高中物理-专题 磁场变化产生的感应电动势问题(提高篇)(解析版)

合集下载

高考物理压轴题之法拉第电磁感应定律(高考题型整理,突破提升)附答案解析

高考物理压轴题之法拉第电磁感应定律(高考题型整理,突破提升)附答案解析

高考物理压轴题之法拉第电磁感应定律(高考题型整理,突破提升)附答案解析一、法拉第电磁感应定律1.如图,匝数为N 、电阻为r 、面积为S 的圆形线圈P 放置于匀强磁场中,磁场方向与线圈平面垂直,线圈P 通过导线与阻值为R 的电阻和两平行金属板相连,两金属板之间的距离为d ,两板间有垂直纸面的恒定匀强磁场。

当线圈P 所在位置的磁场均匀变化时,一质量为m 、带电量为q 的油滴在两金属板之间的竖直平面内做圆周运动。

重力加速度为g ,求:(1)匀强电场的电场强度 (2)流过电阻R 的电流(3)线圈P 所在磁场磁感应强度的变化率 【答案】(1)mg q (2)mgdqR(3)()B mgd R r t NQRS ∆+=∆ 【解析】 【详解】 (1)由题意得:qE =mg解得mg qE =(2)由电场强度与电势差的关系得:UE d=由欧姆定律得:U I R=解得mgdI qR=(3)根据法拉第电磁感应定律得到:E Nt∆Φ=∆ BS t t∆Φ∆=∆∆根据闭合回路的欧姆定律得到:()E I R r =+ 解得:()B mgd R r t NqRS∆+=∆2.如图所示,面积为0.2m 2的100匝线圈处在匀强磁场中,磁场方向垂直于线圈平面。

已知磁感应强度随时间变化的规律为B =(2+0.2t )T ,定值电阻R 1=6 Ω,线圈电阻R 2=4Ω求:(1)磁通量变化率,回路的感应电动势。

(2)a 、b 两点间电压U ab 。

【答案】(1)0.04Wb/s 4V (2)2.4V 【解析】 【详解】(1)由B =(2+0.2t )T 得磁场的变化率为0.2T/s Bt∆=∆ 则磁通量的变化率为:0.04Wb/s BS t t∆Φ∆==∆∆ 根据E nt∆Φ=∆可知回路中的感应电动势为: 4V BE nnS t t∆Φ∆===∆∆ (2)线圈相当于电源,U ab 是外电压,根据电路分压原理可知:1122.4V ab ER R R U =+=答:(1)磁通量变化率为0.04Wb/s ,回路的感应电动势为4V 。

2021年高考物理最新模拟题精练专题4.32 电磁感应与动量综合问题(提高篇)(解析版)

2021年高考物理最新模拟题精练专题4.32 电磁感应与动量综合问题(提高篇)(解析版)

2021年高考物理100考点最新模拟题千题精练(选修3-2)第四部分 电磁感应专题4.32 电磁感应与动量综合问题(提高篇)1.(10分) (2020新高考冲刺仿真模拟6)如图甲所示,光滑的水平绝缘轨道M 、N 上搁放着质量m 1=0.2 kg 、电阻R 1=0.02 Ω的“[”形金属框dabc ,轨道间有一有界磁场,变化关系如图乙所示.一根长度等于ab ,质量m 2=0.1 kg 、R 2=0.01 Ω的金属棒ef 搁在轨道上并静止在磁场的左边界上.已知轨道间距与ab 长度相等,均为L 1=0.3 m ,ad =bc =L 2=0.1 m ,其余电阻不计.0时刻,给“[”形金属框一初速度v 0=3 m/s ,与金属棒碰撞后合在一起成为一闭合导电金属框(碰撞时间极短).t 0时刻整个框刚好全部进入磁场,(t 0+1) s 时刻,框右边刚要出磁场.求:(1)碰撞结束时金属框的速度大小; (2)0~t 0时间内整个框产生的焦耳热;(3)t 0~(t 0+1) s 时间内,安培力对ab 边的冲量的大小. 【名师解析】 (1)碰撞过程中,动量守恒,得到 m 1v 0=(m 1+m 2)v v =2 m/s(2)对闭合金属框,0~t 0时间内由动量定理得: -BIL 1Δt =-BL 1Δq =(m 1+m 2)Δv等号两边求和,得-BL 1q =(m 1+m 2)(v ′-v ) 又因为q =B ΔS R 总=BL 1L 2R 1+R 2得到v ′=1 m/s所以Q =12(m 1+m 2)v 2-12(m 1+m 2)v ′2=0.45 J(3)t 0~(t 0+1) s 时间内,整个框在磁场中运动,I =E R 总=ΔΦΔtR 总=ΔBL 1L 2ΔtR 总=0.4 A 又因为B ′=1-0.4(t -t 0) t 0≤t ≤t 0+1所以F 安=B ′IL 1=0.12B ′=0.12-0.048(t -t 0) I 安=F安t =F 安1+F 安22t =0.12×1+0.12×0.62×1 N·s =0.096 N·s 2、如图甲所示,平行粗糙导轨固定在绝缘水平桌面上,间距L =0.2 m ,导轨左端接有R =1 Ω的电阻,质量为m =0.1 kg 的粗糙导体棒ab 垂直静置于导轨上,导体棒及导轨的电阻忽略不计.整个装置处于磁感应强度B =0.5 T 的匀强磁场中,磁场方向垂直导轨向下.现用与导轨平行的外力F 作用在导体棒ab 上使之一开始做匀加速运动,且外力F 随时间变化关系如图乙所示,重力加速度g =10 m/s 2,求:(1)比较导体棒a 、b 两点电势的高低; (2)前10 s 导体棒ab 的加速度大小;(3)若整个过程中通过R 的电荷量为65 C ,则导体棒ab 运动的总时间是多少? 【参考答案】.(1)a 点电势较高 (2)5 m/s 2 (3)22 s【名师解析】(1)据右手定则知,a 点电势较高(2)由于导体棒一开始做匀加速运动,对ab 用牛顿第二定律:F -F 安-F f =ma ,F 安=B 2L 2vR ,v =at综上得,F =B 2L 2aRt +F f +ma据题图乙可知前10 s ,F -t 图线斜率为0.05 N/s 即B 2L 2aR =0.05 N/s代入数据解得:a =5 m/s 2(3)当t =0时,F f +ma =1 N ,则F f =0.5 N 10 s 时导体棒的速度v 1=at 1=50 m/s 此时安培力F 安1=0.5 N由于F =1 N ,且此时F f +F 安1=F =1 N ,故10~15 s 内导体棒做匀速直线运动 0~15 s 内导体棒ab 的位移x =v 12t 1+v 1t 2=500 m通过R 的电荷量q 1=ΔΦR 总=BLxR =50 CF 为0后,导体棒做减速运动直到停止过程中通过R 的电荷量:q 2=q -q 1=15 C 对导体棒ab 应用动量定理:-F f t 3-BLq 2=0-mv 1 解得t 3=7 s则运动的总时间:t =t 1+t 2+t 3=22 s3、如图所示,光滑平行金属导轨PQ 、MN 倾斜固定放置,导轨所在平面与水平面的夹角θ=30°,导轨底端连接有阻值为R 的电阻,导轨间距为L .方向垂直于导轨平面向下的有界匀强磁场的边界ab 、cd 垂直于导轨,磁场的磁感应强度大小为B ,边界ab 、cd 间距为s .将一长度为L 、质量为m 、阻值也为R 的金属棒垂直放置在导轨上,金属棒开始的位置离ab 的距离为12s ,现将金属棒由静止释放,金属棒沿导轨向下做加速运动,到达cd 位置时金属棒的加速度刚好为零,金属棒运动过程中始终垂直于导轨并与导轨接触良好,不计导轨及其他电阻,重力加速度为g ,求:(1)金属棒从释放到到达cd 位置的过程中,通过电阻R 的电荷量; (2)金属棒从ab 运动到cd 的时间. 【参考答案】.(1)BLs2R(2)2mR B 2L 2+B 2L 2s mgR -2sg【名师解析】(1)通过电阻R 的电荷量q =I ·Δt ,E =ΔΦΔt =BLs Δt ,I =E 2R ,解得q =BLs2R;(2)设金属棒刚进入磁场时的速度为v 1,根据机械能守恒定律有mg ·12s ·sin θ=12mv 12,解得v 1=gs sin θ=12gs ,金属棒运动到cd 位置时,加速度为零,有mg sin θ=B 2L 2v 22R ,解得v 2=mgRB 2L 2,由牛顿第二定律可知mg sin θ-BIL =ma =m Δv Δt ,即12mg ΣΔt -BL ΣI Δt =m ΣΔv ,[或由动量定理可得(mg sin θ-BIL )Δt =m Δv ,即12mg ΣΔt-BL ΣI Δt =m ΣΔv ]得12mgt -BLq =m (v 2-v 1),解得t =2mR B 2L 2+B 2L 2smgR-2sg. 4、如图所示,足够长的水平轨道左侧部分b 1b 2-c 1c 2轨道间距为2L ,右侧部分c 1c 2-d 1d 2的轨道间距为L ,圆弧轨道与水平轨道相切于b 1b 2,所有轨道均光滑且电阻不计.在水平轨道内有斜向下与竖直方向夹角θ=37°的匀强磁场,磁感应强度大小为B =0.1 T.质量为M =0.2 kg 的金属棒C 垂直于轨道静止放置在右侧窄轨道上,质量为m =0.1 kg 的导体棒A 自圆弧轨道上a 1a 2处由静止释放,两金属棒在运动过程中始终相互平行且与轨道保持良好接触,A 棒总在宽轨上运动,C 棒总在窄轨上运动.已知:两金属棒接入电路的有效电阻均为R =0.2 Ω,h =0.2 m ,L =0.2 m ,sin 37°=0.6,cos 37°=0.8,g 取10 m/s 2,求:(1)金属棒A 滑到b 1b 2处时的速度大小; (2)金属棒C 匀速运动的速度大小;(3)在两棒整个的运动过程中通过金属棒A 某截面的电荷量;(4)在两棒整个的运动过程中金属棒A 、B 在水平轨道间扫过的面积之差. 【参考答案】(1)2 m/s (2)0.44 m/s (3)5.56 C (4)27.8 m 2 【名师解析】(1)A 棒在圆弧轨道上下滑,由机械能守恒定律得mgh =12mv 02,得v 0=2gh =2 m/s.(2)选取水平向右为正方向,对A 、C 应用动量定理可得对C :F C 安cos θ·t =Mv C ,对A :-F A 安cos θ·t =mv A -mv 0,其中F A 安=2F C 安,由以上知mv 0-mv A =2Mv C ,两棒最后匀速运动时,电路中无电流,有BLv C =2BLv A ,得v C =2v A ,联立两式得v C =29v 0=0.44 m/s.(3)在C 加速过程中,有Σ(B cos θ)IL Δt =Mv C -0,q =ΣI Δt ,得q =509C =5.56 C.(4)根据法拉第电磁感应定律有E =ΔΦΔt ,其中磁通量变化量ΔΦ=B ΔS cos 37°,电路中的电流I =E2R ,通过截面的电荷量q =It ,得ΔS =2509m 2=27.8 m 2. 5、某小组同学在研究图甲所示的电磁枪原理时,绘制了图乙所示的简图(为俯视图),图中两平行金属导轨间距为L 固定在水平面上,整个装置处在竖直向下、磁感应强度为B 的匀强磁场中,平行导轨左端电路如图所示,电源的电动势为E (内阻不计),电容器的电容为C .一质量为m 、长度也为L 的金属导体棒垂直于轨道平放在导轨上,忽略摩擦阻力和导轨、导线的电阻,假设平行金属导轨足够长.(1)将开关S 接a ,电源对电容器充电. a.求电容器充电结束时所带的电荷量Q ;b.请在图丙中画出充电过程中电容器两极板间的电压u 随电容器所带电荷量q 变化的图象;借助u -q 图象求出稳定后电容器储存的能量E 0.(2)电容器充电结束后,将开关接b ,电容器放电,导体棒由静止开始运动,不计放电电流引起的磁场影响. a.已知自由电子的电荷量为e ,请你分析推导当导体棒获得最大速度之后,导体棒中某一自由电子所受的电场力与导体棒最大速度之间的关系式;b.导体棒由静止到获得最大速度的过程中,由于存在能量损失ΔE 损,电容器释放的能量没有全部转化为导体棒的动能,求ΔE 损. 【名师解析】(1)a.电容器充电完毕时其电压等于电动势E ,电容器所带的电荷量Q =CE ①b.根据u =q C ,画出u -q 图象如图所示,图线与横轴所围面积表示电容器储存的能量.有:E 0=12EQ ②联立①②式可得:E 0=12CE 2③(2)a.方法一:设金属导体棒获得最大速度v m 时,放电电流为零,此时电容器的电压U 与导体棒的感应电动势E 棒相等, 即:U =E 棒=BLv m ④导体棒中恒定电场的场强为:E 场=UL =Bv m导体棒中电子所受的电场力为F =eE 场=eBv m方法二:金属导体棒获得最大速度后做匀速直线运动,电路中无电流,运动的电子在磁场中受到向下的洛伦兹力, 大小为:f =eBv m由于电子随导体棒做匀速直线运动,则电场力F 与洛伦兹力合力为零,即F -f =0,则:F =eBv m b.由(1)中结论可知,导体棒获得最大速度v m 时,电容器储存的能量为:E 1=12CU 2⑤导体棒由静止到获得最大速度的过程中,根据能量守恒定律有:E 0=E 1+12mv m 2+ΔE 损 ⑥设此过程电容器放电的电荷量为ΔQ ,则ΔQ =CE -CU ⑦方法一:设此过程中的平均电流为I ,时间为t ,根据动量定理有:BL I t =mv m -0⑧ 其中I t =ΔQ ⑨联立④⑤⑥⑦⑧⑨式可得:ΔE损=mCE22m+CL2B2方法二:设任意时刻电路中的电流为i,取一段含此时刻的极短时间Δt,设此段时间内速度的改变量为Δv,根据动量定理有:ΣBLiΔt=ΣmΔv⑧ΣiΔt=ΔQ⑨ΣmΔv=mv m-0⑩联立④⑤⑥⑦⑧⑨⑩式可得:ΔE损=mCE22m+CL2B26、如图所示,竖直固定的足够长的光滑金属导轨MN、PQ,间距为l=0.2 m,其电阻不计.完全相同的两金属棒ab、cd垂直导轨放置,每棒两端都与导轨始终良好接触,已知两棒质量均为m=0.01 kg,电阻均为R=0.2 Ω,棒cd放置在水平绝缘平台上,整个装置处在垂直于导轨平面向里的匀强磁场中,磁感应强度B =1.0 T.棒ab在竖直向上的恒力F作用下由静止开始向上运动,当ab棒运动x=0.1 m时达到最大速度v m,此时cd棒对绝缘平台的压力恰好为零.取g=10 m/s2,求:(1)ab棒的最大速度v m;(2)ab棒由静止到最大速度过程中回路产生的焦耳热Q;(3)ab棒由静止到最大速度所经历的时间t.【参考答案】:(1)1 m/s(2)5×10-3 J(3)0.2 s【名师解析】:(1)棒ab达到最大速度v m时,对棒cd有:BIL=mg,由闭合电路欧姆定律知I=E2R,棒ab切割磁感线产生的感应电动E=BLv m,代入数据计算得出:v m =1 m/s;(2) ab 棒由静止到最大速度过程中,由功能关系得: Fx =mgx +12mv 2m+Q棒ab 达到最大速度时受力平衡 F =mg +BIL 解得:Q =5×10-3 J(3)ab 棒由静止到最大速度过程中通过ab 棒的电荷量: q =I t =BLx2R=0.05 C 在此过程中由动量定理可知: (F -mg -BIL )t =mv m -0 即(F -mg )t -BqL =mv m -0 解得:t =0.2 s.7、如图所示,电阻不计的“∠”形足够长且平行的导轨,间距L =1 m ,导轨倾斜部分的倾角θ=53°,并与定值电阻R 相连.整个空间存在着B =5 T 、方向垂直倾斜导轨平面向上的匀强磁场.金属棒ab 、cd 的阻值R ab =R cd =R ,cd 棒质量m =1 kg ,ab 棒光滑,cd 与导轨间的动摩擦因数μ=0.3,设最大静摩擦力等于滑动摩擦力,g 取10 m/s 2,sin 53°=0.8,cos 53°=0.6,求:(1)ab 棒由静止释放,当滑至某一位置时,cd 棒恰好开始滑动.求这一时刻ab 棒中的电流; (2)若ab 棒无论从多高的位置释放,cd 棒都不动,分析ab 棒质量应满足的条件;(3)若cd 棒与导轨间的动摩擦因数μ≠0.3,ab 棒无论质量多大、从多高位置释放,cd 棒始终不动.求cd 棒与导轨间的动摩擦因数μ应满足的条件. 【参考答案】:(1)3.34 A (2)m ab ≤2.08 kg(3)μ≥0.75 【名师解析】:(1)cd 棒刚要开始滑动时,其受力分析如图所示.由平衡条件得BI cd L cos 53°-F f =0, F N -mg -BI cd L sin 53°=0, 又因为F f =μF N ,联立以上三式,得I cd =1.67 A , 所以I ab =2I cd =3.34 A.(2)ab 棒下滑时,最大安培力F A =m ab g sin 53°,cd 棒所受最大安培力应为12F A ,要使cd 棒不滑动,需满足:12F A cos 53°≤μ(mg +12F A sin 53°). 由以上两式联立解得m ab ≤2.08 kg. (3)ab 棒下滑时,cd 棒始终静止,有 F A ′cos 53°≤μ(mg +F A ′sin 53°). 解得μ≥F A ′cos 53°mg +F A ′sin 53°=cos 53°mgF A ′+sin 53°.当ab 棒质量无限大,在无限长轨道上最终一定匀速运动,ab 棒所受安培力趋于无穷大,cd 棒所受安培力F A ′亦趋于无穷大,有μ≥cos 53°sin 53°=0.75.8、如图所示,两电阻不计的足够长光滑平行金属导轨与水平面夹角为θ,导轨间距为l ,所在平面的正方形区域abcd 内存在有界匀强磁场,磁感应强度大小为B ,方向垂直于斜面向上.如图所示,将甲、乙两阻值相同、质量均为m 的相同金属杆放置在导轨上,甲金属杆处在磁场的上边界,甲、乙相距l .从静止释放两金属杆的同时,在金属杆甲上施加一个沿着导轨的外力,使甲金属杆在运动过程中始终沿导轨向下做匀加速直线运动,且加速度大小为a =g sin θ,乙金属杆刚进入磁场时做匀速运动.(1)求每根金属杆的电阻R ;(2)从刚释放金属杆时开始计时,写出从计时开始到甲金属杆离开磁场的过程中外力F 随时间t 的变化关系式,并说明F 的方向;(3)若从开始释放两杆到乙金属杆离开磁场,乙金属杆共产生热量Q ,试求此过程中外力F 对甲做的功. 【参考答案】:(1)B 2l 22gl sin θ2mg sin θ(2)F =mg 2sin 2θ2gl sin θt ,方向沿导轨向下(3)2Q -mgl sin θ 【名师解析】:(1)甲、乙匀加速运动时加速度相同,所以,当乙进入磁场时,甲刚出磁场,乙进入磁场时的速度v =2gl sin θ. 根据平衡条件有mg sin θ=B 2l 2v 2R .解得R =B 2l 22gl sin θ2mg sin θ.(2)甲在磁场中运动时,外力F 始终等于安培力F =B 2l 2v 2R ,v =g sin θ·t ,将R =B 2l 22gl sin θ2mg sin θ代入得F =mg 2sin 2θ2gl sin θt ,方向沿导轨向下.(3)乙进入磁场前,甲、乙产生相同热量,设为Q 1,则有 F 安l =2Q 1,又F =F 安,故外力F 对甲做的功W F =Fl =2Q 1.甲出磁场以后,外力F 为零,乙在磁场中,甲、乙产生相同热量,设为Q 2,则有 F 安′l =2Q 2,又F 安′=mg sin θ, 又Q =Q 1+Q 2. 解得W F =2Q -mgl sin θ.。

高中物理电磁感应问题解析

高中物理电磁感应问题解析

高中物理电磁感应问题解析电磁感应是高中物理中的一个重要内容,也是考试中的热点考点之一。

在解决电磁感应问题时,我们需要掌握一些基本原理和解题技巧。

本文将通过具体题目的举例,来说明电磁感应问题的解析方法和考点,并给出一些解题技巧,以帮助高中学生顺利解决这类问题。

1. 线圈中的感应电动势问题:一个半径为R的圆形线圈,匀速通过一个磁感应强度为B的磁场,线圈的面积为S。

求线圈中感应电动势的大小。

解析:根据电磁感应的基本原理,当一个线圈通过磁场时,线圈中会产生感应电动势。

根据法拉第电磁感应定律,感应电动势的大小与磁感应强度的变化率成正比。

在这个问题中,磁感应强度不变,所以感应电动势的大小只与线圈的面积有关。

解题技巧:对于线圈中的感应电动势问题,我们只需要关注线圈的面积和磁感应强度的关系。

在计算时,可以将线圈的面积和磁感应强度代入感应电动势的公式中,直接计算出结果。

2. 导体中的感应电流问题:一个导体棒以速度v与一个磁感应强度为B的磁场垂直运动,求导体中感应电流的大小。

解析:当一个导体棒在磁场中运动时,磁场会对导体中的自由电子产生作用力,从而导致电子在导体内部产生漂移,形成感应电流。

根据洛伦兹力的方向,可以确定感应电流的方向。

解题技巧:对于导体中的感应电流问题,需要注意洛伦兹力的方向和感应电流的方向。

当导体棒以速度v与磁场垂直运动时,洛伦兹力的方向与速度和磁场的方向都有关。

可以通过右手定则来确定洛伦兹力的方向,从而确定感应电流的方向。

3. 电磁感应中的能量转化问题:一个半径为r的圆形线圈以角速度ω绕垂直于平面的轴旋转,磁感应强度为B,求线圈中感应电动势的大小。

解析:当一个线圈以角速度ω旋转时,线圈中会产生感应电动势。

根据法拉第电磁感应定律,感应电动势的大小与磁感应强度的变化率成正比。

在这个问题中,磁感应强度不变,所以感应电动势的大小只与线圈的角速度有关。

解题技巧:对于线圈中的感应电动势问题,我们只需要关注线圈的角速度和磁感应强度的关系。

高考物理提高题专题复习法拉第电磁感应定律练习题附答案解析

高考物理提高题专题复习法拉第电磁感应定律练习题附答案解析

高考物理提高题专题复习法拉第电磁感应定律练习题附答案解析一、法拉第电磁感应定律1.如图所示,面积为0.2m 2的100匝线圈处在匀强磁场中,磁场方向垂直于线圈平面。

已知磁感应强度随时间变化的规律为B =(2+0.2t )T ,定值电阻R 1=6 Ω,线圈电阻R 2=4Ω求:(1)磁通量变化率,回路的感应电动势。

(2)a 、b 两点间电压U ab 。

【答案】(1)0.04Wb/s 4V (2)2.4V 【解析】 【详解】(1)由B =(2+0.2t )T 得磁场的变化率为0.2T/s Bt∆=∆ 则磁通量的变化率为:0.04Wb/s BS t t∆Φ∆==∆∆ 根据E nt∆Φ=∆可知回路中的感应电动势为: 4V BE nnS t t∆Φ∆===∆∆ (2)线圈相当于电源,U ab 是外电压,根据电路分压原理可知:1122.4V ab ER R R U =+=答:(1)磁通量变化率为0.04Wb/s ,回路的感应电动势为4V 。

(2)a 、b 两点间电压U ab 为2.4V 。

2.如图所示,在倾角30o θ=的光滑斜面上,存在着两个磁感应强度大小相等、方向分别垂直斜面向上和垂直斜面向下的匀强磁场,两磁场宽度均为L 。

一质量为m 、边长为L 的正方形线框距磁场上边界L 处由静止沿斜面下滑,ab 边刚进入上侧磁场时,线框恰好做匀速直线运动。

ab 边进入下侧磁场运动一段时间后也做匀速度直线运动。

重力加速度为g 。

求:(1)线框ab 边刚越过两磁场的分界线ff′时受到的安培力; (2)线框穿过上侧磁场的过程中产生的热量Q 和所用的时间t 。

【答案】(1)安培力大小2mg ,方向沿斜面向上(2)4732mgL Q = 72Lt g= 【解析】 【详解】(1)线框开始时沿斜面做匀加速运动,根据机械能守恒有21sin 302mgL mv ︒=, 则线框进入磁场时的速度2sin30v g L gL =︒=线框ab 边进入磁场时产生的电动势E =BLv 线框中电流E I R=ab 边受到的安培力22B L vF BIL R== 线框匀速进入磁场,则有22sin 30B L vmg R︒= ab 边刚越过ff '时,cd 也同时越过了ee ',则线框上产生的电动势E '=2BLv 线框所受的安培力变为22422B L vF BI L mg R==''=方向沿斜面向上(2)设线框再次做匀速运动时速度为v ',则224sin 30B L v mg R︒='解得4gLvv='=根据能量守恒定律有2211sin30222mg L mv mv Q︒'⨯+=+解得4732mgLQ=线框ab边在上侧磁扬中运动的过程所用的时间1Ltv=设线框ab通过ff'后开始做匀速时到gg'的距离为0x,由动量定理可知:22sin302mg t BLIt mv mv︒-='-其中()22BL L xIt R-=联立以上两式解得()2432L x vtv g-=-线框ab在下侧磁场匀速运动的过程中,有0034x xtv v='=所以线框穿过上侧磁场所用的总时间为12372Lt t t tg=++=3.如图所示,水平面内有一平行金属导轨,导轨光滑且电阻不计。

高中物理电磁感应现象压轴难题知识点及练习题及答案解析

高中物理电磁感应现象压轴难题知识点及练习题及答案解析

高中物理电磁感应现象压轴难题知识点及练习题及答案解析一、高中物理解题方法:电磁感应现象的两类情况1.如图所示,线圈工件加工车间的传送带不停地水平传送长为L ,质量为m ,电阻为R 的正方形线圈,在传送带的左端线圈无初速地放在以恒定速度v 匀速运动的传送带上,经过一段时间,达到与传送带相同的速度v 后,线圈与传送带始终相对静止,并通过一磁感应强度为B 、方向竖直向上的匀强磁场,已知当一个线圈刚好开始匀速度运动时,下一个线圈恰好放在传送带上,线圈匀速运动时,每两个线圈间保持距离L 不变,匀强磁场的宽度为3L ,求:(1)每个线圈通过磁场区域产生的热量Q .(2)在某个线圈加速的过程中,该线圈通过的距离S 1和在这段时间里传送带通过的距离S 2之比.(3)传送带每传送一个线圈,电动机多消耗的电能E (不考虑电动机自身的能耗)【答案】(1)232B L vQ R= (2) S 1:S 2=1:2 (3)E=mv 2+2B 2L 3v/R【解析】 【分析】 【详解】(1)线圈匀速通过磁场,产生的感应电动势为E=BLv ,则每个线圈通过磁场区域产生的热量为223()22BLv L B L vQ Pt R v R===(2)对于线圈:做匀加速运动,则有S 1=vt /2 对于传送带做匀速直线运动,则有S 2=vt 故S 1:S 2=1:2(3)线圈与传送带的相对位移大小为2112vts s s s ∆=-== 线圈获得动能E K =mv 2/2=fS 1传送带上的热量损失Q /=f (S 2-S 1)=mv 2/2送带每传送一个线圈,电动机多消耗的电能为E =E K +Q +Q /=mv 2+2B 2L 3v/R 【点睛】本题的解题关键是从能量的角度研究电磁感应现象,掌握焦耳定律、E=BLv 、欧姆定律和能量如何转化是关键.2.如图所示,在倾角为θ的斜面内有两条足够长的不计电阻的平行金属导轨,导轨宽度为L ,导轨上端连有阻值为R 的电阻;在垂直于导轨边界ab 上方轨道空间内有垂直于导轨向上的均匀变化的匀强磁场B 1。

高二物理电磁感应例题解析

高二物理电磁感应例题解析

高二物理电磁感应例题解析【案例1】感应电动势的计算(1)导体棒平动切割磁感线产生的感应电动势练习1、如图所示,导轨与电流表相连,导轨的宽度为d ,处于向里的大小为B 的匀强磁场中,一根导线沿着导轨以速度v 向右运动,求导线上产生的感应电动势. 考点:感应电动势有效长的计算(2)导体棒转动产生的感应电动势练习2、若导体棒半径为r ,处于匀强磁场B 中,以角速度ω匀速转动,则导线产生的感应电动势的大小是多少?考点:导体转动切割磁感线产生的感应电动势(3)线圈转动产生的感应电动势练习3、矩形线圈在匀强磁场中以角速度ω转动,设线圈的边长分别是L 1和L 2,磁感应强度为B ,线圈的匝数为N ,从图示位置开始计时,(1)图示位置,磁通量大小为 ,感应电动势为(2)线圈转过900时,磁通量为 , 线圈产生的感应电动势为 ,线圈的电动势为 (3)线圈转过1800时,磁通量大小为 , 线圈产生的感应电动势为 ,这个过程磁通量的变化量为。

(4)从中性面开始计时,转过角度θ时,线圈产生的感应电动势为 从B ∥S 开始计时,转过角度θ时,线圈产生的感应电动势为(4)磁场变化产生的感生电动势练习4、正方形线框边长为L 、质量为m 、电阻为R处于匀强磁场中,磁场的磁感应强度按B=kt 的规律均匀增强, 细线能承受的最大拉力为T=2mg ,从t=0起经多少时间绳被拉断? (5)反电动势(从力的观点和能的观点理解)【案例2】感应电流大小计算问题 练习5、由两个同种材料,同样粗细的导线制成圆环a 、b 已知其半径之比为2:1,在B 中充满了匀强磁场,当匀强磁场随着时间均匀变化时,圆环a 、b 的感应电流之比为多少?练习6、匀强磁场中固定一个金属框架ABC ,导体棒在框架上沿着角平分线匀速平移,且移动中构成闭合等势腰三角形,导体棒与框架的材料、粗细相同,接触电阻不计,试证明电路中的感应电流恒定。

【案例3】物理量单位的推导证明:(1)1V=1Wb/s(2)1V=1T ×1m ×1m/s方法:根据物理公式去推证椤次定律的应用1、“阻碍”的含义“阻碍”不是阻止。

高考物理电磁感应现象压轴题提高题专题及答案

高考物理电磁感应现象压轴题提高题专题及答案

高考物理电磁感应现象压轴题提高题专题及答案一、高中物理解题方法:电磁感应现象的两类情况1.如图,光滑金属轨道POQ 、´´´P O Q 互相平行,间距为L ,其中´´O Q 和OQ 位于同一水平面内,PO 和´´P O 构成的平面与水平面成30°。

正方形线框ABCD 边长为L ,其中AB 边和CD 边质量均为m ,电阻均为r ,两端与轨道始终接触良好,导轨电阻不计。

BC 边和AD 边为绝缘轻杆,质量不计。

线框从斜轨上自静止开始下滑,开始时底边AB 与OO ´相距L 。

在水平轨道之间,´´MNN M 长方形区域分布着有竖直向上的匀强磁场,´OM O N L =>,´´N M 右侧区域分布着竖直向下的匀强磁场,这两处磁场的磁感应强度大小均为B 。

在右侧磁场区域内有一垂直轨道放置并被暂时锁定的导体杆EF ,其质量为m 电阻为r 。

锁定解除开关K 与M 点的距离为L ,不会阻隔导轨中的电流。

当线框AB 边经过开关K 时,EF 杆的锁定被解除,不计轨道转折处OO ´和锁定解除开关造成的机械能损耗。

(1)求整个线框刚到达水平面时的速度0v ; (2)求线框AB 边刚进入磁场时,AB 两端的电压U AB ; (3)求CD 边进入磁场时,线框的速度v ;(4)若线框AB 边尚未到达´´M N ,杆EF 就以速度23123B L v mr=离开M ´N ´右侧磁场区域,求此时线框的速度多大?【答案】(132gL 2)16BL gL ;(3)23323B L gL mr;(4)233223B L gL mr【解析】 【分析】 【详解】(1)由机械能守恒201sin 302sin 30022mgL mg L mv +=︒︒- 可得032v gL =(2)由法拉第电磁感应定律可知0E BLv =根据闭合电路欧姆定律可知032BLv I r =根据部分电路欧姆定律12AB U I r =⋅可得AB U =(3)线框进入磁场的过程中,由动量定理022BIL t mv mv -⋅∆=-又有232BL I t r ⋅∆=代入可得233B L v mr= (4)杆EF 解除锁定后,杆EF 向左运动,线框向右运动,线框总电流等于杆EF 上电流 对杆EF1BIL t m v ⋅∆=∆对线框22BIL t m v ⋅∆=⋅∆可得122v v ∆=∆整理得到2321123B L v v mr∆=∆=可得232223B L v v v mr=-∆=2.如图所示,光滑导线框abfede 的abfe 部分水平,efcd 部分与水平面成α角,ae 与ed 、bf 与cf 连接处为小圆弧,匀强磁场仅分布于efcd 所在平面,方向垂直于efcd 平面,线框边ab 、cd 长均为L ,电阻均为2R ,线框其余部分电阻不计。

高中物理法拉第电磁感应定律压轴题提高题专题附答案解析

高中物理法拉第电磁感应定律压轴题提高题专题附答案解析

高中物理法拉第电磁感应定律压轴题提高题专题附答案解析一、高中物理解题方法:法拉第电磁感应定律1.如图所示,在垂直纸面向里的磁感应强度为B 的有界矩形匀强磁场区域内,有一个由均匀导线制成的单匝矩形线框abcd ,线框平面垂直于磁感线。

线框以恒定的速度v 沿垂直磁场边界向左运动,运动中线框dc 边始终与磁场右边界平行,线框边长ad =l ,cd =2l ,线框导线的总电阻为R ,则线框离开磁场的过程中,求:(1)线框离开磁场的过程中流过线框截面的电量q ; (2)线框离开磁场的过程中产生的热量 Q ; (3)线框离开磁场过程中cd 两点间的电势差U cd . 【答案】(1)22Bl q R =(2) 234B l vQ R=(3)43cd Blv U =【解析】 【详解】(1)线框离开磁场的过程中,则有:2E B lv =E I R=q It =l t v=联立可得:22Bl q R=(2)线框中的产生的热量:2Q I Rt=解得:234B l vQ R=(3) cd 间的电压为:23cd U IR = 解得:43cd BlvU =2.如图所示,面积为0.2m 2的100匝线圈处在匀强磁场中,磁场方向垂直于线圈平面。

已知磁感应强度随时间变化的规律为B =(2+0.2t )T ,定值电阻R 1=6 Ω,线圈电阻R 2=4Ω求:(1)磁通量变化率,回路的感应电动势。

(2)a 、b 两点间电压U ab 。

【答案】(1)0.04Wb/s 4V (2)2.4V 【解析】 【详解】(1)由B =(2+0.2t )T 得磁场的变化率为0.2T/s Bt∆=∆ 则磁通量的变化率为:0.04Wb/s BS t t∆Φ∆==∆∆ 根据E nt∆Φ=∆可知回路中的感应电动势为: 4V BE nnS t t∆Φ∆===∆∆ (2)线圈相当于电源,U ab 是外电压,根据电路分压原理可知:1122.4V ab ER R R U =+=答:(1)磁通量变化率为0.04Wb/s ,回路的感应电动势为4V 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2021年高考物理100考点最新模拟题千题精练(选修3-2)第四部分电磁感应专题4.25 磁场变化产生的感应电动势问题(提高篇)一.选择题1.(2020年3月武汉质检)如图(a)所示,在倾角θ=37°的斜面上放置着一个金属圆环,圆环的上半部分处在垂直斜面向上的匀强磁场(未画出)中,磁感应强度的大小按如图(b)所示的规律变化。

释放圆环后,在t=8t0和t=9t0时刻,圆环均能恰好静止在斜面上。

假设圆环与斜面间的最大静摩擦力等于滑动摩擦力,sin37°=0.6,则圆环和斜面间的动摩擦因数为A .B .C .D .【参考答案】.D【命题意图】本题以静止在斜面上金属圆环为情景,考查法拉第电磁感应定律、闭合电路欧姆定律、安培力、平衡条件及其相关知识点,考查的核心素养是“运动和力”的观点、场的观点和科学思维能力。

【解题思路】设金属圆环半径为r,则面积为S=πr2,圆环单位长度电阻为R0,则圆环电阻为R=2πr R0,在0~8t0时间内,金属圆环内磁感应强度变化率大小为Bt∆∆=08Bt,根据法拉第电磁感应定律,在金属圆环中产生的感应电动势大小为,E1=0.5SBt∆∆=πr2016Bt,感应电流为I1=E1/R=00032rBR t,在t=8t0时刻,金属圆环所受安培力为F1=B0I1·2r=220016r BR t。

由平衡条件,mgsinθ+F1=μmgcosθ,即0.6mg+220016r BR t=0.8μmg···○1;在9t0~10t0时间内,金属圆环内磁感应强度变化率大小为Bt∆∆=0Bt,根据法拉第电磁感应定律,在金属圆环中产生的感应电动势大小为,E2=0.5SBt∆∆=πr202Bt,感应电流为I2=E2/R=0004rBR t,在t=9t0时刻,金属圆环所受安培力为F 2=B 0I 2·2r=220002r B R t 。

由平衡条件,mgsinθ+μmg cosθ= F 2,即0.6mg+0.8μmg=220002r B R t ···○2;联立○1○2解得:μ=,选项D 正确。

【科学思维】B ——t 图线→两段时间内磁感应强度变化率→法拉第电磁感应定律→闭合电路欧姆定律→圆环中电流→B ——t 图线→t=8t 0和t=9t 0时刻圆环所受安培力→平衡条件→金属圆环平衡方程→联立解得动摩擦因数2.(2020·广西南宁模拟)一个面积S =4×10-2m 2、匝数n =100匝的线圈放在匀强磁场中,磁场方向垂直于线圈平面,磁感应强度B 随时间t 变化的规律如图所示,则下列判断正确的是( )A .在开始的2 s 内穿过线圈的磁通量变化率大小等于0.04 Wb/sB .在开始的2 s 内穿过线圈的磁通量的变化量等于零C .在开始的2 s 内线圈中产生的感应电动势大小等于8 VD .在第3 s 末线圈中的感应电动势等于零 【参考答案】C【名师解析】由图像的斜率可知,在开始的2 s 内,ΔB Δt =-2-22 T/s =-2 T/s ,因此线圈磁通量的变化率为:ΔB Δt S =-2×4×10-2 Wb/s =-8×10-2 Wb/s ,故A 错误;因为2 s 内磁感应强度方向相反,所以在开始的 2 s 内穿过线圈的磁通量的变化量不等于零,故B 错误;根据法拉第电磁感应定律得E =nΔBΔtS =-100×8×10-2 V =-8 V ,可知线圈中产生的感应电动势的大小为8 V ,故C 正确;由题图看出,第3 s 末线圈中的磁通量为零,但磁通量的变化率不为零,感应电动势不等于零,故D 错误。

3、[2019·湖北武汉调研]如图甲所示,在足够长的光滑的斜面上放置着金属线框,垂直于斜面方向的匀强磁场的磁感应强度B 随时间的变化规律如图乙所示(规定垂直斜面向上为正方向).t =0时刻将线框由静止释放,在线框下滑的过程中,下列说法正确的是( )A .线框中产生大小、方向周期性变化的电流B.MN边受到的安培力先减小后增大C.线框做匀加速直线运动D.线框中产生的焦耳热等于其机械能的损失【参考答案】BC【名师解析】穿过线圈的磁通量先向下减小,后向上增加,则根据楞次定律可知,感应电流方向不变,选项A错误;因B的变化率不变,则感应电动势不变,感应电流不变,而B的大小先减后增加,根据F=BIL可知,MN边受到的安培力先减小后增大,选项B正确;因线圈平行的两边电流等大反向,则整个线圈受的安培力为零,则线圈下滑的加速度为gsin θ不变,则线框做匀加速直线运动,选项C正确;因安培力对线圈不做功,斜面光滑,则线框的机械能守恒,机械能无损失,选项D错误;故选B、C.4.(2019·山东聊城模拟)如图所示,匀强磁场中有两个由相同导线绕成的圆形线圈a、b,磁场方向与线圈所在平面垂直,磁感应强度B随时间均匀增大。

a、b两线圈的半径之比为2∶1,匝数之比为1∶2。

线圈中产生的感应电动势分别为E a和E b,某时刻磁通量分别为Φa和Φb,不考虑两线圈间的相互影响。

下列说法正确的是()A.E a∶E b=4∶1,Φa∶Φb=4∶1,感应电流均沿顺时针方向B.E a∶E b=2∶1,Φa∶Φb=4∶1,感应电流均沿逆时针方向C.E a∶E b=4∶1,Φa∶Φb=2∶1,感应电流均沿顺时针方向D.E a∶E b=2∶1,Φa∶Φb=4∶1,感应电流均沿顺时针方向【参考答案】D【名师解析】根据Φ=BS,可知任意时刻两个圆的磁感应强度相同,则有:Φa∶Φb=S a∶S b=r a2∶r b2=4∶1,根据法拉第电磁感应定律有:E=n ΔΦΔt=nΔBΔt S=nΔBΔtπr2,因ΔBΔt相同,则有:E a∶E b=n a r a2∶n b r b2=2∶1,由于磁场向外,磁感应强度B随时间均匀增大,根据楞次定律可知,感应电流均沿顺时针方向,D正确。

5.(2020·华南师大附中模拟)如图所示,线圈abcd固定于分布均匀的磁场中,磁场方向垂直线圈平面向里。

当磁场的磁感应强度B随时间t变化时,该磁场对cd边的安培力大小恒定。

则下列描述B随t变化的图像中,可能正确的是()【参考答案】B【名师解析】 设线圈的长宽分别为a 、b ,当磁感应强度发生变化时,线框内产生感应电动势为:E =ΔΦΔt =ΔB ·S Δt =ΔB ·ab Δt ,感应电流为:I =E R ;安培力为:F =BIb ;得cd 边的安培力:F =B ΔBab 2Δt ·R ,由公式可知,若磁场B 增大,则ΔB Δt 减小;若B 减小,则ΔBΔt增大。

所以四个图像中只有B 正确。

6. 如图,光滑平行金属导轨固定在水平面上,左端由导线相连,导体棒垂直静置于导轨上构成回路。

在外力F 作用下,回路上方的条形磁铁竖直向上做匀速运动。

在匀速运动过程中外力F 做功W F ,磁场力对导体棒做功W 1,磁铁克服磁场力做功W 2,重力对磁铁做功W G ,回路中产生的焦耳热为Q ,导体棒获得的动能为E k 。

则( )A .W 1=QB .W 2-W 1=QC .W 1=E kD .W F +W G =E k +Q【参考答案】BCD【名师解析】由能量守恒定律可知:磁铁克服磁场力做功W 2,等于回路的电能,电能一部分转化为内能,另一部分转化为导体棒的机械能,所以W 2- W 1=Q ,故A 错误,B 正确;以导体棒为对象,由动能定理可知,磁场力对导体棒做功W 1=E k ,故C 正确;外力对磁铁做功与重力对磁铁做功之和为回路中的电能,也等于焦耳热和导体棒的动能,故D 正确。

7.(福建省漳州市2016届高三毕业班高考模拟(一)理科综合试题)如图所示,竖直光滑导轨上端接入一定值电阻R ,C 1和C 2是半径都为a 的两圆形磁场区域,其区域内的磁场方向都垂直于导轨平面向外,区域C 1中磁场的磁感强度随时间按B 1=b +kt (k >0)变化,C 2中磁场的磁感强度恒为B 2,一质量为m 、电阻为r 、长度为L 的金属杆AB 穿过区域C 2的圆心C 2垂直地跨放在两导轨上,且与导轨接触良好,并恰能保持静止。

(轨道电阻不计,重力加速度大小为g 。

)则A .通过金属杆的电流方向为从A 到B B .通过金属杆的电流大小为aB mg22C .定值电阻的阻值为mga B k R 322π=D .整个电路中产生的热功率22B amgk P π= 【参考答案】BD 【名师解析】区域1C 中磁场的磁感强度随时间按10B b kt k =+(>)变化,可知磁感强度均匀增大,穿过整个回路的磁通量增大,由楞次定律分析知,通过金属杆的电流方向为从B 到A ,故A 错误;对金属杆,根据平衡方程得:22mg B I a =⋅,解得:22I amgB =,故B 正确;由法拉第电磁感应定律,则有:回路中产生的感应电动势221B E a k a t tππΦ===;且闭合电路欧姆定律有:I r E R =+ ,又22I a mg B =,解得:322kB a R g r m π=-.故C 错误;整个电路中产生的热功率22kamg P EI B π==,故D 正确。

考点:导体切割磁感线时的感应电动势;电磁感应中的能量转化【名师点睛】本题是电磁感应与力学知识的综合,掌握法拉第电磁感应定律、闭合电路欧姆定律和平衡条件的应用,要注意产生感应电动势的有效面积等于1C 圆面积,不是整个矩形面积。

8.(西藏日喀则地区第一高级中学2016届高三下学期模拟考试(二)理科综合·物理试题)如图所示,线圈A 内有竖直向上的磁场,磁感应强度B 随时间均匀增大;等离子气流(由高温高压的等电量的正、负离子组成)由左方连续不断的以速度0v 射入1P 和2P 两极板间的匀强磁场中,发现两直导线a 、b 相互吸引,由此可判断1P 和2P 两极板间的匀强磁场方向为A 、垂直纸面向外B 、垂直纸面向里C 、水平向左D 、水平向右 【参考答案】B 【名师解析】线圈A 中磁场的方向向上增强时,由楞次定律可知,感应电流的磁场的方向向下,感应电流的方向在线圈的外侧向左,电流的方向盘旋向上,所以导线a 中的电流方向向下.根据同向电流相互吸引可知,b 中的电流方向也向下.b 中电流方向向下说明极板1P 是电源的正极,则正电荷在磁场中向上偏转,根据左手定则可知,12P P 、两极板间的匀强磁场的方向垂直于纸面向里. 考点:考查了楞次定律【名师点睛】根据楞次定律判断出流经导线a 的电流方向,然后根据流经导线的电流同向时相互吸引,反向时相互排斥判断导线b 的电流的方向向下.等离子流通过匀强磁场时,正离子向上偏转,负离子向下偏转,因此将在b 中形成向下的电流,由左手定则判定磁场的方向9.(2016吉林长春市二模)由法拉第电磁感应定律可知,若穿过某截面的磁通量为m sin t φφω=,则产生的感应电动势为m cos e t ωφω=。

相关文档
最新文档