高三数学的复习方法总结大全
2024年高三数学备考的策略总结

2024年高三数学备考的策略总结一、前期准备(1-3个月)1.复习基础知识:回顾高中数学的基础知识,包括代数、函数、几何、概率等各个部分的基本概念和公式,确保基础知识牢固。
2.整理错题:对之前做过的数学题进行整理,找出常犯的错误及解题思路不清晰的题目,进行深入分析和理解。
3.提高解题速度:多进行一些快速计算和解题的训练,提高解题速度,尤其以整除、乘方、分式的运算为重点。
4.分析历年真题:分析历年的高考数学真题,查漏补缺,了解出题规律和难点,为后续备考打下基础。
二、知识补充和巩固(4-6个月)1.系统学习:按照学校教学进度和高考要求,系统学习新的数学知识点,包括高考考纲中的必考内容和部分常考内容。
2.刷题巩固:针对新学的知识点进行大量的练习,包括选择题、填空题和解答题,掌握各种解题技巧和思路。
3.诊断错误:对做错的题目进行诊断,找出错误原因并加以纠正,同时总结解题方法和经验,提高解题能力。
4.积累题型:积累各种不同类型的数学题目,并对其进行分类整理,形成自己的题型分类和解题套路,增加解题的效率。
三、提升解题能力(7-9个月)1.强化专题练习:对数学的各个重要知识点和题型进行有针对性的专项训练,突出重点,加深对知识点的理解。
2.模拟考试:定期进行模拟考试,模拟真实考场环境,培养临场应变能力和时间控制能力,找出考试中的弱点和问题。
3.寻找解题方法:对于一些较难的题目,不仅要追求结果,更要注重解题过程,学会灵活运用各种方法和技巧解题。
4.拓展思维:进行一些拓展思维的训练,如解决实际问题、数学竞赛题等,增强数学思维的灵活性和创造力。
四、强化巩固(10-12个月)1.复习总结:对之前学过的知识点进行全面的复习和总结,查漏补缺,确保知识体系的完整性和牢固性。
2.特殊题型攻克:对一些常考的特殊题型,如证明题、综合题等,进行有针对性的攻克和练习。
3.密集冲刺:进行一些高强度的冲刺训练,提高解题速度和应试能力,适应高考临场的压力和紧张情况。
备考高考数学最好用的策略与方法精选3篇

备考高考数学最好用的策略与方法精选3篇【篇1】备考高考数学最好用的策略与方法1、课后一分钟回忆及时复习上完课的当天,必须做好当天的复习。
复习的有效方法不是一遍遍地看书或笔记,而是采取回忆式的复习:先把书,笔记合起来回忆上课老师讲的内容,例题;分析问题的思路、方法等(也可边想边在草稿本上写一写)尽量想得完整些。
然后打开笔记与书本,对照一下还有哪些没记清的,赶紧补完,这样不仅能把当天上课内容巩固下来,而且也能检查当天课堂听课的效果如何,同时也可改进听课方法及提高听课效果。
我们可以简记为“一分钟的回忆法”。
2、避免“会而不对”的错误习惯解题时应仔细阅读题目,看清数字,规范解题格式,养成良好解题习惯。
部分同学(尤其是脑子比较好的同学)自我感觉很好,平时做题只是写个答案,不注重解题过程,书写不规范。
但在正规考试中即使答案对了,由于过程不完整而扣分较多。
还有一部分同学平时学习过程中自信心不足,做作业时免不了互相对答案,也不认真找出错误原因并加以改正。
这些同学到了考场上常会出现心理性错误,导致“会而不对”,或是为了保证正确率,反复验算,费时费力,影响整体得分。
这些问题很难在短时间得以解决,必须在平时养成良好解题习惯。
“会而不对”是高三数学学习的大忌,常见的有审题失误、计算错误等,平时都以为是粗心,其实这是一种不良的学习习惯,必须在第一轮复习中逐步克服,否则,后患无穷。
可结合平时解题中存在的具体问题,逐题找出原因,看其到底是行为习惯方面的原因,还是知识方面的缺陷,再有针对性地加以解决。
必要时要作些记录,也就是“错题笔记”。
每过一段时间,就把“错题笔记”或标记错题的试卷复习一遍。
在看参考书时,也可以把精彩之处或做错的题目做上标记,以后再看这本书时就会有所侧重。
3、重视“一题多解”“多题同解”学好数学要做大量的习题,但做了大量的题,数学都未必好,为何会出现这种反差呢?究其原因,是片面追求做题数量,而没有发挥做题的效果。
导数中的公切线问题--2024年新高考数学一轮复习题型归纳与方法总结 解析版

导数中的公切线问题知识点梳理一、公切线问题一般思路两个曲线的公切线问题,主要考查利用导数的几何意义进行解决,关键是抓住切线的斜率进行转化和过渡.主要应用在求公切线方程,切线有关的参数,以及与函数的其他性质联系到一起.处理与切线有关的参数,通常根据曲线、切线、切点的三个关系列出参数的方程并解出参数:①切点处的导数是切线的斜率;②切点在切线上;③切点在曲线上.考法1:求公切线方程已知其中一曲线上的切点,利用导数几何意义求切线斜率,进而求出另一曲线上的切点;不知切点坐标,则应假设两切点坐标,通过建立切点坐标间的关系式,解方程.具体做法为:设公切线在y =f (x )上的切点P 1(x 1,f (x 1)),在y =g (x )上的切点P 2(x 2,g (x 2)),则f ′(x 1)=g ′(x 2)=f x 1 -g x 2x 1-x 2.考法2:由公切线求参数的值或范围问题由公切线求参数的值或范围问题,其关键是列出函数的导数等于切线斜率的方程.题型精讲精练1若直线y =kx +b 是曲线y =e x 的切线,也是曲线y =ln x +2 的切线,则k =______.【解析】设y =kx +b 与y =e x 和y =ln x +2 ,分别切于点x 1,e x 1,x 2,ln x 2+2 ,由导数的几何意义可得:k =e x 1=1x 2+2,即x 2+2=1ex 1,①则切线方程为y -e x 1=e x 1x -x 1 ,即y =e x 1x -e x 1x 1+e x 1,或y -ln x 2+2 =1x 2+2x -x 2 ,即y -ln x 2+2 =1x 2+2x -x 2 ,②将①代入②得y =e x 1x +2e x 1-1-x 1,又直线y =kx +b 是曲线y =e x 的切线,也是曲线y =ln x +2 的切线,则-e x 1x 1+e x 1=2e x 1-1-x 1,即e x 1-1 x 1+1 =0,则x 1=-1或x 1=0,即k =e 0=1或k =e -1=1e ,故答案为1或1e.2已知直线y =kx +b 与函数y =e x 的图像相切于点P x 1,y 1 ,与函数y =ln x 的图像相切于点Q x 2,y 2 ,若x 2>1,且x 2∈n ,n +1 ,n ∈Z ,则n =______.【解析】依题意,可得e x 1=k =1x 2y 1=e x 1=kx 1+by 2=ln x 2=kx 2+b,整理得x 2ln x 2-ln x 2-x 2-1=0令f x =x ln x -ln x -x -1x >1 ,则f x =ln x -1x在1,+∞ 单调递增且f 1 ⋅f 2 <0,∴存在唯一实数m ∈1,2 ,使f m =0f x min =f m <f 1 <0,f 2 =ln2-3<0,f 3 =2ln3-4<0,f 4 =3ln4-5<0,f 5 =4ln5-6>0,∴x 2∈4,5 ,故n =4.【题型训练】1.求公切线方程一、单选题1(2023·全国·高三专题练习)曲线y =1x与曲线y =-x 2的公切线方程为()A.y =-4x +4B.y =4x -4C.y =-2x +4D.y =2x -4【答案】A【分析】画出图象,从而确定正确选项.【详解】画出y =1x,y =-x 2以及四个选项中直线的图象如下图所示,由图可知A 选项符合.故选:A2(2023·全国·高三专题练习)对于三次函数f (x ),若曲线y =f (x )在点(0,0)处的切线与曲线y =xf (x )在点(1,2)处点的切线重合,则f ′(2)=()A.-34B.-14C.-4D.14【答案】B【分析】由f(0)=0得d=0,然后求得f (x),由f (0)=2-01-0求得c=2,设g(x)=xf(x),由g(1)=2得f(1)=2及a+b=0,再由g (1)=2得3a+2b+2=0,解得a,b后可得f (2).【详解】设f(x)=ax3+bx2+cx+d(a≠0),∵f(0)=d=0,∴f(x)=ax3+bx2+cx,∴f′(x)=3ax2+2bx+c∴f′(0)=c=2-01-0=2,设g(x)=xf(x),则g(1)=f(1)=a+b+2=2,即a+b=0⋯⋯①又∵g′(x)=f(x)+xf′(x),∴g′(1)=f(1)+f′(1)=2,∴f′(1)=0,即3a+2b+2=0⋯⋯②由①②可得a=-2,b=2,c=2,∴f′(2)=-14.故选:B.3(2023·全国·高三专题练习)已知函数f x =x ln x,g x =ax2-x.若经过点A1,0存在一条直线l与曲线y=f x 和y=g x 都相切,则a=()A.-1B.1C.2D.3【答案】B【分析】先求得f(x)在A(1,0)处的切线方程,然后与g x =ax2-x联立,由Δ=0求解【详解】解析:∵f x =x ln x,∴f x =1+ln x,∴f 1 =1+ln1=1,∴k=1,∴曲线y=f x 在A1,0处的切线方程为y=x-1,由y=x-1y=ax2-x得ax2-2x+1=0,由Δ=4-4a=0,解得a=1.故选:B4(2023·全国·高三专题练习)已知函数f(x)=x2-4x+4,g(x)=x-1,则f(x)和g(x)的公切线的条数为A.三条B.二条C.一条D.0条【答案】A【分析】分别设出两条曲线的切点坐标,根据斜率相等得到方程8n3-8n2+1=0,构造函数f x =8x3-8x2+1,f x =8x3x-2,研究方程的根的个数,即可得到切线的条数.【详解】设公切线与f x 和g x 分别相切于点m,f m,n,f n,f x =2x-4,g x =-x -2,gn =fm =g n -f m n -m ,解得m =-n -22+2,代入化简得8n 3-8n 2+1=0,构造函数f x =8x 3-8x 2+1,f x =8x 3x -2 ,原函数在-∞,0 ↗,0,23 ↘,23,+∞ ↗,极大值f 0 >0,极小值,f 23<0故函数和x 轴有交3个点,方程8n 3-8n 2+1=0有三解,故切线有3条.故选A .【点睛】这个题目考查了利用导数求函数在某一点处的切线方程;步骤一般为:一,对函数求导,代入已知点得到在这一点处的斜率;二,求出这个点的横纵坐标;三,利用点斜式写出直线方程.考查了函数零点个数问题,即转化为函数图像和x 轴的交点问题.5(2023·全国·高三专题练习)已知函数f x =x 2-2m ,g x =3ln x -x ,若y =f x 与y =g x在公共点处的切线相同,则m =()A.-3B.1C.2D.5【答案】B【分析】设曲线y =f x 与y =g x 的公共点为x 0,y 0 ,根据题意可得出关于x 0、m 的方程组,进而可求得实数m 的值.【详解】设函数f x =x 2-2m ,g x =3ln x -x 的公共点设为x 0,y 0 ,则f x 0 =g x 0 f x 0 =g x 0 ,即x 20-2m =3ln x 0-x 02x 0=3x 0-1x 0>0,解得x 0=m =1,故选:B .【点睛】本题考查利用两函数的公切线求参数,要结合公共点以及导数值相等列方程组求解,考查计算能力,属于中等题.6(2023·全国·高三专题练习)函数f (x )=ln x 在点P (x 0,f (x 0))处的切线与函数g (x )=e x 的图象也相切,则满足条件的切点的个数有A.0个B.1个C.2个D.3个【答案】C【分析】先求直线l 为函数的图象上一点A (x 0,f (x 0))处的切线方程,再设直线l 与曲线y =g (x )相切于点(x 1,e x 1),进而可得ln x 0=x 0+1x 0-1,根据函数图象的交点即可得出结论.【详解】解:∵f (x )=ln x ,∴f ′(x )=1x ,∴x =x 0,f ′(x 0)=1x 0,∴切线l的方程为y-ln x0=1x0(x-x0),即y=1x0x+ln x0-1,①设直线l与曲线y=g(x)相切于点(x1,e x1),∵g (x)=e x,∴e x1=1x0,∴x1=-ln x0.∴直线l也为y-1x0=1x0(x+ln x0)即y=1x0x+ln x0x0+1x0,②由①②得ln x0=x0+1 x0-1,如图所示,在同一直角坐标系中画出y=ln x,y=x+1x-1的图象,即可得方程有两解,故切点有2个.故选:C二、填空题7(2023·吉林长春·长春吉大附中实验学校校考模拟预测)与曲线y=e x和y=-x24都相切的直线方程为.【答案】y=x+1【分析】分别设出直线与两曲线相切的切点,然后表示出直线的方程,再根据切线是同一条直线建立方程求解.【详解】设直线与曲线y=e x相切于点x1,e x1,因为y =e x,所以该直线的方程为y-e x1=e x1x-x 1,即y=e x1x+e x11-x1,设直线与曲线y=-x24相切于点x2,-x224,因为y =-x2,所以该直线的方程为y+x224=-x22x-x2,即y=-x22x+x224,所以e x1=-x22e x11-x1=x224,解得x1=0,x2=-2,所以该直线的方程为y=x+1,故答案为:y=x+1.8(2023·全国·高三专题练习)已知f x =e x-1(e为自然对数的底数),g x =ln x+1,请写出f x 与g x 的一条公切线的方程.【答案】y=ex-1或y=x【分析】假设切点分别为m,e m-1,n,ln n+1,根据导数几何意义可求得公切线方程,由此可构造方程求得m,代入公切线方程即可得到结果.【详解】设公切线与f x 相切于点m,e m-1,与g x 相切于点n,ln n+1,∵f x =e x,g x =1x,∴公切线斜率k=e m=1n;∴公切线方程为:y-e m+1=e m x-m或y-ln n-1=1nx-n,整理可得:y=e m x-m-1e m-1或y=1nx+ln n,∴e m=1nm-1e m+1=-ln n,即m=-ln nm-1e m +1=-ln n,∴m-1e m+1-m=m-1e m-1=0,解得:m=1或m=0,∴公切线方程为:y=ex-1或y=x.故答案为:y=ex-1或y=x.9(2023春·安徽·高三合肥市第六中学校联考开学考试)已知直线l与曲线y=e x、y=2+ln x都相切,则直线l的方程为.【答案】y=x+1或y=ex【分析】分别求出两曲线的切线方程是y=e x1x+e x11-x1和y=1x2x+1+ln x2,解方程e x1=1x2,e x11-x1=1+ln x2,即得解.【详解】解:由y=e x得y =e x,设切点为x1,e x1,所以切线的斜率为e x1,则直线l的方程为:y=e x1x+e x11-x1;由y =2+ln x 得y =1x ,设切点为x 2,2+ln x 2 ,所以切线的斜率为1x 2,则直线l 的方程为:y =1x 2x +1+ln x 2.所以e x 1=1x 2,e x 11-x 1 =1+ln x 2,消去x 1得1x 2-11+ln x 2 =0,故x 2=1或x 2=1e,所以直线l 的方程为:y =x +1或y =ex .故答案为:y =x +1或y =ex 10(2023春·浙江金华·高三浙江金华第一中学校考阶段练习)已知直线y =kx +b 是曲线y =ln 1+x 与y =2+ln x 的公切线,则k +b =.【答案】3-ln2【分析】分别设两条曲线上的切点,写出切线方程,建立方程组,解出切点,计算k +b .【详解】设曲线y =ln 1+x 上切点A x 1,ln 1+x 1 ,y =11+x,切线斜率k =11+x 1,切线方程y -ln 1+x 1 =11+x 1x -x 1 ,即y =11+x 1x -x 11+x 1+ln 1+x 1同理,设曲线y =2+ln x 上切点B x 2,2+ln x 2 ,y =1x,切线斜率k =1x 2,切线方程y -2+ln x 2 =1x 2x -x 2 ,即y =1x 2x +1+ln x 2,所以11+x 1=1x 2-x11+x 1+ln (1+x 1)=1+ln x 2,解得x 1=-12x 2=12,所以k =2,b =1-ln2,k +b =3-ln2.故答案为:3-ln2.2.公切线中的参数问题一、单选题1(2023·陕西渭南·统考一模)已知直线y =ax +b (a ∈R ,b >0)是曲线f x =e x 与曲线g x =ln x +2的公切线,则a +b 等于()A.e +2B.3C.e +1D.2【答案】D【分析】由f x 求得切线方程,结合该切线也是g x 的切线列方程,求得切点坐标以及斜率,进而求得直线y =ax +b ,从而求得正确答案.【详解】设t ,e t 是f x 图象上的一点,f x =e x ,所以f x 在点t ,e t 处的切线方程为y -e t =e t x -t ,y =e t x +1-t e t ①,令g x =1x=e t ,解得x =e -t ,g e -t=ln e -t+2=2-t ,所以2-t -e te -t-t=e t ,1-t =1-t e t ,所以t =0或t =1(此时①为y =ex ,b =0,不符合题意,舍去),所以t =0,此时①可化为y -1=1×x -0 ,y =x +1,所以a +b =1+1=2.故选:D2(2023·陕西榆林·校考模拟预测)若直线l 与曲线y =e x 相切,切点为M x 1,y 1 ,与曲线y =x +32也相切,切点为N x 2,y 2 ,则2x 1-x 2的值为()A.-2B.-1C.0D.1【答案】B【分析】根据导数求出切线的斜率,得到切线方程,根据两切线方程即可得解.【详解】因为直线l 与曲线y =e x 相切,切点为M x 1,y 1 ,可知直线l 的方程为y =e x 1x -x 1 +e x 1=e x 1x +1-x 1 e x 1,又直线l 与曲线y =x +3 2也相切,切点为N x 2,y 2 ,可知直线l 的方程为y =2x 2+3 x -x 2 +x 2+3 2=2x 2+3 x -x 22+9,所以e x 1=2x 2+3 1-x 1 e x 1=-x 22+9,两式相除,可得21-x 1 =3-x 2,所以2x 1-x 2=-1.故选:B3(2023春·河南·高三校联考阶段练习)已知曲线y =x 在点x 0,x 0 0<x 0<14处的切线也与曲线y =e x 相切,则x 0所在的区间是()A.0,14e 4B.14e 4,14e 2C.14e 2,14eD.14e ,14【答案】C【分析】设切线l与曲线y=e x的切点为m,e m,通过导数分别写出切线方程,由两条切线重合得出方程,再通过此方程有解得出结果.【详解】设该切线为l,对y=x求导得y =12x,所以l的方程为y-x0=12x0x-x0,即y=12x0x+x02.设l与曲线y=e x相切的切点为m,e m,则l的方程又可以写为y-e m=e m x-m,即y=e m x+1-me m.所以e m=12x0,x02=1-me m.消去m,可得x0=1+ln2x0,0<x0<1 4,令t=2x0∈0,1,则ln t-t24+1=0.设h t =ln t-t24+1,当0<t<1时,h t =1t-t2>0,所以h t 在0,1上单调递增,又h1e=-14e2<0,h1e=12-14e>0,所以t0=2x0∈1e,1e,所以x0∈14e2,14e.故选:C.4(2023·全国·高三专题练习)若函数f x =2a ln x+1与g x =x2+1的图像存在公共切线,则实数a的最大值为()A.eB.2eC.e22D.e2【答案】A【分析】分别设公切线与g x =x2+1和f(x)=2a ln x+1的切点x1,x21+1,x2,2a ln x2+1,根据导数的几何意义列式,再化简可得a=2x22-2x22ln x2,再求导分析h(x)=2x2-2x2⋅ln x(x >0)的最大值即可【详解】g x =2x,f x =2a x,设公切线与g x =x2+1的图像切于点x1,x21+1,与曲线f(x)=2a ln x+1切于点x2,2a ln x2+1,所以2x1=2ax2=2a ln x2+1-x21+1x2-x1=2a ln x2-x21x2-x1,故a=x1x2,所以2x1=2x1x2ln x2-x21x2-x1,所以x1=2x2-2x2⋅ln x2,因为a=x1x2,故a=2x22-2x22ln x2,设h(x)=2x2-2x2⋅ln x(x>0),则h (x)=2x(1-2ln x),令h (x)=0⇒x=e当h (x)>0时,x∈(0,e),当h (x)<0时,x∈(e,+∞),所以h x 在(0,e)上递增,在(e,+∞)上递减,所以h(x)max=h(e)=e,所以实数a的最大值为e,故选:A.5(2023·湖南郴州·统考模拟预测)定义:若直线l与函数y=f x ,y=g x 的图象都相切,则称直线l为函数y=f x 和y=g x 的公切线.若函数f x =a ln x a>0和g x =x2有且仅有一条公切线,则实数a的值为()A.eB.eC.2eD.2e【答案】C【分析】设直线与g x =x2的切点为x1,x21,然后根据导数的几何意义可推得切线方程为y=2x1x-x21,y=ax2x+a ln x2-1.两条切线重合,即可得出a=4x22-4x22ln x2有唯一实根.构造h x =4x2-4x2ln x x>0,根据导函数得出函数的性质,作出函数的图象,结合图象,即可得出答案.【详解】设直线与g x =x2的切点为x1,x21,因为g x =2x,根据导数的几何意义可知该直线的斜率为2x1,即该直线的方程为y-x21=2x1x-x1,即y=2x1x-x21.设直线与f x =a ln x的切点为(x2,a ln x2),因为f x =ax,根据导数的几何意义可知该直线的斜率为ax2,即该直线的方程为y-a ln x2=ax2x-x2,即y=ax2x+a ln x2-1.因为函数f x =a ln x a>0和g x =x2有且只有一条公切线,所以有2x1=ax2a ln x2-1=-x21 ,即a=4x22-4x22ln x2有唯一实根.令h x =4x2-4x2ln x x>0,则h x =8x-8x ln x-4x=4x1-2ln x.解h x =0,可得x= e.当4x1-2ln x>0时,0<x<e,所以h x 在0,e上单调递增;当4x1-2ln x<0时,x>e,所以h x 在e,+∞上单调递减.所以h x 在x=e处取得最大值h e=4e-4e×12=2e.当x→0时,h x →0,h e =4e2-4e2ln e=0,函数h x 图象如图所示,因为a>0,a=4x2-4x2ln x有唯一实根,所以只有a=2e.故选:C6(2023春·广东汕头·高三汕头市潮阳实验学校校考阶段练习)已知函数f x =2+ln x,g x = a x,若总存在两条不同的直线与函数y=f x ,y=g x 图象均相切,则实数a的取值范围为()A.0,1B.0,2C.1,2D.1,e【答案】B【分析】设函数y=f x ,y=g x 的切点坐标分别为x1,2+ln x1,x2,a x2,根据导数几何意义可得a2=4ln x1+4x1,x1>0,即该方程有两个不同的实根,则设h x =4ln x+4x,x>0,求导确定其单调性与取值情况,即可得实数a的取值范围.【详解】解:设函数f x =2+ln x上的切点坐标为x1,2+ln x1,且x1>0,函数g x =a x 上的切点坐标为x2,a x2,且x2≥0,又f x =1x,g x =a2x,则公切线的斜率k=1x1=a2x2,则a>0,所以x2=a24x21,则公切线方程为y-2+ln x1=1x1x-x1,即y=1x1x+ln x1+1,代入x 2,a x 2 得:a x 2=1x 1x 2+ln x 1+1,则a 22x 1=1x 1⋅a 24x 21+ln x 1+1,整理得a 2=4ln x 1+4x 1,若总存在两条不同的直线与函数y =f x ,y =g x 图象均相切,则方程a 2=4ln x 1+4x 1有两个不同的实根,设h x =4ln x +4x,x >0,则h x =4x⋅x -4ln x +4x2=-4ln xx,令h x =0得x =1,当x ∈0,1 时,h x >0,h x 单调递增,x ∈1,+∞ 时,h x <0,h x 单调递减,又h x =0可得x =1e,则x →0时,h x →-∞;x →+∞时,h x →0,则函数h x 的大致图象如下:所以a >00<a 2<4,解得0<a <2,故实数a 的取值范围为0,2 .故选:B .【点睛】本题考查了函数的公切线、函数方程与导数的综合应用,难度较大.解决本题的关键是,根据公切线的几何意义,设切点坐标分别为x 1,2+ln x 1 ,且x 1>0,x 2,a x 2 ,且x 2≥0,可得k =1x 1=a 2x 2,即有x 2=a 24x 21,得公切线方程为y =1x 1x +ln x 1+1,代入切点x 2,a x 2 将双变量方程a x 2=1x 1x 2+ln x 1+1转化为单变量方程a 22x 1=1x 1⋅a 24x 21+ln x 1+1,根据含参方程进行“参变分离”得a 2=4ln x 1+4x 1,转化为一曲一直问题,即可得实数a 的取值范围.7(2023·全国·高三专题练习)若曲线y =ln x +1与曲线y =x 2+x +3a 有公切线,则实数a 的取值范围()A.2ln2-36,3-ln22B.1-4ln212,3-ln22C.2ln2-36,+∞ D.1-4ln212,+∞【答案】D【分析】分别求出两曲线的切线方程,则两切线方程相同,据此求出a 关于切点x 的解析式,根据解析式的值域确定a 的范围.【详解】设x 1,y 1 是曲线y =ln x +1的切点,设x 2,y 2 是曲线y =x 2+x +3a 的切点,对于曲线y =ln x +1,其导数为y =1x ,对于曲线y =x 2+x +3a ,其导数为y =2x +1,所以切线方程分别为:y -ln x 1+1 =1x 1x -x 1 ,y -x 22+x 2+3a =2x 2+1 x -x 2 ,两切线重合,对照斜率和纵截距可得:1x 1=2x 2+1ln x 1=-x 22+3a,解得3a =ln x 1+x 22=ln 12x 2+1+x 22=-ln 2x 2+1+x 22x 2>-12 ,令h x =-ln 2x +1 +x 2x >-12,hx =-22x +1+2x =4x 2+2x -22x +1=2x +1 2x -1 2x +1=0,得:x =12,当x ∈-12,12时,h x <0,h x 是减函数,当x ∈12,+∞时,h x >0,h x 是增函数,∴h min x =h 12 =14-ln2且当x 趋于-12时,,h x 趋于+∞;当x 趋于+∞时,h x 趋于+∞;∴3a ≥14-ln2,∴a ≥1-4ln212;故选:D .8(2023·河北·统考模拟预测)若曲线f (x )=3x 2-2与曲线g (x )=-2-m ln x (m ≠0)存在公切线,则实数m 的最小值为()A.-6eB.-3eC.2eD.6e【答案】A【分析】求出函数的导函数,设公切线与f x 切于点x 1,3x 21-2 ,与曲线g x 切于点x 2,-2-m ln x 2 ,x 2>0 ,即可得到m =-6x 1x 2,则x 1=0或x 1=2x 2-x 2ln x 2,从而得到m =12x 22ln x 2-12x 22,在令h x =12x 2ln x -12x 2,x >0 ,利用导数求出函数的最小值,即可得解;【详解】因为f (x )=3x 2-2,g (x )=-2-m ln x (m ≠0),所以f (x )=6x ,g (x )=-mx,设公切线与f x 切于点x 1,3x 21-2 ,与曲线g x 切于点x 2,-2-m ln x 2 ,x 2>0 ,所以6x 1=-m x 2=-2-m ln x 2-3x 21-2 x 2-x 1=-m ln x 2-3x 21x 2-x 1,所以m =-6x 1x 2,所以6x 1=6x 1x 2ln x 2-3x 21x 2-x 1,所以x 1=0或x 1=2x 2-x 2ln x 2,因为m ≠0,所以x 1≠0,所以x 1=2x 2-x 2ln x 2,所以m =-62x 2-x 2ln x 2 x 2=12x 22ln x 2-12x 22,令h x =12x 2ln x -12x 2,x >0 ,则h x =12x 2ln x -1 ,所以当0<x <e 时h x <0,当x >e 时h x >0,所以h x 在0,e 上单调递减,在e ,+∞ 上单调递增,所以h x min =h e =-6e ,所以实数m 的最小值为-6e.故选:A【点睛】思路点睛:涉及公切线问题一般先设切点,在根据斜率相等得到方程,即可找到参数之间的关系,最后构造函数,利用导数求出函数的最值.二、多选题9(2023·湖北·统考模拟预测)若存在直线与曲线f x =x 3-x ,g x =x 2-a 2+a 都相切,则a 的值可以是()A.0B.-24C.log 27D.e π+πe【答案】ABC【分析】设该直线与f x 相切于点x 1,x 31-x 1 ,求出切线方程为y =3x 21-1 x -2x 31,设该直线与g x 相切于点x 2,x 22-a 2+a ,求出切线方程为y =2x 2x -x 22-a 2+a ,联立方程组,得到-a 2+a =94x 41-2x 31-32x 21+14,令h x =94x 4-2x 3-32x 2+14,讨论h x 的单调性,从而得到最值,则可得到-a 2+a ≥-1,解出a 的取值范围,四个选项的值分别比较与区间端点比较大小即可判断是否在区间内.【详解】设该直线与f x 相切于点x 1,x 31-x 1 ,因为f x =3x 2-1,所以f x 1 =3x 21-1,所以该切线方程为y -x 31-x 1 =3x 21-1 x -x 1 ,即y =3x 21-1 x -2x 31.设该直线与g x 相切于点x 2,x 22-a 2+a ,因为g x =2x ,所以g x 2 =2x 2,所以该切线方程为y -x 22-a 2+a =2x 2x -x 2 ,即y =2x 2x -x 22-a 2+a ,所以3x 21-1=2x 2-2x 31=-x 22-a 2+a ,所以-a 2+a =x 22-2x 31=3x 21-122-2x 31=94x 41-2x 31-32x 21+14,令h x =94x 4-2x 3-32x 2+14,∴h x =9x 3-6x 2-3x ,所以当x ∈-∞,-13 ∪0,1 时,hx <0;当x ∈-13,0 ∪1,+∞ 时,h x >0;∴h x 在-∞,-13和0,1 上单调递减;在-13,0 和1,+∞ 上单调递增;又h -13 =527,h 1 =-1,所以h x ∈-1,+∞ ,所以-a 2+a ≥-1,解得1-52≤a ≤1+52,所以a 的取值范围为1-52,1+52,所以A 正确;对于B ,-24-1-52=25-2+2 4>0,所以1-52<-24<0,所以B 正确;对于C ,因为0<log 27<log 222=32<1+52,所以C 正确;对于D ,因为e π+πe>2e π⋅πe=2>1+52,所以D 不正确.故选:ABC10(2023·全国·高三专题练习)函数f x =ln x +1,g x =e x -1,下列说法正确的是( ).(参考数据:e 2≈7.39,e 3≈20.09,ln2≈0.69,ln3≈1.10)A.存在实数m ,使得直线y =x +m 与y =f x 相切也与y =g x 相切B.存在实数k ,使得直线y =kx -1与y =f x 相切也与y =g x 相切C.函数g x -f x 在区间23,+∞ 上不单调D.函数g x -f x 在区间23,+∞上有极大值,无极小值【答案】AB【分析】对AB ,设直线与y =f x 、y =g x 分别切于点P x 1,y 1 ,Q x 2,y 2 ,利用点在线上及斜率列方程组,解得切点即可判断;对CD ,令h x =g x -f x ,由二阶导数法研究函数单调性及极值.【详解】对AB ,设直线l 与y =f x 、y =g x 分别切于点P x 1,y 1 ,Q x 2,y 2 ,f x =1x,gx =ex,则有y1=f x1=ln x1+1y2=g x2=e x2-1y1-y2x1-x2=1x1=e x2⇒ln x1+1-e x2-1x1-x2=e x2⇒-x2+1-e x2-11e x2-x2=e x2⇒e x2-1x2-1=0,解得x2=0或x2=1.当x2=0,则y2=0,x1=1,y1=1,公切线为y=x,此时存在实数m=0满足题意;当x2=1,则y2=e-1,x1=1e,y1=0,公切线为y=e x-1e=ex-1,此时存在实数k=1满足题意,AB对;对CD,令h x =g x -f x =e x-ln x-2,x∈0,+∞,则m x =h x =e x-1 x,由m x =e x+1x2>0得h x 在0,+∞单调递增,由h23=e23-32=e2-278e232+32e23+94>0得,x∈23,+∞时,h x >0,h x 单调递增,CD错.故选:AB.三、填空题11(2023·全国·高三专题练习)若曲线y=ax2与y=ln x有一条斜率为2的公切线,则a= .【答案】1ln2e【分析】根据导数的几何意义以及切线方程的求解方法求解.【详解】设公切线在曲线y=ax2与y=ln x上的切点分别为A(x1,y1),B(x2,y2),由y=ln x可得y =1x,所以1x2=2,解得x2=12,所以y2=ln x2=-ln2,则B12,-ln2 ,所以切线方程为y+ln2=2x-1 2,又由y=ax2,可得y =2ax,所以2ax1=2,即ax1=1,所以y1=ax21=x1,又因为切点A(x1,y1),也即A(x1,x1)在切线y+ln2=2x-1 2上,所以x1+ln2=2x1-1 2,解得x1=ln2+1,所以a =1x 1=1ln2+1=1ln2e .故答案为:1ln2e.12(2023·河北唐山·统考三模)已知曲线y =ln x 与y =ax 2a >0 有公共切线,则实数a 的取值范围为.【答案】12e,+∞【分析】设公切线与曲线的切点为x 1,ln x 1 ,x 2,ax 22 ,利用导数的几何意义分别求y =ln x 和y =ax 2上的切线方程,由所得切线方程的相关系数相等列方程求参数关系,进而构造函数并利用导数研究单调性求参数范围.【详解】设公切线与曲线y =ln x 和y =ax 2的切点分别为x 1,ln x 1 ,x 2,ax 22 ,其中x 1>0,对于y =ln x 有y =1x ,则y =ln x 上的切线方程为y -ln x 1=1x 1x -x 1 ,即y =xx 1+ln x 1-1 ,对于y =ax 2有y =2ax ,则y =ax 2上的切线方程为y -ax 22=2ax 2x -x 2 ,即y =2ax 2x -ax 22,所以1x 1=2ax 2ln x 1-1=-ax 22,有-14ax21=ln x 1-1,即14a=x 21-x 21ln x 1x 1>0 ,令g x =x 2-x 2ln x ,g x =x -2x ln x =x 1-2ln x ,令gx =0,得x =e 12,当x ∈0,e12时,g x >0,g x 单调递增,当x ∈e 12,+∞ 时,g x <0,g x 单调递减,所以g x max =g e12=12e ,故0<14a ≤12e ,即a ≥12e.∴正实数a 的取值范围是12e,+∞.故答案为:12e,+∞.13(2023·浙江金华·统考模拟预测)若存在直线l 既是曲线y =x 2的切线,也是曲线y =a ln x 的切线,则实数a 的最大值为.【答案】2e【分析】设切线与两曲线的切点分别为(n ,n 2),(m ,a ln m ),根据导数的几何意义分别求出切线方程,可得a4m2=1-ln m,由题意可知a4=m2(1-ln m)有解,故令g(x)=x2(1-ln x),(x>0),利用导数求得其最值,即可求得答案.【详解】由题意知两曲线y=x2与y=a ln x,(x>0)存在公切线,a=0时,两曲线y=x2与y=0,(x>0),不合题意;则y=x2的导数y =2x,y=a ln x的导数为y =a x,设公切线与y=x2相切的切点为(n,n2),与曲线y=a ln x相切的切点为(m,a ln m),则切线方程为y-n2=2n(x-n),即y=2nx-n2,切线方程也可写为y-a ln m=am(x-m),即y=amx-a+a ln m,故2n=am-n2=-a+a ln m,即a24m2=a-a ln m,即a4m2=1-ln m,即a4=m2(1-ln m)有解,令g(x)=x2(1-ln x),(x>0),则g (x)=2x(1-ln x)+x2-1 x=x(1-2ln x),令g (x)=0可得x=e,当0<x<e时,g (x)>0,当x>e时,g (x)<0,故g(x)在(0,e)是增函数,在(e,+∞)是减函数,故g(x)的最大值为g(e)=e 2,故a4≤e2,所以a≤2e,即实数a的最大值为2e,故答案为:2e。
数学最高效的五种复习方法

数学最高效的五种复习方法学习数学中,学过的知识与方法很可能被遗忘,要想牢固掌握,并形成能力,就必须科学而有效地进行复习,以期达到温故知新的目的!以下就是为大家搜集整理的"高中数学课后高效复习5步法",供大家参考、阅读,希望对同学们有所帮助!●数学最高效的五种复习方法如果等到把课堂内容遗忘得差不多时才复习,就几乎等于重新学习,所以课堂学习的新知识必须及时复习。
可以一个人单独回忆,也可以几个人在一起互相启发,补充回忆。
一般按照教师板书的提纲和要领进行,也可以按教材纲目结构进行,从课题到重点内容,再到例题的每部分的细节,循序渐进地进行复习。
在复习过程中要不失时机整理笔记,因为整理笔记也是一种有效的复习方法。
即使是复习过的内容仍须定期巩固,但是复习的次数应随时间的增长而逐步减小,间隔也可以逐渐拉长。
可以当天巩固新知识,每周进行周小结,每月进行阶段性总结,期中、期末进行全面系统的学期复习。
从内容上看,每课知识即时回顾,每单元进行知识梳理,每章节进行知识归纳总结,必须把相关知识串联在一起,形成知识网络,达到对知识和方法的整体把握。
复习一般可以分为集中复习和分散复习。
实验证明,分散复习的效果优于集中复习,特殊情况除外。
分散复习,可以把需要识记的材料适当分类,并且与其他的学习或娱乐或休息交替进行,不至于单调使用某种思维方式,形成疲劳。
分散复习也应结合各自认知水平,以及识记素材的特点,把握重复次数与间隔时间,并非间隔时间越长越好,而要适合自己的复习规律。
对所学的素材要进行分析、归类,找出重、难点,分清主次。
在复习过程中,特别要关注难点及容易造成误解的问题,应分析其关键点和易错点,找出原因,必要时还可以把这类问题进行梳理,记录在一个专题本上,也可以在电脑上做一个重难点“超市”,可随时点击,进行复习。
随着时间的推移,复习的效果会产生变化,有的淡化、有的模糊、有的不准确,到底各环节的内容掌握得如何,需进行效果检测,如:周周练、月月测、单元过关练习、期中考试、期末考试等,都是为了检测学习效果。
2024年高三数学三轮复习计划与方法

2024年高三数学三轮复习计划与方法第一轮复习:1. 温故知新:首先,回顾高二数学的核心知识点,包括基本概念、定理和公式等。
在这个阶段,可以通过做一些高二数学真题或者习题集来巩固基础。
2. 审题分析:学习如何仔细阅读题目,理解题目要求,识别和解决数学问题的方法和思路。
这一步是为了提高解题的准确性和速度。
3. 系统学习:对高三数学的各个知识点进行系统性的学习和掌握。
可以按照教材或者课程安排的顺序进行学习,同时结合教师的讲解和课后习题进行巩固。
4. 练习题量:要求自己每天完成一定量的习题练习,包括平时课后习题、历年高考真题等。
通过不断的练习,提高解题能力和速度。
5. 总结归纳:定期进行知识点的总结归纳,将学过的知识点、解题方法和思路整理出来,形成自己的学习笔记和复习资料。
这样不仅能够巩固已学知识,还能够加深对知识的理解和记忆。
第二轮复习:1. 查漏补缺:通过对高三数学知识点进行全面回顾,找出自己的薄弱环节并进行有针对性的强化练习。
可以反复做一些难度较高的题目,提高解题能力。
2. 分类练习:针对不同章节和题型进行分类练习,加强对各类题目的理解和解题能力。
例如,对解析几何中的平面和直线问题进行重点练习,对函数和极限中的基本概念和性质进行深入理解。
3. 模拟测试:进行模拟考试,模拟高考的时间和环境,检验自己的学习效果和应对高考的能力。
通过不断的模拟测试,找出自己的不足之处,并加以改进和弥补。
4. 高考真题:重点关注历年的高考数学试题,了解高考题的命题特点和解题思路。
可以选择一些难度较大的真题进行攻克,提高解题的水平和难度适应能力。
第三轮复习:1. 整体回顾:对高中三年的数学知识进行整体回顾,加强对整体知识结构的理解和把握。
通过做一些大题和综合性问题,综合运用所学知识和解题技巧。
2. 高分策略:制定一些高分策略,例如提高答题速度、降低失误率、准确选择题目等。
可以结合模拟考试的结果进行调整和改进。
3. 导学辅导:请教老师或者同学对自己的学习情况和复习计划进行辅导和指导。
高三数学总复习《数列》知识点和经典试题解题方法总结

数列知识点和常用的解题方法归纳一、 等差数列的定义与性质() 定义:为常数,a a d d a a n d n n n +-==+-111() 等差中项:,,成等差数列x A y A x y ⇔=+2()()前项和n S a a n nan n d n n =+=+-11212{}性质:是等差数列a n()若,则;1m n p q a a a a m n p q +=++=+{}{}{}()数列,,仍为等差数列;2212a a ka b n n n -+ S S S S S n n n n n ,,……仍为等差数列;232--()若三个数成等差数列,可设为,,;3a d a a d -+ ()若,是等差数列,为前项和,则;42121a b S T n a b S T n n n n m m m m =-- {}()为等差数列(,为常数,是关于的常数项为52a S an bn ab n n n ⇔=+0的二次函数){}S S an bn a n n n 的最值可求二次函数的最值;或者求出中的正、负分界=+2项,即:当,,解不等式组可得达到最大值时的值。
a d a a S n n n n 11000><≥≤⎧⎨⎩+当,,由可得达到最小值时的值。
a d a a S n n n n 110000<>≤≥⎧⎨⎩+{}如:等差数列,,,,则a S a a a S n n n n n n =++===--1831123(由,∴a a a a a n n n n n ++=⇒==----12113331()又·,∴S a a aa 31322233113=+===()()∴·S a a n a a n nn n n =+=+=+⎛⎝ ⎫⎭⎪=-12122131218 ∴=n 27) 二、等比数列的定义与性质 定义:(为常数,),a a q q q a a q n nn n +-=≠=1110 等比中项:、、成等比数列,或x G y G xy G xy ⇒==±2()前项和:(要注意)n S na q a q qq n n ==--≠⎧⎨⎪⎩⎪111111()()!{}性质:是等比数列a n()若,则··1m n p q a a a a m n p q +=+= (),,……仍为等比数列2232S S S S S n n n n n -- 三、求数列通项公式的常用方法1、公式法2、n n a S 求由;(时,,时,)n a S n a S S n n n ==≥=--121113、求差(商)法{}如:满足……a a a a n n n n 121212251122+++=+<>解:n a a ==⨯+=1122151411时,,∴n a a a n n n ≥+++=-+<>--2121212215212211时,……<>-<>=12122得:n n a ,∴a n n =+21,∴a n n n n ==≥⎧⎨⎩+141221()()[练习]{}数列满足,,求a S S a a a n n n n n +==++111534 (注意到代入得:a S S S S n n n n n+++=-=1114 {}又,∴是等比数列,S S S n n n144==n a S S n n n n ≥=-==--23411时,……·4、叠乘法{}例如:数列中,,,求a a a a nn a n n n n 1131==++ 解:a a a a a a n n a a nn n n 213211122311·……·……,∴-=-= 又,∴a a nn 133== 5、等差型递推公式由,,求,用迭加法a a f n a a a n n n -==-110()n a a f a a f a a f n n n ≥-=-=-=⎫⎬⎪⎪⎭⎪⎪-22321321时,…………两边相加,得:()()()a a f f f n n -=+++123()()()…… ∴……a a f f f n n =++++023()()() [练习]{}()数列,,,求a a a a n a n n n n n 111132==+≥--()()a n n=-1231 6、等比型递推公式()a ca d c d c c d n n =+≠≠≠-1010、为常数,,,()可转化为等比数列,设a x c a x n n +=+-1 ()⇒=+--a ca c x n n 11令,∴()c x d x d c -==-11∴是首项为,为公比的等比数列a d c a dc c n +-⎧⎨⎩⎫⎬⎭+-111∴·a d c a d c c n n +-=+-⎛⎝ ⎫⎭⎪-1111∴a a d c c dc n n =+-⎛⎝⎫⎭⎪---1111[练习]{}数列满足,,求a a a a a n n n n 11934=+=+()a n n =-⎛⎝ ⎫⎭⎪+-843117、倒数法例如:,,求a a a a a n n n n 11122==++ ,由已知得:1221211a a a a n n n n+=+=+∴11121a a n n +-= , ∴⎧⎨⎩⎫⎬⎭=111121a a n 为等差数列,,公差为 ()()∴=+-=+11112121a n n n · ,∴a n n =+21三、 求数列前n 项和的常用方法1、公式法:等差、等比前n 项和公式2、裂项法:把数列各项拆成两项或多项之和,使之出现成对互为相反数的项。
高三数学复习模块的知识点总结

高三数学复习模块的知识点总结高三数学是高中数学的最后一门课程,是一门比较重要的科目,对于学生的综合素质有很大的影响。
在高三数学复习过程中,需要全面掌握高中数学的各个知识点。
下面是高三数学复习模块的知识点总结。
一、函数与方程1.函数的概念和性质(1)函数的定义域和值域(2)奇偶函数和周期函数(3)函数的图像(4)反函数(5)复合函数2.一次函数和二次函数(1)一次函数的性质及图像(2)二次函数的性质及图像(3)一次函数和二次函数的解题方法3.一次不等式和二次不等式(1)一次不等式的性质及解法(2)二次不等式的性质及解法4.绝对值函数和分段函数(1)绝对值函数的性质及图像(2)分段函数的性质及图像5.指数函数和对数函数(1)指数函数的性质及图像(2)对数函数的性质及图像(3)指数函数和对数函数的解题方法6.三角函数(1)正弦函数、余弦函数和正切函数的性质及图像(2)三角函数的变换(3)三角函数的解题方法二、数列与数学归纳法1.数列的概念和性质(1)等差数列和等比数列的概念和性质(2)数列的前n项和2.数学归纳法(1)数学归纳法的基本原理和步骤(2)利用数学归纳法证明等式和不等式三、数与集合1.实数(1)有理数和无理数的性质(2)实数的运算法则(3)实数的逼近性2.集合(1)集合的基本概念和性质(2)集合的运算法则四、平面向量1.向量的概念和性质(1)向量的定义和表示(2)向量的加法和减法(3)数量积和向量积2.平面向量的坐标表示和运算(1)平面向量的坐标表示(2)平面向量的加法和减法(3)平面向量的数量积和向量积五、立体几何1.三角形(1)三角形的基本概念和性质(2)三角形的内角和及其性质(3)三角形的外角和及其性质2.四边形(1)四边形的基本概念和性质(2)矩形、正方形、菱形、平行四边形和梯形的性质3.圆(1)圆的基本概念和性质(2)圆心角和弧长的关系(3)切线和切点的性质4.立体图形(1)正方体、长方体、正四面体和正六面体的性质(2)棱柱、棱锥、棱台和圆柱的性质六、概率与统计1.概率(1)样本空间和事件的概念(2)概率的定义和性质(3)事件的互斥和独立2.统计(1)频率和频数的概念(2)频率分布表和频率直方图的绘制(3)平均数、中位数、众数和四分位数的计算以上就是高三数学复习模块的知识点总结,希望对你的复习有所帮助。
高三复习阶段如何备考数学解析几何题

高三复习阶段如何备考数学解析几何题数学解析几何是高中数学中一个重要且难度较大的部分,对于广大高三学生来说,备考解析几何题是提高数学成绩的关键。
在高三复习阶段,如何备考数学解析几何题是一个需要认真思考和制定合适策略的问题。
本文将介绍一些备考数学解析几何题的方法和技巧,希望对广大高三学生有所帮助。
一、理清解析几何基本概念在备考数学解析几何题之前,首先要对解析几何的基本概念进行理解和掌握。
解析几何是通过代数方法研究几何问题的一门学科,需要对点、直线、平面、坐标系等基本概念有清晰的认识。
可以通过查阅教材、参考书或互联网资源来进行学习和总结,建立起扎实的基础。
二、掌握解析几何常用定理和公式在备考数学解析几何时,了解和记忆一些常用的定理和公式是非常重要的。
例如,直线的方程、两点间距离公式、两条直线的关系等。
可以利用复习资料和习题集进行有针对性的练习,加深对这些定理和公式的理解和记忆。
三、多做解析几何题并总结题型特点高三复习阶段,多做解析几何的相关题目是必不可少的。
在做题过程中,要注意总结题目的特点和解题方法。
可以将解析几何题型分成平面几何和空间几何两部分,分别进行钻研。
通过大量的练习,可以熟悉各种题型,掌握解析几何的解题技巧。
四、注重解析几何与其他数学知识的综合运用解析几何与代数、函数、三角等数学知识有密切关联,在备考过程中要注重解析几何与其他数学知识的综合运用能力。
可以通过做综合性的题目或者跨章节的大题来加强解析几何与其他数学知识之间的联系,提高解题的能力。
五、注意解题技巧和思维方法的培养解析几何是一门需要思维灵活的学科,解题过程中需要注意一些常用的解题技巧和思维方法。
例如,利用图形的对称性、利用坐标系进行变换等。
在备考过程中,可以参考一些解析几何解题技巧的书籍或者教材,培养自己的解题思维。
六、做好错题和习题的整理与总结在备考过程中,及时整理和总结做错的题目是非常必要的。
可以将做错的题目整理成错题集,进行详细的分析和解答。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三数学的复习方法总结大全
高三数学的复习方法总结
一、课后及时回忆
如果等到把课堂内容遗忘得差不多时才复习,就几乎等于重新学习,所以课堂学习的新知识必须及时复习。
可以一个人单独回忆,也可以几个人在一起互相启发,补充回忆。
一般按照教师板书的提纲和要领进行,也可以按教材纲目结构进行,从课题到重点内容,再到例题的每部分的细节,循序渐进地进行复习。
在复习过程中要不失时机整理笔记,因为整理笔记也是一种有效的复习方法。
二、定期重复巩固
即使是复习过的内容仍须定期巩固,但是复习的次数应随时间的增长而逐步减小,间隔也可以逐渐拉长。
可以当天巩固新知识,每周进行周小结,每月进行阶段性总结,期中、期末进行全面系统的学期复习。
从内容上看,每课知识即时回顾,每单元进行知识梳理,每章节进行知识归纳总结,必须把相关知识串联在一起,形成知识网络,达到对知识和方法的整体把握。
三、科学合理安排
复习一般可以分为集中复习和分散复习。
实验证明,分散复习的效果优于集中复习,特殊情况除外。
分散复习,可以把需要识记的材料适当分类,并且与其他的学习或娱乐或休息交替进行,不至于单调使用某种思维方式,形成疲劳。
分散复习也应结合各自认知水平,以及识记素材的特点,把握重复次数与间隔时间,并非间隔时间越长越好,而要适合自己的复习规律。
高三数学怎么提高成绩
高三第一轮复习是花费时间最长,也是最为重要的复习阶段,这一轮复习效果的好坏,直接决定着后面复习的效果,甚至决定着自己的高考成绩,其重要性可见一斑。
要做好第一轮复习,可以采用以下几种方法:
1、比较辨析法。
政治学科中有不少相似的概念,考生在复习过程中容易混淆。
比较辨析法,就是通过对知识专题中的概念或原理进行比较辨析研究,弄清其本质区别以及适用范围,为提升分析和解决问题的能力奠定基础。
列表比较法就是一种辨析相似概念、原理的好方法。
2、知识网络法。
在理解考点的基础上,学会自主归纳知识点,从微观上构建知识网络,一框题一建,一节一建,一课一建,具体分析每个框题之间、每个章节之间的内在联系,从根本上实现知识的内化,提升对知识的理解和整体把握的能力,为以后的复习打下坚实的基础。
3、对应演练法。
在第一轮复习中,我们要选择具有针对性的试题,以考点为线索,复习什么就练习什么,复习了哪几个考点,就从历年的高考试卷中找出相关的试题来练习,做到有的放矢,一个考点一练,一个单元一测。
对易错和不能熟练运用的考点,要反复强化训练,直到完全理解为止,还要及时复习和总结解题中的经验教训,不留“死角”和“后患”。
高三数学考试技巧
1、学会放弃。
要明白大多数人是不需要做完所有的题,只要把简单题做对,中档题做好了,分一般不低,前8个选择,前3个填空,前4个大题做全对就已经能拿到大概100分了。
高三数学基础差学生最好先不要再做那些难题、偏题,因为高三时间紧任务重,不要讲时间浪费掉。
2、合理安排数学考试时间,千万不要在不会的数学题目上纠缠,以免耽误了时间,先把会做的题目做了,把能够拿到手的分拿到手!有的学生几何学的好,有的学生三角函数好,那就一定要把这样的分数拿到手。
自己薄弱不会的题就先跳过,但不代表不学,而是在后期进行专项训练。
3、调整好自己的心态,使自己在任何时候镇静,思路有条不紊,克服浮躁的情绪。
有的学生在数学考试中一看到自己不会的题就会变得焦虑,这个时候要冷静。
不要过早的放弃自己。
高一提高数学成绩的方法
1、记数学笔记,特别是对概念理解的不同侧面和数学规律,教师在课堂中拓展的课外知识。
记录下来*你觉得最有价值的思想方法或例题,以及你还存在的未解决的问题,以便今后将其补上。
2、熟记一些数学规律和数学小结论,使自己平时的运算技能达到了自动化或半自动化的熟练程度。
3、经常对数学知识结构进行梳理,形成板块结构,如表格化,使知识结构一目了然;经常对习题进行类化,由一例到一类,由一类到多类,由多类到统一;使几类问题归纳于同一知识方法。
4、建立数学纠错本。
把平时容易出现错误的知识或推理记载下来,以防再犯。
争取做到:找错、析错、改错、防错。
达到:能从反面入手深入理解正确东西;能由果朔因把错误原因弄个水落石出、以便对症下药;解答问题完整、推理严密。
5、经常在做题后进行一定的“反思”,思考一下本题所用的基础知识,数学思想方法是什么,为什么要这样想,是否还有别的想法和解法,本题的分析方法与解法,在解其它问题时,是否也用到过。
6、及时复习,强化对数学基本概念知识体系的理解与记忆,进行适当的反复巩固,消灭前学后忘。
高一数学成绩差怎么办
1、高一学生在学习数学的过程中,要重视基础知识,注意知识之间的内在联系和不断深化,还要在未来的学习过程中将新的知识及时的纳入已有的知识体系,逐步的形成和扩充知识结构系统。
另外,上课要注意听讲、积极思考,勇于回答问题,要培养自己学习数学的良好学习习惯和思维习惯。
2、即使是平常的数学学习也是需要课后复习的,数学复习不一定需要一遍遍的看书或是看笔记,也可以采取回忆式来复习。
另外,不要把很多内容集中在一起复习,可以每天课后复习,也可以分阶段复习。
找到一些经典例题进行回忆,而后和书本、笔记相对照,查缺补漏,使内容逐渐完善。
3、在高一数学的学习过程中,肯定会遇到许多困难和问题,同学们要有克服困难的勇气和信心,学习中遇到问题要及时找老师或者同学解决,千万不能让问题累积,形成恶性循环,而是要在老师的引导下,寻求解决问题的办法,培养分析问题和解决问题的能力。