ∓ tanAtanB)(4) 三角函数的倍角公式:sin2A = 2sinAcosA,cos2A = cos^2A - sin^2A = 2cos^2A - 1 = 1 - 2sin^2A,tan2A = (2tanA)/(1 - tan^2A)(5)圆的面积公式:S=πr^2,其中r为半径(6)圆的周长公式:C=2πr,其中r为半径3.概率与统计公式:(1)加法原理:P(A∪B)=P(A)+P(B)-P(A∩B),其中P(A)为事件A发生的概率,P(B)为事件B发生的概率,P(A∩B)为事件A与事件B同时发生的概率(2)乘法原理:P(A∩B)=P(A)×P(B,A),其中P(A)为事件A发生的概率,P(B,A)为在事件A发生的条件下事件B发生的概率(3)期望:E(X)=μ=∑(xP(x)),其中X为随机变量,x为随机变量X 的取值,P(x)为X取值为x的概率(4) 方差:Var(X) = σ^2 = E((X - μ)^2),其中E为期望,σ^2为方差,(X - μ)^2为随机变量X与其期望之差的平方以上是高中数学文科相关的一些公式,但由于篇幅有限,可能并未包含所有相关的公式。
高中数学概率公式大全

高中数学概率公式大全一、常用概率公式及应用1、概率定义:概率是指某件事情发生的可能性,以及该事件发生后,另一个事件发生的可能性,都是以概率来衡量的。
2、贝叶斯公式:P(A|B)=P(A)* P(B|A)/P(B),p(A|B)表示的是在已知事件B发生的情况下,事件A发生的概率,P(A)表示事件A发生的概率,P(B|A)表示在A发生时事件B也发生的概率,而P(B)表示事件B发生的概率。
3、全概率公式:P(A)= ∑P(A|B)*P(B),全概率公式是通过对一个事件进行分类求其总概率,表示事件A发生的概率,P(A|B)表示事件在A发生时事件B也发生的概率,而P(B)表示事件B发生的概率。
4、乘法公式:P(A∩B)=P(A)*P(B|A),乘法定理是用来描述概率的一种方式,也叫做“独立性原理”,通常使用来计算两个不相关事件A和B发生的概率,P(A∩B)表示A和B同时发生的概率,而P (B|A)表示在A发生的情况下B发生的概率,P(A)表示事件A发生的概率。
5、条件概率公式:P(A|B)=P(A∩B)/P(B),P(A|B)表示在事件B发生的情况下事件A发生的概率,也可以理解为在B中发生A的条件概率。
P(A∩B)指的是两个事件A和B同时发生的概率,而P (B)表示的是事件B发生的概率。
二、重要定理1、条件概率定理:P(A)= ∑P(A|B)*P(B)。
概率世界中,条件概率定理是一个不可或缺的定理,它捕捉了一个核心思想,就是通过对某个条件下求出另一个条件的概率,从而可以计算事件A发生的概率。
2、独立性定理:P(A∩B)=P(A)*P(B),当两个事件没有任何关系时,也就是说,事件A和事件B相互独立,那么他们同时发生的概率等于各自发生的概率的乘积。
3、期望定理:期望就是某种随机变量X的取值的数学期望,通常以<X>表示,它是服从该随机变量X分布的概率密度函数或概率分布函数的函数,也可以是某个给定概率发生的概率分布期望。
高中数学概率与统计知识点

高中数学概率与统计知识点1、概率的定义随机事件A的概率是频率的稳定值;频率是概率的近似值。
2、等可能事件的概率如果一次试验中可能出现的结果有n个,且所有结果出现的可能性都相等,那么,每一个基本事件的概率都是1/n,如果某个事件A包含的结果有m个,那么事件A的概率为P(A)=m/n。
3、互斥事件不可能同时发生的两个事件叫互斥事件。
如果事件A、B互斥,那么事件A+B发生(A、B中有一个发生)的概率,等于事件A、B 分别发生的概率和,即P(A+B)=P(A)+P(B)。
4、对立事件对立事件是指两个事件必有一个发生的互斥事件。
例如:从1~52张扑克牌中任取一张抽到“红桃”与抽到“黑桃”互为互斥事件,因为其中一个不可能同时发生,但又不能保证其中一个必然发生,故不是对立事件。
而抽到“红色牌”与抽到“黑色牌”互为对立事件,因为其中一个必发生。
对立事件的性质:1)对立事件的概率和等于1:P(A)+P(Ä)=P(A+A)=1。
2)互为对立的两个事件一定互斥,但互斥不一定是对立事件。
5、相互独立事件事件A(或B)是否发生对事件B(或A)发生的概率没有影响,这样的两个事件叫做相互独立事件。
两个相互独立事件同时发生的概率,等于每个事件发生的概率的积,即P(A·B)=P(A)·P(B)。
相互独立事件的性质:1)如果事件A与B相互独立,那么A与B,A与B,A与B也都相互独立。
2)必然事件与任何事件都是相互独立的。
3)独立事件是对任意多个事件来讲,而互斥事件是对同一实验来讲的多个事件,且这多个事件不能同时发生,故这些事件相互之间必然影响,因此互斥事件一定不是独立事件。
6、独立重复试验若n次重复试验中,每次试验结果的概率都不依赖于其他各次试验的结果,则称这n次试验是独立的。
如果在一次试验中某事件发生的概率为P,那么在n次独立重复试验中这个事件恰好发生k 次的概率:P…(k)=CP*(1-P)"-*7、两个事件之间的关系对任何两个事件都有P(A+B)=P(A)+P(B)-P(A·B)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六部分 概率与统计万能知识点及经典题型Ⅰ
【考题分析】
1、考试题型:选择填空1个,解答题:18(必考)
2、考题分值:17分;
3、解答题考点:①频率直方图的应用,②线性回归直线的应用,③独立性检验和概率
4、难度系数:0.7-0.8左右,(120分必须全对,100以上者全对)
【知识总结】
一、普通的众数、平均数、中位数及方差
1、 众数:一组数据中,出现次数最多的数。
2、平均数:①、常规平均数:12nxxxxn ②、加权平均数:112212nnnxxxx
3、中位数:从大到小或者从小到大排列,最中间或最中间两个数的平均数。
4、方差:2222121[()()()]nsxxxxxxn
二、频率直方分布图下的频率
1、频率 =小长方形面积:fSyd距;频率=频数/总数
2、频率之和:121nfff;同时 121nSSS;
三、频率直方分布图下的众数、平均数、中位数及方差
1、众数:最高小矩形底边的中点。
2、平均数:
112233nnxxfxfxfxf 112233nn
xxSxSxSxS
3、中位数:从左到右或者从右到左累加,面积等于0.5时x的值。
4、方差:22221122()()()nnsxxfxxfxxf
四、线性回归直线方程:
ˆ
ˆˆ
ybxa
其中:1122211()()ˆ()nniiiiiinniiiixxyyxynxybxxxnx ,
ˆ
ˆ
aybx
1、线性回归直线方程必过样本中心(,)xy;
2、ˆ0:b正相关;ˆ0:b负相关。
3、线性回归直线方程:ˆˆˆybxa的斜率ˆb中,两个公式中分子、分母对应也相等;中间可以推导得到。
五、回归分析
1、残差:ˆˆiiieyy(残差=真实值—预报值)。
分析:ˆie越小越好;
2、残差平方和:21ˆ()niiiyy,
分析:①意义:越小越好; ②计算:222211221ˆˆˆˆ()()()()niinniyyyyyyyy
3、拟合度(相关指数):22121ˆ()1()niiiniiyyRyy,
分析:①.20,1R的常数; ②.越大拟合度越高;
4、相关系数:1122221111()()()()()()nniiiiiinnnniiiiiiiixxyyxynxyrxxyyxxyy
分析:①.[1,1]r的常数; ②.0:r正相关;0:r负相关
③.[0,0.25]r;相关性很弱; (0.25,0.75)r;相关性一般; [0.75,1]r;相关性很强;
六、独立性检验
合计
1、2×2列联表:
2、独立性检验公式
①.22()()()()()nadbckabcdacbd
②.犯错误上界P对照表
3、独立性检验步骤
①.计算观察值k:2()()()()()nadbckabcdacbd;
②.查找临界值0k:由犯错误概率P,根据上表查找临界值0k;
③.下结论:0kk:即犯错误概率不超过P的前提下认为: ,有1-P以上的把握认为: ;
0kk:即犯错误概率超过P的前提认为: ,没有1-P以上的把握认为: ;
【经典例题】
题型1 与茎叶图的应用
例1(2014全国)某市为考核甲、乙两部门的工作情况,学科网随机访问了50位市民。根据这50位市民
(1)分别估计该市的市民对甲、乙
部门评分的中位数;
(2)分别估计该市的市民对甲、乙
部门的评分做于90的概率;
(3)根据茎叶图分析该市的市民对
甲、乙学科网两部门的评价。
题型2 频率直方分布图的应用
例2(2015广东)某城市100户居
民的月平均用电量(单位:度),
以[)160,180,[)180,200,
[)200,220,[)220,240,[)240,260,[)260,280,[]
280,300
分组的频率分布直方图如图2,
(1)求直方图中x的值;
(2)求月平均用电量的众数和中位数;
(3)在月平均用电量为[)220,240,[)240,260,[)260,280,
[]
280,300
的四组用户中,用分层抽样的方法抽取11户居民,则
月平均用电量在[)220,240的用户中应抽取多少户?
练习2 (2014全国1)从某企业生产的某种产品中抽取100件,
测量这些产品的一项质量指标值,由测量表得如下频数分布表:
质量指标值分组 [75,85) [85,95) [95,105) [105,115) [115,125)
频数 6 26 38 22 8
(1)在答题卡上作出这些数据的频率分布直方图:
(2)估计这种产品质量指标值的平均数及方差
(同一组中的数据用该组区间的中点值作代表);
(3)根据以上抽样调查数据,能否认为该企业生
产的这种产品符合“质量指标值不低于95的产
品至少要占全部产品的80%”的规定?
题型3 计算线性回归方程
例3(2015重庆)随着我国经济的发展,居民
的储蓄存款逐年增长.设某地区城乡居民人民币
储蓄存款(年底余额)如下表:
年份 2010 2011 2012 2013 2014
时间代号t 1 2 3 4 5
合计
储蓄存款y(千亿元)
5 6 7 8 10
(1)求y关于t的回归方程
ˆ
ˆˆ
ybta
(2)用所求回归方程预测该地区2015年(t=6)的人民币储蓄存款.
练习3(2014全国2)某地区2007年至2013年农村居民家庭纯收入y(单位:千元)的数据如下表:
年份 2007 2008 2009 2010 2011 2012 2013
年份代号t 1 2 3 4 5 6 7
人均纯收入y 2.9 3.3 3.6 4.4 4.8 5.2 5.9
(1)求y关于t的线性回归方程;
(2)利用(1)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该
地区2015年农村居民家庭人均纯收入.
题型4 线性回归分析
例4(2016全国3)下图是我国2008年至2014年生活垃圾
无害化处理量(单位:亿吨)的折线图.
注:年份代码1–7分别对应年份2008–2014.
(1).由折线图看出,可用线性回归模型拟合y与t的关系,请
用相关系数加以说明;
(2).求出y关于t的回归方程
ˆ
ˆˆ
ybta
(系数精确到0.01),
预测2016年我国生活垃圾无害化处理量.
参考数据:719.32iiy,7140.17iiity,721()0.55iiyy,≈2.646.
参考公式:12211()()()(yy)niiinniiiittyyrtt,回归方程yabt)))中:121()()()niiiniittyybtt),=.aybt)))
题型5 独立性检验综合应用
例5.为了解某班学生喜爱打篮球是否与性别有关,对本班60人进行了问卷调查得到了如下的2×2列联表:
(1)用分层抽样的方法在喜爱打篮球的学生中抽6人,其中男生抽多少人?
(2)在上述抽取的人中选2人,求恰有一名女生的概率;
(3)你是否有95%的把握认为喜爱打篮球与性别有关?说明你的理由。
练习5. 为调查某市学生百米运动成绩,从该市学生中按照男女比例
随机抽取50名学生进行百米测试,学生成绩全部都介于13秒到18秒
之
间,将测试结果按如下方式分成五组,第一组,14,13第二组15,14,第
五组18,17,如图是按上述分组方法得到的频率分布直方图.
(1)求这次测试成绩的平均数、众数和中位数、
(2)设nm,表示从第一组和第五组的所有学生中任意抽取的两名学生的百米测试成绩,即18,1714,13,nm,
求事件“2nm”的概率;
(3)根据有关规定,成绩小于16秒为达标.如果男女生使用相同的达标标准,则男女生达标情况如下表:
完成上表,并根据上表数据,能否有99﹪的把握认为“体育达标与性
别有关”?
男 女 总计
达标 24
不达标 12
总计 50