初中数学培优竞赛培训之十七—— 瓜豆原理中动点轨迹直线型最值问题

合集下载

专题4.5圆---利用“瓜豆”模型求最值-中考数学二轮复习必会几何模型剖析(全国通用)

专题4.5圆---利用“瓜豆”模型求最值-中考数学二轮复习必会几何模型剖析(全国通用)
轨迹的相似比!
上述模型在数学江湖中也被称作“捆绑动点轨迹模型”
Q
强化训练
“瓜豆”模型
提升能力
1.如图,正方形ABCD中,AB=12,E是BC边上一点,CE=7,F是正方形内部一点,
且EF=3,连接EF,DE,DF,并将△DEF绕点D逆时针旋转90º得到△DMN(点M,N
10
分别为点E,F的对应点),连接CN,则CN长度的最小值为_____.
2
2
E G
D
A
圆型运动轨迹
典例精讲
考点2-2
【引例】如图,已知A是⊙O外一点,P是⊙O上的动点,线段AP的中点为Q,连
接OA,OP.若⊙O的半径为2,OA=4,则线段OQ的最小值是(
A.0
B.1
C.2
B )
D.3
【思考】当点P在圆O上运动时,Q点轨迹是?
解:连接AO,取AO的中点M,连接QM,PO.
O
A
(1)主、从动点与定点连线的夹角等于两圆心与定点连线的夹角:
∠OAM=∠PAQ;
(2)主、从动点与定点的距离之比等于两圆心到定点的距离之比:
AP:AQ=AO:AM,也等于两圆半径之比.按以上两点即可确定从动点轨迹圆,Q
与P的关系相当于旋转+伸缩.
古人云:种瓜得瓜,种豆得豆.种圆得圆,种线得线,谓之“瓜豆模型”.
2
倍而得到的,所以点P所在圆的圆心绕点A逆时针旋转90º,
再乘以 2 就是点C所在圆的圆心B´,而半径也缩小
2
2倍,
2
即 2 .根据点圆最值模型,可知:BB´-CB´≤BC≤BB´+CB´,
即3 2 ≤BC≤ 5 2 ,因此最大值与最小值的差为 3 2 .

2020中考数学复习微专题:用瓜豆原理解决最值问题

2020中考数学复习微专题:用瓜豆原理解决最值问题

2020中考数学复习微专题:用瓜豆原理解决最值问题在辅助圆问题中,我们了解了求关于动点最值问题的方式之一——求出动点轨迹,即可求出关于动点的最值.在此类题目中,题目或许先描述的是动点P,但最终问题问的可以是另一点Q,当然P、Q 之间存在某种联系,从P点出发探讨Q点运动轨迹并求出最值,为常规思路.一.轨迹之圆篇引例1:如图,P是圆O上一个动点,A为定点,连接AP,Q为AP中点.考虑:当点P在圆O上运动时,Q点轨迹是?A OQP【分析】观察动图可知点Q轨迹是个圆,而我们还需确定的是此圆与圆O有什么关系?考虑到Q点始终为AP中点,连接AO,取AO中点M,则M点即为Q点轨迹圆圆心,半径MQ是OP一半,任意时刻,均有△AMQ∽△AOP,QM:PO=AQ:AP=1:2.PQA MO【小结】确定Q点轨迹圆即确定其圆心与半径,由A、Q、P始终共线可得:A、M、O三点共线,由Q为AP中点可得:AM=1/2AO.Q点轨迹相当于是P点轨迹成比例缩放.根据动点之间的相对位置关系分析圆心的相对位置关系;根据动点之间的数量关系分析轨迹圆半径数量关系.引例2:如图,P是圆O上一个动点,A为定点,连接AP,作AQ⊥AP且AQ=AP.考虑:当点P在圆O上运动时,Q点轨迹是?Q【分析】Q点轨迹是个圆,可理解为将AP绕点A逆时针旋转90°得AQ,故Q点轨迹与P 点轨迹都是圆.接下来确定圆心与半径.考虑AP⊥AQ,可得Q点轨迹圆圆心M满足AM⊥AO;考虑AP=AQ,可得Q点轨迹圆圆心M满足AM=AO,且可得半径MQ=PO.即可确定圆M位置,任意时刻均有△APO≌△AQM.引例3:如图,△APQ是直角三角形,∠P AQ=90°且AP=2AQ,当P在圆O运动时,Q点轨迹是?【分析】考虑AP⊥AQ,可得Q点轨迹圆圆心M满足AM⊥AO;考虑AP:AQ=2:1,可得Q点轨迹圆圆心M满足AO:AM=2:1.即可确定圆M位置,任意时刻均有△APO∽△AQM,且相似比为2.【模型总结】为了便于区分动点P、Q,可称点P为“主动点”,点Q为“从动点”.此类问题的必要条件:两个定量主动点、从动点与定点连线的夹角是定量(∠P AQ是定值);主动点、从动点到定点的距离之比是定量(AP:AQ是定值).Q【结论】(1)主、从动点与定点连线的夹角等于两圆心与定点连线的夹角:∠P AQ=∠OAM;(2)主、从动点与定点的距离之比等于两圆心到定点的距离之比:AP:AQ=AO:AM,也等于两圆半径之比.按以上两点即可确定从动点轨迹圆,Q与P的关系相当于旋转+伸缩.古人云:种瓜得瓜,种豆得豆.“种”圆得圆,“种”线得线,谓之“瓜豆原理”.【思考1】:如图,P是圆O上一个动点,A为定点,连接AP,以AP为一边作等边△APQ.考虑:当点P在圆O上运动时,Q点轨迹是?【分析】Q点满足(1)∠P AQ=60°;(2)AP=AQ,故Q点轨迹是个圆:考虑∠P AQ=60°,可得Q点轨迹圆圆心M满足∠MAO=60°;考虑AP=AQ,可得Q点轨迹圆圆心M满足AM=AO,且可得半径MQ=PO.即可确定圆M位置,任意时刻均有△APO≌△AQM.【小结】可以理解AQ由AP旋转得来,故圆M亦由圆O旋转得来,旋转角度与缩放比例均等于AP与AQ的位置和数量关系.【思考2】如图,P是圆O上一个动点,A为定点,连接AP,以AP为斜边作等腰直角△APQ.考虑:当点P在圆O上运动时,如何作出Q点轨迹?【分析】Q点满足(1)∠P AQ=45°;(2)AP:AQ1,故Q点轨迹是个圆.连接AO,构造∠OAM=45°且AO:AM:1.M点即为Q点轨迹圆圆心,此时任意时刻均有△AOP∽△AMQ.即可确定点Q的轨迹圆.【练习】1.如图,点P(3,4),圆P半径为2,A(2.8,0),B(5.6,0),点M是圆P上的动点,点C是MB的中点,则AC的最小值是_______.【分析】M点为主动点,C点为从动点,B点为定点.考虑C是BM中点,可知C点轨迹:取BP中点O,以O为圆心,OC为半径作圆,即为点C轨迹.当A、C、O三点共线且点C在线段OA上时,AC取到最小值,根据B、P坐标求O,利用两点间距离公式求得OA,再减去OC即可.2.如图,在等腰Rt △ABC 中,AC =BC=P 在以斜边AB 为直径的半圆上,M 为PC 的中点,当半圆从点A 运动至点B 时,点M 运动的路径长为________.【分析】考虑C 、M 、P 共线及M 是CP 中点,可确定M 点轨迹:取AB 中点O ,连接CO 取CO 中点D ,以D 为圆心,DM 为半径作圆D 分别交AC 、BC 于E 、F 两点,则弧EF 即为M 点轨迹.当然,若能理解M 点与P 点轨迹关系,可直接得到M 点的轨迹长为P 点轨迹长一半,即可解决问题.3.如图,正方形ABCD 中,AB O 是BC 边的中点,点E 是正方形内一动点,OE =2,连接DE ,将线段DE 绕点D 逆时针旋转90°得DF ,连接AE 、CF .求线段OF 长的最小值.OABCDE F【分析】E 是主动点,F 是从动点,D 是定点,E 点满足EO =2,故E 点轨迹是以O 为圆心,2为半径的圆.F考虑DE⊥DF且DE=DF,故作DM⊥DO且DM=DO,F点轨迹是以点M为圆心,2为半径的圆.直接连接OM,与圆M交点即为F点,此时OF最小.可构造三垂直全等求线段长,再利用勾股定理求得OM,减去MF即可得到OF的最小值.4.△ABC 中,AB =4,AC =2,以BC 为边在△ABC 外作正方形BCDE ,BD 、CE 交于点O ,则线段AO 的最大值为_____________.AB CDE O【分析】考虑到AB 、AC 均为定值,可以固定其中一个,比如固定AB ,将AC 看成动线段,由此引发正方形BCED 的变化,求得线段AO 的最大值.根据AC =2,可得C 点轨迹是以点A 为圆心,2为半径的圆.OEDCBA接下来题目求AO 的最大值,所以确定O 点轨迹即可,观察△BOC 是等腰直角三角形,锐角顶点C 的轨迹是以点A 为圆心,2为半径的圆,所以O 点轨迹也是圆,以AB 为斜边构造等腰直角三角形,直角顶点M 即为点O 轨迹圆圆心.连接AM并延长与圆M交点即为所求的点O,此时AO最大,根据AB先求AM,再根据BC与BO的比值可得圆M的半径与圆A半径的比值,得到MO,相加即得AO.此题方法也不止这一种,比如可以如下构造旋转,当A、C、A’共线时,可得AO最大值.A'或者直接利用托勒密定理可得最大值.二.轨迹之线段篇引例:如图,P是直线BC上一动点,连接AP,取AP中点Q,当点P在BC上运动时,Q点轨迹是?【分析】当P点轨迹是直线时,Q点轨迹也是一条直线.可以这样理解:分别过A、Q向BC作垂线,垂足分别为M、N,在运动过程中,因为AP=2AQ,所以QN始终为AM的一半,即Q点到BC的距离是定值,故Q点轨迹是一条直线.【引例】如图,△APQ是等腰直角三角形,∠P AQ=90°且AP=AQ,当点P在直线BC上运动时,求Q点轨迹?【分析】当AP与AQ夹角固定且AP:AQ为定值的话,P、Q轨迹是同一种图形.当确定轨迹是线段的时候,可以任取两个时刻的Q点的位置,连线即可,比如Q 点的起始位置和终点位置,连接即得Q点轨迹线段.Q2AB CQ1【模型总结】 必要条件:主动点、从动点与定点连线的夹角是定量(∠P AQ 是定值); 主动点、从动点到定点的距离之比是定量(AP :AQ 是定值). 结论:P 、Q 两点轨迹所在直线的夹角等于∠P AQ (当∠P AQ ≤90°时,∠P AQ 等于MN 与BC 夹角)P 、Q 两点轨迹长度之比等于AP :AQ (由△ABC ∽△AMN ,可得AP :AQ =BC :MN )1.如图,在等边△ABC 中,AB =10,BD =4,BE =2,点P 从点E 出发沿EA 方向运动,连结PD ,以PD 为边,在PD 的右侧按如图所示的方式作等边△DPF ,当点P 从点E 运动到点A 时,点F 运动的路径长是________.A【分析】根据△DPF 是等边三角形,所以可知F 点运动路径长与P 点相同,P 从E 点运动到A 点路径长为8,故此题答案为8.2.如图,已知点A是第一象限内横坐标为的一个定点,AC⊥x轴于点M,交直线y=-x于点N,若点P是线段ON上的一个动点,∠APB=30°,BA⊥P A,则点P 在线段ON上运动时,A点不变,B点随之运动.求当点P从点O运动到点N时,点B运动的路径长是________.【分析】根据∠P AB=90°,∠APB=30°可得:AP:AB,故B点轨迹也是线段,且P点轨迹路径长与B,P点轨迹长ON为B点轨迹长为【练习】如图,在平面直角坐标系中,A(-3,0),点B是y轴正半轴上一动点,点C、D在x正半轴上,以AB为边在AB的下方作等边△ABP,点B在y轴上运动时,求OP的最小值.【分析】求OP是等边三角形且B点在直线上运动,故可知P点轨迹也是直线.取两特殊时刻:(1)当点B与点O重合时,作出P点位置P1;(2)当点B在x轴上方且AB与x轴夹角为60°时,作出P点位置P2.连接P1P2,即为P点轨迹.根据∠ABP =60°可知:12P P 与y 轴夹角为60°,作OP ⊥12P P ,所得OP 长度即为最小值,OP 2=OA =3,所以OP =32.3.如图,正方形ABCD 的边长为4,E 为BC 上一点,且BE =1,F 为AB 边上的一个动点,连接EF ,以EF 为边向右侧作等边△EFG ,连接CG ,则CG 的最小值为 .GABCDEF【分析】同样是作等边三角形,区别于上一题求动点路径长,本题是求CG 最小值,可以将F 点看成是由点B 向点A 运动,由此作出G 点轨迹:考虑到F 点轨迹是线段,故G 点轨迹也是线段,取起点和终点即可确定线段位置,初始时刻G 点在1G 位置,最终G 点在2G 位置(2G 不一定在CD 边),12G G 即为G 点运动轨迹.G 2CG 最小值即当CG ⊥12G G 的时候取到,作CH ⊥12G G 于点H ,CH 即为所求的最小值.根据模型可知:12G G 与AB 夹角为60°,故12G G ⊥1EG .过点E 作EF ⊥CH 于点F ,则HF =1G E =1,CF =1322CE =,所以CH =52,因此CG 的最小值为52.G 2三.轨迹之其他图形篇所谓“瓜豆原理”,就是主动点的轨迹与从动点的轨迹是相似性,根据主、从动点与定点连线形成的夹角以及主、从动点到定点的距离之比,可确定从动点的轨迹,而当主动点轨迹是其他图形时,从动点轨迹必然也是.1.如图,在反比例函数2y x=-的图像上有一个动点A ,连接AO 并延长交图像的另一支于点B ,在第一象限内有一点C ,满足AC =BC ,当点A 运动时,点C 始终在函数ky x=的图像上运动,若tan ∠CAB =2,则k 的值为()A .2B .4C .6D .8【分析】∠AOC=90°且AO:OC=1:2,显然点C的轨迹也是一条双曲线,分别作AM、CN垂直x轴,垂足分别为M、N,连接OC,易证△AMO∽△ONC,∴CN=2OM,ON=2AM,∴ON·CN=4AM·OM,故k=4×2=8.【思考】若将条件“tan∠CAB=2”改为“△ABC是等边三角形”,k会是多少?【练习】如图,A(-1,1),B(-1,4),C(-5,4),点P是△ABC边上一动点,连接OP,以OP为斜边在OP的右上方作等腰直角△OPQ,当点P在△ABC边上运动一周时,点Q的轨迹形成的封闭图形面积为________.【分析】根据△OPQ是等腰直角三角形可得:Q点运动轨迹与P点轨迹形状相同,根据OP:OQ,可得P点轨迹图形与Q,故面积比为2:1,△ABC面积为1/2×3×4=6,故Q点轨迹形成的封闭图形面积为3.【小结】根据瓜豆原理,类似这种求从动点轨迹长或者轨迹图形面积,根据主动点轨迹推导即可,甚至无需作图.【练习】如图所示,AB =4,AC =2,以BC 为底边向上构造等腰直角三角形BCD ,连接AD 并延长至点P ,使AD =PD ,则PB 的取值范围为___________.ABCDP【分析】固定AB 不变,AC =2,则C 点轨迹是以A 为圆心,2为半径的圆,以BC 为斜边作等腰直角三角形BCD ,则D 点轨迹是以点M考虑到AP =2AD ,故P 点轨迹是以N 为圆心,即可求出PB 的取值范围.。

初中数学最值系列之瓜豆原理

初中数学最值系列之瓜豆原理

最值系列之瓜豆原理在辅助圆问题中,我们了解了求关于动点最值问题的方式之一——求出动点轨迹,即可求出关于动点的最值.本文继续讨论另一类动点引发的最值问题,在此类题目中,题目或许先描述的是动点P,但最终问题问的可以是另一点Q,当然P、Q之间存在某种联系,从P点出发探讨Q点运动轨迹并求出最值,为常规思路.一、轨迹之圆篇引例1:如图,P是圆O上一个动点,A为定点,连接AP,Q为AP中点.考虑:当点P在圆O上运动时,Q点轨迹是?【分析】观察动图可知点Q轨迹是个圆,而我们还需确定的是此圆与圆O有什么关系?考虑到Q点始终为AP中点,连接AO,取AO中点M,则M点即为Q点轨迹圆圆心,半径MQ是OP一半,任意时刻,均有△AMQ∽△AOP,QM:PO=AQ:AP=1:2.【小结】确定Q点轨迹圆即确定其圆心与半径,由A、Q、P始终共线可得:A、M、O三点共线,由Q为AP中点可得:AM=1/2AO.Q点轨迹相当于是P点轨迹成比例缩放.根据动点之间的相对位置关系分析圆心的相对位置关系;根据动点之间的数量关系分析轨迹圆半径数量关系.引例2:如图,P是圆O上一个动点,A为定点,连接AP,作AQ⊥AP且AQ=AP.考虑:当点P在圆O上运动时,Q点轨迹是?Q【分析】Q点轨迹是个圆,可理解为将AP绕点A逆时针旋转90°得AQ,故Q点轨迹与P 点轨迹都是圆.接下来确定圆心与半径.考虑AP⊥AQ,可得Q点轨迹圆圆心M满足AM⊥AO;考虑AP=AQ,可得Q点轨迹圆圆心M满足AM=AO,且可得半径MQ=PO.即可确定圆M位置,任意时刻均有△APO≌△AQM.引例3:如图,△APQ是直角三角形,∠P AQ=90°且AP=2AQ,当P在圆O运动时,Q点轨迹是?【分析】考虑AP⊥AQ,可得Q点轨迹圆圆心M满足AM⊥AO;考虑AP:AQ=2:1,可得Q点轨迹圆圆心M满足AO:AM=2:1.即可确定圆M位置,任意时刻均有△APO∽△AQM,且相似比为2.【模型总结】为了便于区分动点P、Q,可称点P为“主动点”,点Q为“从动点”.此类问题的必要条件:两个定量主动点、从动点与定点连线的夹角是定量(∠P AQ是定值);主动点、从动点到定点的距离之比是定量(AP:AQ是定值).Q【结论】(1)主、从动点与定点连线的夹角等于两圆心与定点连线的夹角:∠P AQ=∠OAM;(2)主、从动点与定点的距离之比等于两圆心到定点的距离之比:AP:AQ=AO:AM,也等于两圆半径之比.按以上两点即可确定从动点轨迹圆,Q与P的关系相当于旋转+伸缩.古人云:种瓜得瓜,种豆得豆.“种”圆得圆,“种”线得线,谓之“瓜豆原理”.【思考1】:如图,P是圆O上一个动点,A为定点,连接AP,以AP为一边作等边△APQ.考虑:当点P在圆O上运动时,Q点轨迹是?【分析】Q点满足(1)∠P AQ=60°;(2)AP=AQ,故Q点轨迹是个圆:考虑∠P AQ=60°,可得Q点轨迹圆圆心M满足∠MAO=60°;考虑AP=AQ,可得Q点轨迹圆圆心M满足AM=AO,且可得半径MQ=PO.即可确定圆M位置,任意时刻均有△APO≌△AQM.【小结】可以理解AQ由AP旋转得来,故圆M亦由圆O旋转得来,旋转角度与缩放比例均等于AP与AQ的位置和数量关系.【思考2】如图,P是圆O上一个动点,A为定点,连接AP,以AP为斜边作等腰直角△APQ.考虑:当点P在圆O上运动时,如何作出Q点轨迹?【分析】Q点满足(1)∠P AQ=45°;(2)AP:AQ1,故Q点轨迹是个圆.连接AO,构造∠OAM=45°且AO:AM:1.M点即为Q点轨迹圆圆心,此时任意时刻均有△AOP∽△AMQ.即可确定点Q的轨迹圆.【练习】如图,点P(3,4),圆P半径为2,A(2.8,0),B(5.6,0),点M是圆P上的动点,点C是MB的中点,则AC的最小值是_______.【分析】M点为主动点,C点为从动点,B点为定点.考虑C是BM中点,可知C点轨迹:取BP中点O,以O为圆心,OC为半径作圆,即为点C轨迹.当A、C、O三点共线且点C在线段OA上时,AC取到最小值,根据B、P坐标求O,利用两点间距离公式求得OA,再减去OC即可.【2016武汉中考】如图,在等腰Rt △ABC 中,AC =BC=P 在以斜边AB 为直径的半圆上,M 为PC 的中点,当半圆从点A 运动至点B 时,点M 运动的路径长为________.【分析】考虑C 、M 、P 共线及M 是CP 中点,可确定M 点轨迹:取AB 中点O ,连接CO 取CO 中点D ,以D 为圆心,DM 为半径作圆D 分别交AC 、BC 于E 、F 两点,则弧EF 即为M 点轨迹.当然,若能理解M 点与P 点轨迹关系,可直接得到M点的轨迹长为P 点轨迹长一半,即可解决问题.【2018南通中考】如图,正方形ABCD 中,AB O 是BC 边的中点,点E 是正方形内一动点,OE =2,连接DE ,将线段DE 绕点D 逆时针旋转90°得DF ,连接AE 、CF .求线段OF 长的最小值.OABCDE F【分析】E 是主动点,F 是从动点,D 是定点,E 点满足EO =2,故E 点轨迹是以O 为圆心,2为半径的圆.F考虑DE⊥DF且DE=DF,故作DM⊥DO且DM=DO,F点轨迹是以点M为圆心,2为半径的圆.直接连接OM,与圆M交点即为F点,此时OF最小.可构造三垂直全等求线段长,再利用勾股定理求得OM,减去MF即可得到OF的最小值.【练习】△ABC 中,AB =4,AC =2,以BC 为边在△ABC 外作正方形BCDE ,BD 、CE 交于点O ,则线段AO 的最大值为_____________.AB CDE O【分析】考虑到AB 、AC 均为定值,可以固定其中一个,比如固定AB ,将AC 看成动线段,由此引发正方形BCED 的变化,求得线段AO 的最大值.根据AC =2,可得C 点轨迹是以点A 为圆心,2为半径的圆.OEDCBA接下来题目求AO 的最大值,所以确定O 点轨迹即可,观察△BOC 是等腰直角三角形,锐角顶点C 的轨迹是以点A 为圆心,2为半径的圆,所以O 点轨迹也是圆,以AB 为斜边构造等腰直角三角形,直角顶点M 即为点O 轨迹圆圆心.连接AM 并延长与圆M 交点即为所求的点O ,此时AO 最大,根据AB 先求AM ,再根据BC 与BO 的比值可得圆M 的半径与圆A 半径的比值,得到MO ,相加即得AO .此题方法也不止这一种,比如可以如下构造旋转,当A 、C 、A ’共线时,可得AO最大值.A'或者直接利用托勒密定理可得最大值.二、轨迹之线段篇引例:如图,P是直线BC上一动点,连接AP,取AP中点Q,当点P在BC上运动时,Q点轨迹是?【分析】当P点轨迹是直线时,Q点轨迹也是一条直线.可以这样理解:分别过A、Q向BC作垂线,垂足分别为M、N,在运动过程中,因为AP=2AQ,所以QN始终为AM的一半,即Q点到BC的距离是定值,故Q点轨迹是一条直线.【引例】如图,△APQ是等腰直角三角形,∠P AQ=90°且AP=AQ,当点P在直线BC上运动时,求Q点轨迹?【分析】当AP与AQ夹角固定且AP:AQ为定值的话,P、Q轨迹是同一种图形.当确定轨迹是线段的时候,可以任取两个时刻的Q点的位置,连线即可,比如Q 点的起始位置和终点位置,连接即得Q点轨迹线段.Q2AB CQ1【模型总结】 必要条件:主动点、从动点与定点连线的夹角是定量(∠P AQ 是定值); 主动点、从动点到定点的距离之比是定量(AP :AQ 是定值). 结论:P 、Q 两点轨迹所在直线的夹角等于∠P AQ (当∠P AQ ≤90°时,∠P AQ 等于MN 与BC 夹角)P 、Q 两点轨迹长度之比等于AP :AQ (由△ABC ∽△AMN ,可得AP :AQ =BC :MN )【2017姑苏区二模】如图,在等边△ABC 中,AB =10,BD =4,BE =2,点P 从点E 出发沿EA 方向运动,连结PD ,以PD 为边,在PD 的右侧按如图所示的方式作等边△DPF ,当点P 从点E 运动到点A 时,点F 运动的路径长是________.A【分析】根据△DPF 是等边三角形,所以可知F 点运动路径长与P 点相同,P 从E 点运动到A 点路径长为8,故此题答案为8.【2013湖州中考】如图,已知点A是第一象限内横坐标为AC⊥x轴于点M,交直线y=-x于点N,若点P是线段ON上的一个动点,∠APB=30°,BA⊥P A,则点P在线段ON上运动时,A点不变,B点随之运动.求当点P从点O 运动到点N时,点B运动的路径长是________.【分析】根据∠P AB=90°,∠APB=30°可得:AP:AB,故B点轨迹也是线段,且P点轨迹路径长与B,P点轨迹长ON为B点轨迹长为【练习】如图,在平面直角坐标系中,A(-3,0),点B是y轴正半轴上一动点,点C、D在x正半轴上,以AB为边在AB的下方作等边△ABP,点B在y轴上运动时,求OP的最小值.【分析】求OP是等边三角形且B点在直线上运动,故可知P点轨迹也是直线.取两特殊时刻:(1)当点B与点O重合时,作出P点位置P1;(2)当点B在x轴上方且AB与x轴夹角为60°时,作出P点位置P2.连接P1P2,即为P点轨迹.根据∠ABP =60°可知:12P P 与y 轴夹角为60°,作OP ⊥12P P ,所得OP 长度即为最小值,OP 2=OA =3,所以OP =32.【2019宿迁中考】如图,正方形ABCD 的边长为4,E 为BC 上一点,且BE =1,F 为AB 边上的一个动点,连接EF ,以EF 为边向右侧作等边△EFG ,连接CG ,则CG 的最小值为 .【分析】同样是作等边三角形,区别于上一题求动点路径长,本题是求CG 最小值,可以将F 点看成是由点B 向点A 运动,由此作出G 点轨迹:考虑到F 点轨迹是线段,故G 点轨迹也是线段,取起点和终点即可确定线段位置,初始时刻G 点在1G 位置,最终G 点在2G 位置(2G 不一定在CD 边),12G G 即为G 点运动轨迹.G 2CG 最小值即当CG ⊥12G G 的时候取到,作CH ⊥12G G 于点H ,CH 即为所求的最小值.GABCDEF根据模型可知:12G G 与AB 夹角为60°,故12G G ⊥1EG .过点E 作EF ⊥CH 于点F ,则HF =1G E =1,CF =1322CE =,所以CH =52,因此CG 的最小值为52.G 2三、轨迹之其他图形篇所谓“瓜豆原理”,就是主动点的轨迹与从动点的轨迹是相似性,根据主、从动点与定点连线形成的夹角以及主、从动点到定点的距离之比,可确定从动点的轨迹,而当主动点轨迹是其他图形时,从动点轨迹必然也是.【2016乐山中考】如图,在反比例函数2y x=-的图像上有一个动点A ,连接AO 并延长交图像的另一支于点B ,在第一象限内有一点C ,满足AC =BC ,当点A 运动时,点C 始终在函数ky x=的图像上运动,若tan ∠CAB =2,则k的值为( )A .2B .4C .6D .8【分析】∠AOC=90°且AO:OC=1:2,显然点C的轨迹也是一条双曲线,分别作AM、CN垂直x轴,垂足分别为M、N,连接OC,易证△AMO∽△ONC,∴CN=2OM,ON=2AM,∴ON·CN=4AM·OM,故k=4×2=8.【思考】若将条件“tan∠CAB=2”改为“△ABC是等边三角形”,k会是多少?【练习】如图,A(-1,1),B(-1,4),C(-5,4),点P是△ABC边上一动点,连接OP,以OP为斜边在OP的右上方作等腰直角△OPQ,当点P在△ABC边上运动一周时,点Q的轨迹形成的封闭图形面积为________.【分析】根据△OPQ是等腰直角三角形可得:Q点运动轨迹与P点轨迹形状相同,根据OP:OQ,可得P点轨迹图形与Q,故面积比为2:1,△ABC面积为1/2×3×4=6,故Q点轨迹形成的封闭图形面积为3.【小结】根据瓜豆原理,类似这种求从动点轨迹长或者轨迹图形面积,根据主动点轨迹推导即可,甚至无需作图.【练习】如图所示,AB =4,AC =2,以BC 为底边向上构造等腰直角三角形BCD ,连接AD 并延长至点P ,使AD =PD ,则PB 的取值范围为___________.ABCDP【分析】固定AB 不变,AC =2,则C 点轨迹是以A 为圆心,2为半径的圆,以BC 为斜边作等腰直角三角形BCD ,则D 点轨迹是以点M考虑到AP =2AD ,故P 点轨迹是以N 为圆心,即可求出PB 的取值范围.。

几何最值(瓜豆原理)

几何最值(瓜豆原理)

最值之瓜豆原理瓜豆原理引例1 :如图」P是直线BC上一动点,连接AP ,取AP中点Q,当点P在BC上运动时,Q点轨迹是?弓I例2 :如图,八APQ是等腰直角三角形r zPAQ = 90°且AP = AQ ,当点P在直线BC上运动时1求Q点轨迹?A引例3 :如圄,P是圆。

上一个动点,A为定点1连接AP , Q为AP中点:当点P在圆。

上运动时.Q点轨迹是?引例4 :如圄,P是圆。

上一个动点,A为定点,连接AP,作AQ_L AP且AQ = AP :当点P在圆0上运动时.Q点轨迹是?称点P为“主动点"点Q为"从动点二此类问题的必要条件:两个足量:(1 )主动点、从动点与定点连线的夹角是定量(/PAQ是定值)(2 )主动点、从动点到定点的距离之比是定量(AP:AQ是定值)按以上两点即可确定从动点轨迹圆,。

与P的关系相当于旋转+伸能.古人云:种瓜得瓜,种豆得豆,“种’圆得圆「种”线得线」称之‘瓜豆原理’N如圄,P是圆O上一个动点.A为定点,连接AP ,以AP为斜边作等腰直角&APQ 当点P在圆0上运动时,如何作出Q点轨迹?3 .如图「已知AB=2」点D是等腰Rt .ABC斜边AC上的一动点」以BD为一边向右下方作等边心BDE1当动点D由点A运动到点C时,求动点E运动的轨迹长.变式1如图11,已知AB=2 ,点D是等腰R3ABC斜边AC上的一动点『以BD为一边向右下方作以ZE为直角的等膜Rt'SDE」当动点口由点A运动到点C时,求动点E运动的轨迹长.变式2.如图2 ,已知AB = 2,点口是等腰R6ABC斜边AC上的一动点,以BD为一边向右下方作以zBDE为直角的等暧Rt^BDE ,当动点D由点A运动到点C时,求动点E运动的轨迹长变式3.如图1 ,已知AB=2 ,点D是等腰Rt^ABC斜边AC上的一动点,以BD为一边向右下方作正方形BDEF ,当动点D由点A运动到点C时,求动点E运动的轨迹长.变式4.如图2 r已知AB=2 ,点D是等腰R3ABC斜边AC上的一动点,以BD为一边向右下方作等腰A BDE ,且顶角ZBDE = 120。

中考数学瓜豆原理题

中考数学瓜豆原理题

中考数学瓜豆原理题
瓜豆原理
瓜豆原理是网络上数学大神取的名字,出自成语“种瓜得瓜,种豆得豆”。

在一类动点问题中,一个动点随另一个动点的运动而运动,我们把它们分别叫做从动点和主动点,从动点和主动点的轨迹是一致的,即所谓“种瓜得瓜,种豆得豆”。

解决这一类问题通常用到旋转和放缩,也就是我们前面讲到的全等型和相似型的手拉手模型。

一、直线型轨迹:
例1、如图,ABC和EFC都是等边三角形,AD是ABC的高,AB=4,若点E在直线AD上运动,连接DF,则在点E运动过程中,线段DF的最小值是。

在此题中,E点为主动点,F点为从动点,从动点随主动点的运动而运动,且他们的运动轨迹是一致的,找到了F点的运动轨迹,题目就好解决了。

例2、如图,正方形ABCD的边长为2,动点E从点A出发,沿边AB 向终点B运动,以DE为边作正方形DEFG(点D、E、F、G按顺时针方向排列).求在点E的整个运动过程中,点F经过的路径回选。

突破2023年中考数学高频考点压轴微专题集训(直线型瓜豆原理最值问题)

突破2023年中考数学高频考点压轴微专题集训(直线型瓜豆原理最值问题)

突破2023年中考数学高频考点压轴微专题集训(直线型瓜豆原理最值问题)一、【模型解读】1、必要条件:主动点、从动点与定点连线的夹角是定量(∠PAQ是定值);主动点、从动点到定点的距离之比是定量(AP:AQ是定值).2、结论:P、Q两点轨迹所在直线的夹角等于∠PAQ(当∠PAQ≤90°时,∠PAQ等于MN与BC夹角)P、Q两点轨迹长度之比等于AP:AQ(由△ABC∽△AMN,可得AP:AQ=BC:MN)二、分类过关练习题型一:几何图形与瓜豆原理1、如图,在等边△ABC中,AB=10,BD=4,BE=2,点P从点E出发沿EA方向运动,连结PD,以PD为边,在PD的右侧按如图所示的方式作等边△DPF,当点P从点E运动到点A 时,点F 运动的路径长是________.2、如图,矩形ABCD 中,4AB =,6BC =,点P 是矩形ABCD 内一动点,且∆∆=PAB PCD S S ,则PC PD +的最小值为_____.3、如图,正方形ABCD 的边长为4,E 为BC 上一点,且BE =1,F 为AB 边上的一个动点,连接EF ,以EF 为边向右侧作等边△EFG ,连接CG ,则CG 的最小值为 .4、如图,等腰Rt △ABC 中,斜边AB 的长为2,O 为AB 的中点,P 为AC 边上的动点,OQ ⊥OP 交BC 于点Q ,M 为PQ 的中点,当点P 从点A 运动到点C 时,点M 所经过的路线长为 。

A5、如图,等边三角形ABC的边长为4,点D是直线AB上一点.将线段CD绕点D顺时针旋转60°得到线段DE,连结BE.(1)若点D在AB边上(不与A,B重合)请依题意补全图并证明AD=BE;(2)连接AE,当AE的长最小时,求CD的长.题型二:坐标系中的瓜豆原理1、如图,已知点A是第一象限内横坐标为AC⊥x轴于点M,交直线y=-x于点N,若点P是线段ON上的一个动点,∠APB=30°,BA⊥PA,则点P在线段ON上运动时,A点不变,B点随之运动.求当点P从点O运动到点N时,点B运动的路径长是________.2、如图,在平面直角坐标系中,A(-3,0),点B是y轴正半轴上一动点,点C、D在x正半轴上,以AB为边在AB的下方作等边△ABP,点B在y轴上运动时,则OP的最小值为.3、如图,在平面内,线段AB=6,P为线段AB上的动点,三角形纸片CDE的边CD所在的直线与线段AB垂直相交于点P,且满足PC=PA.若点P沿AB方向从点A运动到点B,则点E运动的路径长为______.。

利用“瓜豆原理”模型分析轨迹问题

利用“瓜豆原理”模型分析轨迹问题

利用 瓜豆原理 模型分析轨迹问题陈礼弦(贵州省贵安新区普贡中学ꎬ贵州贵安新区561113)摘㊀要:文章立足于初中数学教学实践ꎬ针对轨迹问题这一中考难点ꎬ利用 瓜豆原理 模型巧妙分析轨迹问题的求解思路ꎬ目的在于帮助初中数学教师及学生找到应对轨迹问题的正确思路ꎬ提高学生分析问题和解决问题的能力ꎬ进而提升其数学核心素养.关键词:初中数学ꎻ轨迹问题ꎻ 瓜豆原理 模型中图分类号:G632㊀㊀㊀文献标识码:A㊀㊀㊀文章编号:1008-0333(2024)11-0017-03收稿日期:2024-01-15作者简介:陈礼弦(1971.12 )ꎬ男ꎬ贵州省清镇人ꎬ本科ꎬ高级教师ꎬ从事初中数学教学研究.㊀㊀在初中数学教学中ꎬ轨迹问题是教学的难点ꎬ也是核心素养重点考查对象.根据笔者多年的教学经验ꎬ引导学生弄清楚 瓜豆原理 模型ꎬ利用其分析轨迹问题ꎬ会收到事半功倍的效果.瓜豆原理 是一种数学问题的形象描述ꎬ即若两动点到某定点的距离比是定值ꎬ夹角是定角ꎬ则两动点的运动路径相同.其中ꎬ主动点叫作 瓜 ꎬ从动点叫作 豆 .如果 瓜 在直线上运动ꎬ那么 豆 的运动轨迹也是直线ꎻ如果 瓜 在圆周上运动ꎬ那么 豆 的运动轨迹也是圆.这种主从联动轨迹问题被称为 瓜豆原理 或 瓜豆模型 ꎬ在某一个特殊位置ꎬ就是我们要解决的轨迹问题[1].1模型一㊀动点在直线上运动这类问题的基本特点是主动点在直线上运动ꎬ从动点的运动轨迹也是直线.其结论主要有两个:一是主动点和从动点所在直线的夹角是一个定值ꎻ二是主动点和从动点轨迹长度之比值是一个定值.1.1模型分析例1㊀如图1ꎬG为线段EF一动点ꎬD为定点ꎬ连接DGꎬ取DG中点Hꎬ当点G在EF运动时ꎬ画出点H的运动轨迹.㊀㊀图1㊀例1题图㊀㊀㊀㊀㊀㊀㊀图2㊀例1解析图解析㊀如图2ꎬ线段IJ即为点H运动的轨迹ꎬ理由如下:连接DEꎬDF.因为当点G在点E处时ꎬ点H在点I处ꎬ当点G在点F处时ꎬ点H在点J处ꎬ所以点I是DE的中点ꎬ点J是DF的中点ꎬ所以IJʊEFꎬ所以IJ=12EFꎬ所以IJEF=12ꎬ所以在运动过程中ꎬ主动点G和从动点H所在的直线DG和DH的夹角是0ʎ(定值)ꎬ主动点G和从动点H的轨迹长之比值是12(定值).从而可知主动点G运动的轨迹是线段ꎬ从动点H运动的轨迹也是线段.例2㊀如图3ꎬәDEF是等腰直角三角形ꎬøEDF=90ʎ且DE=DFꎬ当点E在线段MN上运动时ꎬ画出点F的运动轨迹.解析㊀如图4ꎬ线段FᶄFᵡ即为点F的轨迹.取点F的起始位置Fᶄ和终点位置Fᵡꎬ连接即得点F轨迹为线段FᶄFᵡ.因为主动点E和从动点F所在直线71图3㊀例2题图㊀㊀㊀㊀㊀㊀㊀㊀㊀图4㊀例2解析图DE和DF的夹角为90ʎꎬ易证әMNDɸәFᶄFᵡDꎬ主动点E和从动点F的轨迹长之比值等于MNʒFᶄFᵡ=1ꎬ所以点E㊁F的轨迹是同一图形.1.2模型应用例3㊀如图5ꎬ矩形DEFG中ꎬDE=3ꎬDG=4ꎬ点H在边DG上且DHʒHG=1ʒ3.动点I从点D出发ꎬ沿DE运动到点E停止.过点H作HKʅHI交射线EF于点Kꎬ设J是线段HK的中点.求在点I运动的整个过程中ꎬ点J运动的路径的长.图5㊀例3题图㊀㊀㊀㊀㊀图6㊀例3解析图解析㊀如图6ꎬ当I与D重合时ꎬ点K与Kᶄ重合ꎬ此时点J在Jᶄ处ꎬ当点I与E重合时ꎬK与Kᵡ重合ꎬ点J在Jᵡ处ꎬ点J的运动轨迹是线段JᶄJᵡ.因为DG=4ꎬDHʒHG=1ʒ3ꎬ所以DH=1ꎬHG=3.在RtәDEH中ꎬDH=1ꎬDE=3ꎬ所以HE=DH2+DE2=1+9=10.因为DG//EFꎬ所以øDHE=øHEKᵡꎬ又因为øD=øEHKᵡ=90ʎꎬ所以әDHE~әHEKᵡꎬ所以HEEKᵡ=DHHEꎬ所以EKᵡ=10ˑ10=10.又因为EKᶄ=DH=1ꎬ所以KᶄKᵡ=EKᵡ-EKᶄ=9ꎬ所以JᶄJᵡ=12KᶄKᵡ=92ꎬ所以点J的运动路径的长为92.2模型二㊀动点在圆周上运动这类问题的基本特点是主动点在圆周上运动ꎬ从动点的运动轨迹也是圆.其结论主要有两个:一是主㊁从动点与定点连线的夹角等于两圆心与定点连线的夹角是定值ꎻ二是主㊁从动点与定点的距离之比值等于两圆心到定点的距离之比值.2.1模型分析例4㊀如图7ꎬF是☉D上一个动点ꎬE为定点ꎬ连接EFꎬG为EF的中点ꎬ当点F在☉D上运动时ꎬ画出点G的运动轨迹.㊀图7㊀例4题图㊀㊀㊀㊀㊀㊀㊀图8㊀例4解析图解析㊀如图8ꎬ☉C是点G的运动轨迹.连接EDꎬ取ED的中点Cꎬ连接CGꎬ以C为圆心ꎬCG为半径作☉Cꎬ所以点F在☉D上运动时ꎬ点G在☉C上运动.即☉C是点G的运动轨迹.因为主㊁从动点与定点连线的夹角øFEG等于两圆心与定点连线的夹角øDECꎬ是定值0ʎ.又因为主㊁从动点与定点的距离FE㊁GE之比值等于两圆心到定点的距离DE㊁CE之比值ꎬ也等于两圆半径DF㊁CG之比值ꎬ是定值.从而可知主动点F在圆周上运动ꎬ从动点G的运动轨迹也是圆.例5㊀如图9ꎬM是☉D上一个动点ꎬB为定点ꎬ连接BMꎬ在BM的上方以BM为边作等边әBCM.当点M在☉D上运动时ꎬ画出点C的运动轨迹.㊀图9㊀例5题图㊀㊀㊀㊀㊀㊀图10㊀例5解析图解析㊀如图10ꎬ点C的运动轨迹是以点E为圆心的圆ꎬ理由如下:点C满足øMBC=60ʎꎬBM=BCꎬ点C的圆心E满足øDBE=60ʎꎬBE=BDꎬ且EC=DMꎬ可确定圆E的位置ꎬ任意时刻均有әBMDɸәBCEꎬ可以理解BE是由BD旋转得到ꎬ故圆E是由圆D旋转得到的ꎬ旋转角度与缩放比例均与BM与MC的位置和数量关系有关.例6㊀如图11ꎬF是☉C上一动点ꎬE为定点ꎬ81连接EFꎬ以EF为斜边在EF上方作等腰直角三角形EFD.当点F在☉C上运动时ꎬ画点D的轨迹.图11㊀例6题图㊀㊀㊀㊀㊀㊀图12㊀例6解析图解析㊀如图12ꎬ点D的轨迹为以点G为圆心ꎬ22CF长为半径的圆.D点满足øFED=45ʎꎬEF:ED=2ʒ1ꎬ故D点轨迹是一个圆.连接ECꎬ构造øGEC=45ʎ且ECʒEG=2ʒ1.G点即为D点轨迹圆圆心ꎬ此时任意时刻均有әECFʐәEGD.即可确定点D的轨迹圆.所以点D的轨迹为以点G为圆心ꎬ22CF长为半径的圆.2.2模型应用例7㊀如图13ꎬ☉E的直径BC=4ꎬD为☉E上的动点ꎬ连接BDꎬF为BD的中点ꎬ若点D在圆上运动一周ꎬ求点F经过的路径长.图13㊀例7题图㊀㊀㊀㊀㊀㊀图14㊀例7解析图解析㊀如图14ꎬ因为主㊁从动点与定点连线DB㊁FB的夹角等于两圆心与定点连线EB㊁GB的夹角ꎬ且是0ʎꎬ为定值ꎬ又因为主㊁从动点与定点的距离DB㊁FB之比值等于两圆心到定点的距离EB㊁GB之比值ꎬ也等于两圆半径EB㊁GB之比值ꎬ是定值12.所以是点D在☉E上运动ꎬ点F的运动轨迹也是圆.如图14ꎬ当点D在点C处时ꎬ点F在点E处ꎬ当点D在点B处时ꎬ点F在点B处ꎬ所以EB是这个圆的直径ꎬ这个圆是☉G.又因为BC=4ꎬ所以EB=2ꎬ所以GB=1ꎬ所以r=1ꎬ所以☉G的周长为2πr=2πꎬ所以点F经过的路径长是2π.例8㊀如图15ꎬFG=3ꎬ☉F的半径为1ꎬE为☉F上的动点ꎬ连接EGꎬ在EG上方作一个等边三角形EGHꎬ连接FH.求FH的最大值.解析㊀如图16ꎬ以FG为边在FG上方构造等边三角形әFGIꎬ连接IHꎬ以点I为圆心ꎬIH为半径作圆I.因为主㊁从动点与定点连线EG㊁HG的夹角等于两圆心与定点连线FG㊁IG的夹角ꎬ且是60ʎ为定值.又因为主㊁从动点与定点的距离EG㊁HG之比值等于两圆心到定点的距离FG㊁IG之比值ꎬ也等于两圆半径FE㊁IH之比值ꎬ是定值1.因为øFGE=60ʎ-øEGIꎬøIGH=60ʎ-øEGIꎬ所以øFGE=øIGH.又因为FG=IGꎬEG=HGꎬ所以әFGEɸәIGHꎬ所以IH=FE=1.从而可知点H运动的轨迹是以点E为圆心㊁1为半径的圆ꎬ当F㊁I㊁H三点共线且H在FI的延长线上时ꎬFH的最大值为FI+IH=3+1=4ꎬ此时点H在点Hᶄ处.图15㊀例8题图㊀㊀㊀㊀㊀㊀㊀图16㊀例8解析图3结束语在解决轨迹问题时ꎬ要结合图形进行分析ꎬ主动点和从动点运动的轨迹是否属于 瓜豆原理 .如果主动点和从动点运动的轨迹属于 瓜豆原理 ꎬ就可以利用主动点在直线上运动ꎬ从动点的运动轨迹也是直线或主动点在圆周上运动ꎬ从动点的运动轨迹也是圆解决轨迹问题[2].参考文献:[1]熊长菊ꎬ张进.例谈瓜豆原理中动点轨迹最值问题的求解策略[J].数理化学习(初中版)ꎬ2022(6):5-9.[2]丁羽.初三学生动点轨迹问题的解决障碍及教学对策研究[D].广州:广州大学ꎬ2022.[责任编辑:李㊀璟]91。

最值模型之瓜豆模型(学生版)

最值模型之瓜豆模型(学生版)

最值模型之瓜豆模型模型一直线轨迹型瓜豆原理知识梳理【模型解读】瓜豆原理:若两动点到某定点的距离比是定值,夹角是定角,则两动点的运动路径相同。

动点轨迹基本类型为直线型和圆弧型。

主动点叫瓜,从动点叫豆,瓜在直线上运动,豆也在直线上运动;瓜在圆周上运动,豆的轨迹也是圆。

运动轨迹为直线型的瓜豆原理题目(1)如图,P 是直线BC 上一动点,连接AP ,取AP 中点Q ,当点P 在BC 上运动时,Q点轨迹是?(2)如图,D 、E 是边长为4的等边三角形ABC 上的中点,P 为中线AD 上的动点,把线段PC 绕C 点逆时针旋转60°得到P ',求P '点轨迹?解析Q 点轨迹是直线l 。

(相似模型)P '点轨迹是直线BP '(手拉手模型)确定从动点轨迹的方法:当确定轨迹是线段的时候,可以任取两个时刻的从动点的位置,连线即可,比如Q 点的起始位置和终点位置,连接即得Q 点轨迹线段。

【最值原理】动点轨迹为一条直线时,利用“垂线段最短”求最值。

1)当动点轨迹已知时可直接运用垂线段最短求最值;2)当动点轨迹未知时,先确定动点轨迹,再垂线段最短求最值。

例题解析1如图,△ABC是边长为6的等边三角形,点E为高BD上的动点.连接CE,将CE绕点C顺时针旋转60°得到CF.连接AF,EF,DF,则△CDF周长的最小值是.2如图,在平行四边形ABCD中,AB=6,BC=10,∠B=60°,点E在线段BC上运动(含B、C两点).连接AE,以点A为中心,将线段AE逆时针旋转60°得到AF,连接DF,则线段DF长度的最小值为.3如图,在△ABC中,∠ACB=90°,AC=BC=4,P是△ABC的高CD上一个动点,以B点为旋转中心把线段BP逆时针旋转45°得到BP ,连接DP ,则DP 的最小值是.4如图,在矩形ABCD中,AB=3,BC=4,P是对角线AC上的动点,连接DP,将直线DP绕点P顺时针旋转,使∠1=∠2,且过点D作DG⊥PG,连接CG.则CG最小值为5如图,在矩形ABCD中,AB=5,BC=9,E是边AB上一点,AE=2,F是直线BC上一动点,将线EF绕点E逆时针旋转90°得到线段EG,连接CG,DG,则CG+DG的最小值是.变式训练6如图,在平面直角坐标系xOy 中,点A 的坐标为(0,4),P 是x 轴上一动点,把线段PA 绕点P 顺时针旋转60°得到线段PF ,连接OF ,则线段OF 长的最小值是.7如图,矩形ABCD 中,AB =6,BC =8,E 为BC 上一点,且BE =2,为AB 边上的一个动点,连接,将绕着点顺时针旋转到EG 的位置,连接和CG ,则CG 的最小值为.8如图,矩形ABCD 的边AB =112,BC =3,E 为AB 上一点,且AE =1,F 为AD 边上的一个动点,连接EF ,若以EF 为边向右侧作等腰直角三角形EFG ,EF =EG ,连接CG ,则CG 的最小值为()A.5B.52C.3D.229如图,正方形ABCD 的边长为4,E 为BC 上一点,且BE =1,F 为AB 边上的一个动点,连接EF ,以EF为底向右侧作等腰直角△EFG,连接CG,则CG的最小值为.10如图,已知∠CAB=30°,AB=2,点D在射线AC上,以BD为边作正方形BDEF,连接AE、BE,则AE+BE的最小值为.11正方形ABCD的对角线相交于点O(如图1),如果∠BOC绕点O按顺时针方向旋转,其两边分别与边AB,BC相交于点E、F(如图2),连接EF,那么在点E由B到A的过程中,线段EF的中点G经过的路线是()A.线段B.圆弧C.折线D.波浪线12如图,在正方形ABCD中,AB=8,点E在边AD上,且AD=4AE,点P为边AB上的动点,连接=.若点M是线段EF的中点,则当点P从点PE,过点E作EF⊥PE,交射线BC于点F,则EFPEA运动到点B时,点M运动的路径长为.13如图,在矩形ABCD中,BC=2AB,点P为边AD上的一个动点,线段BP绕点B顺时针旋转60°得到线段BP',连接PP',CP'.当点P'落在边BC上时,∠PP'C的度数为;当线段CP'的长度最小时,∠PP'C的度数为模型二圆弧轨迹型瓜豆原理知识梳理运动轨迹为圆弧型的瓜豆原理题目(1)如图,P 是圆O 上一个动点,A 为定点,连接AP ,Q 为AP 中点.Q 点轨迹是?(2)如图,△APQ 是直角三角形,∠PAQ =90°且AP =k ⋅AQ ,当P 在圆O 运动时,Q 点轨迹是?解析如图,连接AO ,取AO 中点M ,任意时刻,均有△AMQ ∽△AOP ,OM OP =AQAP =12,则动点Q 是以M 为圆心,MQ 为半径的圆。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学培优竞赛培训之十七
—— 瓜豆原理中动点轨迹直线型最值问题
其实初中阶段如遇求轨迹长度仅有2种类型:“直线型”和“圆弧型”(两种类型中还会涉及点往返探究“往返型”),对于两大类型该如何断定,通常老师会让学生画图寻找3处以上的点来确定轨迹类型进而求出答案,对于填空选择题而言不外乎是个好方法,但如果要进行说理很多考生难以解释清楚。

瓜豆原理:一个主动点,一个从动点(根据某种约束条件,跟着主动点动),当主动点运动时,从动点的轨迹相同. 只要满足:
1. 两“动”,一“定”;
2. 两动点与定点的连线夹角是定角
3. 两动点到定点的距离比值是定值。

【类型一】点在直线上运动:线段+直线
模型:如图,P 是直线BC 上一动点,连接AP ,取AP 中点Q ,当点P 在BC 上运动时,Q 点轨迹是什么?
【结论】当P点轨迹是直线时,Q点轨迹也是一条直线。

【分析】可以这样理解:分别过A、Q向BC作垂线,垂足分别为M、N,在运动过程中,因为AP=2AQ,所以QN始终为AM的一半,即Q点到BC的距离是定值,故Q点轨迹是一条直线。

【类型二】点在直线上运动:角+直线
模型:如图,△APQ是等腰直角三角形,∠PAQ=90°且AP=AQ,当点P在直线BC上运动时,Q点轨迹是什么?
【结论】当AP与AQ夹角固定且AP:AQ为定值的话,P、Q轨迹是同一种图形。

【分析】当确定轨迹是线段的时候,可以任取两个时刻的Q点的位置,连线即可,比如Q点的起始位置和终点位置,连接即得Q点轨迹线段。

Q2
A
B C
Q1
【模型总结】
必要条件:
主动点、从动点与定点连线的夹角是定值(∠P AQ是定值);
主动点、从动点到定点的距离之比是定值(AP:AQ 是定值)。

【结论】
P 、Q 两点轨迹所在直线的夹角等于∠P AQ (当∠P AQ ≤90°时,∠P AQ 等于MN 与BC 夹角)
P 、Q 两点轨迹长度之比等于AP:AQ (由△ABC ∽△AMN ,可得AP:AQ =BC:MN )
如图,D 、E 是边长为4的等边三角形ABC 上的中点,P 为中线AD 上的动点,把线段PC 绕C 点逆时针旋转60°,得到P ’,EP ’的最小值
P'
P'
P'
【分析】
结合这个例题我们再来熟悉一下瓜豆模型
第一层:点P’运动的轨迹是直线吗?
第二层:点P’的运动长度和点P的运动长度相同吗?
第三层:手拉手模型怎么构造?
第四层:分析∠CAP和∠CBP’
第五层:点P和点P’轨迹的夹角和旋转角的关系
总共提到了3种处理方式:
1.找始末,定轨迹
2.在轨迹上找一点旋转,构造手拉手模型,再通过角度相等得到从动点轨迹.
3.反向旋转相关定点,构造手拉手模型,代换所求线段,即逆向构造.
那么什么具体选择什么方法更合适呢?我们再看一道例题
【例题2 宿迁中考】
如图,正方形ABCD 的边长为4,E 为BC 上一点,且BE =1,F 为AB 边上的一个动点,连接EF ,以EF 为边向右侧作等边△EFG ,连接CG ,则CG 的最小值为 .
【分析】
现在,我们分别用上面提到的3种策略来处理这个题目
策略一:找始末,定轨迹
我们分别以BE ,AE 为边,按题目要求构造等边三角形得到G 1与G 2,连接G 1与G 2得到点G 的轨迹,再作垂线CH 得到最小值.
前面提到过从动点轨迹和主动点轨迹的夹角与旋转角有关,我们可以调用这个结论,得到∠AMG 1=60°, 进一步得到△MBG 1为等腰三角形后,求CH 就不难了.
策略二:在点F 轨迹上找一点进行旋转.
我们分别对A ,B 顺时针旋转60°,构造手拉手模型,再通过角度相等得到从动点轨迹, 对A 点旋转会得到一个正切值为14的角,即1
tan tan 4
∠G M E=∠A FE=,然后进一步算出最值
E
B
D
A
F
E
B
D
A
F
E
B
D
A
F
E
B
D A
F
2
E
B
C
2
E
B
C
【简证】311202EM AE EN NEC IC ==⇒=︒⇒=
∠,则5=2
CH 对B 点旋转得到∠EMG =∠FBE =90°,相对来说要容易一些.
策略三:反向旋转相关定点,构造手拉手模型,代换所求线段.
将点C 逆时针旋转60°,得到点H ,易证△CGE ≌△HFE ,则有CG =HF ,作MH ⊥AB 于M ,HM 即为所求.相比之下,先求轨迹后再求垂线段时,比较麻烦,而反向旋转代换所求线段感觉清爽很多.
E
B
A
D
F
E
B
A D
F
F
如图,正方形ABCD 的边长为4,E 为BC 上一点,且BE =1,F 为AB 边上的一个动点,连接
如图,正方形ABCD 的边长为4,E 为BC 上一点,F 为AB 边上一点,连接EF ,以EF 为底向
E
E
1.如图,在△ABC中,∠ACB=90°,AC=BC=4,点D是BC边的中点,点P是AC边上一个
2.如图,在矩形ABCD中,AB=5,BC=5 3,点P在线段BC上运动(含B、C两点),连接AP,以点A 为中心,将线段AP逆时针旋转60°到AQ,连接DQ,则线段DQ的最小值为
P
3、如图,在矩形ABCD中,AB=3,BC=4,P是对角线AC上的动点,连接DP,将直线DP绕点P顺时针旋转,。

相关文档
最新文档