高中数学 概率统计

合集下载

高中数学概率高中数学概率与统计

高中数学概率高中数学概率与统计

高中数学概率高中数学概率与统计高中数学概率一:高中数学概率统计知识点总结概括一.算法,概率和统计1.算法初步(约12课时)(1)算法的含义、程序框图①通过对解决具体问题过程与步骤的分析(如,二元一次方程组求解等问题),体会算法的思想,了解算法的含义。

②通过模仿、操作、探索,经历通过设计程序框图表达解决问题的过程。

在具体问题的解决过程中(如,三元一次方程组求解等问题),理解程序框图的三种基本逻辑结构:顺序、条件分支、循环。

(2)基本算法语句经历将具体问题的程序框图转化为程序语句的过程,理解几种基本算法语句__输入语句、输出语句、赋值语句、条件语句、循环语句,进一步体会算法的基本思想。

(3)通过阅读中国古代数学中的算法案例,体会中国古代数学对世界数学发展的贡献。

3.概率(约8课时)(1)在具体情境中,了解随机事件发生的不确定性和频率的稳定性,进一步了解概率的意义以及频率与概率的区别。

(2)通过实例,了解两个互斥事件的概率加法公式。

(3)通过实例,理解古典概型及其概率计算公式,会用列举法计算一些随机事件所含的基本事件数及事件发生的概率。

(4)了解随机数的意义,能运用模拟方法(包括计算器产生随机数来进行模拟)估计概率,初步体会几何概型的意义(参见例3)。

(5)通过阅读材料,了解人类认识随机现象的过程。

2.统计(约16课时)(1)随机抽样①能从现实生活或其他学科中提出具有一定价值的统计问题。

②结合具体的实际问题情境,理解随机抽样的必要性和重要性。

③在参与解决统计问题的过程中,学会用简单随机抽样方法从总体中抽取样本;通过对实例的分析,了解分层抽样和系统抽样方法。

④能通过试验、查阅资料、设计调查问卷等方法收集数据。

(2)用样本估计总体①通过实例体会分布的意义和作用,在表示样本数据的过程中,学会列频率分布表、画频率分布直方图、频率折线图、茎叶图(参见例1),体会他们各自的特点。

②通过实例理解样本数据标准差的意义和作用,学会计算数据标准差。

高中数学中的概率统计计算期望与方差的技巧

高中数学中的概率统计计算期望与方差的技巧

高中数学中的概率统计计算期望与方差的技巧概率统计是高中数学中的重要内容,计算期望与方差是其中的关键技巧。

本文将介绍几种常见的计算期望与方差的技巧,以帮助读者更好地理解和应用这些知识。

一、离散型随机变量的期望与方差计算对于离散型随机变量X,其概率分布列为P(X=x),而期望和方差的计算公式如下:1. 期望计算期望E(X)表示随机变量X的平均值,计算公式为:E(X) = Σ[x * P(X=x)]其中,Σ表示对所有可能取值的求和。

通过遍历所有可能取值,将取值与其对应的概率相乘,再求和,即可得到期望值。

2. 方差计算方差Var(X)表示随机变量X的离散程度,计算公式为:Var(X) = Σ[(x - E(X))^2 * P(X=x)]同样,通过遍历所有可能取值,将每个取值减去期望值,再平方,再与其对应的概率相乘,最后再求和,即可得到方差值。

这种计算方法适用于离散型随机变量的期望和方差计算,例如投掷一枚骰子的结果、抽取一副扑克牌的点数等情况。

二、连续型随机变量的期望与方差计算对于连续型随机变量X,其概率密度函数为f(x),而期望和方差的计算公式如下:1. 期望计算期望E(X)的计算公式为:E(X) = ∫(x * f(x))dx其中,∫表示对整个定义域的积分。

通过对概率密度函数乘以x后再积分,即可得到期望值。

2. 方差计算方差Var(X)的计算公式为:Var(X) = ∫[(x - E(X))^2 * f(x)]dx同样,通过对概率密度函数乘以(x - E(X))的平方后再积分,即可得到方差值。

这种计算方法适用于连续型随机变量的期望和方差计算,例如正态分布、指数分布等情况。

三、应用技巧下面将介绍一些计算期望与方差时的常用技巧:1. 期望的线性性质如果X和Y是两个随机变量,a和b为常数,则有:E(aX + bY) = aE(X) + bE(Y)这是期望的线性性质,利用这个性质可以简化复杂随机变量的期望计算。

高中数学概率统计(含详细答案)

高中数学概率统计(含详细答案)

1.某初级中学共有学生2000名,各年级男、女生人数如下表:已知在全校学生中随机抽取1名,抽到初二年级女生的概率是0.19. (1)求x 的值;(2)现用分层抽样的方法在全校抽取48名学生,问应在初三年级抽取多少名? (3)已知y ≥245,z ≥245,求初三年级中女生比男生多的概率. 解:(1)0.192000x= ∴ 380x =(2)初三年级人数为y +z =2000-(373+377+380+370)=500, 现用分层抽样的方法在全校抽取48名学生,应在初三年级抽取的人数为:48500122000⨯= 名 (3)设初三年级女生比男生多的事件为A ,初三年级女生男生数记为(y ,z ); 由(2)知 500y z += ,且 ,y z N ∈, 基本事件空间包含的基本事件有:(245,255)、(246,254)、(247,253)、……(255,245)共11个事件A 包含的基本事件有:(251,249)、(252,248)、(253,247)、(254,246)、(255,245) 共5个∴ 5()11P A =2.为了了解《中华人民共和国道路交通安全法》在学生中的普及情况,调查部门对某校6名学生进行问卷调查.6人得分情况如下:5,6,7,8,9,10.把这6名学生的得分看成一个总体. (Ⅰ)求该总体的平均数;(Ⅱ)用简单随机抽样方法从这6名学生中抽取2名,他们的得分组成一个样本.求该样本平均数与总体平均数之差的绝对值不超过0.5的概率. 解:(Ⅰ)总体平均数为1(5678910)7.56+++++=. (Ⅱ)设A 表示事件“样本平均数与总体平均数之差的绝对值不超过0.5”. 从总体中抽取2个个体全部可能的基本结果有:(56),,(57),,(58),,(59),,(510),,(67),,(68),,(69),,(610),,(78),,(79),,(710),,(89),,(810),,(910),.共15个基本结果.事件A 包括的基本结果有:(59),,(510),,(68),,(69),,(610),,(78),,(79),.共有7个基本结果. 所以所求的概率为7()15P A =.3.现有8名奥运会志愿者,其中志愿者123A A A ,,通晓日语,123B B B ,,通晓俄语,12C C ,通晓韩语.从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组. (Ⅰ)求1A 被选中的概率;(Ⅱ)求1B 和1C 不全被选中的概率.解:(Ⅰ)从8人中选出日语、俄语和韩语志愿者各1名,其一切可能的结果组成的基本事件空间Ω={111112121()()()A B C A B C A B C ,,,,,,,,,122131()()A B C A B C ,,,,,,132()A B C ,,,211212221()()()A B C A B C A B C ,,,,,,,,,222()A B C ,,, 231()A B C ,,,232()A B C ,,,311312321()()()A B C A B C A B C ,,,,,,,,, 322331332()()()A B C A B C A B C ,,,,,,,,}由18个基本事件组成.由于每一个基本事件被抽取的机会均等,因此这些基本事件的发生是等可能的.用M 表示“1A 恰被选中”这一事件,则M ={111112121()()()A B C A B C A B C ,,,,,,,,,122131132()()()A B C A B C A B C ,,,,,,,,}事件M 由6个基本事件组成, 因而61()183P M ==. (Ⅱ)用N 表示“11B C ,不全被选中”这一事件,则其对立事件N 表示“11B C ,全被选中”这一事件,由于N ={111211311()()()A B C A B C A B C ,,,,,,,,},事件N 有3个基本事件组成, 所以31()186P N ==,由对立事件的概率公式得15()1()166P N P N =-=-=.4.某校高三(1)班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如下,据此解答如下问题.(I )求全班人数及分数在[)90,80之间的频数;(II )估计该班的平均分数,并计算频率分布直方图中[)90,80间的矩形的高; (III )若要从分数在[80,100]之间的试卷中任取两份分析学生失分情况,在抽取的试卷中,求至少有一份分数在[90,100]之间的概率.解:(I )由茎叶图知,分数在[)60,50之间的频数为2,频率为,08.010008.0=⨯ 全班人数为.2508.02= …………3分所以分数在[)90,80之间的频数为42107225=---- …………5分(II )分数在[)60,50之间的总分为56+58=114;分数在[)70,60之间的总分为60×7+2+3+3+5+6+8+9=456;(III )将[)90,80之间的4个分数编号为1,2,3,4,[90,100]之间的2个分数编号为5,6,在[80,100]之间的试卷中任取两份的基本事件为: (1,2),(1,3),(1,4),(1,5),(1,6) (2,3),(2,4),(2,5),(2,6), (3,4),(3,5),(3,6) (4,5),(4,6) (5,6)共15个, …………12分 其中,至少有一个在[90,100]之间的基本事件有9个, …………14分故至少有一份分数在[90,1000]之间的频率是6.0159= …………15分5.袋子中装有编号为b a ,的2个黑球和编号为e d c ,,的3个红球,从中任意摸出2个球。

高中数学概率与统计

高中数学概率与统计

/ 教育,我们只做精品高中数学概率与统计I. 基础知识要点 一、概率.1. 概率:随机事件A 的概率是频率的稳定值,反之,频率是概率的近似值.2. 等可能事件的概率:如果一次试验中可能出现的结果有年n 个,且所有结果出现的可能性都相等,那么,每一个基本事件的概率都是n1,如果某个事件A 包含的结果有m 个,那么事件A 的概率nm P(A)=.3. ①互斥事件:不可能同时发生的两个事件叫互斥事件. 如果事件A 、B 互斥,那么事件A+B 发生(即A 、B 中有一个发生)的概率,等于事件A 、B 分别发生的概率和,即P(A+B)=P(A)+P(B),推广:)P(A )P(A )P(A )A A P(A n 21n 21+++=+++ .②对立事件:两个事件必有一个发生的互斥事件...............叫对立事件. 例如:从1~52张扑克牌中任取一张抽到“红桃”与抽到“黑桃”互为互斥事件,因为其中一个不可能同时发生,但又不能保证其中一个必然发生,故不是对立事件.而抽到“红色牌”与抽到黑色牌“互为对立事件,因为其中一个必发生.注意:i.对立事件的概率和等于1:1)A P(A )A P(P(A)=+=+. ii.互为对立的两个事件一定互斥,但互斥不一定是对立事件.③相互独立事件:事件A(或B)是否发生对事件B(或A)发生的概率没有影响.这样的两个事件叫做相互独立事件. 如果两个相互独立事件同时发生的概率,等于每个事件发生的概率的积,即P(A·B)=P(A)·P(B). 由此,当两个事件同时发生的概率P (AB )等于这两个事件发生概率之和,这时我们也可称这两个事件为独立事件.例如:从一副扑克牌(52张)中任抽一张设A :“抽到老K”;B :“抽到红牌”则 A 应与B 互为独立事件[看上去A 与B 有关系很有可能不是独立事件,但261P(B)P(A),215226P(B),131524P(A)=⋅====.又事件AB 表示“既抽到老K 对抽到红牌”即“抽到红桃老K 或方块老K”有261522B)P(A==⋅,因此有)B P(A P(B)P(A)⋅=⋅.推广:若事件n 21,A ,,A A 相互独立,则)P(A )P(A )P(A )A A P(A n 21n 21 ⋅=⋅. 注意:i. 一般地,如果事件A 与B 相互独立,那么A 与A B ,与B ,A与B 也都相互独立.ii. 必然事件与任何事件都是相互独立的.iii. 独立事件是对任意多个事件来讲,而互斥事件是对同一实验来讲的多个事件,且这多个事件不能同时发生,故这些事件相互之间必然影响,因此互斥事件一定不是独立事件. ④独立重复试验:若n 次重复试验中,每次试验结果的概率都不依赖于其他各次试验的结果,则称这n 次试验是独立的. 如果在一次试验中某事件发生的概率为P ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率:kn kkn n P)(1P C (k)P --=.4. 对任何两个事件都有)()()()(B A P B P A P B A P ⋅-+=+二、随机变量.1. 随机试验的结构应该是不确定的.试验如果满足下述条件: ①试验可以在相同的情形下重复进行;②试验的所有可能结果是明确可知的,并且不止一个;互斥对立/ 教育,我们只做精品哪一个结果.它就被称为一个随机试验.2. 离散型随机变量:如果对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.若ξ是一个随机变量,a ,b 是常数.则b a +=ξη也是一个随机变量.一般地,若ξ是随机变量,)(x f 是连续函数或单调函数,则)(ξf 也是随机变量.也就是说,随机变量的某些函数也是随机变量.设离散型随机变量ξ可能取的值为: ,,,,21i x x xξ取每一个值),2,1(1 =i x 的概率i i p x P ==)(ξ,则表称为随机变量ξ的概率分布,简称ξ的分布列.,2,1,01=≥i p 121=++++ i p p p 注意:若随机变量可以取某一区间内的一切值,这样的变量叫做连续型随机变量.例如:]5,0[∈ξ即ξ可以取0~5之间的一切数,包括整数、小数、无理数.3. ⑴二项分布:如果在一次试验中某事件发生的概率是P ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率是:k n k k n qp C k)P(ξ-==[其中p q n k -==1,,,1,0 ] 于是得到随机变量ξ的概率分布如下:我们称这样的随机变量ξ服从二项分布,记作ξ~B(n·p ),其中n ,p 为参数,并记p)n b(k;qp C k n k k n ⋅=-.⑵二项分布的判断与应用. ①二项分布,实际是对n 次独立重复试验.关键是看某一事件是否是进行n 次独立重复,且每次试验只有两种结果,如果不满足此两条件,随机变量就不服从二项分布. ②当随机变量的总体很大且抽取的样本容量相对于总体来说又比较小,而每次抽取时又只有两种试验结果,此时可以把它看作独立重复试验,利用二项分布求其分布列.4. 几何分布:“k =ξ”表示在第k 次独立重复试验时,事件第一次发生,如果把k 次试验时事件A 发生记为k A ,事A 不发生记为q )P(A ,A k k =,那么)A A A A P(k)P(ξk 1k 21-== .根据相互独立事件的概率乘法分式:))P(A A P()A )P(A P(k)P(ξk 1k 21-== ),3,2,1(1==-k p qk 于是得到随机变量ξ的概率分布列.我们称ξ服从几何分布,并记p q p)g(k,1k -=,其中 3,2,1.1=-=k p q5. ⑴超几何分布:一批产品共有N 件,其中有M (M <N )件次品,今抽取)N n n(1≤≤件,则其中的次品数ξ是一离散型随机变量,分布列为)M N k n M,0k (0C C C k)P(ξn Nkn MN kM -≤-≤≤≤⋅⋅==--.〔分子是从M 件次品中取k 件,从N-M 件正品中取n-k 件的取法数,如果规定m <r 时0C r m =,则k 的范围可以写为k=0,1,…,n.〕/ 教育,我们只做精品则次品数ξ的分布列为n.,0,1,k C CC k)P(ξnba kn b ka =⋅==+-.⑶超几何分布与二项分布的关系.设一批产品由a 件次品、b 件正品组成,不放回抽取n 件时,其中次品数ξ服从超几何分布.若放回式抽取,则其中次品数η的分布列可如下求得:把b a +个产品编号,则抽取n 次共有nb a )(+个可能结果,等可能:k)(η=含kn k kn ba C -个结果,故n,0,1,2,k ,)ba a (1)ba a (C b)(a ba C k)P(ηkn kkn nk n kkn =+-+=+==--,即η~)(ba a n B +⋅.[我们先为k 个次品选定位置,共k n C 种选法;然后每个次品位置有a 种选法,每个正品位置有b 种选法] 可以证明:当产品总数很大而抽取个数不多时,k)P(ηk)P(ξ=≈=,因此二项分布可作为超几何分布的近似,无放回抽样可近似看作放回抽样.三、数学期望与方差.1. 期望的含义:一般地,若离散型随机变量ξ的概率分布为++++=n n p x p x p x E 2211ξ期望反映了离散型随机变量取值的平均水平. 2. ⑴随机变量b a +=ξη的数学期望:b aE b a E E +=+=ξξη)( ①当0=a 时,b b E =)(,即常数的数学期望就是这个常数本身. ②当1=a 时,b E b E +=+ξξ)(,即随机变量ξ与常数之和的期望等于ξ的期望与这个常数的和. ③当0=b时,ξξaE a E =)(,即常数与随机变量乘积的期望等于这个常数与随机变量期望的乘积. ⑵单点分布:c c E =⨯=1ξ其分布列为:c P ==)1(ξ. ⑶两点分布:p p q E =⨯+⨯=10ξ,其分布列为:(p + q = 1)⑷二项分布:∑=⋅-⋅=-npqp k n k n k E kn k )!(!!ξ其分布列为ξ~),(p n B .(P 为发生ξ的概率)⑸几何分布:pE 1=ξ其分布列为ξ~),(p k q .(P 为发生ξ的概率)3.方差、标准差的定义:当已知随机变量ξ的分布列为),2,1()( ===k p x P k k ξ时,则称+-++-+-=n n p E x p E x p E x D 2222121)()()(ξξξξ为ξ的方差. 显然0≥ξD ,故σξξσξ.D =为ξ的根方差或标准差.随机变量ξ的方差与标准差都反映了随机变量ξ取值的稳定与波动,集中与离散的程度.ξD 越小,稳定性越高,波动越小............... 4.方差的性质.⑴随机变量b a +=ξη的方差ξξηD a b a D D 2)()(=+=.(a 、b 均为常数)/ 教育,我们只做精品0=D p P ==)1(ξ⑶两点分布:pq D =ξ 其分布列为:(p + q = 1) ⑷二项分布:npq D =ξ⑸几何分布:2pq D =ξ5. 期望与方差的关系. ⑴如果ξE 和ηE 都存在,则ηξηξE E E ±=±)( ⑵设ξ和η是互相独立的两个随机变量,则ηξηξηξξηD D D E E E +=+⋅=)(,)(⑶期望与方差的转化:22)(ξξξE E D -= ⑷)()()(ξξξξE E E E E -=-(因为ξE 为一常数)0=-=ξξE E .四、正态分布.(基本不列入考试范围)1.密度曲线与密度函数:对于连续型随机变量ξ,位于x 轴上方,ξ落在任一区间),[b a 内的概率等于它与x 轴.直线a x =与直线bx=(如图阴影部分)的曲线叫ξ的密度曲线,以其作为图像的函数)(x f 叫做ξ的密度函数,由于“),(+∞-∞∈x ”是必然事件,故密度曲线与x 轴所夹部分面积等于1.2. ⑴正态分布与正态曲线:如果随机变量ξ的概率密度为:2221)(σσπ-=ex f . (σμ,,R x ∈为常数,且0 σ),称ξ服从参数为σμ,的正态分布,用ξ~),(2σμN 表示.)(x f 的表达式可简记为),(2σμN ,它的密度曲线简称为正态曲线.⑵正态分布的期望与方差:若ξ~),(2σμN ,则ξ的期望与方差分别为:2,σξμξ==D E . ⑶正态曲线的性质. ①曲线在x 轴上方,与x 轴不相交. ②曲线关于直线μ=x 对称. ③当μ=x 时曲线处于最高点,当x 向左、向右远离时,曲线不断地降低,呈现出“中间高、两边低”的钟形曲线. ④当x <μ时,曲线上升;当x >μ时,曲线下降,并且当曲线向左、向右两边无限延伸时,以x 轴为渐近线,向x 轴无限的靠近. ⑤当μ一定时,曲线的形状由σ确定,σ越大,曲线越“矮胖”.表示总体的分布越分散;σ越小,曲线越“瘦高”,表示总体的分布越集中.3. ⑴标准正态分布:如果随机变量ξ的概率函数为)(21)(22+∞-∞=- x ex xπϕ,则称ξ服从标准正态分布. 即ξ~)1,0(N 有)()(x P x ≤=ξϕ,)(1)(x x --=ϕϕ求出,而P (a <ξ≤b )的计算则是)()()(a b b a P ϕϕξ-=≤ .注意:当标准正态分布的)(x Φ的X 取0时,有5.0)(=Φx 当)(x Φ的X 取大于0的数时,有/ 教育,我们只做精品5.0)( x Φ.比如5.00793.0)5.0(=-Φσμ则σμ-5.0必然小于0,如图.⑵正态分布与标准正态分布间的关系:若ξ~),(2σμN 则ξ的分布函数通 常用)(x F 表示,且有)σμx (F(x)x)P(ξ-==≤ϕ.4.⑴“3σ”原则.假设检验是就正态总体而言的,进行假设检验可归结为如下三步:①提出统计假设,统计假设里的变量服从正态分布),(2σμN .②确定一次试验中的取值a 是否落入范围)3,3(σμσμ+-.③做出判断:如果)3,3(σμσμ+-∈a ,接受统计假设. 如果)3,3(σμσμ+-∉a ,由于这是小概率事件,就拒绝统计假设.⑵“3σ”原则的应用:若随机变量ξ服从正态分布),(2σμN 则 ξ落在)3,3(σμσμ+-内的概率为99.7% 亦即落在)3,3(σμσμ+-之外的概率为0.3%,此为小概率事件,如果此事件发生了,就说明此种产品不合格(即ξ不服从正态分布).。

高中数学选择性必修三 概率统计

高中数学选择性必修三 概率统计

概率统计通过上节课的学习,我们已经知道分布列实际是一种函数,确切的说是一种离散型的函数,所谓的分布列的表格就是列表法表示函数.比如我们可以类似于连续函数做出离散型函数的函数图象.如上一讲中的例6,我们知道它的分布列为:X0 1 2 3 4 5P136 112 19 13 19 13于是,我们可以根据分布列画出函数的图象.考点1:二点分布1.如果随机变量X 的分布列为X 1 0P p 1p -其中01p <<,则称离散型随机变量X 服从参数为p 的二点分布.二点分布又称01-分布,由于只有两个可能结果的随机试验叫做伯努利试验,所以这种分布又称为伯努利分布.【举例】两点分布的应用十分广泛,如抽取的彩票是否中奖;买回的一件产品是否为正品;新生婴儿的性别;投篮是否命中等等,都可以用二点分布来研究.老师可以以下边的例子讲 解两点分布,让学生从直观上理解二点分布.屋子里关着一只鸟,这只鸟要从窗户飞出去,屋子里有三扇窗户,只有一个是开着的,剩下两个有玻璃,不过这只鸟的眼神不是特别好,看不清哪个是开着的.于是,他会随机的挑选一个撞过去,那么成功率就是13.随机变量X 为这只鸟从窗户飞出去的结果,成功定义为1,失败定义为0,则X 的分布列满足二点分布.X 1 0P1323知识点睛543210PX2.二点分布的期望与方差:若随机变量X 服从参数为p 的二点分布,则()()101E X p p p =⨯+⨯-=;()()()()()221011D X p p p p p p =-⋅+-⋅-=-【教师备案】二点分布严格定义是01-分布,不过实际上二点分布的模型可以应用于自然界所有“只有两种情况”的情况.比如:我们高考考北大,我们可以把考上定义为1,没考上定义为0,这样就可以写出一个二点分布的分布列.我们可以以这个分布列来估计考上北大的可能性,进而决定我们如何报考.这里会有一个比较有意思的问题:在什么情况下我们会比较纠结呢?直观的看,假设我们考上的概率是40%,考不上的概率是60%,我们就会侧重于不报考;如果考上的概率60%,考不上的概率是40%的话,我们就会考虑报考.但是如果我们发现考上的概率是50%的话,就彻底纠结了.这个时候其实我们最靠谱的办法是掷硬币……从数学的角度分析,这件事非常简单,我们知道二点分布的方差是()1p p -,由均值不等式很容易得出当12p =的时候,方差最大,也就是结果的波动性最大.此时我们是最没有办法估计结果的.【例1】 二点分布从装有6只白球和4只红球的口袋中任取1只球,用X 表示“取到的白球个数”,求随机变量X 的分布列及期望与方差.【解析】 由题意知()420645P X ===+,()631645P X ===+,故随机变量X 的分布列为()205P X ==,()315P X ==,概率分布表如下:X 0 1 P2535()35E X =,()2365525D X =⨯=.考点2:超几何分布1.超几何分布 一般地,设有总数为N 件的两类物品,其中一类有M 件,从所有物品中任取n 件()n N ≤,这n 件中所含这类物品件数X 是一个离散型随机变量,它取值为m 时的概率为C C ()C m n mM N Mn N P X m --==(01m l =,,,,l 为n 和M 中较小的一个 ).我们称离散型随机变量X 的这种形式的概率分布为超几何分布,也称X 服从参数为N ,M ,n 的超几何分布.在超几何分布中,只要知道N ,M 和n ,就可以根据公式求出X 取不同值时的概率()P X m =,从而列出X 的分布列.2.超几何分布的期望与方差:若离散型随机变量X 服从参数为N M n ,,的超几何分布, 则()nME X N=;()11nM M N n D X N N N -⎛⎫=- ⎪-⎝⎭. 【举例】可以继续延续之前那个鸟的例子,假设现在屋子里有100扇窗户,其中有10扇窗户是打开的,现在鸟不傻知识点睛经典精讲了,不过眼神依然不好.他现在决定尝试20次(否则可能撞的次数太多给撞死了),并且撞过的窗户不再去撞了,记录结果,统计一下有多少次能出去.这就是超几何分布,从模型角度讲,超几何分布就是“无放回”的抽取.超几何分布的典型例子就是生物学上的标记重捕法.先标记种群内的一部分个体,放回后再次捕捉,统计含有标记的数量,来估计总数,这实际是利用了超几何分布的期望的直观意义.【教师备案】老师在讲完超几何分布后,就可以让学生做例2,例2主要是让学生写超几何分布的分布列,关键是让学生从题目上就可以看出是超几何分布,然后根据超几何分布的概率公式就可以很快写出分布列;然后老师就可以继续讲超几何分布的期望与方差,对于超几何的期望和方差,老师可以只介绍期望公式,方差的公式太麻烦了,所以不建议给学生讲解,而且期望的公式推导过程也不要求,只需让学生记住就行了.讲完期望公式后,就可以让学生做例3,例3主要是套公式,学生会发现,对于超几何分布求期望用公式也非常快.【例2】 求超几何分布的分布列一个口袋内有4个不同的红球,6个不同的白球,从中任取4个球, ⑴ 求其中红球个数的分布列 ⑵ 求其中白球个数的分布列.【追问】从红球的分布列和白球的分布列你能看出X 和Y 的取值之间有什么关系?【解析】 ⑴ 记X 表示“取出4个球中红球的个数”,则X 服从参数为1044,,的超几何分布.∴0446410C C 1(0)C 14P X ⋅===,1346410C C 8(1)C 21P X ⋅===,2246410C C 3(2)C 7P X ⋅===, 3146410C C 4(3)C 35P X ⋅===,4046410C C 1(4)C 210P X ⋅===. ∴X 的分布列为:X0 1 2 3 4 P114821 37 435 1210⑵ 记Y 表示“取出4个球中白球的个数”,则Y 服从参数为1064,,的超几何分布.∴4046410C C 1(0)C 210P Y ⋅===,3146410C C 4(1)C 35P Y ⋅===, 2246410C C 3(2)C 7P Y ⋅===,1346410C C 8(3)C 21P Y ⋅===,0446410C C 1(4)C 14P Y ⋅===, ∴Y 的分布列为: Y0 1 2 3 4 P1210435 37 821 114【追问】4X Y +=,故(0)(4)(1)(3)P X P Y P X P Y ======,,.提高班学案1【铺1】 某人参加一次英语口语考试,已知在备选的10道试题中,能答对其中的6题,规定每次考试经典精讲都从备选题中随机抽出5题进行测试,求他答对题数的期望.【解析】 设答对的试题数为ξ,则ξ服从参数为1065,,的超几何分布,因此由公式知他答对题数的期望为()56310E ξ⨯==.【例3】 求超几何分布的期望一个袋中装有大小相同的球,其中红球5个、黑球3个,现在从中随机摸出3个球. ⑴求摸到红球个数ξ的概率分布列和数学期望; ⑵求摸到黑球个数η的概率分布列和数学期望.【解析】 ⑴ 摸到红球的个数ξ为离散型随机变量,且ξ服从8N =,5M =,3n =的超几何分布,ξ可能取值为0123,,,.于是有()35338C C C m mP m ξ-==. ()035338C C 10C 56P ξ===,()125338C C 151C 56P ξ===, ()215338C C 152C 28P ξ===,()305338C C 53C 28P ξ===. 所以摸到红球个数的分布列为ξ 0 1 23 P156 **** **** 528 ∴()88E ξ==.⑵ 摸到黑球的个数η为离散型随机变量,且η服从8N =,3M =,3n =的超几何分布,η可能取值为0123,,,.于是有()33538C C C m m P m η-==. ()033538C C 50C 28P η===,()123538C C 151C 28P η===, ()213538C C 152C 56P η===,()303538C C 13C 56P η===. η 0 1 23 P528 1528 1556 156 ∴()88E η==.【点评】 解题的关键是能够判断所给问题属于超几何分布模型.尖子班学案1【拓2】 盒中有5个球,其中3个白球,2个黑球,从中任取两个球,求取出白球个数的期望和方差. 【解析】 设取出白球个数为ξ,则ξ服从参数为532,,的超几何分布,ξ的可能取值为012,,.因此,()32 1.25E ξ⨯==,()()()()2221330 1.21 1.22 1.20.3610510D ξ=-⨯+-⨯+-⨯=.目标班学案1【拓3】 某人可从一个内有2张100元,3张50元的袋子里任取2张,求他获得钱数的期望值. 【解析】 方法一:设他取得100元的张数为X ,则X 服从参数为522,,的超几何分布.021120232323222555C C C C C C 361(0)(1)(2)C 10C 10C 10P X P X P X =========,,. 012X =,,时他所获得的钱数分别为100150200,,.因此他获得钱数的期望值为:100(0)150(1)200(2)140P X P X P X ⨯=+⨯=+⨯==元.方法二:设他取得100元的张数为X ,则X 服从参数为522,,的超几何分布.由公式知()22455E X ⨯==.因此他获得钱数的期望值为:4410050214055⎛⎫⨯+⨯-= ⎪⎝⎭元.考点3:二项分布1.独立重复试验如果每次试验,只考虑有两个可能的结果A 及A ,并且事件A 发生的概率p 相同.在相同的条件下,重复地做n 次试验,各次试验的结果相互独立,那么一般就称它们为n 次独立重复试验.n 次独立重复试验中,事件A 恰好发生k 次的概率为()C (1)kk n k n n P k p p -=-(0,1,2,,)k n =. 2.二项分布若将事件A 发生的次数设为X ,事件A 不发生的概率为1q p =-,那么在n 次独立重复试验中,事件A 恰好发生k 次的概率是()C k k n kn P X k p q-==,其中0,1,2,,k n =.于是得到X 的分布列X 01… k… nP00C nn p q111C n n p q- …C k k n kn p q- …C n n n p q称这样的离散型随机变量X 服从参数为n ,p 的二项分布,记作~(,)X B n p .3.二项分布的期望与方差:若离散型随机变量X 服从参数为n 和p 的二项分布,则 ()E X np =,()D X npq =(1)q p =-.【教师备案】学生没学过二项式定理,所以期望和方差的推导了解即可. 【教师备案】设离散型随机变量X 服从参数为n 和p 的二项分布,由X 的分布列()C k k n kn P X k p q-==,0k =,1,2,…,n 和数学期望的定义式得到 00111222()0C 1C 2C C C n n n k k n kn n n n n n n E X p q p q p qk p qn p q ---=⨯+⨯+⨯++⨯++⨯00111211(1)(1)1101111(C C C C )n n k k n k n n n n n n np p q p q p q pq -------------=⋅+++⋅++ 1()n np p q np -=+=,所以()E X np =. ∴()()220202C(1)C C (1)C nnnnii n ii in ii in ii i n i nnnn i i i i E Xi p qi i p qi p qi i p q E X ----======-+=-+∑∑∑∑()222(2)(2)22(1)Cni i n i n i n n pp qE X ------==-+∑()22(2)2(1)Cn j j n j n j n n pp q E X ----==-+∑()()2222(1)()(1)(1)n n n p p q E X n n p E X n n p np -=-++=-+=-+,知识点睛∴()()()22222()(1)()D X E X E X n n p np np np np npq =-=-+-=-=. 故()D X npq =.【举例】老师可以以二点分布知识点睛中的【举例】继续引申,从而让学生更直观的理解二项分布.现在假设这只鸟比较傻,每次都记不住上次的结果,那么这只鸟就可能需要不停的重复进行撞玻璃的操作,每次的成功率都是13.这种独立重复试验就可以用二项分布的模型来研究.从直观意义上来讲,二项分布可以看做是多个二点分布重复出现的结果.从模型角度讲,二项分布实际是“有放回”抽取的模型.对于二项分布的期望和方差,我们一样可以有直观意义.二项分布的期望指的是平均成功次数,而方差是随着次数的增多而增加,相比于二点分布,在同样的试验次数下,二项分布也是在12p =时方差最大,也就是结果最不稳定.【教师备案】老师在讲完二项分布后,就可以让学生做例4,例4主要是让学生写二项分布的分布列,关键是让学生从题目上就可以看出是二项分布,然后根据二项分布的概率公式就可以很快写出二项分布列;然后老师就可以继续讲二项分布的期望与方差,讲完期望与方差公式后,就可以让学生做例5,例5主要是套公式,学生会发现,对于二项分布求期望和方差用公式非常快,这时就不需要用上一讲讲的期望和方差最原始的公式了.提高班学案2【铺1】 某一学校心理咨询中心服务电话接通率为34,某班3名同学商定明天分别就同一问题询问 该服务中心.且每人只拨打一次,求他们中成功咨询的人数ξ的分布列. 【解析】 3个人各做一次试验,看成三次独立重复实验,拨通这一电话的人数即为事件的发生次数ξ,故符合二项分布.由题意可知:3~34B ξ⎛⎫ ⎪⎝⎭,,所以3331()C 44kkk P k ξ-⎛⎫⎛⎫==⋅ ⎪⎪⎝⎭⎝⎭,0k =,1,2,3.ξ的分布列为ξ 0 1 2 3 P16496427642764【例4】 求二项分布的分布列一名学生骑自行车上学,从他家到学校的途中有6个交通岗,假设他在各个交通岗遇到红灯的事件是相互独立的,并且概率都是13.设ξ为这名学生在途中遇到的红灯次数,求ξ的分布列.【解析】 将遇到每个交通岗看做一次试验,遇到红灯的概率都是13,且每次试验结果相互独立,故1~63B ξ⎛⎫ ⎪⎝⎭,.所以ξ的分布为6612()C (0126)33k kk P k k ξ-⎛⎫⎛⎫==⋅⋅= ⎪ ⎪⎝⎭⎝⎭,,,,. ξ0 1 2 3 4 5 6 P64729 64243 80243 160729 20243 4243 1729提高班学案3经典精讲【铺1】 设()~B n p ξ,且() 2.4E ξ=,() 1.44D ξ=,试求n p ,的值. 【解析】 因为()~B n p ξ,,所以()E np ξ=,()()1D npq np p ξ==-由题意可得方程组 ()2.41 1.44np np p =⎧⎪⎨-=⎪⎩,解得0.46.p n =⎧⎨=⎩,【例5】求二项分布的期望某地区为下岗人员免费提供财会和计算机培训,以提高下岗人员的再就业能力,每名下岗人员可以选择参加一项培训、参加两项培训或不参加培训,已知参加过财会培训的有60%,参加过计算机培训的有75%,假设每个人对培训项目的选择是相互独立的,且各人的选择相互之间没有影响. ⑴ 任选1名下岗人员,求该人参加过培训的概率;⑵ 任选3名下岗人员,记ξ为3人中参加过培训的人数,求ξ的分布列和期望.【解析】 ⑴ 任选1名下岗人员,记“该人参加过财会培训”为事件A ,“该人参加过计算机培训”为事件B ,由题设知,事件A 与B 相互独立,且()0.6P A =,()0.75P B =. 任选1名下岗人员,该人没有参加过培训的概率是: 1()()()0.40.250.1P P A B P A P B =⋅=⋅=⨯=.所以该人参加过培训的概率是21110.10.9P P =-=-=.⑵ 因为每个人的选择是相互独立的,所以3人中参加过培训的人数ξ服从二项分布(30.9)B ,.33()C 0.90.1k k k P k ξ-==⨯⨯,0123k =,,,.3(0)0.10.001P ξ===;2(1)30.90.10.027P ξ==⨯⨯=; 2(2)30.90.10.243P ξ==⨯⨯=;3(3)0.90.729P ξ===;ξ 012 3 P0.001 0.0270.243 0.729∴ξ的期望是30.9 2.7E ξ=⨯=.尖子班学案2【拓2】 某厂一批产品的合格率是98%,检验单位从中有放回地随机抽取10件,计算:⑴ 抽出的10件产品中平均有多少件正品;⑵ 计算抽出的10件产品中正品数的方差和标准差.【解析】 用X 表示抽得的正品数,由于是有放回地随机抽样,所以X 服从二项分布()100.98B ,. ⑴ 利用二项分布的期望公式得到()100.989.8E X =⨯=.平均有9.8件正品; ⑵ X 的方差()100.980.020.196D X =⨯⨯=,标准差()0.196D X σ.目标班学案2【拓3】 一份数学模拟试卷由25个选择题构成,每个选择题有4个选项,其中有且仅有一个选项是正确的,每题选得正确答案得4分,不做选择或选错不得分,满分100分.张强选对任一题的概率为0.8,求他在这次数学测验中的成绩的期望. 【解析】 张强在数学测验中选择了正确答案的选择题的个数服从二项分布()~250.8X B ,,其数学期望有简便算法.设张强做对选择题的个数为X ,则()~250.8X B ,, 所以()250.820E X np ==⨯=.因为答对每题得4分,所以张强在这次数学测验中的成绩为4X ,其成绩的期望值为()()4442080E X E X ==⨯=.【点评】 本题中,利用二项分布的均值公式()E X np =快速地求出所求的期望值,当n 的值越大时,这一公式更加显得威力无比,因此我们要熟练掌握这一公式,并能灵活地运用它,在运用时,需要注意的是,只有随机变量X 服从二项分布时,才能运用该公式来求均值.考点4:综合运用【教师备案】老师在讲完上一讲的离散型随机变量和本讲前边的典型分布以后,学生对离散型随机变量都有了很明确的认识,所以这时候就可以让学生做一下下边的综合题,让学生再巩固一下离散型随机变量的分布列、期望和方差.【例6】 综合运用甲、乙两人各进行3次射击,甲每次击中目标的概率为12,乙每次击中目标的概率为23. ⑴ 记甲击中目标的次数为ξ,求ξ的概率分布及数学期望()E ξ与方差()D ξ; ⑵ 求乙至多击中目标2次的概率;⑶ 求甲恰好比乙多击中目标2次的概率.【解析】 ⑴ ()303110C 28P ξ⎛⎫=== ⎪⎝⎭;()313131C 28P ξ⎛⎫=== ⎪⎝⎭;()323132C 28P ξ⎛⎫=== ⎪⎝⎭;()333113C 28P ξ⎛⎫=== ⎪⎝⎭.ξ的概率分布如下表:ξ 0 1 23 P18 38 38 18 ()13310123 1.58888E ξ=⨯+⨯+⨯+⨯=(或()13 1.52E ξ=⨯=)()1133224D ξ=⨯⨯=;⑵ 乙至多击中目标2次的概率为3332191C 327⎛⎫-= ⎪⎝⎭.⑶ 设甲恰好比乙多击中目标2次为事件A ,甲恰击中目标2次且乙恰击中目标0次为事件1B ,甲恰击中目标3次且乙恰击中目标1次为事件2B ,则12A B B =+,1B 、2B 为互斥事件.()()()12311218278924P A P B P B =+=⋅+⋅=.所以甲恰好比乙多击中目标2次的概率为124.尖子班学案3【拓2】 在甲、乙等6个单位参加的一次“唱读讲传”演出活动中,每个单位的节目集中安排在一起,若采用抽签的方式随机确定各单位的演出顺序(序号为1,2,……,6),求: ⑴ 甲、乙两单位的演出序号至少有一个为奇数的概率; ⑵ 甲、乙两单位之间的演出单位个数ξ的分布列与期望. 【解析】 只考虑甲、乙两单位的相对位置,故可用组合计算基本事件数.⑴ 设A 表示“甲、乙的演出序号至少有一个为奇数”,则A 表示“甲、乙的演出序号均为偶数”,由古典概经典精讲型的概率计算公式得()2326C 14()111C 55P A P A =-=-=-=.⑵ ξ的所有可能值为0,1,2,3,4,且()26510C 3P ξ===,()26441C 15P ξ===,()26312C 5P ξ===,()26223C 15P ξ===,()26114C 15P ξ===从而知ξ有分布列 ξ 0 12 3 4 P13 415 15215 115所以,()14121401234315515153E ξ=⨯+⨯+⨯+⨯+⨯=.目标班学案3【拓3】 甲、乙两名射击运动员,甲射击一次命中10环的概率为0.5,乙射击一次命中10环的概率为s ,若他们独立的射击两次,设甲、乙命中10环的次数分别为X 、Y ,则4()3E Y =.ξ为甲与乙命中10环的差的绝对值.求ξ的期望.【解析】 由已知可得~(20.5)~(2)X B Y B s ,,,,故4()23E Y s ==,所以23s =.||X Y ξ=-,ξ的取值可以是012,,.(0)()(0)(1)(2)P P X Y P X Y P X Y P X Y ξ======+==+==甲、乙两人命中10环的次数都是0次的概率是22111(0)2336P X Y ⎛⎫⎛⎫===⨯= ⎪ ⎪⎝⎭⎝⎭,甲、乙两人命中10环的次数都是1次的概率是112211122(1)C C 22339P X Y ⎛⎫⎛⎫===⋅⋅⋅⋅= ⎪⎪⎝⎭⎝⎭, 甲、乙两人命中10环的次数都是2次的概率是222222121(2)C C 239P X Y ⎛⎫⎛⎫===⋅⋅= ⎪ ⎪⎝⎭⎝⎭; 所以12113(0)369936P ξ==++=; (2)(||2)(02)(20)(0)(2)(2)(0)P P X Y P X Y P X Y P X P Y P X P Y ξ==-====+=====+==,,甲命中10环的次数是2且乙命中10环的次数是0次的概率是:222022111(2)(0)C C 2336P X P Y ⎛⎫⎛⎫===⋅=⎪ ⎪⎝⎭⎝⎭, 甲命中10环的次数是0且乙命中10环的次数是2次的概率是:220222121(0)(2)C C 239P X P Y ⎛⎫⎛⎫===⋅= ⎪ ⎪⎝⎭⎝⎭;所以115(2)36936P ξ==+=,因此1(1)1(0)(2)2P P P ξξξ==-=-==ξ的期望是157()22369E ξ=+⋅=.【例7】 综合运用袋中装着标有数字1,2,3,4的小球各3个,从袋中任取3个小球,每个小球被取出的可能性都相等. ⑴ 求取出的3个小球上的数字互不相同的概率;⑵ 用X 表示取出的3个小球上所标的最大数字,求随机变量X 的分布列和期望.【追问】用Y 表示取出的3个小球上所标的最小数字,Y 的分布列与期望是否可以直接看出来?【解析】 ⑴ “一次取出的3个小球上的数字互不相同”的事件记为A ,则31114333312C C C C 27()C 55P A ⋅⋅⋅==. ⑵ 由题意X 所有可能的取值为1,2,3,4.31211(1)C 220P X ===;1221333333312C C C C C 19(2)C 220P X ⋅+⋅+===; 2112363633312C C C C C 6416(3)C 22055P X ⋅+⋅+====; 2112393933312C C C C C 13634(4)C 22055P X ⋅+⋅+====. 所以随机变量X 的分布列为X1 2 3 4P1220 19220 1655 3455随机变量X 的期望为()11916341551234220220555544E X =⨯+⨯+⨯+⨯=. 【追问】(4)(1)(3)(2)(2)(3)(1)(4)P Y P X P Y P X P Y P X P Y P X ============,,,故Y 的概率分布与上述X 的分布正好有关系,如直接由X 的分布列得到:X 1 2 3 4P3455 1655 19220 1220且()()5E X E Y +=.从而15565()54444E Y =-=.设篮球队A 与B 进行比赛,每场比赛均有一胜队,若有一队胜4场,则比赛宣告结束,假定A 、B 在每场比赛中获胜的概率都是12,需要比赛场数的期望是__________.【解析】 5.8125 【思路】随机变量ξ表示比赛场数,根据题意:“有一队胜4场比赛才宣告结束”,故ξ的取值应是4,5,6,7,把一次比赛看作一次试验,故n 场(4567)n =,,,比赛视为n 次独立重复试验.4ξ=表示甲胜4场或乙胜4场,且两两互斥.所以44411(4)2C 28P ξ⎛⎫=== ⎪⎝⎭.5ξ=表示甲队第5场胜且前4场中胜3场,或乙队第5场胜且前4场中胜3场.所以44334411111(5)C C 22224P ξ⎛⎫⎛⎫==+= ⎪ ⎪⎝⎭⎝⎭.类似地,55335511115(6)C C 222216P ξ⎛⎫⎛⎫==+= ⎪ ⎪⎝⎭⎝⎭,66336611115(7)C C 222216P ξ⎛⎫⎛⎫==+= ⎪ ⎪⎝⎭⎝⎭.11比赛场数ξ的分布列为:ξ4 5 6 7 P18 14 516 516所以()11557593456713 5.812584161641616E ξ=⨯+⨯+⨯+⨯=+⨯==.这就是说,在比赛双方实力相当的情况下,平均进行6场比赛才能决出胜负.【错因分析】本题若审题不严,对比赛规则搞不清楚,弄不清随机变量的取值,则会出错.【演练1】从学校乘汽车到火车站的途中有3个交通岗,假设在各个交通岗遇到红灯的事件是相互独立的,并且概率都是25,设ξ为途中遇到红灯的次数,则随机变量ξ的方差为( )A .65B .1825C .625D .18125【解析】 B ;2~35B ξ⎛⎫ ⎪⎝⎭,,∴()231835525D ξ=⨯⨯=.【演练2】设有产品12件,其中有次品3件,正品9件,现从中随机抽取3件,求抽得次品件数ξ的分布列. 【解析】 从12件产品中随机抽取3件,抽得次品件数ξ是一个离散型的随机变量,它的取值可能是0、1、2、3.依题意,随机变量ξ(次品件数)服从超几何分布,所以,从12件产品中抽取3件,其中有k 件次品的概率为339312C C ()(0123)C k kP k k ξ-⋅===,,,. ∴0339312C C 21(0)C 55P ξ⋅===,1239312C C 27(1)C 55P ξ⋅===, ∴2139312C C 27(2)C 220P ξ⋅===,3039312C C 1(3)C 220P ξ⋅===, ∴ξ的分布列为ξ0 1 2 3 P2155 2755 27220 1220【演练3】设在15个同类型的零件中有两个是次品,每次任取1个,共取3次,并且每次取出不再放回,若以ξ表示取出次品的个数,求ξ的期望()E ξ和方差()D ξ.【解析】 ()313315C 220C 35P ξ===,()12213315C C 121C 35P ξ===,()21213315C C 12C 35P ξ===.故ξ的分布列是:ξ 01 2 P22351235 135实战演练12()2212120123535355E ξ=⨯+⨯+⨯=,(ξ满足参数为1523,,的超几何分布,故232()155E ξ⨯==)()2222222122152012535535535175D ξ⎛⎫⎛⎫⎛⎫=-⨯+-⨯+-⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.【演练4】有一批数量很大的商品次品率为1%,从中任意地连续取出200件商品,设其中次品数为ξ,求()E ξ,()D ξ.【解析】 因为商品数量相当大,抽200件商品可以看做200次独立重复试验,所以()~2001%B ξ,,因为()E np ξ=,()D npq ξ=,这里200n =,1%p =,99%q =,所以,()2001%2E ξ=⨯=,()2001%99% 1.98D ξ=⨯⨯=.【演练5】甲、乙、丙3人投篮,投进的概率分别是13,25,12.⑴ 现3人各投篮1次,求3人都没有投进的概率;⑵ 用ξ表示乙投篮3次的进球数,求随机变量ξ的概率分布及数学期望()E ξ. 【解析】 ⑴ 设A 表示事件“3人各投篮1次,3人都没有投进”,1B 表示“甲投进”,2B 表示事件“乙投进”,3B 表示事件“丙投进”,则()()()()12312111113525P A P B P B P B ⎛⎫⎛⎫⎛⎫=⋅⋅=--⋅-= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭.⑵ ξ的可能取值为0123,,,,则()332705125P ξ⎛⎫=== ⎪⎝⎭,()121323541C 55125P ξ⎛⎫⎛⎫==⋅= ⎪⎪⎝⎭⎝⎭; ()212323362C 55125P ξ⎛⎫⎛⎫==⋅⋅= ⎪⎪⎝⎭⎝⎭,()333283C 5125P ξ⎛⎫==⋅= ⎪⎝⎭. ξ分布列为ξ的数学期望为()0123 1.2125125125125E ξ=⨯+⨯+⨯+⨯=.(或26()355E ξ=⨯=)大千世界:排球单循环赛,南方球队比北方球队多9支,南方球队总得分是北方球队的9倍. 求证:冠军是一支南方球队.(注:每场比赛获胜队得1分,负队得0分) 【解析】 设北方球队共有x 支,则南方球队有9x +支,所有球队总得分为229(29)(28)C (29)(4)2x x x x x +++==++.由题意,南方球队总得分为9(29)(4)10x x ++,北方球队总得分为1(29)(4)10x x ++,南方球队内部比赛总得分29C x +,北方球队内部比赛总得分为2(1)C 2xx x -=, 由于北方球队总得分不少于北方球队内部比赛总得分,故 (29)(4)(1)02x x x x ++--≥.111693x +<=.13因为1(29)(4)10x x ++为整数,所以6x =或8x =. ①当6x =时,所有球队总得分为229C (29)(4)210x x x +=++=.南方球队内部比赛总得分9(29)(4)18910x x ++=,北方球队总得分为21018921-=.南方球队内部比赛总得分29C 105x +=,北方球队内部比赛总得分为26C 15=. 北方胜南方得分21156-=,北方球队最高得分5611+=,因为1115165189⨯=<,所以南方球队中至少有一支得分超过11分.故冠军在南方球队中.②当8x =时,所有球队总得分为229C (29)(4)300x x x +=++=,南方球队总得分为9(29)(4)27010x x ++=,北方球队总得分为30027030-=.南方球队内部比赛总得分29C 136x +=,北方球队内部比赛总得分28C 28=.北方胜南方得分30282-=,北方球队最高得分729+=,因为917153270⨯=<,所以南方球队中至少有一支得分超过9分,故冠军在南方球队中. 综上所述,冠军是一支南方球队.。

高中数学概率统计知识点总结大全

高中数学概率统计知识点总结大全

概率统计一,统计初步1.简单随机抽样简单随机抽样是不放回抽样,被抽取样本的个体数有限,从总体中逐个地进行抽取,使抽样便于在实践中操作.每次抽样时,每个个体等可能地被抽到,保证了抽样的公平性.实施方法主要有抽签法和随机数法.2.系统抽样(1)定义:当总体元素个数很大时,可将总体分成均衡的若干部分,然后按照预先制定的规则,从每一部分抽取一个个体得到所需要的样本,这种抽样方法叫做系统抽样,也称作等距抽样.(2)系统抽样的步骤:①编号.采用随机的方式将总体中的个体编号.②分段.先确定分段的间隔k.当Nn(N为总体中的个体数,n为样本容量)是整数时,k=Nn;当Nn不是整数时,通过从总体中随机剔除一些个体使剩下的总体中个体总数N′能被n整除,这时k=N′n.③确定起始个体编号.在第1段用简单随机抽样确定起始的个体编号S.④按照事先确定的规则抽取样本.通常是将S加上间隔k,得到第2个个体编号S +k,再将(S+k)加上k,得到第3个个体编号S+2k,这样继续下去,获得容量为n 的样本.其样本编号依次是:S,S+k,S+2k,…,S+(n-1)k.3.分层抽样(1)定义:当总体由有明显差别的几部分组成时,按某种特征在抽样时将总体中的各个个体分成互不交叉的层,然后按照各层在总体中所占的比例,从各层独立地抽取一定数量的个体合在一起作为样本,这种抽样的方法叫做分层抽样.分层抽样使用的前提是总体可以分层,层与层之间有明显区别,而层内个体间差异较小,每层中所抽取的个体数可按各层个体数在总体中所占比例抽取.分层抽样要求对总体的内容有一定的了解,明确分层的界限和数目,分层要恰当.(2)分层抽样的步骤①分层;②按比例确定每层抽取个体的个数;③各层抽样(方法可以不同);④汇合成样本.(3)分层抽样的优点分层抽样充分利用了己知信息,充分考虑了保持样本结构与总体结构的一致性.使样本具有较好的代表性,而且在各层抽样时,可以根据具体情况采取不同的抽样方法,因此分层抽样在实践中有着非常广泛的应用.4.绘制频率分布直方图把横轴分成若干段,每一段对应一个组距,然后以线段为底作一矩形,它的高等于该组的频率组距,这样得出一系列的矩形,每个矩形的面积恰好是该组上的频率.这些矩形就构成了频率分布直方图.在频率分布直方图中,纵轴表示“频率/组距”,数据落在各小组内的频率用小矩形的面积表示,各小矩形的面积总和等于1.5.茎叶图统计中还有一种被用来表示数据的图叫做茎叶图.茎是指中间的一列数,叶是从茎的旁边生长出来的数.在样本数据较少、较为集中,且位数不多时,用茎叶图表示数据的效果较好,它较好的保留了原始数据信息,方便记录与表示,但当样本数据较多时,茎叶图就不太方便.6.平均数、中位数和众数(1)平均数:一组数据的总和除以数据的个数所得的商就是平均数.(2)中位数:如果将一组数据按从小到大的顺序依次排列,当数据有奇数个时,处在最中间的一个数是这组数据的中位数;当数据有偶数个时,处在最中间两个数的平均数,是这组数据的中位数.(3)众数:出现次数最多的数(若有两个或几个数据出现得最多,且出现的次数一样,这些数据都是这组数据的众数;若一组数据中,每个数据出现的次数一样多,则认为这组数据没有众数).(4)在频率分布直方图中,最高小长方形的中点所对应的数据值即为这组数据的众数.而在频率分布直方图上的中位数左右两侧的直方图面积应该相等,因而可以估计其近似值.平均数的估计值等于频率分布直方图中每个小矩形的面积乘以小矩形底边中点的横坐标之和.7.方差、标准差(1)设样本数据为x1,x2,…,x n样本平均数为x-,则s2=1n[(x1-x-)2+(x2-x-)2+…+(x n-x-)2]=1n[(x12+x22+…+x n2)-n x2]叫做这组数据的方差,用来衡量这组数据的波动大小,一组数据方差越大,说明这组数据波动越大.把样本方差的算术平方根叫做这组数据的样本标准差.(2)数据的离散程度可以通过极差、方差或标准差来描述,其中极差反映了一组数据变化的最大幅度.方差则反映一组数据围绕平均数波动的大小.8.两个变量的线性相关(1)散点图将样本中n个数据点(xi,yi)(i=1,2,…,n)描在平面直角坐标系中,表示具有相关关系的两个变量的一组数据的图形叫做散点图.利用散点图可以判断变量之间有无相关关系.(2)正相关、负相关如果散点图中各点散布的位置是从左下角到右上角的区域,即一个变量的值由小变大时,另一个变量的值也由小变大,这种相关称为正相关.反之,如果两个变量的散点图中点散布的位置是从左上角到右下角的区域,即一个变量的值由小变大时,另一个变量的值由大变小,这种相关称为负相关.9.回归分析对具有相关关系的两个变量进行统计分析的方法叫回归分析.其基本步骤是:①画散点图,②求回归直线方程,③用回归直线方程作预报.(1)回归直线:观察散点图的特征,如果散点图中点的分布从整体上看大致在一条直线附近,我们就称这两个变量之间具有线性相关关系,这条直线叫做回归直线.(2)回归直线方程的求法——最小二乘法.设具有线性相关关系的两个变量x、y的一组观察值为(x i,y i)(i=1,2,…,n),则回归直线方程y^=a^+b^x的系数为:⎩⎪⎪⎪⎪⎨⎪⎪⎪⎪⎧ b ^=∑i =1n x i y i -n x ·y ∑i =1n x i 2-n x 2=∑i =1n (x i -x -)(y i -y -)∑i =1n (x i -x -)2a^=y --b ^x 其中x -=1n ∑i =1n x i ,y -=1n ∑i =1n y i ,(x -,y -)称作样本点的中心. a ^,b ^表示由观察值用最小二乘法求得的a ,b 的估计值,叫回归系数.10.独立性检验(1)若变量的不同“值”表示个体所属的不同类别,则这些变量称为分类变量.(2)两个分类变量X 与Y 的频数表,称作2×2列联表.二.随机事件的概率1.随机事件和确定事件:在一定的条件下所出现的某种结果叫做事件.(1)在条件S 下,一定会发生的事件叫做相对于条件S 的必然事件.(2)在条件S 下,一定不会发生的事件叫做相对于条件S 的不可能事件.(3)必然事件与不可能事件统称为确定事件.(4)在条件S 下可能发生也可能不发生的事件,叫做随机事件.(5)确定事件和随机事件统称为事件,一般用大写字母,,,A B C 表示. 2.频率与概率(1)在相同的条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数A n 为事件A 出现的频数,称事件A 出现的比例()A n n f A n=为事件A 出现的频率. (2)对于给定的随机事件A ,如果随着试验次数的增加,事件A 发生的频率()n f A 稳定在某个常数上,把这个常数记作()p A ,称为事件A 的概率,简称为A 的概率.3.互斥事件与对立事件互斥事件的定义:在一次试验中,不可能同时发生的两个事件叫做互斥事件.即A B 为不可能事件(A B φ=),则称事件A 与事件B 互斥,其含义是:事件A 与事件B 在任何一次试验中不会同时发生.一般地,如果事件12,,,n A A A 中的任何两个都是互斥的,那么就说事件12,,,n A A A 彼此互斥.对立事件:若不能同时发生,但必有一个发生的两个事件叫做互斥事件;即A B 为不可能事件,而A B 为必然事件,那么事件A 与事件B 互为对立事件,其含义是:事件A 与事件B 在任何一次试验中有且仅有一个发生.互斥事件和对立事件的区别和联系:对立事件是互斥事件,但是互斥事件不一定是对立事件.两个事件互斥是两个事件对立的必要非充分条件.4.事件的关系与运算 B 或A B +) B (或AB ) B 为不可能事件B φ= B 为不可能事件B 为必然事件与事件B 互为对立事件 B φ=且B =Ω5.随机事件的概率事件A 的概率:在大量重复进行同一试验时,事件A 发生的频率nm 总接近于某个常数,在它附近摆动,这时就把这个常数叫做事件A 的概率,记作()p A . 由定义可知()01p A ≤≤,显然必然事件的概率是1,不可能事件的概率是0.5.概率的几个基本性质(1)概率的取值范围:()01p A ≤≤.(2)必然事件的概率:()1p A =.(3)不可能事件的概率:()0p A =.(4)互斥事件的概率加法公式:①()()()p A B p A p B =+(,A B 互斥),且有()()()1p A A p A p A +=+=. ②()()()()1212n n p A A A p A p A p A =+++ (12,,,n A A A 彼此互斥).(5)对立事件的概率:()()1P A P A =-.三.古典概型1. 一次试验连同其中可能出现的每一个结果称为一个基本事件,通常此试验中的某一事件A 由几个基本事件组成.如果一次试验中可能出现的结果有n 个,即此试验由n 个基本事件组成,而且所有结果出现的可能性都相等,那么每一基本事件的概率都是n 1.如果某个事件A 包含的结果有m 个,那么事件A 的概率P (A )=n m . 基本事件的特点(1)任何两个基本事件是互斥的.(2)任何事件都可以表示成基本事件的和(除不可能事件).2.古典概型:具有以下两个特点的概率模型称为古典概率模型,简称古典概型. ①试验中所有可能出现的基本事件只有有限个,即有限性.②每个基本事件发生的可能性相等,即等可能性.概率公式:P (A )=A 包含的基本事件的个数基本事件的总数.四.几何概型1.(1)随机数的概念:随机数是在一定范围内随机产生的数,并且得到这个范围内任何一个数的机会是均等的.(2)随机数的产生方法①利用函数计算器可以得到0~1之间的随机数;②在Scilab 语言中,应用不同的函数可产生0~1或a~b 之间的随机数.2.几何概型(1)定义:如果某个事件发生的概率只与构成该事件区域的长度(面积或体积等)成比例,则称这样的概率模型为为几何概率模型,简称几何概型.(2)特点:①无限性:在一次试验中,可能出现的结果有无限多个; ②等可能性:每个结果的发生具有等可能性.(3)几何概型的解题步骤:首先是判断事件是一维问题还是二维、三维问题(事件的结果与一个变量有关就是一维的问题,与两个变量有关就是二维的问题,与三个变量有关就是三维的问题);接着,如果是一维的问题,先确定试验的全部结果和事件A 构成的区域长度(角度、弧长等),最后代公式()p A =构成事件A 的区域长度面积或体积试验的全部结果所构成的区域长度面积或体积;如果是二维、三维的问题,先设出二维或三维变量,再列出试验的全部结果和事件A 分别满足的约束条件,作出两个区域,最后计算两个区域的面积或体积代公式.(4)求几何概型时,注意首先寻找到一些重要的临界位置,再解答.一般与线性规划知识有联系.3.几种常见的几何概型(1)设线段l 是线段L 的一部分,向线段L 上任投一点.若落在线段l 上的点数与线段L 的长度成正比,而与线段l 在线段l 上的相对位置无关,则点落在线段l 上的概率为:P=l 的长度/L 的长度(2)设平面区域g 是平面区域G 的一部分,向区域G 上任投一点,若落在区域g 上的点数与区域g 的面积成正比,而与区域g 在区域G 上的相对位置无关,则点落在区域g 上概率为:P=g 的面积/G 的面积(3)设空间区域上v 是空间区域V 的一部分,向区域V 上任投一点.若落在区域v 上的点数与区域v 的体积成正比,而与区域v 在区域v 上的相对位置无关,则点落在区域V 上的概率为:P=v 的体积/V 的体积。

高中数学中的概率统计应用概率分布计算期望与方差的技巧

高中数学中的概率统计应用概率分布计算期望与方差的技巧

高中数学中的概率统计应用概率分布计算期望与方差的技巧概率统计是高中数学的重要内容之一,其应用广泛且重要。

在概率统计中,我们经常遇到需要计算随机变量的期望和方差的问题。

概率分布是解决这些问题的关键工具之一。

在本文中,我们将介绍一些高中数学中常见的概率分布,以及计算期望和方差的技巧。

1. 离散概率分布离散概率分布指的是随机变量只能取有限个或可列个值的概率分布。

其中,最常见的离散概率分布有二项分布、泊松分布和几何分布。

1.1 二项分布二项分布在实际问题中经常出现,特别是在重复试验的情况下。

假设有n个独立的重复试验,每次试验有成功和失败两种可能结果。

如果成功的概率为p,失败的概率为q=1-p,则随机变量X表示n次试验中成功的次数。

二项分布的概率密度函数为:P(X=k) = C(n,k) * p^k * q^(n-k)其中,C(n,k)表示组合数。

二项分布的期望和方差的计算公式如下:E(X) = npVar(X) = npq1.2 泊松分布泊松分布适用于描述单位时间或空间内随机事件发生的次数。

例如,某地区每小时的交通事故数、每天接到的电话数等。

泊松分布的概率密度函数为:P(X=k) = (λ^k * e^(-λ)) / k!其中,λ代表单位时间或单位空间内平均发生的次数。

泊松分布的期望和方差的计算公式如下:E(X) = Var(X) = λ1.3 几何分布几何分布用于描述一系列独立重复试验中,首次成功所需的试验次数。

例如,投掷一枚硬币直到首次出现正面的次数等。

几何分布的概率密度函数为:P(X=k) = q^(k-1) * p其中,p表示成功的概率,q=1-p表示失败的概率。

几何分布的期望和方差的计算公式如下:E(X) = 1/pVar(X) = q/(p^2)2. 连续概率分布连续概率分布指的是随机变量可以取某个区间内的任意值的概率分布。

最常见的连续概率分布有均匀分布、正态分布和指数分布。

2.1 均匀分布在均匀分布中,随机变量在某一区间内的取值是等可能的。

(完整版)高中数学概率统计知识点总结

(完整版)高中数学概率统计知识点总结

高中数学概率统计知识点总结一、抽样方法1.简单随机抽样 2.简单随机抽样常用的方法:(1)抽签法;⑵随机数表法.3.系统抽样:K (抽样距离)=N (总体规模)/n (样本规模)4.分层抽样:二、样本估计总体的方式1、用样本的频率分布估计总体分布(1)频率分布直方图的画法;(2)频率的算法;(3)频率分布折线图;(4)总体密度曲线;(5)茎叶图。

化不大的位作为一个主干(茎),将变化大的位的数作为分枝(叶),列在主干的后面,这样就可以清楚地看到每个主干后面的几个数,每个数具体是多少。

2、用样本的数字特征估计总体的数字特征(1)众数、中位数、平均数的算法;(2)标准差、方差公式.3、样本均值:nx x x x n +++= 21 4、.样本标准差:n x x x x x x s s n 222212)()()(-++-+-==三、两个变量的线性相关1、正相关2、负相关正相关:自变量增加,因变量也同时增加(即单调递增) 负相关:自变量增长,因变量减少(即单调递减)四、概率的基本概念(1)必然事件(2)不可能事件(3)确定事件(4)随机事件(5)频数与频率(6)频率与概率的区别与联系必然事件和不可能事件统称为确定事件1他们都是统计系统各元件发生的可能性大小;2、频率一般是大概统计数据经验值,概率是系统固有的准确值; 3频率是近似值,概率是准确值4、频率值一般容易得到,所以一般用来代替概率进行定量分析,首先要知道系统各元件发生故障的频率或概率.事件的频率与概率是度量事件出现可能性大小的两个统计特征数.频率是个试验值,或使用时的统计值,具有随机性,可能取多个数值。

因此,只能近似地反映事件出现可能性的大小概率是个理论值,是由事件的本质所决定的,只能取唯一值,它能精确地反映事件出现可能性的大小虽然概率能精确反映事件出现可能性的大小,但它通过大量试验才能得到,这在实际工作中往往是难以做到的.所以,从应用角度来看,频率比概率更有用,它可以从所积累的比较多的统计资料中得到需要指出的是用频率代替概率,并不否认概率能更精确、更全面地反映事件出现可能性的大小,只是由于在目前的条件下,取得概率比取得频率更为困难。

(最全)高中数学概率统计知识点总结

(最全)高中数学概率统计知识点总结

概率与统计一、普通的众数、平均数、中位数及方差 1、 众数:一组数据中,出现次数最多的数。

2、平均数:①、常规平均数:12nx x x x n++⋅⋅⋅+=②、加权平均数:112212n n n x x x x ωωωωωω++⋅⋅⋅+=++⋅⋅⋅+3、中位数:从大到小或者从小到大排列,最中间或最中间两个数的平均数.4、方差:2222121[()()()]n s x x x x x x n=-+-+⋅⋅⋅+- 二、频率直方分布图下的频率1、频率 =小长方形面积:f S y d ==⨯距;频率=频数/总数2、频率之和:121n f f f ++⋅⋅⋅+=;同时 121n S S S ++⋅⋅⋅+=;三、频率直方分布图下的众数、平均数、中位数及方差 1、众数:最高小矩形底边的中点。

2、平均数: 112233n nx x f x f x f x f =+++⋅⋅⋅+ 112233n n x x S x S x S x S =+++⋅⋅⋅+ 3、中位数:从左到右或者从右到左累加,面积等于0.5时x 的值。

4、方差:22221122()()()n n s x x f x x f x x f =-+-+⋅⋅⋅+-四、线性回归直线方程:ˆˆˆybx a =+ 其中:1122211()()ˆ()nni i i i i i nni i i i x x y y x y nxybx x x nx ====---∑∑==--∑∑ , ˆˆay bx =- 1、线性回归直线方程必过样本中心(,)x y ;2、ˆ0:b>正相关;ˆ0:b <负相关。

3、线性回归直线方程:ˆˆˆy bx a =+的斜率ˆb 中,两个公式中分子、分母对应也相等;中间可以推导得到。

五、回归分析1、残差:ˆˆi i i ey y =-(残差=真实值—预报值).分析:ˆi e 越小越好; 2、残差平方和:21ˆ()ni i i y y=-∑, 分析:①意义:越小越好; ②计算:222211221ˆˆˆˆ()()()()ni i n n i y yy y y y y y =-=-+-+⋅⋅⋅+-∑ 3、拟合度(相关指数):22121ˆ()1()ni i i ni i y yR y y ==-∑=--∑,分析:①.(]20,1R ∈的常数; ②。

高中数学概率统计知识点总结

高中数学概率统计知识点总结

高中数学概率统计知识点总结一、基本概念随机事件:在条件S下可能发生也可能不发生的事件,称为相对于条件S的随机事件。

必然事件:在条件S下,一定会发生的事件,称为相对于条件S的必然事件。

不可能事件:在条件S下,一定不会发生的事件,称为相对于条件S的不可能事件。

确定事件:必然事件和不可能事件统称为相对于条件S的确定事件。

频数与频率:在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数nA为事件A出现的频数。

对于给定的随机事件A,如果随着试验次数的增加,事件A发生的频率fn(A)稳定在某个常数上,则把这个常数记作P(A),称为事件A的概率。

二、概率的计算互斥事件的概率加法公式:如果事件A与事件B互斥,则P(AB)=P(A)+P(B)。

独立事件的概率乘法公式:如果事件A与事件B独立,则P(AB)=P(A)P(B)。

古典概型及其概率计算公式:如果试验的样本空间S只包含有限个样本点,且每个样本点发生的可能性相同,则称这种概率模型为古典概型。

在古典概型中,事件A的概率P(A)等于事件A包含的样本点个数除以样本空间S中样本点的总数。

三、随机变量及其分布随机变量:在随机试验中可能出现的各种结果所对应的变量称为随机变量。

随机变量可以是离散型或连续型。

离散型随机变量的分布列:对于离散型随机变量X,其所有可能取值的概率组成的列表称为X的分布列。

期望与方差:随机变量的期望值表示随机变量取值的平均水平,方差表示随机变量取值与其期望值的离散程度。

四、几何概型几何概型的概念:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型。

几何概型的概率计算:在几何区域D中随机地取一点,记事件“该点落在其内部一个区域d内”为事件A,则事件A发生的概率P(A)等于区域d的测度与区域D的测度的比值。

以上是高中数学概率统计的主要知识点。

掌握这些知识点并灵活应用于解题中,是学好数学概率统计的关键。

高中数学必修3概率统计知识点归纳

高中数学必修3概率统计知识点归纳

高中数学必修3概率统计知识点归纳概率统计是高中数学必修3中的一门重要课程,它研究的是随机事件的发生规律和变化趋势。

概率统计知识点在高中数学习中占据着重要的位置,对于培养学生的逻辑思维、数学建模和解决实际问题的能力具有重要意义。

下面将对高中数学必修3概率统计知识点进行全面归纳。

1.基础概念概率统计的基础概念包括样本空间、随机事件、事件的概率等。

样本空间是指所有可能的结果组成的集合,用S表示;随机事件是样本空间的子集,用A、B、C等表示;事件的概率是指一个随机事件发生的可能性大小,用P(A)表示。

2.排列组合排列组合是概率统计中常用的工具,主要用于计算事件的可能性。

在排列中,元素的顺序是重要的,而在组合中,元素的顺序是不重要的。

排列可以表示为n!,组合可以表示为C(n,m)。

3.基本概率公式基本概率公式是指计算事件的概率的公式。

对于一个随机事件A,它的概率可以用公式P(A) = n(A) / n(S)来表示,其中n(A)表示事件A 的样本点数量,n(S)表示样本空间的样本点数量。

4.互斥事件与对立事件互斥事件是指两个事件不可能同时发生的事件,它们的概率相加等于两个事件发生的总概率。

对立事件是指两个事件互为对方的补集,它们的概率之和等于1。

5.条件概率条件概率是指在已知某个条件下,事件发生的概率。

条件概率可以用公式P(A|B) = P(A∩B) / P(B)来表示,其中P(A|B)表示在事件B发生的条件下,事件A发生的概率;P(A∩B)表示事件A和事件B同时发生的概率;P(B)表示事件B发生的概率。

6.全概率公式和贝叶斯公式全概率公式和贝叶斯公式是处理复杂事件概率的重要方法。

全概率公式可以用于计算一个事件在不同条件下发生的概率,贝叶斯公式可以用于根据已知条件计算相应的概率。

7.随机变量与概率分布随机变量是指与随机事件相对应的数值,概率分布是指随机变量各取值的概率情况。

常见的概率分布有离散型概率分布和连续型概率分布。

高中数学《统计》与《概率》知识点

高中数学《统计》与《概率》知识点

高中数学《统计》与《概率》知识点高中数学的《统计》和《概率》是数学领域中的两个重要分支,它们是数据分析、预测和决策制定等实际问题中必不可少的工具。

下面将详细介绍这两个知识点。

一、统计学是研究数据收集、整理、分析和解释的学科。

统计学的主要任务是从已有的数据中得出结论,进而得到有关总体的信息。

统计学的主要内容包括:1.描述统计:通过数值特征描述数据的中心位置、离散程度等。

描述统计包括以下几个方面:(1)集中趋势:主要有均值、中位数和众数。

均值是一组数据的平均值,中位数是一组数据中处于中间位置的数值,众数是一组数据中出现频率最高的数值。

(2)离散程度:主要有极差、方差和标准差。

极差是一组数据中最大数与最小数的差值,方差是各个数据与均值的差值的平方的平均值,标准差是方差的平方根。

(3)分布形状:主要有正态分布、偏态分布和峰态分布等类型。

2.探索性数据分析:根据数据特征进行初步探索,主要包括绘制直方图、饼图、箱线图等工具来分析数据分布和异常值。

3.概率论:概率是描述随机事件发生可能性的数值,涉及到概率的计算、随机变量及其分布、大数定律和中心极限定理等概念。

(1)概率的定义与性质:概率的定义有经典概率和条件概率等。

经典概率是指在等可能的情况下,一些事件发生的概率。

条件概率是指在已知一事件发生的条件下,另一事件发生的概率。

(2)随机变量与概率分布:随机变量是具有随机性的数值,可分为离散随机变量和连续随机变量。

离散随机变量取有限或可数个数值,其概率分布函数称为概率分布列;连续随机变量在一些区间上取值,其概率分布函数称为概率密度函数。

(3)大数定律与中心极限定理:大数定律是指随着试验次数的增加,频率逼近概率。

中心极限定理是指多个独立随机变量之和的分布近似于正态分布。

4.统计推断:通过样本数据推断总体特征,主要有参数估计和假设检验。

(1)参数估计:根据样本数据估计总体参数,主要有点估计和区间估计。

点估计是用一个数值来估计总体参数,区间估计是用一个区间来估计总体参数,有置信水平的概念。

高中数学概率与统计

高中数学概率与统计

高中数学概率与统计在高中数学的学习中,概率与统计是一个非常重要的内容。

概率与统计涉及到我们日常生活中各种概率事件的计算与分析,以及统计数据的收集与解读。

本文将介绍概率与统计的基本概念、常用方法和一些实际应用。

一、概率的基本概念概率是用来度量一个事件发生的可能性的数值。

在概率计算中,我们常使用事件的概率来描述事件发生与不发生的可能性大小。

概率的计算可以通过频率方法或几何方法进行。

1.1 频率方法频率方法是通过实验来估计一个事件发生的概率。

我们可以进行大量的实验,记录事件发生的次数,然后用事件发生次数除以总实验次数,得到事件发生的频率。

经过大量实验,频率会逐渐接近真实概率值。

1.2 几何方法几何方法是通过对事件发生的空间进行几何概念的分析来计算概率。

例如,对于一个均匀的正方形,事件发生的区域的面积与正方形的面积之比就是事件发生的概率。

二、统计的基本概念统计是用来对数据进行收集、整理、分析和解读的方法。

通过统计,我们可以对一组数据的特征和规律进行描述和推断。

2.1 数据的收集数据的收集是统计的第一步。

我们可以通过调查、观察、实验等方式来收集数据。

收集到的数据可以是数值型数据或类别型数据。

2.2 数据的整理与分析收集到数据后,需要对数据进行整理和分析。

可以使用表格、图表、统计量等方式来呈现和分析数据。

常用的数据整理方法包括频数表、频率表、直方图、饼图等。

2.3 数据的解读与推断在数据分析的过程中,我们可以通过对数据的解读和推断来得出结论。

可以计算数据的平均值、中位数、众数、方差、标准差等统计量,从而对数据的特征和规律进行解读和推断。

三、常用的概率与统计方法在概率与统计的学习中,我们会接触到一些常用的方法。

3.1 排列与组合排列与组合是概率计算中常用的方法。

排列是指从若干个元素中选取若干个进行排序,组合是指从若干个元素中选取若干个不进行排序。

通过排列和组合的计算,可以得到事件发生的可能性的数量。

3.2 离散型随机变量离散型随机变量是指在一定范围内,可能取值有限且可数的随机变量。

【高中数学】 概率与统计

【高中数学】 概率与统计

回扣9 概率与统计1.牢记概念与公式 (1)概率的计算公式 ①古典概型的概率计算公式P (A )=事件A 包含的基本事件数m基本事件总数n;②互斥事件的概率计算公式P (A ∪B )=P (A )+P (B );③对立事件的概率计算公式P (A )=1-P (A );④几何概型的概率计算公式P (A )=构成事件A 的区域长度面积或体积试验的全部结果所构成的区域长度面积或体积.(2)抽样方法简单随机抽样、分层抽样、系统抽样.①从容量为N 的总体中抽取容量为n 的样本,则每个个体被抽到的概率都为nN;②分层抽样实际上就是按比例抽样,即按各层个体数占总体的比确定各层应抽取的样本容量.(3)统计中四个数据特征①众数:在样本数据中,出现次数最多的那个数据.②中位数:在样本数据中,将数据按大小排列,位于最中间的数据.如果数据的个数为偶数,就取中间两个数据的平均数作为中位数. ③平均数:样本数据的算术平均数,即x =1n(x 1+x 2+…x n ).④方差与标准差 方差:s 2=1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2].标准差:s =1n[x 1-x 2+x 2-x 2+…+x n -x 2].(4)八组公式①离散型随机变量的分布列的两个性质Ⅰ.p i ≥0(i =1,2,…,n );Ⅱ.p 1+p 2+…+p n =1. ②均值公式E (X )=x 1p 1+x 2p 2+…+x n p n .③均值的性质Ⅰ.E (aX +b )=aE (X )+b ; Ⅱ.若X ~B (n ,p ),则E (X )=np ; Ⅲ.若X 服从两点分布,则E (X )=p . ④方差公式D (X )=[x 1-E (X )]2·p 1+[x 2-E (X )]2·p 2+…+[x n -E (X )]2·p n ,标准差D X .⑤方差的性质Ⅰ.D (aX +b )=a 2D (X );Ⅱ.若X ~B (n ,p ),则D (X )=np (1-p ); Ⅲ.若X 服从两点分布,则D (X )=p (1-p ). ⑥独立事件同时发生的概率计算公式P (AB )=P (A )P (B ).⑦独立重复试验的概率计算公式P n (k )=C k n p k (1-p )n -k . ⑧条件概率公式P (B |A )=P AB P A.2.活用定理与结论 (1)直方图的三个结论①小长方形的面积=组距×频率组距=频率.②各小长方形的面积之和等于1.③小长方形的高=频率组距,所有小长方形高的和为1组距.(2)线性回归方程y ^=b ^x +a ^一定过样本点的中心(x ,y ).(3)利用随机变量K 2=n ad -bc2a +bc +da +cb +d来判断“两个分类变量有关系”的方法称为独立性检验.如果K 2的观测值k 越大,说明“两个分类变量有关系”的可能性越大.(4)如果随机变量X 服从正态分布,则记为X ~N (μ,σ2).满足正态分布的三个基本概率的值是:①P (μ-σ<X ≤μ+σ)=0.682 6;②P (μ-2σ<X ≤μ+2σ2)=0.954 4;③P (μ-3σ<X ≤μ+3σ)=0.997 4.1.应用互斥事件的概率加法公式,一定要注意首先确定各事件是否彼此互斥,然后求出各事件分别发生的概率,再求和.2.正确区别互斥事件与对立事件的关系:对立事件是互斥事件,是互斥中的特殊情况,但互斥事件不一定是对立事件,“互斥”是“对立”的必要不充分条件.3.混淆频率分布条形图和频率分布直方图,误把频率分布直方图纵轴的几何意义当成频率,导致样本数据的频率求错.4.要注意概率P (A |B )与P (AB )的区别(1)在P (A |B )中,事件A ,B 发生有时间上的差异,B 先A 后;在P (AB )中,事件A ,B 同时发生.(2)样本空间不同,在P (A |B )中,事件B 成为样本空间;在P (AB )中,样本空间仍为Ω,因而有P (A |B )≥P (AB ).5.易忘判定随机变量是否服从二项分布,盲目使用二项分布的均值和方差公式计算致误.1.某学校有男学生400名,女学生600名.为了解男女学生在学习兴趣与业余爱好方面是否存在显著差异,拟从全体学生中抽取男学生40名,女学生60名进行调查,则这种抽样方法是( )A.抽签法B.随机数法C.系统抽样法D.分层抽样法 答案 D解析 总体由男生和女生组成,比例为400∶600=2∶3,所抽取的比例也是2∶3,故拟从全体学生中抽取100名学生进行调查,采用的抽样方法是分层抽样法,故选D.2.投掷两颗骰子,得到其向上的点数分别为m 和n ,则复数(m +n i)(n -m i)为实数的概率是( )A.13B.14C.16D.112 答案 C解析 投掷两颗骰子,得到其向上的点数分别为m 和n ,记作(m ,n ),共有6×6=36(种)结果.(m +n i)(n -m i)=2mn +(n 2-m 2)i 为实数,应满足m =n ,有6种情况,所以所求概率为636=16,故选C.3.一个袋子中有5个大小相同的球,其中3个白球2个黑球,现从袋中任意取出一个球,取出后不放回,然后再从袋中任意取出一个球,则第一次为白球、第二次为黑球的概率为( )A.35B.310C.12D.625 答案 B解析 设3个白球分别为a 1,a 2,a 3,2个黑球分别为b 1,b 2,则先后从中取出2个球的所有可能结果为(a 1,a 2),(a 1,a 3),(a 1,b 1),(a 1,b 2),(a 2,a 3),(a 2,b 1),(a 2,b 2),(a 3,b 1),(a 3,b 2),(b 1,b 2),(a 2,a 1),(a 3,a 1),(b 1,a 1),(b 2,a 1),(a 3,a 2),(b 1,a 2),(b 2,a 2),(b 1,a 3),(b 2,a 3),(b 2,b 1),共20种.其中满足第一次为白球、第二次为黑球的有(a 1,b 1),(a 1,b 2),(a 2,b 1),(a 2,b 2),(a 3,b 1),(a 3,b 2),共6种,故所求概率为620=310.4.为了解某社区居民的家庭年收入与年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表:根据上表可得线性回归方程y ^=b ^x +a ^,其中b ^=0.76,a ^=y -b ^x .据此估计,该社区一户年收入为15万元家庭的年支出为( )A.11.4万元B.11.8万元C.12.0万元D.12.2万元 答案 B解析 由题意知,x =8.2+8.6+10.0+11.3+11.95=10,y =6.2+7.5+8.0+8.5+9.85=8,∴a ^=8-0.76×10=0.4, ∴当x =15时,y ^=0.76×15+0.4=11.8(万元).5.设X ~N (1,σ2),其正态分布密度曲线如图所示,且P (X ≥3)=0.022 8,那么向正方形OABC 中随机投掷10 000个点,则落入阴影部分的点的个数的估计值为( )附:(随机变量ξ服从正态分布N (1,σ2),则P (μ-σ<ξ≤μ+σ)=68.26%,P (μ-2σ<ξ≤μ+2σ)=95.44%)( )A.6 038B.6 587C.7 028D.7 539 答案 B解析 由题意知,P (0<X ≤1)=1-12×0.682 6=0.658 7,则落入阴影部分的点的个数的估计值为10 000×0.658 7=6 587.故选B.6.从1,3,5,7,9这五个数中,每次取出两个不同的数分别记为a ,b ,共可得到lg a -lg b 的不同值的个数是( ) A.9 B.10 C.18 D.20 答案 C解析 由于lg a -lg b =lg a b (a >0,b >0),从1,3,5,7,9中任取两个作为ab有A 25=20种,又13与39相同,31与93相同,∴lg a -lg b 的不同值的个数有A 25-2=20-2=18,选C.7.甲、乙两同学用茎叶图记录高三前5次数学测试的成绩,如图所示,他们在分析对比成绩变化时,发现乙同学成绩的一个数字看不清楚了,若已知乙的平均成绩低于甲的平均成绩,则看不清楚的数字为( )A.0B.3C.6D.9 答案 A解析 设看不清的数字为x ,甲的平均成绩为99+100+101+102+1035=101,所以93+94+97+110+110+x 5<101,x <1,所以x =0.故选A.8.在一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )(n ≥2,x 1,x 2,…,x n 不全相等)的散点图中,若所有样本点(x i ,y i )(i =1,2,…,n )都在直线y =-13x +2上,则这组样本数据的样本的相关系数为( ) A.-1 B.0 C.-13 D.1答案 A解析 数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )(n ≥2,x 1,x 2,…,x n 不全相等)的散点图中,样本点(x i ,y i )(i =1,2,…,n )都在直线y =-13x +2上,说明这组数据点完全负相关,其相关系数为-1,故选A.9.在区间[1,5]和[2,4]内分别取一个数,记为a ,b ,则方程x 2a2+y 2b 2=1表示焦点在x 轴上且离心率小于32的椭圆的概率为________. 答案 1532解析 当方程x 2a2+y 2b 2=1表示焦点在x 轴上且离心率小于32的椭圆时,有⎩⎪⎨⎪⎧a 2>b 2,e =c a=a 2-b 2a <32,即⎩⎪⎨⎪⎧ a 2>b 2,a 2<4b 2, 化简得⎩⎪⎨⎪⎧a >b ,a <2b .又a ∈[1,5],b ∈[2,4],画出满足不等式的平面区域,如图阴影部分所示 ,求得阴影部分的面积为154,故P =S 阴影2×4=1532.10.将某班参加社会实践编号为1,2,3,…,48的48名学生,采用系统抽样的方法抽取一个容量为6的样本,已知5号,21号,29号,37号,45号学生在样本中,则样本中还有一名学生的编号是________. 答案 13解析 系统抽样法取出的样本编号成等差数列,因此还有一个编号为5+8=21-8=13. 11.某班有学生60人,现将所有学生按1,2,3,…,60随机编号,若采用系统抽样的方法抽取一个容量为5的样本(等距抽样),已知编号为4,a ,28,b ,52号学生在样本中,则a +b =________. 答案 56解析 ∵样本容量为5,∴样本间隔为60÷5=12, ∵编号为4,a ,28,b ,52号学生在样本中, ∴a =16,b =40, ∴a +b =56.12.给出如下四对事件:①某人射击1次,“射中7环”与“射中8环”;②甲、乙两人各射击1次,“至少有1人射中目标”与“甲射中,但乙未射中目标”;③从装有2个红球和2个黑球的口袋内任取2个球,“至少一个黑球”与“都是红球”;④从装有2个红球和2个黑球的口袋内任取2个球,“没有黑球”与“恰有一个红球”.其中属于互斥事件的是________.(把你认为正确的事件的序号都填上).答案①③④解析①某人射击1次,“射中7环”与“射中8环”两个事件不会同时发生,故为互斥事件;②甲、乙两人各射击1次,“至少有1人射中目标”与“甲射中,但乙未射中目标”,前者包含后者,故②不是互斥事件;③“至少有一个黑球”与“都是红球”不能同时发生,但一定会有一个发生,所以这两个事件是对立事件,故是互斥事件;④“没有黑球”与“恰有一个红球”,不可能同时发生,故他们属于互斥事件.13.国内某知名大学有男生14 000人,女生10 000人.该校体育学院想了解本校学生的运动状况,根据性别采取分层抽样的方法从全校学生中抽取120人,统计他们平均每天运动的时间,如下表:(平均每天运动的时间单位:小时,该校学生平均每天运动的时间范围是[0,3])男生平均每天运动的时间分布情况:女生平均每天运动的时间分布情况:(1)请根据样本估算该校男生平均每天运动的时间(结果精确到0.1);(2)若规定平均每天运动的时间不少于2小时的学生为“运动达人”,低于2小时的学生为“非运动达人”.①根据样本估算该校“运动达人”的数量;②请根据上述表格中的统计数据填写下面2×2列联表,并通过计算判断能否在犯错误的概率不超过0.05的前提下认为“是否为‘运动达人’与性别有关?”运动达人非运动达人总计 男生 女生 总计参考公式:K 2=n ad -bc2a +ba +da +cb +d,其中n =a +b +c +d参考数据:P (K 2>k 0) 0.15 0.10 0.05 0.025 0.010 0.005 k 02.0722.7063.8415.0246.6357.879解 (1)由分层抽样得:男生抽取的人数为120×14 00014 000+10 000=70,女生抽取的人数为120-70=50,故x =5,y =2,则该校男生平均每天运动的时间为 0.25×2+0.75×12+1.25×23+1.75×18+2.25×10+2.75×570≈1.5.故该校男生平均每天运动的时间约为1.5小时.(2)①样本中“运动达人”所占比例是20120=16,故估计该校“运动达人”有16×(14 000+10000)=4 000(人). ②由表格可知:运动达人 非运动达人总计 男生 15 55 70 女生 5 45 50 总计20100120故K 2的观测值k =120×15×45-5×55220×100×50×70=9635≈2.743<3.841, 故在犯错误的概率不超过0.05的前提下不能认为“是否为‘运动达人’与性别有关”.14.某公司通过初试和复试两轮考试确定最终合格人选,当第一轮初试合格后方可进入第二轮复试,两次考核过程相互独立.根据甲、乙、丙三人现有的水平,第一轮考核甲、乙、丙三人合格的概率分别为0.4、0.6、0.5.第二轮考核,甲、乙、丙三人合格的概率分别为0.5、0.5、0.4.(1)求第一轮考核后甲、乙两人中只有乙合格的概率;(2)设甲、乙、丙三人经过前后两轮考核后合格入选的人数为X ,求X 的分布列和均值. 解 (1)设甲、乙经第一次考核后合格为事件A 1、B 1,设事件E 表示第一轮考核后甲不合格、乙合格,则P (E )=P (A 1·B 1)=0.6×0.6=0.36.即第一轮考核后甲、乙两人中只有乙合格的概率为0.36.(2)分别设甲、乙、丙三人经过前后两次考核后合格入选为事件A 、B 、C ,则P (A )=0.4×0.5=0.2,P (B )=0.6×0.5=0.3,P (C )=0.4×0.5=0.2,经过前后两轮考核后合格入选的人数为X ,则X 可能取0,1,2,3.P (X =0)=0.8×0.7×0.8=0.448,P (X =1)=0.2×0.7×0.8+0.8×0.3×0.8+0.8×0.7×0.2=0.416,P (X =3)=0.2×0.3×0.2=0.012,P (X =2)=1-0.448-0.416-0.012=0.124.X 的分布列为 X0 1 2 3 P0.448 0.416 0.124 0.012均值为E(X)=0×0.448+1×0.416+2×0.124+3×0.012=0.7.。

高中数学概率与统计( 排列组合)

高中数学概率与统计( 排列组合)

排列组合一 、分类、分步原理(一)分类原理:12n N m m m =+++.分类原理题型比较杂乱,须累积现象。

几种常见的现象有:1.开关现象:要根据开启或闭合开关的个数分类.2.数图形个数:根据图形是由几个单一图形组合而成进行分类求情况数. 3.球赛得分:根据胜或负场次进行分类. (二)分步原理:12n N m m m =⨯⨯⨯.两种典型现象: 1.涂颜色(1)平面图涂颜色:先涂接触区域最多的一块(2)立体图涂颜色:先涂具有同一顶点的几个平面,其他平面每步涂法分类列举. 2.映射按步骤用A 集合的每一个元素到B 集合里选一个元素,可以重复选.二 、排列、组合(一)常规题型求情况数1.直接法:先排(选)特殊元素,再排(选)一般元素。

捆绑法,插空法.2.间接法:先算总情况数,再排除不符合条件的情况数. (二)七种常考非常规现象1.小数量事件需要分类列举:凡不可使用公式且估计情况数较少,要分类一一列举 2.相同元素的排列:用组合数公式选出位置把相同元素放进去,不用排顺序 3.有序元素的排列:用组合数公式选出位置把有序元素放进去,不用排顺序 4.剩余元素分配:有互不相同的剩余元素需要分配时,用隔板法。

5.迈步与网格现象:要看一共走几步,把特殊的几步选出来,有几种选法就有几种情况. 6.立体几何与解析几何现象:多数用排除法求情况数 7.平均分组现象:先用分步原理选出每一组的元素,再除以因为平均分组算重复的倍数,平均分n 组,就除以nn A ,有几套平均分组就除几个xx A .(三)排列数,组合数公式运算的考察1.排列数公式mn A =)1()1(+--m n n n =!!)(m n n -.(n ,m ∈N *,且m n ≤).注:规定1!0=. 2. 组合数公式m n C=m n mmA A =m m n n n ⨯⨯⨯+-- 21)1()1(=!!!)(m n m n -⋅(n ∈N *,m N ∈,且m n ≤). 3. 组合数的两个性质(1)mn C =mn n C - ; (2) m n C +1-m n C =m n C 1+. 注:规定10=n C .4. 排列数与组合数的关系m mn nA m C =⋅! . 【题型体系】一、分类计数原理与分步计数原理 (一)选(排)人选(排)物1.某班级要从4名男生和2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方法有( )A.14 B.24 C.28 D.482.从黄瓜、白菜、油菜、扁豆4种蔬菜品种中选出3种,分别种在不同土质的三块土地上,其中黄瓜必须种植,不同的种植方法共有( )A .24种B .18种C .12种D .6种3.从6名志愿者中选出4人分别从事翻译、导游、导购、保洁四项不同工作.若其中甲、乙两名支援者都不能从事翻译工作,则选派方案共有( )(A )280种 (B )240种 (C )180种 (D )96种 (二).染色1.用五种不同的颜色给图中的四个区域涂色,如果每一个涂一种颜色,相邻的区域不能同色,那么涂色的方法有__________种。

高中数学-公式-概率与统计

高中数学-公式-概率与统计

概率一、基本知识在一定的条件下必然要发生的事件,叫做必然事件;在一定的条件下不可能发生的事件,叫做不可能事件;在一定的条件下可能发生也可能不发生的事件,叫做随即事件。

在大量重复进行同一试验时,事件A 发生的频率nm 总是接近于某个常数,在它附近摆动,这是就把这个常数叫做事件A 的概率,记作P(A)。

一次试验连同其中可能出现的每一个结果称为一个基本事件,通常试验中的某一事件A 由几个基本事件组成。

如果一次试验中可能出现的结果有n 个,即此试验由n 个基本事件组成,而且所有结果出现的可能性都相等,那么每个基本事件的概率都是n 1。

如果某个事件A 包含的结果有m 个,那么事件A 的概率P(A)= n m . 事件A 与B 不可能同时发生,这种不可能同时发生的两个事件叫做互斥事件。

一般地,如果事件A 1、A 2、……A n 中的任何两个都是互斥事件,那么就说事件A 1、A 2、……A n 彼此互斥。

事件A 与A 中必有一个发生,这种其中必有一个发生的互斥事件叫做对立事件。

如果事件A 、B 互斥,那么事件A+B 发生(即A 、B 中有一个发生)的概率,等于事件A 、B 分别发生的概率的和,即P(A+B)=P(A)+P(B)。

一般地,如果事件A 1、A 2、……A n 彼此互斥,那么事件A 1+A 2+……+A n (即A 1、A 2、……A n 中有一个发生)的概率,等于这n 个事件分别发生的概率的和,即P(A 1+A 2+……+A n )= P(A 1)+ P(A 2)+ ……+ P(A n )。

对立事件的概率的和等于1,即1)()()(=+=+A A P A P A P 。

两个相互独立事件同时发生的概率,等于每个事件发生的概率的积,即P(AB)=P(A)P(B)。

一般地,如果事件A 1、A 2、……A n 相互独立,那么这n 个事件同时发生的概率,等于每个事件发生的概率的积,即)()()()(2121n n A P A P A P A A A P =。

高中概率统计考点归纳

高中概率统计考点归纳

高中概率统计考点归纳一、概率的基本概念与性质概率的定义:概率是一个衡量事件发生可能性的数值,通常用P(A)表示事件A发生的概率。

概率的取值范围为0到1之间,其中P(A) = 0表示事件A不可能发生,P(A) = 1表示事件A必然发生。

举例:抛掷一枚硬币,正面朝上的概率为0.5,反面朝上的概率也为0.5。

概率的性质:非负性:对于任意事件A,有P(A) ≥0;归一性:对于必然事件S,有P(S) = 1;可加性:对于互斥事件A和B(即A和B不能同时发生),有P(A ∪B) = P(A) + P(B)。

举例:一个袋子中有3个红球和2个白球,随机抽取一个球为红球的概率是3/5,为白球的概率是2/5。

由于红球和白球是互斥事件,所以抽取到红球或白球的概率是3/5 + 2/5 = 1。

二、古典概型与几何概型古典概型:在有限个等可能的基本事件中,通过计算事件包含的基本事件个数与总基本事件个数的比值来求概率。

举例:抛掷两颗骰子,求点数之和为7的概率。

总的基本事件个数为6×6=36,点数之和为7的基本事件有(1,6)、(2,5)、(3,4)、(4,3)、(5,2)、(6,1),共6种。

因此,点数之和为7的概率为6/36=1/6。

几何概型:在某一度量(长度、面积、体积等)下,通过计算事件占有的度量与样本空间占有的度量的比值来求概率。

举例:在长度为1的线段上随机取一点,求该点位于线段前1/3部分的概率。

样本空间为整个线段,其长度为1;事件空间为线段前1/3部分,其长度为1/3。

因此,该点位于线段前1/3部分的概率为1/3。

三、条件概率与全概率公式条件概率:在已知事件B发生的条件下,事件A发生的概率,记为P(A|B)。

计算公式为P(A|B) = P(AB) / P(B),其中P(AB)表示事件A和B同时发生的概率。

举例:一个班级中有40名学生,其中25名男生和15名女生。

已知某学生是女生,求该学生数学成绩优秀的概率。

高中数学概率统计

高中数学概率统计

高中数学概率统计高中数学的概率统计是数学中的一个重要分支,它主要研究事件发生的可能性以及事件之间的关联性。

以下是一些常见的概率统计概念和方法:1. 概率:概率是指某个事件发生的可能性。

它的取值范围在0到1之间,其中0表示不可能发生,1表示一定会发生。

2. 随机事件:随机事件是在一次试验中可能发生的结果。

例如,掷硬币的结果(正面或反面)或掷骰子的点数(1到6)都是随机事件。

3. 样本空间:样本空间是指一个试验中所有可能结果的集合。

例如,掷硬币的样本空间是{正面,反面},掷骰子的样本空间是{1, 2, 3, 4, 5, 6}。

4. 事件:事件是样本空间的一个子集,表示我们感兴趣的结果。

例如,掷硬币出现正面可以表示为事件A,掷骰子点数大于3可以表示为事件B。

5. 概率计算:概率可以通过计算事件发生的次数与试验总次数的比值来确定。

当试验次数足够多时,这个比值将趋近于事件的概率。

6. 条件概率:条件概率是指在已知某个事件发生的条件下,另一个事件发生的概率。

它可以用P(A|B)表示,表示在事件B发生的情况下,事件A发生的概率。

7. 独立事件:独立事件是指两个事件之间没有相互影响,一个事件的发生与另一个事件的发生无关。

如果事件A和事件B是独立事件,那么P(A|B) = P(A)。

8. 期望值:期望值是对随机变量取值的平均预期。

它是根据每个取值乘以其概率,再将所有乘积相加而得到的。

9. 正态分布:正态分布是一种常见的连续型概率分布,具有钟形曲线特征。

它在实际应用中广泛用于描述各种现象的分布情况。

以上是概率统计的一些基本概念和方法,通过学习这些内容,可以更好地理解和分析概率和统计问题,并在实际问题中应用这些知识进行分析和决策。

高中数学概率统计知识点总结

高中数学概率统计知识点总结

高中数学概率统计知识点总结1. 随机变量的期望值若随机变量 X 的概率分布如下表:则随机变量 X 的期望值为E (X )=1=∑nk k k x p =x 1‧p 1+x 2‧p 2+…+x n ‧p n 。

2. 一组数据的变异数与标准差若一组数据 x 1,x 2,…,x n 的平均数为 μ,则这组数据的 (1) 变异数为σ2=1n((x 1-μ)2+(x 2-μ)2+…+(x n -μ)2)=211()μ=-∑n k k x n 。

(2) 标准差为 σ。

3. 随机变量的变异数与标准差若随机变量 X 的分布如下表:则随机变量 X 的(1) 变异数为 Var (X )=21(())=-⋅∑nk k k x E X p =E (X 2)-(E (X ))2。

(2) 标准差为4. 三事件为独立事件当三事件 A ,B ,C 同时满足下列四项条件: (1) P (A ∩B )=P (A )P (B ),(2) P (B ∩C )=P (B )P (C ), (3) P (A ∩C )=P (A )P (C ),(4) P (A ∩B ∩C )=P (A )P (B )P (C )。

称 A ,B ,C 三事件为独立事件。

5. 独立重复试验的概率假设一白努利试验成功的概率为 p 。

则独立重复试验 n 次中,恰出现 k 次成功的概率为n k C p k (1-p )n -k 。

6. 二项分布假设白努利试验成功的概率为 p ,失败的概率为 q =1-p ,其中 p ≥ 0,q ≥ 0。

令随机变量 X 的取值表示此试验独立重复试验 n 次中成功的次数,则 X 的概率质量函数为P (X =k )=n k C p k q n -k ,k =0,1,…,n 。

此随机变量 X 的概率分布称为二项分布,记为 B (n ,p )。

7. 二项分布的期望值、变异数、标准差设随机变量 X 的概率分布为二项分布 B (n ,p ),则随机变量 X 的 (1) 期望值为 E (X )=np 。

高中数学概率统计

高中数学概率统计

第八讲 概率统计考点透视1.了解随机事件的发生存在着规律性和随机事件概率的意义.2.了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率. 3.了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率.4.会计算事件在n 次独立重复试验中恰好发生k 次的概率.5. 掌握离散型随机变量的分布列. 6.掌握离散型随机变量的期望与方差. 7.掌握抽样方法与总体分布的估计. 8.掌握正态分布与线性回归. 例题解析考点1. 求等可能性事件、互斥事件和相互独立事件的概率 解此类题目常应用以下知识:1等可能性事件古典概型的概率:PA =)()(I card A card =nm ;等可能事件概率的计算步骤:① 计算一次试验的基本事件总数n ;② 设所求事件A,并计算事件A 包含的基本事件的个数m ; ③ 依公式()m P A n=求值;④ 答,即给问题一个明确的答复.2互斥事件有一个发生的概率:PA +B =PA +PB ; 特例:对立事件的概率:PA +P A =PA +A =1. 3相互独立事件同时发生的概率:PA ·B =PA ·PB ;特例:独立重复试验的概率:P n k =k n k k n p p C --)1(.其中P 为事件A 在一次试验中发生的概率,此式为二项式1-P+P n 展开的第k+1项. 4解决概率问题要注意“四个步骤,一个结合”: ① 求概率的步骤是:第一步,确定事件性质⎧⎪⎪⎨⎪⎪⎩等可能事件 互斥事件 独立事件 n 次独立重复试验即所给的问题归结为四类事件中的某一种.第二步,判断事件的运算⎧⎨⎩和事件积事件即是至少有一个发生,还是同时发生,分别运用相加或相乘事件.第三步,运用公式()()()()()()()()(1)k k n k n n m P A nP A B P A P B P A B P A P B P k C p p -⎧=⎪⎪⎪+=+⎨⎪⋅=⋅⎪=-⎪⎩等可能事件: 互斥事件: 独立事件: n 次独立重复试验:求解 第四步,答,即给提出的问题有一个明确的答复.例1.在五个数字12345,,,,中,若随机取出三个数字,则剩下两个数字都是奇数的概率是 结果用数值表示.考查目的本题主要考查概率的概念和等可能性事件的概率求法. 解答过程提示:1335C 33.54C 102P ===⨯ 例2.一个总体含有100个个体,以简单随机抽样方式从该总体中抽取一个容量为5的样本,则指定的某个个体被抽到的概率为 .考查目的本题主要考查用样本分析总体的简单随机抽样方式,同时考查概率的概念和等可能性事件的概率求法.用频率分布估计总体分布,同时考查数的区间~的意义和概率的求法. 解答过程1.20提示:51.10020P == 例3从自动打包机包装的食盐中,随机抽取20袋,测得各袋的质量分别为单位:g :492 496 494 495 498 497 501 502 504 496 497 503 506 508 507 492 496 500 501 499根据的原理,该自动包装机包装的袋装食盐质量在~之间的概率约为__________. 考查目的本题主要考查用频率分布估计总体分布,同时考查数的区间~的意义和概率的求法.解答过程在~内的数共有5个,而总数是20个,所以有51.204= 点评:首先应理解概率的定义,在确定给定区间的个体的数字时不要出现错误. 例4.接种某疫苗后,出现发热反应的概率为.现有5人接种该疫苗,至少有3人出现发热反应的概率为__________.精确到考查目的 本题主要考查运用组合、概率的基本知识和分类计数原理解决问题的能力,以及推理和运算能力.解答提示至少有3人出现发热反应的概率为33244555550.800.200.800.200.800.94C C C ⋅⋅+⋅⋅+⋅=.故填.例5.右图中有一个信号源和五个接收器.接收器与信号源在同一个串联线路中时,就能接收到信号,否则就不能接收到信号.若将图中左端的六个接线点随机地平均分成三组,将右端的六个接线点也随机地平均分成三组,再把所有六组中每组的两个接线点用导线连接,则这五个接收器能同时接收到信号的概率是A 454 B 361 C 154 D 158考查目的 本题主要考查运用组合、概率知识,以及分步计数原理解决问题的能力,以及推理和运算能力.解答提示由题意,左端的六个接线点随机地平均分成三组有2226423315C C C A =种分法,同理右端的六个接线点也随机地平均分成三组有2226423315C C C A=种分法;要五个接收器能同时接收到信号,则需五个接收器与信号源串联在同一个线路中,即五个接收器的一个全排列,再将排列后的第一个元素与信号源左端连接,最后一个元素与信号源右端连接,所以符合条件的连接方式共有55120A =种,所求的概率是120822515P ==,所以选D.点评:本题要求学生能够熟练运用排列组合知识解决计数问题,并进一步求得概率问题,其中隐含着平均分组问题.例6.从某批产品中,有放回地抽取产品二次,每次随机抽取1件,假设事件A :“取出的2件产品中至多有1件是二等品”的概率()0.96P A =. 1求从该批产品中任取1件是二等品的概率p ;2若该批产品共100件,从中任意抽取2件,求事件B :“取出的2件产品中至少有一件二等品”的概率()P B .考查目的本小题主要考查相互独立事件、互斥事件等的概率计算,运用数学知识解决问题的能力,以及推理与运算能力.解答过程1记0A 表示事件“取出的2件产品中无二等品”,1A 表示事件“取出的2件产品中恰有1件二等品”.则01A A ,互斥,且01A A A =+,故 于是20.961p =-.解得120.20.2p p ==-,舍去.2记0B 表示事件“取出的2件产品中无二等品”,则0B B =. 若该批产品共100件,由1知其中二等品有1000.220⨯=件,故28002100C 316()C 495P B ==. 例7.两部不同的长篇小说各由第一、二、三、四卷组成,每卷1本,共8本.将它们任意地排成一排,左边4本恰好都属于同一部小说的概率 是 结果用分数表示.考查目的 本题主要考查运用排列和概率知识,以及分步计数原理解决问题的能力,以及推理和运算能力.解答提示从两部不同的长篇小说8本书的排列方法有88A 种,左边4本恰好都属于同一部小说的的排列方法有442442A A A 种.所以, 将符合条件的长篇小说任意地排成一排,左边4本恰好都属于同一部小说的概率是 44244288135A A A P A ==种.所以,填135. 例8.甲、乙两袋装有大小相同的红球和白球,甲袋装有2个红球,2个白球;乙袋装有2个红球,n 个白球.由甲,乙两袋中各任取2个球.Ⅰ若n=3,求取到的4个球全是红球的概率;Ⅱ若取到的4个球中至少有2个红球的概率为43,求n.考查目的本题主要考查排列组合、概率等基本知识,同时考察逻辑思维能力和数学应用能力.标准解答I 记“取到的4个球全是红球”为事件A .II 记“取到的4个球至多有1个红球”为事件B ,“取到的4个球只有1个红球”为事件1B ,“取到的4个球全是白球”为事件2B . 由题意,得31()1.44P B =-=所以, 12()()()P B P B P B =+22(1)3(2)(1)6(2)(1)n n n n n n n -=+++++14=,化简,得271160,nn --=解得2n =,或37n =-舍去, 故 2n =.例9.某商场经销某商品,顾客可采用一次性付款或分期付款购买.根据以往资料统计,顾客采用一次性付款的概率是,经销一件该商品,若顾客采用一次性付款,商场获得利润200元;若顾客采用分期付款,商场获得利润250元. Ⅰ求3位购买该商品的顾客中至少有1位采用一次性付款的概率; Ⅱ求3位顾客每人购买1件该商品,商场获得利润不超过650元的概率. 考查目的本小题主要考查相互独立事件、独立重复试验等的概率计算,运用数学知识解决问题的能力,以及推理与运算能力.解答过程Ⅰ记A 表示事件:“3位顾客中至少1位采用一次性付款”,则A 表示事件:“3位顾客中无人采用一次性付款”.2()(10.6)0.064P A =-=, ()1()10.0640.936P A P A =-=-=.Ⅱ记B 表示事件:“3位顾客每人购买1件该商品,商场获得利润不超过650元”.0B 表示事件:“购买该商品的3位顾客中无人采用分期付款”. 1B 表示事件:“购买该商品的3位顾客中恰有1位采用分期付款”.则01B B B =+.30()0.60.216P B ==,1213()0.60.40.432P B C =⨯⨯=.01()()P B P B B =+01()()P B P B =+0.2160.432=+0.648=.例10.某公司招聘员工,指定三门考试课程,有两种考试方案. 方案一:考试三门课程,至少有两门及格为考试通过;方案二:在三门课程中,随机选取两门,这两门都及格为考试通过.假设某应聘者对三门指定课程考试及格的概率分别是,,a b c ,且三门课程考试是否及格相互之间没有影响.Ⅰ分别求该应聘者用方案一和方案二时考试通过的概率;Ⅱ试比较该应聘者在上述两种方案下考试通过的概率的大小.说明理由考查目的 本题主要考查互斥事件有一个发生的概率和对立事件的概率,以及不等式等基本知识,同时考查逻辑思维能力和数学应用能力.标准解答记该应聘者对三门指定课程考试及格的事件分别为A,B,C, 则PA =a,PB =b,PC =c.Ⅰ 应聘者用方案一考试通过的概率p 1=PA ·B ·C +P A ·B ·C +PA ·B ·C +PA ·B ·C=a ×b ×1-c+1-a ×b ×c+a ×1-b ×c+a ×b ×c=ab+bc+ca-2abc. 应聘者用方案二考试通过的概率p 2=31PA ·B + 31PB ·C + 31PA ·C = 31×a ×b+b ×c+c ×a= 31 ab+bc+caⅡ p 1- p 2= ab+bc+ca-2abc-31 ab+bc+ca= 23ab+bc+ca-3abc≥23]3abc =0≥.∴p 1≥p 2例11.某项选拔共有四轮考核,每轮设有一个问题,能正确回答问题者进入下一轮考核,否则即被淘汰.已知某选手能正确回答第一、二、三、四轮的问题的概率分别为54、53、52、51,且各轮问题能否正确回答互不影响.Ⅰ求该选手进入第四轮才被淘汰的概率;Ⅱ求该选手至多进入第三轮考核的概率. 注:本小题结果可用分数表示考查目的本小题主要考查相互独立事件、独立重复试验的概率计算,运用数学知识解决问题的能力,以及推理与运算能力.解答过程Ⅰ记“该选手能正确回答第i 轮的问题”的事件为(1234)i A i =,,,,则14()5P A =,23()5P A =,32()5P A =,41()5P A =, ∴该选手进入第四轮才被淘汰的概率412341234432496()()()()()5555625P P A A A A P A P A P A P P ===⨯⨯⨯=. Ⅱ该选手至多进入第三轮考核的概率3112123()P P A A A A A A =++112123()()()()()()P A P A P A P A P A P A =++142433101555555125=+⨯+⨯⨯=. 考点2离散型随机变量的分布列 1.随机变量及相关概念①随机试验的结果可以用一个变量来表示,这样的变量叫做随机变量,常用希腊字母ξ、η等表示.②随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.③随机变量可以取某区间内的一切值,这样的随机变量叫做连续型随机变量. 2.离散型随机变量的分布列①离散型随机变量的分布列的概念和性质一般地,设离散型随机变量ξ可能取的值为1x ,2x ,……,i x ,……,ξ取每一个值i x =i 1,2,……的概率P i x =ξ=i P ,则称下表.为随机变量ξ的概率分布,简称ξ的分布列. 由概率的性质可知,任一离散型随机变量的分布列都具有下述两个性质: 10≥iP ,=i1,2,...;2++21P P (1)②常见的离散型随机变量的分布列: 1二项分布n 次独立重复试验中,事件A 发生的次数ξ是一个随机变量,其所有可能的取值为0,1,2,…n,并且k n k kn kq p C k P P -===)(ξ,其中n k ≤≤0,p q -=1,随机变量ξ的分布列如下:称这样随机变量ξ服从二项分布,记作),(~p n B ξ,其中n 、p 为参数,并记:),;(p n k b q p C kn k k n =- .2 几何分布在独立重复试验中,某事件第一次发生时所作的试验的次数ξ是一个取值为正整数的离散型随机变量,“k ξ=”表示在第k 次独立重复试验时事件第一次发生. 随机变量ξ的概率分布为:例12.厂家在产品出厂前,需对产品做检验,厂家将一批产品发给商家时,商家按合同规定也需随机抽取一定数量的产品做检验,以决定是否接收这批产品.Ⅰ若厂家库房中的每件产品合格的概率为,从中任意取出4件进行检验,求至少有1件是合格的概率;Ⅱ若厂家发给商家20件产品中,其中有3件不合格,按合同规定该商家从中任取2件.都进行检验,只有2件都合格时才接收这批产品.否则拒收,求出该商家检验出不合格产品数ξ的分布列及期望ξE ,并求出该商家拒收这批产品的概率. 考查目的本题考查相互独立事件、互斥事件等的概率计算,考察随机事件的分布列,数学期望等,考察运用所学知识与方法解决实际问题的能力.解答过程Ⅰ记“厂家任取4件产品检验,其中至少有1件是合格品”为事件A用对立事件A 来算,有()()4110.20.9984P A P A =-=-= Ⅱξ可能的取值为0,1,2. ()2172201360190C P C ξ===, ()11317220511190C C P C ξ===, 136513301219019019010E ξ=⨯+⨯+⨯=. 记“商家任取2件产品检验,都合格”为事件B,则商家拒收这批产品的概率()136271119095P P B =-=-=. 所以商家拒收这批产品的概率为2795.例13.某项选拔共有三轮考核,每轮设有一个问题,能正确回答问题者进入下一轮考核,否则即被淘汰. 已知某选手能正确回答第一、二、三轮的问题的概率分别为54、53、52,且各轮问题能否正确回答互不影响.Ⅰ求该选手被淘汰的概率;Ⅱ该选手在选拔中回答问题的个数记为ξ,求随机变量ξ的分布列与数学期望. 注:本小题结果可用分数表示考查目的本题考查相互独立事件、互斥事件等的概率计算,考察随机事件的分布列,数学期望等,考察运用所学知识与方法解决实际问题的能力.解答过程解法一:Ⅰ记“该选手能正确回答第i 轮的问题”的事件为(123)i A i =,,,则14()5P A =,23()5P A =,32()5P A =, ∴该选手被淘汰的概率142433101555555125=+⨯+⨯⨯=. Ⅱξ的可能值为123,,,11(1)()5P P A ξ===,1212428(2)()()()5525P P A A P A P A ξ====⨯=, 12124312(3)()()()5525P P A A P A P A ξ====⨯=.ξ∴的分布列为1812571235252525E ξ∴=⨯+⨯+⨯=. 解法二:Ⅰ记“该选手能正确回答第i 轮的问题”的事件为(123)i A i =,,,则14()5P A =,23()5P A =,32()5P A =. ∴该选手被淘汰的概率1231231()1()()()P P A A A P A P A P A =-=-4321011555125=-⨯⨯=.Ⅱ同解法一.考点3 离散型随机变量的期望与方差 随机变量的数学期望和方差1离散型随机变量的数学期望:++=2211p x p x E ξ…;期望反映随机变量取值的平均水平. ⑵离散型随机变量的方差:+-+-=222121)()(p E x p E x D ξξξ…+-+n n p E x 2)(ξ…; 方差反映随机变量取值的稳定与波动,集中与离散的程度. ⑶基本性质:b aE b a E +=+ξξ)(;ξξD a b a D 2)(=+. 4若ξ~Bn,p,则 np E =ξ ; D ξ =npq 这里q=1-p ; 如果随机变量ξ服从几何分布,),()(p k g k P ==ξ,则pE 1=ξ,D ξ =2p q其中q=1-p.例14.甲、乙两名工人加工同一种零件,两人每天加工的零件数相等,所得次品数分别为ε、η,ε和η的分布列如下:则比较两名工人的技术水平的高低为 .思路启迪:一是要比较两名工人在加工零件数相等的条件下出次品数的平均值,即期望;二是要看出次品数的波动情况,即方差值的大小. 解答过程:工人甲生产出次品数ε的期望和方差分别为:7.0103210111060=⨯+⨯+⨯=εE , 891.0103)7.02(101)7.01(106)7.00(222=⨯-+⨯-+⨯-=εD ; 工人乙生产出次品数η的期望和方差分别为:7.0102210311050=⨯+⨯+⨯=ηE ,664.0102)7.02(103)7.01(105)7.00(222=⨯-+⨯-+⨯-=ηD 由E ε=E η知,两人出次品的平均数相同,技术水平相当,但D ε>D η,可见乙的技术比较稳定.小结:期望反映随机变量取值的平均水平;方差反映随机变量取值的稳定与波动,集中与离散的程度. 例15.某商场经销某商品,根据以往资料统计,顾客采用的付款期数ξ的分布列为商场经销一件该商品,采用1期付款,其利润为200元;分2期或3期付款,其利润为250元;分4期或5期付款,其利润为300元.η表示经销一件该商品的利润. Ⅰ求事件A :“购买该商品的3位顾客中,至少有1位采用1期付款”的概率()P A ; Ⅱ求η的分布列及期望E η.考查目的 本小题主要考查概率和离散型随机变量分布列和数学期望等知识.考查运用概率知识解决实际问题的能力.解答过程Ⅰ由A 表示事件“购买该商品的3位顾客中至少有1位采用1期付款”. 知A 表示事件“购买该商品的3位顾客中无人采用1期付款”2()(10.4)0.216P A =-=, ()1()10.2160.784P A P A =-=-=.Ⅱη的可能取值为200元,250元,300元.(200)(1)0.4P P ηξ====,(250)(2)(3)0.20.20.4P P P ηξξ===+==+=,(300)1(200)(250)10.40.40.2P P P ηηη==-=-==--=.η的分布列为2000.42500.43000.2E η=⨯+⨯+⨯240=元.小结:离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率之和.本题考查离散型随机变量分布列和数学期望等概念,考查运用概率知识解决实际问题的能力.例16.某班有48名学生,在一次考试中统计出平均分为70分,方差为75,后来发现有2名同学的成绩有误,甲实得80分却记为50分,乙实得70分却记为100分,更正后平均分和方差分别是,25 ,50 , ,25 解答过程:易得x 没有改变,x =70,而s 2=481x 12+x 22+…+502+1002+…+x 482-48x 2=75,s ′2=481x 12+x 22+…+802+702+…+x 482-48x 2 =48175×48+48x 2-12500+11300-48x 2 =75-481200=75-25=50.答案:B考点4 抽样方法与总体分布的估计 抽样方法1.简单随机抽样:设一个总体的个数为N,如果通过逐个抽取的方法从中抽取一个样本,且每次抽取时各个个体被抽到的概率相等,就称这样的抽样为简单随机抽样.常用抽签法和随机数表法.2.系统抽样:当总体中的个数较多时,可将总体分成均衡的几个部分,然后按照预先定出的规则,从每一部分抽取1个个体,得到所需要的样本,这种抽样叫做系统抽样也称为机械抽样.3.分层抽样:当已知总体由差异明显的几部分组成时,常将总体分成几部分,然后按照各部分所占的比进行抽样,这种抽样叫做分层抽样. 总体分布的估计由于总体分布通常不易知道,我们往往用样本的频率分布去估计总体的分布,一般地,样本容量越大,这种估计就越精确.总体分布:总体取值的概率分布规律通常称为总体分布.当总体中的个体取不同数值很少时,其频率分布表由所取样本的不同数值及相应的频率表示,几何表示就是相应的条形图.当总体中的个体取值在某个区间上时用频率分布直方图来表示相应样本的频率分布.总体密度曲线:当样本容量无限增大,分组的组距无限缩小,那么频率分布直方图就会无限接近于一条光滑曲线,即总体密度曲线.典型例题例17.某工厂生产A 、B 、C 三种不同型号的产品,产品数量之比依次为2:3:5.现用分层抽样方法抽出一个容量为n 的样本,样本中A 种型号产品有16件.那么此样本的容量n= . 解答过程:A 种型号的总体是210,则样本容量n=1016802⨯=.例18.一个总体中有100个个体,随机编号0,1,2,…,99,依编号顺序平均分成10个小组,组号依次为1,2,3,…,10.现用系统抽样方法抽取一个容量为10的样本,规定如果在第1组随机抽取的号码为m ,那么在第k 组中抽取的号码个位数字与m k +的个位数字相同,若6m =,则在第7组中抽取的号码是 .解答过程:第K 组的号码为(1)10k - ,(1)101k -+,…,(1)109k -+,当m=6时,第k 组抽取的号的个位数字为m+k 的个位数字,所以第7组中抽取的号码的个位数字为3 ,所以抽取号码为63. 例19.考查某校高三年级男生的身高,随机抽取40名高三男生,实测身高数据单位:cm 如下: 171 163 163 166 166 168 168 160 168 165 171 169 167 169 151 168 170 160 168 174 165 168 174 159 167 156 157 164 169 180 176157162161158164163163167161⑴作出频率分布表;⑵画出频率分布直方图.思路启迪:确定组距与组数是解决“总体中的个体取不同值较多”这类问题的出发点.解答过程:⑴最低身高为151,最高身高180,其差为180-151=29;确定组距为3,组数为10,列表如下:⑵频率分布直方图如下:小结: 合理、科学地确定组距和组数,才能准确地制表及绘图,这是用样本的频率分布估计总体分布的基本功. 估计总体分布的基本功; 考点5 正态分布与线性回归 1.正态分布的概念及主要性质 1正态分布的概念如果连续型随机变量ξ 的概率密度函数为 222)(21)(σμπσ--=x ex f ,x R ∈ 其中σ、μ为常数,并且σ>0,则称ξ服从正态分布,记为~N ξμ,2σ. 2期望E ξ =μ,方差2σξ=D . 3正态分布的性质 正态曲线具有下列性质:①曲线在x 轴上方,并且关于直线x =μ对称.②曲线在x=μ时处于最高点,由这一点向左右两边延伸时,曲线逐渐降低.③曲线的对称轴位置由μ确定;曲线的形状由σ确定,σ越大,曲线越“矮胖”;反之越“高瘦”. 4标准正态分布当μ=0,σ=1时ξ服从标准的正态分布,记作~N ξ0,1 5两个重要的公式①()1()x x φφ-=-,② ()()()P a b b a ξφφ<<=-. 62(,)N μσ与(0,1)N 二者联系.① 若2~(,)N ξμσ,则~(0,1)N ξμησ-= ;②若2~(,)N ξμσ,则()()()b a P a b μμξφφσσ--<<=-.2.线性回归简单的说,线性回归就是处理变量与变量之间的线性关系的一种数学方法. 变量和变量之间的关系大致可分为两种类型:确定性的函数关系和不确定的函数关系.不确定性的两个变量之间往往仍有规律可循.回归分析就是处理变量之间的相关关系的一种数量统计方法.它可以提供变量之间相关关系的经验公式.具体说来,对n 个样本数据11,x y ,22,x y ,…,,n n x y ,其回归直线方程,或经验公式为:a bx y+=ˆ.其中,,)(1221x b y a x n xyx n yx b ni ini ii⋅-=--=∑∑==,其中y x ,分别为|i x |、|i y |的平均数.例20.如果随机变量ξ~N μ,σ2,且E ξ=3,D ξ=1,则P -1<ξ≤1=等于Φ1-1 B.Φ4-Φ2 C.Φ2-Φ4D.Φ-4-Φ-2解答过程:对正态分布,μ=E ξ=3,σ2=D ξ=1,故P -1<ξ≤1=Φ1-3-Φ-1-3=Φ-2-Φ-4=Φ4-Φ2.答案:B例21. 将温度调节器放置在贮存着某种液体的容器内,调节器设定在d ℃,液体的温度ξ单位:℃是一个随机变量,且ξ~Nd ,.1若d =90°,则ξ<89的概率为 ;2若要保持液体的温度至少为80 ℃的概率不低于,则d 至少是 其中若η~N 0,1,则Φ2=P η<2=,Φ-=P η<-=.思路启迪:1要求P ξ<89=F 89,∵ξ~Nd ,不是标准正态分布,而给出的是Φ2,Φ-,故需转化为标准正态分布的数值.2转化为标准正态分布下的数值求概率p ,再利用p ≥,解d . 解答过程:1P ξ<89=F 89=Φ5.09089-=Φ-2=1-Φ2=1-=.2由已知d 满足≤P ξ≥80, 即1-P ξ<80≥1-,∴P ξ<80≤. ∴Φ5.080d -≤=Φ-.∴5.080d -≤-.∴d ≤. 故d 至少为.小结:1若ξ~N 0,1,则η=σμξ-~N 0,1.2标准正态分布的密度函数fx 是偶函数,x <0时,fx 为增函数,x >0时,fx 为减函数. 例22.设),(~2σμN X,且总体密度曲线的函数表达式为:412221)(+--=x x ex f π,x ∈R.1则μ,σ是 ;2则)2|1(|<-x P 及)22121(+<<-x P 的值是 .思路启迪: 根据表示正态曲线函数的结构特征,对照已知函数求出μ和σ.利用一般正态总体),(2σμN 与标准正态总体N0,1概率间的关系,将一般正态总体划归为标准正态总体来解决. 解答过程:⑴由于222)2(2)1(41222121)(--+--⋅==x x x eex f ππ,根据一般正态分布的函数表达形式,可知μ=1,2=σ,故X ~N1,2.2(1)120.84131φ=-=⨯-6826.0=.又)21()221()22121(--+=+<<-F F x P(2)(1)10.97720.84131φφ=+-=+-8185.0=.小结:通过本例可以看出一般正态分布与标准正态分布间的内在关联.例23. 公共汽车门的高度是按照确保99%以上的成年男子头部不跟车门顶部碰撞设计的,如果某地成年男子的身高ε~N173,7单位:cm,则车门应设计的高度是 精确到1cm思路启迪:由题意可知,求的是车门的最低高度,可设其为xcm,使其总体在不低于x 的概率小于1%.解答过程:设该地区公共汽车车门的最低高度应设为xcm,由题意,需使P ε≥x<1%. ∵ε~N173,7,∴99.0)7173()(>-=≤x x P φε;查表得33.27173>-x ,解得x>,即公共汽车门的高度至少应设计为180cm,可确保99%以上的成年男子头部不跟车门顶部碰撞. 专题训练 一.选择题1.下面关于离散型随机变量的期望与方差的结论错误的是A.期望反映随机变量取值的平均水平,方差反映随机变量取值集中与离散的程度.B.期望与方差都是一个数值,它们不随试验的结果而变化C.方差是一个非负数D.期望是区间0,1上的一个数.2.要了解一批产品的质量,从中抽取200个产品进行检测,则这200个产品的质量是 A. 总体 B.总体的一个样本 C.个体 D. 样本容量3.已知η的分布列为:设23-=ηξ则ξD 的值为 A. 5 B. 34 C. 32- D.3-4.设),(~p n B ξ,12=ξE ,4=ξD ,则n,p 的值分别为 ,31 B. 36 ,31 C. 32,36 D. 18,325.已知随机变量ξ 服从二项分布,)31,6(~B ξ,则)2(=ξP 等于A. 163B.2434 C. 24313 D.243806.设随机变量的分布列为15)(k k P ==ξ,其中k=1,2,3,4,5,则)2521(<<ξP 等于A.51 B. 21 C. 91 D.617.设15000件产品中有1000件废品,从中抽取150件进行检查,则查得废品数的数学期望为D.都不对8.某市政府在人大会上,要从农业、工业、教育系统的代表中抽查对政府工作报告的意见.为了更具有代表性,抽取应采用 A.抽签法 B.随机数表法 C.系统抽样法 D.分层抽样9.一台X 型号的自动机床在一小时内不需要人照看的概为,有四台这种型号的自动机床各自独立工作,则在一小时内至多有2台机床需要工人照看的概率是 10.某校高三年级195名学生已编号为1,2,3,…195,为了解高三学生的饮食情况,要按1:5的比例抽取一个样本,若采用系统抽样方法进行抽取,其中抽取3名学生的编号可能是,24,33 ,47,147 ,153,193 ,132,15911.同时抛掷4枚均匀硬币80次,设4枚硬币正好出现2枚正面向上,2枚反面向上的次数为ξ,则ξ的数学期望是 12.已知),0(~2σξN ,且4.0)02(=≤≤-ξp ,则P 2>ξ等于某公司在甲、乙、丙、丁四个地区分别有150个、120个、180个、150个销售点.公司为了调查产品销售的情况,需从这600个销售点中抽取一个容量为100的样本,记这项调查为①;在丙地区中有20个特大型销售点,要从中抽取7个调查其销售收入和售后服务情况,记这项调查为②.则完成①、②这两项调查宜采用的抽样方法依次是A.分层抽样法,系统抽样法B.分层抽样法,简单随机抽样法C.系统抽样法,分层抽样法D.简单随机抽样法,分层抽样法14.某校为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在某一天各自课外阅读所用时间的数据,结果用下面的条形图表示,根据条形图可得这50名学生这一天平均每人的课外阅读时间为h h h h二.填空题15.某工厂规定:工人只要生产出一件甲级产品发奖金50元,生产出一件乙级产品发奖金30元,若生产出一件次品则扣奖金20元,某工人生产甲级品的概率为,乙级品的概率为,次品的概率为,则此人生产一件产品的平均奖金为元.16. 同时抛掷两枚相同的均匀硬币,随机变量1=ξ表示结果中有正面向上, 0=ξ表示结果中没有正面向上,则=ξE .17. 甲、乙两种冬小麦试验品种连续5年的平均单位面积产量如下单位:t/hm2其中产量比较稳定的小麦品种是 .18.一工厂生产了某种产品16800件,它们来自甲、乙、丙3条生产线,为检查这批产品的质量,决定采用分层抽样的方法进行抽样,已知从甲、乙、丙3条生产线抽取的个体数组成一个等差数列,则乙生产线生产了件.19.一个总体中有100个个体,随机编号为0,1,2,…,99,依编号顺序平均分成10。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


A.
B.
C.
D.
【答案】B
【解析】

等于( )
随机变量 服从正态分布 ,
曲线关于 对称,且


,可知
,故选 B.
11. 【河北省衡水中学 2018 年高考押题(三)】
在如图所示的正方向中随机投掷10000 个点,则落入阴影部分(曲线 C 为正态分布 N 1,1 的密度曲线)
的 点 的 个 数 的 估 计 值 为 ( 附 : X N u, 2 ), 则 P(u X u ) 0.6827 ,
本题选择 D 选项.
二、填空题
1. 【河北省衡水中学 2018 届高三上学期七调考试数学(理)试题】
若从区间
( 为自然对数的底数,
)内随机选取两个数,则这两个数之积不小于 的概率
为_____________.
【答案】2
【解析】设
,由 ,得 ,所以所求概率

三、解答题 1. 【2020 届河北省衡水中学高三上学期五调考试】 在 2018、2019 每高考数学全国Ⅰ卷中,第 22 题考查坐标系和参数方程,第 23 题考查不等式选讲.2018 年 髙考结束后,某校经统计发现:选择第 22 题的考生较多并且得分率也较高.为研究 2019 年选做题得分情况, 该校高三质量检测的命题完全采用 2019 年高考选做题模式,在测试结束后,该校数学教师对全校高三学生 的选做题得分进行抽样统计,得到两题得分的统计表如下(已知每名学生只选做—道题): 第 22 题的得分统计表
(2)全体高三学生第 22, 23题的平均得分分别为:
x1
1 700
75
0
75 3
200 5
125 8
22510
4475 700
6.4

x2
1 500
35 0
623
685
65 8
270 10
3746 500
7.5 ;
x2 x1 以全体高三学生选题的平均得分作为决策依据,应选做第 23题.
256 16 故选:B
2.【河北省衡水中学 2018 届高三毕业班模拟演练一】
如图的折线图是某公司 2017 年 1 月至 12 月份的收入与支出数据.若从这 12 个月份中任意选 3 个月的数据进 行分析,则这 3 个月中至少有一个月利润(利润=收入-支出)不低于 40 万的概率为( )
A.
B.
【答案】D
理由见解析 【解析】(1)由数据表可得 2 2 列联表如下:
选做 22 题
选做 23题
总计
理科人数
500
400
900
文科人数
200
100
300
总计
700
500
1200
则 K 2 的观测值 k
1200200 400 5001002
80
11.42
10.828
700 500 300 900
7
有 99%的把握认为“选做题的选择”与“文、理科的科类”有关.
高三数学百所名校好题分项解析汇编之衡水中学专版(2020 版)
专题 09 概率统计
一、选择题
1. 【2020 届河北省衡水中学高三上学期五调考试】
现有四名高三学生准备高考后到长三角城市群(包括:上海市以及江苏省、浙江省、安徽省三省部分城市,
简称“三省一市”)旅游,假设每名学生均从上海市、江苏省、浙江省、安徽省这四个地方中随机选取一个去
A.2018 年 1~4 月的业务量,3 月最高,2 月最低,差值接近 2000 万件 B.2018 年 1~4 月的业务量同比增长率均超过 50%,在 3 月底最高 C.从两图来看,2018 年 1~4 月中的同一个月的快递业务量与收入的同比增长率并不完全一致 D.从 1~4 月来看,该省在 2018 年快递业务收入同比增长率逐月增长 【答案】D 【解析】对于选项 A: 2018 年 1~4 月的业务量,3 月最高,2 月最低,
差值为
,接近 2000 万件,所以 A 是正确的;
对于选项 B: 2018 年 1~4 月的业务量同比增长率分别为
,均超过 ,在 3 月最高,所
以 B 是正确的;
对于选项 C:2 月份业务量同比增长率为 53%,而收入的同比增长率为 30%,所以 C 是正确的;
对于选项 D,1,2,3,4 月收入的同比增长率分别为 55%,30%,60%,42%,并不是逐月增长,D 错误.
6. 【河北省衡水中学 2018 届高三第十次模拟考试数学(理)试题】
设 A { x, y | 0 x m,0 y 1}, s 为 e 1n 的展开式的第一项( e 为自然对数的底数), m n s ,
若任取 a,b A ,则满足 ab 1的概率是( )
A. 2 e
B. 2 e
பைடு நூலகம்
【答案】C
C. e 2 e
旅游,则恰有一个地方未被选中的概率为( )
A. 27 64
【答案】B
B. 9 16
C. 81 256
D. 7 16
【解析】四名学生从四个地方任选一个共有 4444 256 种选法,
恰有一个地方未被选中,即有两位学生选了同一个地方,另外两名学生各去一个地方,
考虑先分堆在排序共有 C42 A43 6 4 3 2 144 种, 所以恰有一个地方未被选中的概率为 144 9 .
C.
D.
【解析】由图知,7 月,8 月,11 月的利润不低于 40 万元,故所求概率为
,故选 D.
3. 【河北衡水金卷 2019 届高三 12 月第三次联合质量测评数学(理)试题】
如图所示,分别以正方形 ABCD 两邻边 AB、AD 为直径向正方形内做两个半圆,交于点 O.若向正方形内 投掷一颗质地均匀的小球(小球落到每点的可能性均相同),则该球落在阴影部分的概率为
得分
0
3
5
8
10
理科人数
50
50
75
125
200
文科人数
25
25
125
0
25
第 23 题的得分统计表
得分
0
3
5
8
10
理科人数
30
52
58
60
200
文科人数
5
10
10
5
70
(1)完成如下 2×2 列联表,并判断能否有 99%的把握认为“选做题的选择”与“文、理科的科类”有关;
选做 22 题
选做 23 题
准差分别为( ) A.-4 -4 B.-4 16 C.2 8 D.-2 4 【答案】D
【解析】∵ , , , 的平均数为 3,方差为 4,







的平均数和标

∴新数据 ,
的平均数和标准差分别为 .
故选 D.
9. 【河北省衡水中学 2018 届高三上学期七调考试数学(理)试题】
如图所示的 5 个数据,去掉
校任教,其中每个学校都需要 2 名语文教师和 2 名数学教师,则分配方案种数为( )
A.72 B.56 C.57 D.63
【答案】A
【解析】先将两个全科老师分给语文和数学各一个,有 种,然后将新的 4 个语文老师分给两个学校 种,
同样的方法将新的 4 个数学老师分给两个学校 种,所以共有
=72 种分配方法。
N 10000 0.1359 1359 . 1
本题选择 B 选项.
12. 【河北省衡水中学 2018 年高考押题(三)】
已知 5 件产品中有 2 件次品,现逐一检测,直至能确定所有次品为止,记检测的次数为 ,则 E ( )
A. 3
B. 7 2
C. 18 5
D. 4
【答案】B
【解析】由题意知,
的可能取值为
D. e 1 e
【解析】由题意,s= Cn0en en ,
∴m= n s =e,则 A={(x,y)|0<x<m,0<y<1}={(x,y)|0<x<e,0<y<1},画出 A={(x, y)|0<x<e,0<y<1}表示的平面区域, 任取(a,b)∈A,则满足 ab>1 的平面区域为图中阴影部分, 如图所示:
总计
理科人数
文科人数
总计
(2)若以全体高三学生选题的平均得分作为决策依据,如果你是考生,根据上面统计数据,你会选做哪道题,
并说明理由.
附: K 2
n ad bc2
a bc da cb d
PK2 k
0.050
0.010
0.001
k
3.841
6.635
10.828
【答案】(1) 列联表见解析;有 99%的把握认为“选做题的选择”与“文、理科的科类”有关;(2) 选做第 23题,
三角形拼成的一个大等边三角形,设
,若在大等边三角形中随机取一点,则此点取自小等边三
角形的概率是
A.
B.
C.
D.
【答案】A
【解析】在 中, , ,
,由余弦定理,得

所以
.
所以所求概率为
.
故选 A. 14. 【河北省衡水中学 2019 届高三上学期六调考试】 如图 1 为某省 2018 年 1~4 月快递业务量统计图,图 2 是该省 2018 年 1~4 月快递业务收入统计图,下列对 统计图理解错误的是( )
计算阴影部分的面积为
S
阴影=
e 1
1
1 x
dx
=(x﹣
ln
x

e | 1
=e﹣1﹣ ln e +ln1=e﹣2.
所求的概率为 P= S阴影 e 2 ,
相关文档
最新文档