Al-Si铸造合金综述
变质元素对铸造Al_Si合金共晶结晶的作用及机制

twin re-entrant groove
共晶团以松散的共生模式呈辐射状生长[6],这既可 以自型壁向内发展,也可以按内生方式,见图3。因非 规则共晶生长界面参差不齐且为非等温面,各个Si片 端部领先于α-Al相深入到液体中。最终形成的共晶团 是α-A1和板片状Si紊乱排列的两相混合体,其共晶Si 为源自相同核心经有限分枝所形成。这与灰铸铁共晶 团的情形很相似,只是因为石墨及硅分别形成旋转孪
关键词:Al-Si合金;共晶结晶;变质处理;硅晶体形貌;生长动力学 中图分类号:TG146.2+1 文献标识码:A 文章编号:1001-4977 (2011) 11-1073-07
Function of Modification Element on Eutectic Solidification of
Al-Si共晶符合非小平面-小平面非规则共晶的一般 特征,以“偏离”及“汇聚”交替方式生长[1]。在普通 铸造条件下,未经变质处理的Al-Si合金液凝固后Si晶 体的形貌如图 1a、c[2]所示。其共晶 Si为粗大 板片状 (金相磨面上看似针状或条状),呈无方向性非规则分 布,对共晶及近共晶成分的铝硅合金还常有少量初晶 Si。这样的组织致使Al-Si合金的力学性能较低。为此, 铸造生产中通常以含Na及Sr等变质剂对Al-Si合金液进 行变质处理,以实现共晶Si“片状-纤维状”的形态转 变,且消除初晶Si,凝固后共晶Si转变为细小的纤维 状,见图1b、d[3],亦或伴有少量细片状。这一组织改 变对铸造Al-Si合金性能的提高极具意义,其抗拉强度 可升高50%左右,塑性甚至可升高3倍左右。
根据Al-Si合金变质的IIT机制,从晶体几何的角度 推 算 出 变 质 元 素 对 Si 的 理 想 原 子 半 径 比 (r/rS)i 为 1.646。据此,人们采用接近这一理想比值的其他元素 对Al-Si合金的变质效果 进行 了 广 泛 探 索 ,包 括 Ca、 Ba、Sb等,以及Y、Eu、Yb等一些稀土元素。结果显 示,这些元素的确具有不同的变质效果,其中,Na、 Sr、 Ba、 Ca、 Eu 等 变 质 元 素 将 共 晶 Si 转 变 为 纤 维 状 , 而Y、Sb、Yb等元素可将共晶Si转变为短小片状或块 状,见图5[12]。但受多方面其他因素制约,目前国内外 实际应用的仍然以Sr和Na为主。鉴于工艺稳定性及环 境因素,Na变质在一些国家也已逐步被淘汰。
过共晶Al-Si合金熔体中初生硅生长特性

第14卷第2期Vol.14No.2中国有色金属学报The Chinese Journal of Nonferrous Metals2004年2月文章编号:10040609(2004)02026205过共晶A-l Si合金熔体中初生硅生长特性¹张蓉1,黄太文2,刘林2(1.西北工业大学应用物理系,西安710072; 2.西北工业大学凝固技术国家重点实验室,西安710072)摘要:利用等温液淬的方法,研究了A-l18%Si过共晶合金熔体中初生硅的生长行为及机制。
结果表明:重熔过程中熔体中未溶解的硅相粒子,在凝固过程中可成为初生硅生长核心,并且未熔颗粒与初生硅形状之间存在明显对应关系;初生硅的生长机制不是惟一的,既可以以孪晶凹角(T PR E)机制生长,还可以以层状机制生长,初生硅最终形状还要取决于溶质传输等动力学环境;随着熔体过热温度的升高,凝固组织中初生硅形状由多边形向星形及树枝状转变。
关键词:初生硅;晶体生长;铝硅合金中图分类号:T G146.2文献标识码:AGrowth behavior of primary silicon inhypereutectic A-l Si alloyZHANG Rong1,HUANG Ta-i w en2,LIU Lin2(1.Department of Applied Physics,Northw estern Polytechnical University,Xi c an710072,China;2.State Key Laboratory of Solidification Processing,Northwestern Polytechnical U niversity,Xi c an710072,China)Abstract:T he process and mechanism of primary silicon g rowth in the A-l Si hyper eutectic melt w er e studied by quench interrupting.T he r esults show that the undissolved silicon particles in the melt become the cor es of primary silicon precip-i tated in solidification and there i s a close relationship between the shape of primary silicon and undissolv ed silicon particles.T he grow th of silicon follo ws not only the twin plane re-entr ant edg e(T PRE)mechanism,but also layer mechanism as w ell.M eanw hile,the shape of pr imar y silicon also relies on kinet ic surroundings,such as the transmitting of solute.A t hig her overheating temperatur e,the shape of primary silicon becomes the star-shape and tree-shape.Key words:pr imar y silicon;crystal growt h;A-l Si alloy过共晶A-l Si合金是一种重要的铸造合金,广泛应用于航空、航天及汽车制造等领域[1]。
金相组织AlSi相图

Al-Si相图摘要:本篇Tech-Note主要研究Al-Si相图,这样的研究具有很重要的实际意义。
二元相图是研究复杂合金的根底。
在Al合金中的Si和Fe被认为是杂质元素存在,但是在铸造和锻造Al合金中Si又是一种添加元素。
各种铸造Al合金中Si的含量从5~22%〔重量比〕不等。
Al具有重量轻、优良的机械性能、独特的防腐性、消费本钱适中和易于成型等特性,所以具有广泛的商业应用价值。
Al的密度大约是2.7 g/cm33) 和Be(密度约1.85 g/cm3)。
但是Al及其合金由于其本钱低于Mg 或Be 合金,故应用更为广泛。
Al和Mg合金的熔点范围非常接近,它们的熔点范围分别为:铸造Al合金约为565—640 °C (约1050 —1185 °F);铸造Mg合金约为593—648 °C (1100—1198 °F)。
冶金专家和金相专家对于二元相图进展了大量的研究并绘制出化学成分与相转变温度的关系曲线,但是这些研究都是在“平衡态〞下进展的。
所谓平衡态是指:金属的消费过程中加热和冷却速度都非常缓慢,但是在实际消费中加热和冷却速度都非常快这就是所谓“非平衡状态〞。
尽管如此,相图还是我们研究合金转变的根本工具。
例如:利用相图我们知道金属的熔点和凝固点、凝固过程、平衡相的形成、合金元素或杂质元素的极限溶解度和第二相的分解温度。
本篇Tech-Note主要研究Al-Si相图,这样的研究具有很重要的实际意义。
二元相图是研究复杂合金的根底。
在Al合金中的Si和Fe被认为是杂质元素存在,但是在铸造和锻造Al合金中Si又是一种添加元素。
各种铸造Al合金中Si的含量从5~22%〔重量比〕不等。
在这个范围内,Si元素可以进步Al合金的流动性铸造性能,3xx.x (Al-Si-Cu)系和4xx.x (Al-MgSi)系铸造Al合金(US Al协会编号) 具有广泛的商业应用。
过共晶合金(合金中Si含量大于12.6%,共晶成分)中包含具有进步耐磨性的初晶Si颗粒。
铝合金高压铸造介绍

压铸模具和方案
三、产品开发—分型方案
2、产品滑块方案
Slide 2
Slide 1
Slide 3
Slide 4
Slide 5
Slide 7
Slide 6 模具共有7个滑块
22
压铸模具和方案
三、产品开发—顶出方案
1、产品顶针位置
EP Φ8 (Φ10台座)(×7)
23
压铸模具和方案
三、产品开发—刻字方案
成品率 充填率 充填时间(理论计算) 充填时间(经验值计算) 高速速度 高速区间+10mm 浇口截面积 冲头浇口截面积比
1578g 1509g 550g 3637g
43% 38.9%(20%-48%)
0.076s
0.06s(选用) 2.3m/s 146.6mm 470.7mm2
13.5 :1
高速速度 2.0m/s 2.5m/s 3.0m/s 3.5m/s 浇口速度 27m/s 33.75m/s 40.5m/s 47.25m/s
三、产品开发—产品铸造难点
②产品表面气孔要求
A区域
C区域
B区域
如图所示,产品A 区域表面气孔要求 为0.8mm,较为严 格,浇口排布是应 考虑此部位优先充 填
具体表面气孔标准客户另行提 供,双方将再次进行技术检讨
14
压铸模具和方案
三、产品开发—产品铸造难点 ③产品变型情况
素材图尺寸 要求
此部位 尺寸要求
5・限位柱固定 板
10
压铸模具和方案
二、产品介绍
汤饼
分流子 (湯道)
产品部
真空浇道
浇道部
推出顶针痕
盗肉
浇口 浇口
真空浇道头
铸造铝合金基础基础知识

—
G—AlSi6Cu4 (3.2151.01)
AC4B
—
合
金 ZL108 ZL8 — —
— SC122A(旧) LM2 —
—
—
—
—
—
ZL109 ZL9 —
AЛ30
A03360 336.0 A03361 336.1
—
LM13
— A—S12UN
—
—
AC8A AlSi12Cu
ZL110 ZL3 — AЛ10B —
ZL105 ZL13 HZL105
AЛ5
A03550 355.0 C33550 C355.0
322
LM16 3L78
—
—
G—AlSi5Cu AC4A
—
11
11/20
三、国内外铸造铝合金牌号对照
中国
前苏联
美国
英国
GB
YB HB ГOCT
ASTM UNS
ANSI AA
SAE
BS
BS/L
法国
原联邦德国
NF
间 60%~70%, 提高材料力学性能和塑性加工性; 改善制品表面粗糙度。
锆也是铝合金的常用添加剂。 一般在铝合金中加入量为 0.1%~0.3%, 锆和铝 形成 ZrAl3 化
Zr
合物, 可阻碍再结晶过程, 细化再结晶晶粒。 锆亦能细化铸造组织, 但比钛的效果小。有
锆存在时, 会降低钛和硼细化晶粒的效果。
化学
空气中生成200nm氧化铝
与酸反应生成盐
与碱反应生成盐
物理
密度值2.69~2.70g/cm3
熔点660℃,沸点2467℃
电阻率(2.62~2.65)*10-8Ω·m-1
Al—Si系合金铸态晶粒细化技术的研究进展

The M o ii a i n o e e r h a e e o m e n A IS s loy d f c to f R s a c nd D v l p nti - iCa tA l
L u Ga g i n i n q a g(S a g a h n h iHA n e n to a a i g Co Lt ) I tr a in l Tr d n ., d
Ab t a t Th s r c e mod fc ton i e e r h a d d v l pme t o 一 a t a l a e e iwe n t s iia i n r s a c n e e o n f A1Sic s loy h ve be n r v e d i hi pa e .The t c i a h r c e itc f d fe e t mo fc ton p oc s pr e hn c lc a a t rs is o if r n dii a i r e s,mo fc to c nim ,m o iia i n dii a i n me ha s d fc to
e f c s o a o t n h i d v l p e t a e c mp r d a d p o o e . h a i o n l ss o x s i g fe t ,t t l c s s a d t e r e e o m n r o a e n r p s d On t e b s s f a a y i f e i tn p o l ms, s t o g t t a e e o i g a h a t y e f c i e m o iia i n wih h g u l y a l a e a e r be i i h u h h td v l p n e lh , f e t d fc t t i h q a i s we l s r l t d t v o t t c n q e s e p c e n e e s r . e h i u s i x e t d a d n c s a y
铝合金材料

Al-Si10Mg Al-Cu10Si2Mg Al-Si12Cu/Al-Si12CuFe Al-Si5Cu1Mg Al-Si12Cu/Al-Si12CuFe
Al-Si6Cu4 Al-Si5Cu3 Al-Si8Cu3Fe
1706-1998 -
1.5
A04130 11.0-13.0
2
A14130 11.0-13.0
1.3
A34430
4.5-6.0
2
518 360 A360.0 380 A380.0 383 384 390 B390.0
序号 1 2 3 4 5 6 7
合金系列 Al-Si 系
Al-Si-Mg 系
Al-Si-Cu 系
Al-Mg 系
日本 美国 俄罗斯 德国 中国
ADC3
9.0-10.0
360 9.0-10.0
AJ14
8.0-10.5
AlSi10Mg 9.0-11.0
YL112
7.5-9.5
<0.60 <0.60 <0.10 <0.10 3.0-4.0
日本
美国
俄罗斯 德国 中国
YL113
9.6-12.0
ADC10
7.5-9.5
ADC12
性能
微弧氧化膜
硬质阳极氧 化膜
最大厚度μm ~300
50~80
显微硬度HV 1500~2500 300~500
击穿电压 高
低
均匀性 孔隙率
内外表面均 尖位表面均
匀
匀性较低
低
高
耐磨性
高
低
盐雾测试 一般
铸铝牌号成分对照表

铸铝牌号成分对照表铸铝是一种重要的金属材料,在各行各业都有广泛的应用。
其牌号是根据其化学成分以及机械性能而确定的。
下面我们来了解一下铸铝的牌号成分对照表。
一、Al-Si系列1. A356:含硅量5.6%-7.5%,主要用于制造汽车零部件、航空器零部件、运动器材等。
2. A357:含硅量6.5%-7.5%,具有优异的耐腐蚀性能,主要用于制造航空器零部件、发动机零部件、船舶零部件等。
3. A380:含硅量7.5%-9.5%,主要用于制造汽车零部件、家电零部件等。
二、Al-Cu系列1. A201:铜含量3.5%-4.5%,主要用于制造防爆器材、氧化铝电解槽体、发动机零部件等。
2. A202:铜含量4.5%-5.5%,主要用于制造氧化铝电解槽体、汽车制动系统零部件等。
三、Al-Mg系列1. A518:镁含量4.0%-5.0%,主要用于制造航空器零部件、车轮、自行车等。
2. A535:镁含量3.5%-4.5%,主要用于制造摩托车零部件、电动工具外壳等。
四、Al-Si-Mg系列1. A356.2:含硅量6.5%-7.5%、镁含量0.3%-0.5%,主要用于制造壳体和长大压铸件等。
2. A357.0:含硅量6.5%-7.5%、镁含量0.3%-0.5%,主要用于制造航空器零部件、发动机零部件等。
3. A357.2:含硅量6.5%-7.5%、镁含量0.4%-0.6%,主要用于制造船舶零部件、运动器材等。
以上便是铸铝牌号成分对照表的介绍,不同的牌号根据其成分含量的不同,适用于不同行业、不同领域的应用。
选取合适的牌号材料,能够更好地满足生产和制造的需要,提高产品质量和生产效率。