管理运筹学整数规划
运筹学-第3章整数规划

2018/8/17
9
生产计划问题
某机器制造厂可生产四种产品,对于三种主要资源(钢, 人力,能源)的单位消耗及单位利润见表。问如何安排 生产,可使总利润最大?
消耗 产品1
1
产品2 产品3
10 6 0 7 3 4 2 8
产品4
0 1 5 4
资源量
5000 3000 3000
资源A(钢)
资源B(人力) 2 资源C(能源) 2 单位利润 1
这里取M=5000
2018/8/17
15
(2)批量生产
在前例中的基础上, 增加假设:产品4要求批量生 产,批量为不少于500件。 试建立最佳生产计划模型。
定义0-1变量y4
1 , x 4 500 y 4= 0 , x 4=0
500y4 x4 My4 y4 {0,1}
增加约束
2018/8/17 4
附加条件
项目1和项目3至少采纳一个; y1+y2 ≥1 项目2和项目5不能同时采纳; y2+y5 ≤1 项目1仅在项目2采纳后才可考虑是否采纳; y1≤ y2 项目1仅在项目2和3同时采纳后才可考虑是否采纳; 项目1,2,3不能同时采纳; y1+y2+y3 ≤2 或者选择项目1和2,或者选择项目3; y1= y2, y1+y3 =1; 或者 0.5(y1+y2) +y3 =1.
i 1 j 1 5 4
1, 采用Ai建厂 yi , i 3,4,5 0 ,不采用
s.t. x11 x12 x13 x14 400 x x x x 600 23 24 21 22 x31 x32 x33 x34 200y3 x41 x42 x43 x44 200y4 x x x x 200y 5 51 52 53 54 y3 y 4 y5 1 x11 x21 x31 x41 x51 300 x12 x22 x32 x42 x52 350 x13 x23 x33 x43 x53 400 x x x x x 150 24 34 44 54 14 xij 0, i 1,2,3,4,5, j 1,2,3,4 y3 , y4 , y5 {0,1}
运筹学中的整数规划问题分析

运筹学中的整数规划问题分析运筹学是运用数学和定量分析方法,通过对系统的建模和优化,来解决实际问题的学科。
其中整数规划是运筹学中的一个重要分支,它在许多实际情况中得到广泛应用。
本文将对整数规划问题进行分析,并探讨其解决方法与应用领域。
一、整数规划问题定义及特点整数规划是一类线性规划问题的扩展,其目标函数和约束条件中的变量取值限定为整数。
通常,整数规划问题可以形式化表示为:Max/Min Z = c₁x₁ + c₂x₂ + ... + cₙxₙs.t.a₁₁x₁ + a₁₂x₂ + ... + a₁ₙxₙ ≤ b₁a₂₁x₁ + a₂₂x₂ + ... + a₂ₙxₙ ≤ b₂...aₙ₁x₁ + a₂₂x₂ + ... + aₙₙxₙ ≤ bₙx₁, x₂, ..., xₙ ∈ Z其中,Z为目标函数值,x₁, x₂, ..., xₙ为待求解的整数变量,c₁, c₂, ..., cₙ为目标函数的系数,aᵢₙ为约束条件的系数,b₁, b₂, ..., bₙ为约束条件的右端常数。
整数规划问题的特点在于整数约束条件的引入,使其解空间变得有限,增加了问题的复杂性。
与线性规划问题相比,整数规划问题更接近实际情况,能够更准确地描述和解决很多实际问题。
二、整数规划问题的解决方法解决整数规划问题的方法主要有以下几种:穷举法、剪枝法、分支定界法、动态规划法等。
具体使用哪种方法需要根据问题的规模和特点来确定。
1. 穷举法是最简单直观的方法,通过枚举搜索整数解空间中的每一个可能解来寻找最优解。
然而,由于整数解空间往往非常大,这种方法在实际问题中往往是不可行的。
2. 剪枝法是一种通过对解空间进行剪枝操作,减少搜索空间的方法。
通过合理选择剪枝条件,可以避免对明显无解的解空间进行搜索,从而提高求解效率。
3. 分支定界法是一种将整数规划问题不断分解为子问题,并对子问题进行界定的方法。
通过不断缩小问题规模,并计算上下界确定最优解的位置,可以有效地求解整数规划问题。
管理运筹学讲义:整数规划

福建师范大学经济学院
第一节
• 步骤:
整数规划问题
二、 整数规划的图解法
在线性规划的可行域内列出所有决策变量可能取的整数值, 求出这些变量所有可行的整数解, 比较它们相应的目标函数值,最优的目标函数值所对应的 解就是整数规划的最优解。 x2
• 实用性:
只有两个决策变量, 可行的整数解较少。
x2
5
4
3 2 1
•
• • •
1
• • •
2
x2=3
• •
3
•
4
5x1 +7 x2 =35 2x1 + x2 =9
x2 =2
x1
10
福建师范大学经济学院
第二节
分枝定界法
• 求解相应的线性规划的最优解
问题4相应的线性规划的最优解: x1=3,x2 =2,Z4=28 问题5相应的线性规划的最优解:x1=14/5,x2 =3,Z5=159/5
11
福建师范大学经济学院
第二节
问题6:maxZ= 6x1 +5 x2 2x1 + x2 ≤9 5x1 +7 x2 ≤35 x1≤3 x2 ≥3 x1≤2 x1, x2 ≥0 x1, x2取整数
分枝定界法
问题7: maxZ= 6x1 +5 x2 2x1 + x2 ≤9 5x1 +7 x2 ≤35 x1 ≤3 x2 ≥3 x1 ≥ 3 x1, x2 ≥0 x1, x2取整数
第6章
整数规划
• 线性规划的决策变量取值可以是任意非负实数,但许多
实际问题中,只有当决策变量的取值为整数时才有意义。
例如,产品的件数、机器的台数、装货的车数、完成工作的人 数等,分数或小数解显然是不合理的。
管理运筹学讲义整数规划

管理运筹学讲义整数规划整数规划是管理运筹学中一种重要的优化技术,它在实际问题中具有广泛的应用。
本文将介绍整数规划的基本概念、建模方法以及解决算法,并通过实例展示其在实际问题中的应用。
一、整数规划的基本概念整数规划是线性规划的一种扩展形式,其决策变量被限制为整数。
在实际问题中,往往存在某些变量只能取整数值的约束条件,这时就需要使用整数规划方法进行求解。
与线性规划相比,整数规划的求解难度更大,但可以提供更精确的结果。
二、整数规划的建模方法在进行整数规划建模时,需要确定决策变量、目标函数和约束条件。
1. 决策变量决策变量是问题中需要优化的变量,其取值决定了问题的解。
在整数规划中,决策变量通常表示为整数。
2. 目标函数目标函数是整数规划问题中需要最小化或最大化的目标。
它可以是线性函数或非线性函数,但在整数规划中,通常只考虑线性目标函数。
3. 约束条件约束条件是问题的限制条件,限制了决策变量的取值范围。
在整数规划中,约束条件可以是线性等式或线性不等式。
三、整数规划的解决算法解决整数规划问题的常见算法包括割平面法、分支定界法和动态规划法等。
这些算法通过不断对问题进行优化,逐步逼近最优解。
1. 割平面法割平面法是一种通过添加额外的约束条件来逼近最优解的方法。
它首先求解一个松弛问题,然后根据松弛问题的解加入新的约束条件,直到找到最优解。
2. 分支定界法分支定界法是一种将整数规划问题划分为多个子问题,并对每个子问题进行求解的方法。
它通过不断分支和剪枝来找到最优解。
3. 动态规划法动态规划法是一种通过将问题分解为多个子问题,并通过求解子问题的最优解来求解原始问题的方法。
它采用自底向上的求解方式,将所有可能的决策情况进行组合,得到最优解。
四、整数规划在实际问题中的应用整数规划在实际问题中有着广泛的应用。
以下是一个应用整数规划解决的实际问题示例:某公司生产两种产品A和B,每天的生产时间为8小时。
产品A每单位利润为100元,产品B每单位利润为150元。
管理运筹学案例演示混合整数规划

? ?
1 1
? ?
y4
?
1
??x1, x2, x3, x4 ? 0, yj ? 0 , j ? 1,2,3,4
用QM软件求解结果如下:
最优方案 :装配线A生产100件,装配线 B生产1400件,装配线 C 生产1000件,装配线D生产1500件;
例3.(固定成本问题)高压容器公司制造小、中、大三种尺寸的金属 容器,所用资源为金属板、劳动力和机器设备,制造一个容器所 需所需的各种资源的数量如下表:
?8x1 ? 15x2 ? 6x3 ? 3x4 ? 160 ??30x1 ? 40x2 ? 20x3 ? x4 ? 200
???8x1x1??315x2 ? 100
? ?
x2
?
2
?5 ? ?5
? ?
x3 x4
? 10 ? 10
?? xj ? 0 , j ? 1,2,3,4 , 整数
用QM软件求解结果如下:
使用计算机软件包求解(附件1)
A Linear Programming
1 2 3 4 5 6 7 8 9 10 11 J CPM/PERT
B Integer Programming
1234567
K Inventory Models
C Zero One Programming
1234567
L Queueing Theory
每个广告的费用(千元)
电
白昼时间
8
视
热门时间
15
广杂 播志
63
每个广告影响总人数(千人)
40
90
50 2
每个广告影响妇女数(千人)
30
40
20 1
解:设电视白昼时间的广告个数为 x1、电视热门时间的广告个 数为 x2、广播的广告个数为 x3、杂志的广告个数为 x4。
运筹学第四章--整数规划和分配问题(新)aPPT课件

-
1
整数线性规划的一般形式: n max(或min)z cj xj j 1
n
aij xj ( 或 )bi (i 1,2,...m)
j 1
xj 0( j 1,2,...n),且部分或全部取整数
例1.求下述整数规划问题的最优解
max z 3x1 2x2
2x1 3x2 14 x1 0.5x2 4.5
先不考虑整数解的限制,用单纯形法求 解其松弛问题,如果求得的解恰好是整数解, 则得整数规划最优解,停止计算。否则,将 松弛问题分解为两个子问题(也称后继问 题),每个子问题都是在原松弛问题的基础 上增加一个变量取整数的约束条件,这样就 缩小了原来的可行域,然后用单纯形法求解, 直至得到最终结果。
-
21
-
23
例.用分枝定界法求下述数整规划问题的最优
maxz 3x1 2x2
2x1 3x2 14 x1 0.5x2 4.5 x1, x2 0,且均取整数值
-
24
-
25
-
26
-
27
-
28
-
29
第四节 割平面法 一、割平面法的基本思想
先不考虑整数条件,用单纯形法求解其 松弛问题,若得整数解,即得整数规划最优 解。否则,增加线性约束条件(称为割平面 方程),将原问题的可行域切割掉一部分, 被切割掉的都是非整数解,再用单纯形法求 解新的线性规划问题,依次进行下去,直到 使问题的最优解恰好在可行域的某个具有整 数坐标的顶点上得到。
0.5 + 0.4 x4 + 0.4 x5≥ 1
-
35
2. 借助单纯形表法
对求解整数规划问题的松弛问题(LP问题)得到
最优单纯形表,设xi=bi 是最优解中取分数值(分数 部分最大)的基变量,则有
运筹学 整数规划( Integer Programming )
检查所有分枝的解及目标函数值,若某分枝的解是整数并且目标函数 值大于(max)等于其它分枝的目标值,则将其它分枝剪去不再计算,若 还存在非整数解并且目标值大于(max)整数解的目标值,需要继续分枝, 再检查,直到得到最优解。
割平面法的内涵:
Page 18
通过找适当的割平面,使得切割后最终得到这样的可行域( 不一定一次性得到), 它的一个有整数坐标的顶点恰好是 问题的最优解.
-Gomory割平面法
例: 求解
max z x1 x2 s.t. x1 x2 1
3x1 x2 4 x1 , x2 0, 整 数
1 x1 3/4 1 0 -1/4 1/4 0
1 x2 7/4 0 1 3/4 1/4 0
0 x5 -3 0 0 -3 -1 1
0 0 -1/2 -1/2 0
由对偶单纯形法, x5为换出变量, x3为换入变量, 得Page 29
cj CB XB b 1 x1 1 1 x2 1 0 x3 1
1 100 0 x1 x2 x3 x4 x5 1 0 0 1/3 1/12 0 1 0 0 1/4 0 0 1 -1 -1/3 0 0 0 -1/2 -1/6
收敛性很慢. 但若下其它方法(如分枝定界法)配合使用,
也是有效的.
分支定界法
Page 33
分支定界法的解题步骤:
1)求整数规划的松弛问题最优解; 若松弛问题的最优解满足整数要求,得到整数规划的最优解,否则转下
一步; 2)分支与定界:
任意选一个非整数解的变量xi,在松弛问题中加上约束: xi≤[xi] 和 xi≥[xi]+1
运筹整数规划素材
OPERATIONS RESEARCH
2024/10/20
1
第四章 整数规划与分配问题
整数规划的有关概念及特点 整数规划的应用 指派问题及匈牙利解法 整数规划的求解方法:分枝定界法、割平面法
2024/10/20
2
§1 整数规划的有关概念及特点
§1.1 概念
整数规划: 要求决策变量取整数值的规划问题。 (线性整数规划、非线性整数规划等)
解:设 xij 表示学生i在周j的值班时间。
0, 学生i在周j不值班 yij 1, 学生i在周j值班
a表ij 示学生i在周j的最多可值班时间。
65
则目标函数:
min z
ci x ij
i1 j1
2024/10/20
12
约 (1) 束 条 (2) 件
(3)
(4)
(5)
(6)
6
xij 14,
15
x6 400
x5 x6 850
x4 x5 x6 1750
x3 x4 x5 x6 2450 x2 x3 x4 x5 x6 3000
x1 x2 x3 x4 x5 x6 3500 x j 0, j 1,...6
2024/10/20
16
例3(固定成本问题) 高压容器公司制造小、中、大三种尺寸的金属容器, 所用资源为金属板、劳动力和机器设备,制造一个 容器所需的各种资源的数量如表所示。每种容器售 出一只所得的利润分别为 4万元、5万元、6万元, 可使用的金属板有500吨,劳动力有300人/月,机 器有100台/月,此外不管每种容器制造的数量是多 少,都要支付一笔固定的费用:小号是l00万元, 中号为 150 万元,大号为200万元。现在要制定一 个生产计划,使获得的利润为最大。
运筹学-第三章-整数规划
于是,对原问题增加两个新约束条件,将原问题分为两个 子问题,即有
max z 40x1 90x2
max z 40x1 90x2
9x1 7x2 56
s.t
7 x1
20 x2
70
x1 4
x1, x2 0
(LP1)
9x1 7x2 56
和
s.t
7
x1
20
x2
70
(LP2)
x1 5
表 3.1
货物 体积(米 3/箱) 重量(百公斤/箱) 利润(百元/箱)
甲
5
2
20
乙
4
5
10
托运限制 24 米 3
13 百公斤
解: 设x1,x2 分别为甲、乙两种货物的托运箱数,则数 学模型可以表示为:
max z 20x1 10x2
5x1 4x2 24 2x1 5x2 13 x1, x2 0, x1, x2整数
其中,目标函数表示追求最大的卫星实验价值;第1,2个约
束条件表示体积和重量的限制;第3-5个约束条件表示特定的卫
星装载要求,该问题的决策变量是0-1整数变量。
3.2.3隐枚举法 从上面两个例子可以看出,此类型问题是整数规划中的特
殊情形,其中决策变量 xi 的取值只能为0或1,此时变量 xi 称 为0-1变量,这类问题被称为0-1整数规划。对于 xi 的取值的 0-1约束,可以转化成下述整数约束条件:xi 1, xi 0, xi Z
目前对于整数规划问题的求解主要有两种方法:分支 定解法和割平面法。本章仅介绍分枝定界法,该方法在上 世纪60年代由Land Doig和Dakin等人提出,其具有灵活 且便于计算机求解的优点,所以现在已成为解决整数规划 问题的重要方法。下面通过例子说明分支定界方法的算法 思想和步骤。
运筹学中的线性规划与整数规划
运筹学中的线性规划与整数规划在运筹学中,线性规划和整数规划是两个常用且重要的数学模型。
它们被广泛应用于资源分配、生产调度、物流管理等问题的决策过程中。
本文将介绍线性规划和整数规划的基本概念、数学模型以及求解方法。
一、线性规划线性规划是一种通过线性关系来描述问题的数学模型。
它的目标是在给定的约束条件下,找到使目标函数达到最优的决策变量取值。
线性规划模型一般可以表示为如下形式:Max/Min Z = c₁x₁ + c₂x₂ + ... + cₙxₙs.t. a₁₁x₁ + a₁₂x₂ + ... + a₁ₙxₙ ≤ b₁a₂₁x₁ + a₂₂x₂ + ... + a₂ₙxₙ ≤ b₂...aₙ₁x₁ + aₙ₂x₂ + ... + aₙₙxₙ ≤ bₙx₁, x₂, ..., xₙ ≥ 0其中,Z表示目标函数值,c₁, c₂, ..., cₙ表示目标函数的系数,x₁, x₂, ..., xₙ为决策变量,a₁₁, a₁₂, ..., aₙₙ为约束条件的系数,b₁,b₂, ..., bₙ为约束条件的右侧常数。
线性规划的求解方法主要有两类:图形法和单纯形法。
图形法适用于二维问题,通过绘制目标函数和约束条件在坐标系中的图形,找到交点来确定最优解。
而单纯形法适用于多维问题,通过迭代计算,逐步接近最优解。
二、整数规划整数规划是线性规划的一种特殊情况,它要求决策变量的取值必须为整数。
整数规划模型可以表示为如下形式:Max/Min Z = c₁x₁ + c₂x₂ + ... + cₙxₙs.t. a₁₁x₁ + a₁₂x₂ + ... + a₁ₙxₙ ≤ b₁a₂₁x₁ + a₂₂x₂ + ... + a₂ₙxₙ ≤ b₂...aₙ₁x₁ + aₙ₂x₂ + ... + aₙₙxₙ ≤ bₙx₁, x₂, ..., xₙ ∈ Z其中,Z表示目标函数值,c₁, c₂, ..., cₙ表示目标函数的系数,x₁, x₂, ..., xₙ为整数决策变量,a₁₁, a₁₂, ..., aₙₙ为约束条件的系数,b₁, b₂, ..., bₙ为约束条件的右侧常数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第3章
整 数 规 划
IP
3.1 整数规划问题及其建模 3.2 分支定界法 3.3 割平面法 3.4 0-1型整数线性规划的解法 3.5 指派问题 3.6 整数规划应用
第3章
整数规划
2
整数规划:变量取整数的线性规划; 纯整数规划:所有变量都取整数的线性规划;
设第j种设备运行每小时可以生产第i种产品aij 件,而第i种产品 定货为 bi 件。要满足定货同时使设备运行的总成本最小的问题 为: n
min z ( d j y j c j x j )
j 1
0 当x j 0 f j (x j ) d j c j x j 当x j 0
s.t.
a
j 1
n
ij
x j bi
i 1,2, , m j 1,2, , n
混合0-1规划
x j My j x j 0, y j 0,1
6
max z x1 4 x2
线 性 规 划
max z x1 4 x 2
整 数 规 划
14x1 42x4 196 s.t. x1 2 x2 5 x , x 0 1 2
Sub-5
x1≥5
Sub-4
x1 5
Sub-7
x2 1 z 13
x1≤ቤተ መጻሕፍቲ ባይዱ x2≤0
x1 5, 3 x2 1 7 2 z 14 7
z z 14
x1 7
Sub-9
√
x1 5 x2 1
3 5
Sub-8
x2 0 z 14 z z 14
1 z 14 5
第3章 整数规划 9
例3-4 用分枝定界法求解以下整数规划
min z 2 x1 3x2 5 x1 7 x2 35 s.t. 4 x1 9 x2 36 x , x 0 且为整数 1 2
先求得相应的线性规划的最优解,为
x1 3 12 6 8 , x2 2 , z 14 17 17 17
线性规划最优解为: x1=0,x2=0,x3=2.5 而整数规划的最优解是 x1=1,x2=0,x3=2
4
例3-2厂址选择问题 在N个地点中选r个(N>r)建厂,在第i个地点建厂(i=1,2, …,N)所需投资为Ii万元,占地Li亩,建成以后的生产能力为 Pi万吨。现在有总投资I万元,土地L亩,应如何选择厂址,使 建成后总生产能力最大。 设 0 表示在i地不建厂 xi 1 表示在i地建厂
整数规划模型为:
m ax s. t.
z
P x
i 1 i i
N
i
I
i 1 N i 1 N i 1
N
xi I
i
L x
xi L r
0-1规划
i
x i 0,1
5
例3-3 考虑固定成本的最小生产费用问题 在最小成本问题中,设第j种设备的固定成本为 d j,运行的变 动成本为 c j,则生产成本与设备运行时间的关系为:
xr≤Ir
xr≥Ir+1
Min z CX AX b xr I r X 0
Min z CX AX b xr I r 1 X 0
第3章
整数规划
8
分支(Branch)这两个子问题的可行域都是原线性规划问
题可行域的子集,这两个子问题的最优解的目标函数值都不会 比原线性规划问题的最优解的目标函数值更小。如果这两个问 题的最优解仍不是整数解,则继续选择一个非整数的变量,继 续将这个子问题分解为两个更下一级的子问题。这个过程称为 “分枝(Branch)”。 定界(Bound)如果某一个子问题的最优解是整数解,则它 的目标函数值可作为整数规划最优目标函数值的上界。 如果某一个子问题的解还不是整数解,但这个非整数解的目标 函数值已经超过这个上界,那么这个子问题不必再进行分枝。 如果在分枝过程中得到新的整数解且该整数解的目标函数值小 于已记录的上界,则用较小的整数解的目标函数值代替原来的 上界。上界的值越小,就可以避免更多不必要的分枝。 确定整数解目标函数值上界并不断更新上界,并且不断“剪除 ”目标函数值超过上界的分枝的过程,称为定界(Bound)。
第3章
整数规划
10
x1≤4
x1 4
Sub-3
1 x1 4 5 x2 2 2 z 1 4 5 x2≤2
12 17 6 x2 2 17 8 z 14 17 x1 3
x2≥3
原问题
Sub-1
x2 2
√
Sub-6
z 14 z 14
无可行解 x2≥2 x2≤1
×
x1≥6
x1 6 x2 5 7
1 3
12 x1 3 17 x2 3 z 13 1 2
Sub-2
x2≥1
Sub-10
z 1 4
z z 14
7
无可行解
图3-3. 探索过程示意图
11
3.3.1 割平面法基本思想 •首先放弃变量的整数要求,求得线性规划的最优解。 •如果最优解恰是一个整数解,则线性规划的最优解就是相 应的整数规划的最优解。 •如果线性规划的最优解不是整数解,则要构造一个新的约 束,对线性规划问题的可行域进行切割,切除已经得到的 线性规划的最优解,但保留原可行域中所有的整数解,求 解新的线性规划问题 •如果最优解仍不是整数解,再增加附加的约束将其切除, 但仍保持最初可行域中所有的整数解,如此一直进行,直 至得到一个整数的最优解为止。
混合整数规划:部分变量取整数的线性规划;
0-1规划:所有变量都取0、1两个值的规划;
0-1混合规划:部分变量取0、1两个值的规划。
例3-1背包问题
max s.t. z= 17x1 10x1 x 1, x 1, +72x2 +42x2 x 2, x 2, +35x3 +20x3 ≤50 x3 ≥0 x3为整数
14x1 42x 4 196 s.t. x1 2 x 2 5 x , x 0 且为整数 1 2
X*=(13/5,19/5) Z*=89/5=17.8
X*=(5,3) Z*=17
7
基本思想 分支(Branch) 定界(Bound)
Min z CX AX b X 0