数学公式常用符号
数学符号及公式范文

数学符号及公式范文数学符号是数学语言中的基本元素,用于表示数学概念和关系。
它们在数学表达中起到了非常重要的作用,能够简洁明了地传达数学思想和计算方法。
以下是一些常见的数学符号及其含义:1.加法符号(+):表示两个数的和,例如:2+3=52.减法符号(-):表示两个数的差,例如:5-2=33.乘法符号(×或*):表示两个数的乘积,例如:2×3=64.除法符号(÷或/):表示两个数的商,例如:6÷2=35.等于符号(=):表示两个数相等,例如:2+3=56.不等于符号(≠):表示两个数不相等,例如:2+3≠67.大于符号(>):表示一个数大于另一个数,例如:5>28.小于符号(<):表示一个数小于另一个数,例如:2<59.大于等于符号(≥):表示一个数大于或等于另一个数,例如:5≥210.小于等于符号(≤):表示一个数小于或等于另一个数,例如:2≤511.括号(()):用于改变运算顺序,例如:(2+3)×4=20。
12.上标符号(^):表示幂运算,例如:2^3=813.开方符号(√):表示一个数的平方根,例如:√25=514.排列符号(P):表示从一组元素中选择n个元素进行排列,例如:P(n)。
15.组合符号(C):表示从一组元素中选择n个元素进行组合,例如:C(n)。
17.无穷大符号(∞):表示无限大,例如:1/0=∞。
18.角度符号(°):表示度数,例如:90°表示直角。
19. 部分和符号(Σ):表示对一序列进行求和操作,例如:Σai。
20. 因子ialpha,二项式系数,阶乘及其它数学运算符号数学公式是利用数学符号表达的一种数学语言形式。
它通常由一系列符号和数学关系组成,可以用来表示数学定理、公式和方程等。
以下是一些常见的数学公式示例:1. 二次方程公式:ax^2 + bx + c = 0。
2.勾股定理:a^2+b^2=c^2(其中a、b为直角边,c为斜边)。
初中数学常用符号和公式

初中数学常用符号和公式全文共四篇示例,供读者参考第一篇示例:初中数学符号和公式是学习数学的基础,掌握这些符号和公式不仅可以帮助我们更好地理解数学知识,也可以帮助我们更快地解决数学题目。
以下是一些初中数学常用符号和公式的介绍。
一、常用符号1. 加号(+):表示两个数相加的运算符号,如2 + 3 = 5。
9. 括号(()):用于改变计算的优先顺序。
10. 分数线(/):用于表示一个数除以另一个数,如1/2表示1除以2。
12. 阶乘号(!):表示一个数的阶乘,如5! = 5 × 4 × 3 × 2 × 1 = 120。
13. 无穷大符号(∞):表示没有上限的数,如数轴两端。
14. π(pi):表示圆周率,约等于3.14159。
15. Σ(sigma):表示求和的符号,如Σn表示将n从1到无穷大的所有数相加。
二、常用公式1. 一次函数:y = kx + b。
3. 直角三角形三边关系:a² + b² = c²。
4. 直角三角形正弦定理:sinA/a = sinB/b = sinC/c。
6. 圆的周长公式:C = 2πr。
8. 三角形的面积公式:S = 1/2 × 底× 高。
9. 数列通项公式:an = a1 + (n - 1)d。
第二篇示例:初中数学是每个学生都要学习的一门学科,其符号和公式是学习数学的基础。
在初中数学中,常用的符号和公式有很多种,掌握这些符号和公式对于学习数学非常重要。
本文将介绍一些初中数学常用符号和公式,帮助大家更好地学习数学知识。
一、基本符号1. 加号(+):用于表示两个数的和,例如3+4=7。
6. 大于号(>):表示一个数大于另一个数,例如5>3。
10. 括号(()):用于改变运算的次序,例如(2+3)×4=20。
11. 分数线(/):表示分数,例如1/2表示1除以2。
二、常用公式1. 直角三角形的勾股定理:a²+b²=c²,其中a、b为直角三角形的两条直角边长,c为斜边长。
数学符号及运算公式

数学符号+ plus 加号;正号- minus 减号;负号± plus or minus 正负号× is multiplied by 乘号÷ is divided by 除号=is equal to 等于号≠ is not equal to 不等于号≡ is equivalent to 全等于号≌is equal to or approximately equal to 等于或约等于号≈ is approximately equal to 约等于号<is less than 小于号>is more than 大于号≮is not less than 不小于号≯is not more than 不大于号≤ is less than or equal to 小于或等于号≥ is more than or equal to 大于或等于号% per cent 百分之…‰ per mill 千分之…∞ infinity 无限大号∝varies as 与…成比例√ (square) root 平方根∵since; because 因为∴hence 所以∷equals, as (proportion) 等于,成比例∠angle 角⌒semicircle 半圆⊙circle 圆○ circumference 圆周π pi 圆周率△triangle 三角形⊥perpendicular to 垂直于∪union of 并,合集∩ intersection of 交,通集∫ the integral of …的积分∑ (sigma) summation of 总和° degree 度′ minute 分〃second 秒℃Celsius system 摄氏度^指上标,譬如x^2指的是x的2次方,x^3指的是x的3次方1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(SSS) 有三边对应相等的两个三角形全等26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^247勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形48定理四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理n边形的内角的和等于(n-2)×180°51推论任意多边的外角和等于360°52平行四边形性质定理1 平行四边形的对角相等53平行四边形性质定理2 平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3 平行四边形的对角线互相平分56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58平行四边形判定定理3 对角线互相平分的四边形是平行四边形59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60矩形性质定理1 矩形的四个角都是直角61矩形性质定理2 矩形的对角线相等62矩形判定定理1 有三个角是直角的四边形是矩形63矩形判定定理2 对角线相等的平行四边形是矩形64菱形性质定理1 菱形的四条边都相等65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即S=(a×b)÷267菱形判定定理1 四边都相等的四边形是菱形68菱形判定定理2 对角线互相垂直的平行四边形是菱形69正方形性质定理1 正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1 关于中心对称的两个图形是全等的72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2 S=L×h83 (1)比例的基本性质如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d84 (2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85 (3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)94 判定定理3 三边对应成比例,两三角形相似(SSS)95 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97 性质定理2 相似三角形周长的比等于相似比98 性质定理3 相似三角形面积的比等于相似比的平方99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101圆是定点的距离等于定长的点的集合102圆的内部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理不在同一直线上的三点确定一个圆。
数学公式符号范文

数学公式符号范文数学公式是数学语言中的一种特殊符号,用于表示数学概念、关系、运算和定理等内容。
数学公式的使用可以简化数学表达,提高数学思维和计算效率。
下面是一些常见的数学公式符号的介绍:1.等于号(=):表示两个数或表达式相等的关系。
例如:2+3=52.加号(+):表示两个数相加的运算。
例如:2+3=53.减号(-):表示两个数相减的运算。
例如:5-2=34.乘号(×或*):表示两个数相乘的运算。
例如:2×3=65.除号(÷或/):表示两个数相除的运算。
例如:6÷3=26.括号(()):用于改变运算的优先级或表示一个整体。
例如:(2+3)×4=20。
7.指数符号(^或**):表示一个数的幂次方。
例如:2^3=88.根号符号(√):表示一个数的平方根。
例如:√4=29.分数线(/):表示两个数的比值或除法运算。
例如:3/4=0.7510.百分号(%):表示一个数的百分数。
例如:50%=0.511.累加符号(Σ):表示求和运算。
例如:Σ(i^2)表示求1^2+2^2+3^2+...+n^2的和。
12.累乘符号(∏):表示求积运算。
例如:∏(i)表示求1×2×3×...×n的积。
13.不等于号(≠):表示两个数不相等的关系。
例如:2+3≠714.大于号(>)和小于号(<):表示两个数之间的大小关系。
例如:2>1,4<615.大于等于号(≥)和小于等于号(≤):表示两个数之间的大小关系,包括等于。
例如:2≥1,4≤616.加等于号(+=)、减等于号(-=)、乘等于号(×=)和除等于号(÷=):表示一个变量与一个数进行运算后再赋值给自身。
例如:a+=2表示a=a+217. 自然对数符号(ln):表示以 e 为底的对数,即自然对数。
例如:ln(e) = 118. 对数符号(log):表示以一些底数为底的对数。
数学物理里面的公式符号读法大全

数学物理里面的公式符号读法大全Αα:阿尔法Alpha
Ββ:贝塔Beta
Γγ:伽玛Gamma
Δδ:德尔塔Delte
Εε:艾普西龙Epsilon
Ζζ:捷塔Zeta
Εη:依塔Eta
Θθ:西塔Theta
Ιι:艾欧塔Iota
Κκ:喀帕Kappa
∧λ:拉姆达Lambda
Μμ:缪Mu
Νν:拗Nu
Ξξ:克西Xi
Οο:欧麦克轮Omicron
∏π:派Pi
Ρρ:柔Rho
∑σ:西格玛Sigma
Ττ:套Tau
Υυ:宇普西龙Upsilon Φφ:faiPhi
Χχ:器Chi
Ψψ:普赛Psi
Ωω:欧米伽Omega 符号意义
∞无穷大
PI圆周率
|x|函数的绝对值
∪集归并
∩集合交
≥大于等于
≤小于等于
≡恒等于或同余
ln(x)以e为底的对数
lg(x)以10为底的对数
floor(x)上取整函数
ceil(x)下取整函数
xmody求余数
小数部份x-floor(x)
∫f(x)δx不定积分
∫[a:b]f(x)δxa到b的定积分
P为真等于1不然等于0
∑[1≤k≤n]f(k)对n进行求和,可以拓广至很多情况如:∑[nisprime][n<10]f(n)
∑∑[1≤i≤j≤n]n^2
limf(x)(x->?)求极限
f(z)f关于z的m阶导函数
C(n:m)组合数,n中取m
P(n:m)排列数
m|nm整除n
m⊥nm与n互质
a∈Aa属于集合A
#A集合A中的元素个数。
markdown 数学公式大全

markdown 数学公式大全1. 行内公式:使用美元符号 `$` 包裹公式,例如 $y = mx + b$。
2. 行间公式:使用双美元符号 `$$` 包裹公式,例如 $$y =\frac{a}{b+c}$$。
3. 上下标:使用下划线 `_` 表示下标,使用插入符号 `^` 表示上标,例如 $x_1$ 和 $y^2$。
4. 求和符号:使用 `\sum` 表示求和符号,例如$\sum_{i=1}^n x_i$。
5. 积分符号:使用 `\int` 表示积分符号,例如$\int_{0}^{\infty} e^{-x} dx$。
6. 极限符号:使用 `\lim` 表示极限符号,例如 $\lim_{x \to \infty} \frac{1}{x}$。
7. 分数形式:使用 `\frac{numerator}{denominator}` 表示分数形式,例如 $\frac{1}{2}$。
8. 根式:使用 `\sqrt[n]{x}` 表示根式,例如 $\sqrt[3]{8}$。
9. 向量:使用 `\vec{v}` 表示向量,例如 $\vec{v}$。
10. 矩阵:使用`\begin{matrix} ... \end{matrix}`表示矩阵,例如$$ \begin{matrix} 1 & 2 \\ 3 & 4 \end{matrix} $$11. 其他常用符号:使用 `_` 表示下标,使用 `\neq` 表示不等于,使用 `\leq` 表示小于等于,使用 `\geq` 表示大于等于,使用 `\times` 表示乘号,使用 `\div` 表示除号,使用 `\in` 表示属于,使用 `\notin` 表示不属于,使用 `\rightarrow` 表示右箭头,使用 `\leftarrow` 表示左箭头,使用 `\leftrightarrow` 表示双向箭头。
整数数学公式符号

整数数学公式符号
整数是指不带小数点的数,包括正整数、负整数和零。
在数学中,我们使用一些符号来表示整数的特定属性或运算。
以下是一些常见的整数数学公式符号:
1. 自然数符号:N
自然数是指正整数,包括1、2、3、4、5……无限延伸下去。
在数学中,我们使用符号N来表示自然数的集合。
例如:N = {1, 2, 3, 4, 5, …}
2. 整数符号:Z
整数是指正整数、负整数和零的集合,包括1、2、3、4、5……以及-1、-2、-3、-4、-5……和0。
在数学中,我们使用符号Z来表示整数的集合。
例如:Z = {…, -3, -2, -1, 0, 1, 2, 3, …}
3. 绝对值符号:|x|
绝对值是指一个数离原点的距离,无论这个数是正数还是负数,它的绝对值都是正数。
在数学中,我们使用一个竖线符号来表示绝对值。
例如:|3| = 3,|-3| = 3
4. 整除符号:a | b
整除是指一个整数a能够整除另一个整数b,即b可以被a整除,而没有余数。
在数学中,我们使用符号“|”来表示整除。
例如:2 | 6,表示2可以整除6,6被2整除,没有余数。
5. 模符号:a mod b
模是指一个整数a除以另一个整数b所得的余数。
在数学中,我们使用符号“mod”来表示模。
例如:7 mod 3 = 1,表示7除以3所得的余数是1。
这些整数数学公式符号在数学中起到了非常重要的作用,通过它们的运用,我们可以更加方便地表示和计算整数的各种属性和运算。
数学计算公式大全

数学计算公式大全1. 数学符号在数学公式中,常用的符号包括加号(+)、减号(-)、乘号(×)和除号(÷)。
此外,还有一些专门用于表示数学关系的符号,如等于号(=)、大于号(>)、小于号(<)、不等于号(≠)等。
这些符号在数学中起到连接数字和表达数学关系的作用。
2. 算术运算算术运算是数学中最基本的运算方式,包括加法、减法、乘法和除法。
其中,加法用符号“+”表示,减法用符号“-”表示,乘法用符号“×”表示,除法用符号“÷”表示。
这些运算符号可以用于数学公式中,进行数字之间的加减乘除运算。
3. 指数和对数在数学中,指数和对数是表示数的一种方式。
指数用符号“^”表示,例如2^3表示2的3次方。
对数用符号“log”表示,例如log2(8)表示以2为底,8的对数。
指数和对数在数学计算中经常使用,用于计算数之间的幂和对数关系。
4. 三角函数三角函数是数学中经常出现的一类函数,包括正弦函数(sin)、余弦函数(cos)、正切函数(tan)等。
这些函数用于描述角度和边长之间的关系,可以在数学计算中进行各种三角关系的求解。
5. 概率和统计概率和统计是数学中用于描述和分析随机事件的工具。
常用的概率和统计公式有概率求和公式、条件概率公式、期望值公式、方差公式等。
这些公式可以用于计算和推导各种概率和统计相关问题。
6. 矩阵和向量矩阵和向量是数学中用于表示和处理多个数值的数据结构。
常用的矩阵和向量运算符号有加法、减法、乘法等。
此外,还有一些专门用于计算矩阵和向量之间关系的公式,如内积公式、外积公式、转置公式等。
7. 微积分微积分是数学中研究函数变化和曲线面积的工具。
常用的微积分公式有导数公式、积分公式、泰勒展开公式等。
这些公式可以用于计算和推导各种函数的变化和曲线的面积。
总结:数学计算公式是数学研究和应用中不可或缺的一部分。
通过掌握各种数学公式,可以更加准确和便捷地进行数学计算和问题求解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学公式常用符号
数学是生活中不可或缺的一部分,尤其是在解决实际问题时,更是不
可或缺。
但是,在推导数学等式时,常常会用到很多繁琐的符号,比如:加号(+)、减号(-)、乘号(×)、除号(÷)、加法等式(=)、百分号(%)、平方(²)、立方(³)、乘方(^)、多元函数
常数(a)、方程坐标(x)等等。
首先,“+”符号代表加法,表示两个量的相加,用来进行数学运算。
比如1+2=3。
“-”符号代表减法,表示两个量的相减,用来进行数学
运算。
比如2-1=1。
“×”符号代表乘法,是用来表示两个数字的相乘。
比如2×2=4。
“÷”符号代表除法,用来表示一个数字除以另一个数字。
比如4÷2=2。
“=”符号代表等式,表示两边的数字等价,是数学等式的关键符号。
比如2+2=4。
“%”符号代表百分比,是用来表示一
个数字与另一个数字之间的比例的。
比如50%=0.5。
“²”符号代表平方,是用来表示一个数字的平方。
比如2²=4。
“³”
符号代表立方,表示一个数字的立方。
比如2³=8。
“^”符号代表乘方,即一个数字乘以自己,用于表示一个数字的乘方。
比如2^2=4。
“a”
符号代表一个多元函数的常数。
多元函数是一种函数,其中一个函数
变量可以做很多次改变来进行计算,“a”符号就是指函数变量所固定
的常量,也称为系数。
比如,y=ax+b,其中a就是系数或常数。
“x”
符号表示一个方程的坐标,即指代一个方程的未知数,用来求解这个
方程。
比如2x+2=6,其中x就是未知数,经过计算后,可得出x=2。
总之,我们平时经常使用的一些简单的数学符号,在复杂的数学表达
式中,几乎有每一个数学符号都有其特定的意义,并能用它们来解决
实际问题。
准确把握这些符号,可以更好地掌握数学,解决问题。