乘法分配律(课堂实录)
乘法分配律课堂实录特等奖冀教版

乘法分配律课堂实录特等奖冀教版【教学目标】1.使学生理解乘法分配律的意义.2.掌握乘法分配律的应用.3.通过观察、分析、比较,培养学生的分析、推理和概括能力.【教学重点】乘法分配律的意义及应用.【教学难点】乘法分配律的反应用.【教具学具准备】口算卡片、投影仪.【教学流程】一、预习汇报1.师:通过微视频的学习,你学会了什么?生:我学会了,什么是乘法分配率,就是一个数乘两个数的和,等于这个数分别乘两个加数的积,再相加。
生:我会用字母表示乘法分配率:(a+b)×c=a×c+b×c.师:同学们的收获真不少。
书中通过例题是怎样发现乘法分配率的呢?请同学们把课本第25页的内容读一读。
再把你的想法三人小组交流一下。
二、经历发现规律的过程1、学生读书交流。
生:芍药的长15米,宽8米,牡丹长10米,宽8米,可以求出芍药和牡丹的面积一共是多少平方米?,算式是:(15+10)×8 (15+10)求得是总长多少米?再乘8就是面积是多少平方米?生:我的方法是:15×8+10×8 15×8求的是芍药的面积。
10×8求的是牡丹的面积,加在一起就是总面积。
生:我们发现这两种方法的结果相同,这两个算式是相等的。
(15+10)×8=15×8+10×8师:同学通过这道例题发现这一规律,这个规律的特点是什么?生:就是一个数乘两个数的和,等于这个数分别乘两个加数的积,再相加。
会用字母表示乘法分配率:(a+b)×c=a×c+b×c.生:这类题目的结构形式的特点是式子的运算符号一般是×、+、×的形式,也就是两个积的和.生:在两个乘法式子中,有一个相同的因数,也就是两个数的和要乘的那个数.生:另外两个不同的因数,是两个能凑成整十、整百、整千的加数.师:是不是符合这个特点的算式结果都相等呢?我们来验证一下算.27×8+73×8 男生做这组题目:14×(10+2)10×(6+4)(20+80)×5女生做这组题目14×10+14×2 10×6+10×4 20×5+5×80通过计算,学生进一步发现(a+b)×c=a×c+b×c.2、及时练习横线上能填几?为什么?(32+35)×4=__×4+__×4(62+12)×3=__×__+__×__三、运用规律解决问题师:学习这一规律有什么用途呢?请同学们自学课本第二个红点部分。
徐长青乘法分配律课堂实录观后感

徐长青乘法分配律课堂实录观后感
乘法分配律是数学中一个重要的运算定律,它可以简化乘法运算,提高计算效率。
在小学阶段,乘法分配律是一个重要的知识点,也是学生需要掌握的重点之一。
最近,我看到了一位老师在课堂上讲授乘法分配律的视频,这位老师采用了一种生动有趣的方式,让学生通过举例和画图等方式理解乘法分配律的概念和运用。
学生在视频中表现得非常活跃和积极,他们通过参与课堂活动,深刻地理解了乘法分配律的奥妙。
观看这个视频,我深深地感受到了这位老师的教学方法之妙。
他运用了多种教学手段,包括图片、举例和画图等方式,让学生更容易理解和掌握乘法分配律。
此外,他在课堂上也非常注重学生的反馈和互动,鼓励学生发言和提问,让学生在课堂上感到主体地位。
我认为这位老师的教学方法是非常成功的。
他成功地运用了多种教学手段,让学生更容易理解和掌握乘法分配律。
同时,他也非常关注学生的反馈和互动,鼓励学生发言和提问,让学生在课堂上感到主体地位。
这种教学方法不仅能够提高学生的学习兴趣,还能够有效地提高学生的数学成绩。
总结起来,我认为这位老师的教学方式是非常值得借鉴的。
他成功地运用了多种教学手段,让学生更容易理解和掌握乘法分配律。
同时,他也非常关注学生的反馈和互动,鼓励学生发言和提问,让学生在课堂上感到主体地位。
这种教学方法不仅能够提高学生的学习兴趣,还能够有效地提高学生的数学成绩。
特教看《乘法分配律》

特教看《乘法分配律》潘小明特教教学过程(课堂实录)师:同学们,我们已经学习了乘法的交换律和结合律。
今天,希望同学们能探究发现乘法的又一个新知识。
(简洁的导入,给学生以期待,激发起学生探究新知识的欲望)电脑出示:师:买3套这样的儿童服装应付多少钱呢?你能用几种方法解答?请列式计算。
学生各自独立计算,不一会儿,纷纷举手。
生1:我先算出一套服装的价钱,再求出三套的价钱,算式是括号5加4括号乘以3。
师:(结合学生回答进行板书,并故意地——)你列的算式里共有几个括号?生1:这样说吧,5与4的和乘以3,得数是27。
买3套服装应付27元。
我的另一种方法是:先分别算出三件上衣和三条裙子的价钱,再算出三套服装的总价钱。
算式是5乘以3的积加上4乘以3的积。
〔结合学生回答教师板书:(5+4)×3;5×3+4×3〕生2:我的方法是:5+5+5+4+4+4=27生3:我的方法是:5+4+5+4+5+4=27生4:我觉得这两个同学的想法与前面同学的两种想法是一致的。
但是,上面的算式比较简单。
(众生点头以示同意)电脑出示:小强摆木块,每行摆6个绿木块,8个红木块,共摆了4行。
师:请你想象一下,小强是怎样摆的?结合学生回答,电脑逐步出示下图。
师:小强一共摆了多少个木块?你能用几种方法解答?学生再次各自列式计算,并很快说出两种不同的思考方法和算式,结合学生回答教师接着上题板书如下:(6+8)×4 ;6×4+8×4这里,教师直接提出“你能用几种方法解答?”,其目的是让学生在经历了两种不同思考方法的计算后,便于学生发现新的知识规律。
同时,产生这样一种体验,乘法分配律的知识存在于实际问题的解决中。
师:从上面的算式中你有没有发现什么规律?同学们的双双眼睛注视着黑板上的算式,在寻找着其中的规律。
渐渐地,一些学生举起了手,有些学生开始有些激动,急着与周围的同伴说起了悄悄话……此时,教师没有急于指名学生个别回答,而是——师:(惊奇地)你们真的发现了这些算式中隐含着的规律,请与你的同桌交流一下,好吗?教室里的气氛一下子热烈起来了,同学之间指点着、交流着,一些心急的同学忍不住又高举着小手。
小学数学北师大2011课标版四年级乘法分配律课堂实录

《乘法分配律》课堂实录卫溪区西街小学李志英师:上课!班长:起立!生齐说:老师好!师:同学们好,请坐!师:同学们,我们已经学习了乘法的交换律和结合律。
今天,希望同学们能探究发现乘法的又一个新知识。
(板书:乘法分配律)生齐说:好!师:首先老师要检查一下你们的预习情况。
出示课件:督预示标1、(1)关于乘法分配律的知识,你都知道些什么?(2)在预习中,你有什么疑惑?师:关于乘法分配律的知识,你都知道些什么?生1:乘法分配律和乘法结合律一样,可以使计算简便。
生2:。
乘法分配律就是把算式转变成另一种形式计算。
师:预习不仅能对要学知识做到心中有数,还能发现已学知识的漏洞,我们一定要养成预习的好习惯。
师:在预习中,你有什么疑惑?生:怎样分配数才能使计算简便?师:今天我们就来交流一下你自己在探索的过程中,是怎样运用乘法分配律式计算简便的,看能否解决你的疑惑?出示课件:学习目标1、理解乘法分配律,能用字母表示。
2、会用乘法分配律使一些计算简便。
学生齐读学习目标。
师:请同学们带着我们的问题一起踏上探索之旅吧。
出示课件:自学提纲1.你会用几种方法计算贴了多少块瓷砖?2.观察你的算式,你有什么发现?你能用字母写出你发现的规律吗?师:请同学们打开课本,带着我们的问题再次自学56、57页。
学生自学师:用你自己喜欢的方法计算,一共需要多少块瓷砖?师:你能写出几种方法?师:自学完的学生请以你的坐姿告诉老师。
出示课件:小组答疑1、小组长主持讨论解决自学提纲中的所有问题和在自学过程中仍存在的疑惑。
2、推选出小组代表准备展示学习成果。
师:小组长主持,带领组员总结小组内所有的计算方法。
师:自己尝试总结,用字母表示乘法分配律。
小组开始活动,相互欣赏作品,找出异同,并且说明理由。
出示课件五:展示评价师:贴了多少块瓷砖?你能用几种方法计算?谁来说一说?生1:(6+4)×8师:你是怎样想的?师:(6+4)求的是什么?再乘8求的是什么?师:还有不同的算法吗?生2:6×8+4×8师:你又是怎样想的?师:虽然他们的方法不一样,但是他们求的都是用了多少块瓷砖?并且结果都是多少块?(80块),所以这两个算式之间可以用一个什么符号连接?(=)也就是说,板书:(62+38)×2=62×2+38×2师:谁会把这个等式读一遍?师:学校规定每人种3颗小树苗,我们班有男生26人,女生27人,一共要种多少颗?师:你会列式吗?谁来说一说?生1:(26+27)×3 你是怎样想的?师:还有不同的方法吗?生2:26×3+27×3 你又是怎么想的?师:求一个问题从不同的角度思考,得出了两道式子,请同学们猜一猜,这两道算式的结果会怎么样?(相等)师:真的相等吗?你用什么办法验证我们的猜想呢? (计算)师:请男生计算左边的算式,女生计算右边的算式。
【新】北师大版小学数学四年级上册第四单元第五课 《乘法分配律》说课稿附板书含反思及课堂练习和答案

规律:等号左边算式中的两个加数,就是等号右边算式中两个不同乘数; 等号左边算式中的一个乘数,就是等号右边算式中两个相同的乘数。
4.字母表示。 师:如果用a、b、c分别表示三个数,你能写出你的发现吗? 板书:(a+b)×c=a×c+b×c(并带读)。 你觉得怎样才能更好地理解这个规律呢? 学生交流。
128+96+72
2. 读教材第56页。 分析与解答:把瓷砖分为白色和灰色时,可以列式为3×10+5×10,或(3+5)×10,把瓷砖 分为左、右两部分时,可以列式为4×8+6×8或(4+6)×8。不论是哪种方法,瓷砖的总 数是一定的,所以3×10+5×10=(3+5)×10,4×8+6×8=(4+6)×8,也可以计算一下, 验证是否相等。用语言表示上面的规律:两个数的和与另一个数( ),可以把两个加 数分别与这个数( ),再把两个积( ),( )不变,用字母表示为 (a+b)×c=a×c+b×c。
总之,在以后的教学中,我们要不断地去探索、去实践,争取逐步 提高自己的教学水平。
பைடு நூலகம்
我的说课完毕,谢谢各位老师!
4×8+6×8 =32+48 =80(块) 师:请你说说算式中的4×8和6×8分别算的是什么?(分别算出侧面和正面贴的块数)
(2)侧面6列,正面4列,一共10列,每列8块。(6+4)×8=10×8=80(块) 师:为什么这样算呢? 生:两面墙共有6+4列,一列有8块,所以我先算出一共有10列,再用10×8算出共有多 少块瓷砖。 师:这两个式子的结果相等,那么它们中间可以用“=”表示这两式子的关系。 板书:(4+6)×8=4×8+6×8 方法二: (1)每行有10块瓷砖,白瓷砖有3行,蓝瓷砖有5行。
徐长青乘法分配律课堂实录观后感

徐长青乘法分配律课堂实录观后感
乘法分配律是数学中一个重要的运算定律,它可以帮助我们简化计算,提高解题效率。
在今天的课堂上,我看到了一位老师徐长青,他为我们讲解了乘法分配律的课堂实录。
徐长青老师的课堂气氛非常活跃,他通过生动的实例和有趣的游戏,让孩子们轻松地掌握了乘法分配律的基本概念和应用。
徐长青老师还教给孩子们一些实用的解题技巧,例如用符号“∫”来表示乘法分配律,以及如何用乘法分配律来解决一些复杂的数学问题。
在观看徐长青老师的课堂实录时,我深深感受到了老师对教育事业的热爱和对学生的关爱。
他通过自己的言传身教,让孩子们感受到了数学的魅力和乐趣,同时也让他们深刻地理解了乘法分配律的重要性。
我认为徐长青老师的课堂教学效果非常出色,他的教学方式生动有趣,能够激发学生的学习兴趣,提高他们的学习效率。
同时,徐长青老师也向我们展示了如何通过课堂教学,让孩子们更好地理解和掌握数学知识。
总结起来,徐长青老师的乘法分配律课堂实录是一次非常成功的教学展示。
他向我们展示了如何通过生动有趣的方式,让孩子们更好地理解和掌握数学知识,同时也让我们感受到了教育工作者的辛勤付出和不懈努力。
小学数学四年级上册《乘法分配律》课堂教学实录9页
《乘法分配律》课堂教学实录【教学目标】1.学会解答相遇问题,在解答实际问题的过程中理解乘法分配律。
2.借助已有经验和具体运算,初步学会用猜想、验证、比较、归纳等数学方法学习知识。
教学重点,难点:运用猜想、验证、比较、归纳的数学方法学习乘法分配律。
【教学过程】一、创设情境导入新课上课!同学们,数学来源于生活,应用于生活,这节课,咱们就从生活出发,探索其中的数学知识。
(声调低)生:好请看大屏幕,这是我们学校的活动小组,仔细看看都有哪三组信息?(谈话式)师:看清楚了吗?有三个问题。
(不读,让学生看)会解决吗?生:会!师:其实以前学习过。
那老师要提高难度了,请同学们任选一题,用自己喜欢的方法,列综合算式写在横线上,然后口算出得数填写在括号内,并想想看这样做的理由是什么。
请同学们在1号学具纸上完成。
开始停,我们一起来交流一下,交流时,注意说清你的算式和得数各是多少。
谁来?这位同学,你选择的是的第几道题?读读你的算式和得数。
生交流算式和结果生:(4+2)X3=18师:说说你的想法生:先求出每组的男生和女生有多少人,再乘以三个小组,就求出一共有多少人?可以吗?生:可以师:你是怎么想的?先求出一个小组男生和女生的总和,再乘3.问大家:可以吗?有没有不同方法?你来?生:4X3+2X3师:结果呢?——哦,也是18。
你的想法呢?生:先看看男生有多少人,再看看女生有多少人,再相加,就求出一共有多少人。
师:分别求出3个组男生和3个组女生的人数,再相加,也可以啊。
两位同学方法不同,但都求出了体育小组的总人数,思路很清晰。
继续,谁选择的第二小题?生:我的算式是(2+8)x5=50这是你的算式。
不同方法呢?2x5+8x5。
说的很完整!谁选择的最后一道题!你来!另一种呢,你来!生:我的综合算式是(10+15)X4=100师:另一种方法?生: 10x4+ 15x4=100大家同意吗?和第一道题,道理相同。
【设计意图:这种教学设计,主要是在激发兴趣的同时,让学生初步意识到虽然结果相同,但两个算式是不同的。
乘法分配律教学设计(特级教师潘小明执教)_
乘法分配律教学设计(特级教师潘小明执教)_---------------------------------------潘小明:乘法分配律【教学内容】??九年义务教育六年制小学数学第八册。
【教学过程(课堂实录)】??师:同学们,我们已经学习了乘法的交换律和结合律。
今天,希望同学们能探究发现乘法的又一个新知识。
(简洁的导入,给学生以期待,激发起学生探究新知识的欲望)??电脑出示:??师:买3套这样的儿童服装应付多少钱呢?你能用几种方法解答?请列式计算。
??学生各自独立计算,不一会儿,纷纷举手。
??生1:我先算出一套服装的价钱,再求出三套的价钱,算式是括号5加4括号乘以3。
??师:(结合学生回答进行板书,并故意地——)你列的算式里共有几个括号???生1:这样说吧,5与4的和乘以3,得数是27。
买3套服装应付27元。
我的另一种方法是:先分别算出三件上衣和三条裙子的价钱,再算出三套服装的总价钱。
算式是5乘以3的积加上4乘以3的积。
〔结合学生回答教师板书:(5+4)×3;5×3+4×3〕??生2:我的方法是:5+5+5+4+4+4=27??生3:我的方法是:5+4+5+4+5+4=27??生4:我觉得这两个同学的想法与前面同学的两种想法是一致的。
但是,上面的算式比较简单。
(众生点头以示同意)??电脑出示:小强摆木块,每行摆6个绿木块,8个红木块,共摆了4行。
??师:请你想象一下,小强是怎样摆的?结合学生回答,电脑逐步出示下图。
??师:小强一共摆了多少个木块?你能用几种方法解答???学生再次各自列式计算,并很快说出两种不同的思考方法和算式,结合学生回答教师接着上题板书如下:??(6+8)×4 ;????6×4+8×4??这里,教师直接提出“你能用几种方法解答?”,其目的是让学生在经历了两种不同思考方法的计算后,便于学生发现新的知识规律。
小学数学四年级上册《乘法分配律》教学实录1
《乘法分配律》教学实录教学内容青岛版教材第二单元信息窗2(第24页-第25页)教材分析本节课是在学生已经学习掌握了乘法交换律、结合律,并能初步应用这些定律进行一些简便计算的基础上进行学习的。
乘法分配律是本单元的教学重点,也是本节课内容的难点,教材是按照分析题意、列式解答、讲述思路、观察比较、总结规律等层次进行的。
然而乘法分配律又不是单一的乘法运算,还涉及到加法的运算,是学生学习的难点。
因此本节课不仅使学生学会什么是乘法分配律,更要让学生经历探索规律的过程,进而培养学生的分析、推理、抽象、概括的思维能力。
学情分析学生对于用字母表示规律的掌握是比较牢固的,而对于一些有规律的数字也只是进行简单的竖式计算,没有发现有些数字相乘之后积的特点,没有发现简算的意义。
因此,教师要让学生在计算中体会出简算的必要和方便,让学生亲身经历将实际问题抽象成数学模型并进行解释和应用的过程,进而使学生获得对数学理解的同时,在思维能力方面得到进步和发展。
教学目标1、使学生在解决实际问题的过程中发现并理解乘法分配律。
2、在讨论交流中,培养学生的合作意识。
3、使学生在发现规律的过程中,发展比较、分析、抽象和概括能力。
教学要点分析:教学重点:充分感知并归纳乘法分配律。
教学难点:理解乘法分配律的意义。
教学准备学生四人一小组、多媒体课件一套。
教学目标:1、使学生在解决实际问题的过程中发现并理解乘法分配律。
在讨论交流中,培养学生的合作意识。
2、使学生在发现规律的过程中,发展比较、分析、抽象和概括能力。
教学重点:充分感知并归纳乘法分配律。
教学难点:理解乘法分配律的意义。
教学过程:一、谈话引入。
师:同学们,前段时间我们区里进行了广播操比赛,场面非常壮观,大家想不想欣赏一下?看屏幕!(播放视频)二、探究新知。
(一)、创设情景,解决问题。
师:很整齐是吧?不过在准备的过程中,遇到几个数学问题。
请看第一个(多媒体出示)1、订做演出服。
上衣每件20元,裤子每条10元,3套共需多少元?师:谁来读一下题?想一想,解决这个问题要先算什么,再算什么?把你的想法用综合算式表示出来。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《乘法分配律》(四年级)执教:贲友林课前:师:和我一起上数学课这是第几次?生:第二次。
师:第二次,上半年上过一次,今天是第二次。
如果你对这个会场还感到好奇的话,那你现在继续看这个会场;如果你觉得我太熟悉这个地方,不需要再看,那你静下来休息,我先和老师们作个交流,可以吗?交流:各位老师,非常欢迎大家来到《现代与经典》,昨天下午,我收到张齐华发给我的一个短信,说:“贲友林啊,你同构款啊?”为什么说这句话呢?因为前几天我刚和他同构了一节课,今天又和刘松一起来上一节相同课题的课。
我不知道他是表扬我还是批评我,所以我晚上就打了一个电话给他,我说:“齐华,我明天的课题改了,是《24时记时法》。
”今天一个老师告诉我,齐华真的相信了。
因为他知道我的课题可能会发生变化,有句广告语说:“一切兼有可能。
”我想说的是:今天这课题变不了,因为今天我将和我自己的班一起上一节随进度的课,或者说是把随堂课搬到了东南这儿。
这个内容是在前面这一个星期六的晚上排节目的时候最后确定今天就上这节课。
我想同课异构我们表达的是不同老师在课堂上表达不同的想法,我们不是求同,而是求异,我们在求异的过程中打开你的思维,其实这节课可以这样上,还可以不这样上。
今年上半年,我已经和我们四(6)班的同学,当是还是三(6)班,一起在这儿上了一节课,不知道在场的有没有老师当时听过那节课?如果你听过的话,那你把曾经听过的那节课和今天的这节课作个比较,看看课堂发生什么变化;如果没有听过那节课,那把今天的课堂和你预想中的课堂你作一个比较,你看看会有哪些不一样的地方。
想跟大家说的是:四年前,我们在闫校长的带领下,展开对学教方式改变的一个实验。
四年来,我们一直在课堂上探索,我们把我们的想法用我们的课堂实践来表达出来,当然,探索就意味着多种可能。
我不知道今天的课会是什么样,因为这是一节没有试教的公开课,我无法试教,对他们来说,学习今天这个内容就这么一次。
我想说的是:我们的实验还仅仅是开始,还需要我们继续探索,不管你信还是不信,他们就是这样在学习;不管你说是成功还是失败,我们依然在探索。
探索的过程中需要你鼓掌的声音,需要你质疑的声音,需要你批判的声音,更需要你建设的声音。
那在这节课之前呢,我们学生已经做了一个研究,请注意看屏幕。
(实物投影)我们学生在课前做了这个研究,有这么几个内容:写一道能口算的两位数乘一位数算题,并且算出来,写出计算过程;写一道两位数乘两位数的笔算的算题,用竖式计算,并且写出它的计算过程;尝试用简便方法计算32×102。
那么观察口算、笔算以及简算的计算过程,他们会有很多发现,他们会发现什么?我不知道,课堂上它会带给我们,当然还有一个就是我的疑问。
也就是说我们学生完成这样一个材料之后,今天来到了这儿,今天这节课就围绕这份材料展开。
好,让我们一起走进我们四(6)班同学的学习,谢谢大家!课前谈话:师:你觉得这掌声是给谁的呢?生:贲老师。
师:还有不同的想法吗?话筒在那边。
生:应该全体老师。
师:是给我们所有老师的,是吧?还有吗?生:我觉得是应该给我们自己,让我们,鼓励我们上好这节课。
师:这样的发言怎么样?(生鼓掌)师:好了,我想,大家都很熟悉,就不多说了。
来,拿出一枝笔。
(学生准备)师:准备好了吗?好,上课!生:起立!师:同学们好!生:老师您好!师:请坐!教学过程:师:课前我们已经做过这个研究了,对吧?打开手记,4人组,就这份研究中口算、笔算、简算以及你的发现作一个交流。
嗯,关于疑问,我们暂不交流,明白了吗?好,交流之后我们再全班交流,开始。
(学生4人小组活动)师:都想过来,是吧?机会只有一个组,一个组在交流的时候,你们可以补充发言,对吧?张文静,掌声有请。
(鼓掌)生1(张):下面由我们小组来发言,我们口算题目是26×3,我是这样口算的:我先用,我先把26分成20和6,20×3=60,6×3=18,60+18=78。
我的竖式题目是76×54,我先用76×4=304,再用76×5=380,这个380要空一格,然后最后再把这些加起来,也就是4104。
生2:算这题时,我先算76×4=304,76×50=3800,最后算304+3800=4104。
生3:我来给大家讲32×102的简算方法,首先32×101+32=3232+32=3264,在这里我们可以知道32×101是一种简算的过程,每当一个数乘101或1001的时候,就是把那个数重复写两次,然后后面再加32就等于3264。
我们小组的刘慧心还有另一种。
生4(刘):我先拆102,我觉得102很接近100,所以我先用32×100再加上32×2,这里不加2是因为它这里少加2是32个2,而不是一个2,所以我就用32×100+32×2等于3200加64等于3264。
(鼓掌)生(陈):我的发现是:这两个因数相乘,我上面红笔标的竖式上面写,我这个地方其实应该是35乘以60,但是这边0+0都是等于0,不写也没有关系,所以我用红笔标出来了。
这边加上2乘以32,这边是加上2乘以32,不是乘32再乘2,也不是加2,因为乘得太多,这个是32乘以102。
我的发现是:两个因数相乘,把其中一个因数拆成两个任意的非零正整数,另一个因数先乘其中的一个,然后再乘另一个就可以得出了。
但是竖式中就像这个一样的,其实是乘10,但0可以不写。
我的第二个发现是:它们这边其中一个都是两位数。
然后还有一个发现是:32×102用字母表示就是a×b=a然后就是102把它拆成100和2,我就把100和2用c和d来表示就是a×(c+d)就等于a×c+a×d,也就是32×102。
12×6就把12拆成10和2,也是用c和d来表示,就是a×b=(c+d)×a=c×a+d×a,就是12乘以6。
我们小组的发言完了,请其他小组补充。
生a:我,提醒一下×××,是乘几,不是乘以。
生b:我觉得×××说得很好,但是我还要补充。
(鼓掌)首先,我的例子是27×25=675,我的第一步是用27×5=135,用红笔框出来的,就是27×5=135,我用黑笔框出来的是27×2=540,这边就像×××刚才说的那样,0是不用写的,这边就是27×20=540。
师:你说这27乘的是2还是20?生(齐):20。
生b:之后我再用135加上540,就是我用铅笔框出来的,135+540=675。
(鼓掌)师:刚才王成蔚说的这个例子和张文静这个例子,这边是27×25是吧?再看这边,她是76×54,两个例子不一样,但是两位数乘两位数用竖式计算的过程怎么样?生(齐):一样的。
师:先算什么,后算什么,最后算什么,这是一样的,对吧?那么我想补充发言的时候这个例子我们就不补充了,好了,继续。
生(陈):还有谁有补充?李佳慧生(李):就是我们要提醒陈××,你刚才说101或1001乘一个数的时候,它重复两遍,我还要提醒你,应该是101乘一个两位数的时候要重复两遍,1001乘一个三位数的时候要重复两遍。
(鼓掌)生(陈):还有谁要补充?周晓妍(鼓掌)生(周):听了你们的简算,我还有一种简算想和大家来交流。
我觉得32还和30比较接近,所以我就用30×102再加上剩下的2×102,所以等于3060加上2×102的204就等于3264。
生:我发现周晓妍你写的有个错误,就是在这儿,这里你算了这个12,这个0可以不加,但是在写最后算的时候要加上,否则你就变成24+12=36了,最后应该是24+120=144。
(鼓掌)师:刚才×××还看到了上面一个,计算有什么问题吗?调整一下。
这是尹丽做的,提醒你注意什么?生:提醒我们注意,在写竖式的时候0可以不加,但是你在写计算过程的时候0一定要加,要不然计算就会出现错误。
(鼓掌)师:还是回到刚才说这个问题,竖式计算是对的,对吗?12乘几呀?生:10。
师:好了,那我们还是回到刚才×××介绍的32×102,她的计算方法和刚才交流的算法不一样吧?生:秦××生(秦):我发现这两种算法都是把一个数拆成了两个加数。
生:秦××刚才说的是把一个数拆成两个加数。
师:好,那回顾一下,在周晓妍这儿,是把?生(齐):32拆成30和2。
师:那刚才这个交流呢?两种算法,是吧?一种算法是把?生:102拆成了100和2。
师:还有一种算法?生:102拆成了101和1。
师:所以刚才是陈××说的吧,他们相同的是把一个因数拆成两个数相?生:加。
生:我觉得他们刚才也就是说用了×××刚才那个公式。
×××的还有我的发现他写的:32×102,他第一个写的a×b=a×(c+d),也就等于a×c+a×d,也就等于a×b,而我们看,刚才32×101+32×1也就是运用了×××,我们发现刚才刘××讲的32×100+32×2也就是运用了×××的这个公式,也就是a×b=a×(c+d),也就等于a×c+a×d,也就等于a×b。
而我们再看,而周晓妍用的是32×102=30×102+2×102=3060+204=3264,也就是用了×××的这个公式:第二个公式:a×b=(c+d)×a=c×a+d×a=a×b,也就是周晓妍把32拆成了30和2。
师:刚才×××解释这么长时间,他就是把我们前面的话一起简化,他说前面的方法是把102拆成两个数相加,后面的方法是把32拆成两个数相加。
那我们现在回顾一下,口算题、笔算题、还有这简算题,它们相同的地方在哪儿?生:这些算式他们用了三步计算,这些算式他们都是把一个数拆成两个数之后再巧算的。
生:我发现这些算式都是把一个与另一个数各个位上的数相乘,这样简算以后再相加得到这两个数的积。