有机双光子吸收材料的合成与表征
双光子吸收与量子光学效应

双光子吸收与量子光学效应随着量子力学的发展和量子光学的研究,双光子吸收成为了一个备受关注的热门话题。
双光子吸收是指在光子相互作用中,需要两个光子同时存在才能发生吸收现象。
与传统的单光子吸收不同,双光子吸收具有其独特的物理特性和现象,也在许多领域中得到了广泛应用和研究。
首先,我们来了解一下双光子吸收的基本原理。
在标准的光学中,光子与物质之间的相互作用主要通过一次光子吸收或发射来完成。
而在双光子吸收中,需要两个光子同时参与才能达到吸收的目的。
这是由于双光子的能量要满足物质的激发条件,并且需要满足动量和角动量守恒的定律。
因此,在现实生活中,通常需要提供高能量、高密度的光子才能达到双光子吸收的条件。
双光子吸收在光电器件中具有很大的潜力。
传统的光电二极管和光电探测器往往只能对单个光子进行探测和吸收。
而双光子吸收可以极大地增强光电效应,提高探测器的灵敏度和响应速度。
这对于太阳能电池、光通信和光子计算等领域的发展有着重大的意义。
双光子吸收可以大幅度提高光电转换效率,同时还可以在光学材料的设计和研究中发挥重要作用。
例如,通过调控双光子吸收效应,可以实现更高效的光波导和光学滤波器。
另外,双光子吸收还在光学成像和显微技术中有着广泛的应用。
传统的光学显微镜往往受到分辨率的限制,无法观察到微小的结构和细节。
而通过利用双光子吸收,可以克服这一限制,提高显微镜的分辨率和观测效果。
这在生物医学领域中尤为重要,可以帮助科研人员更好地观察和研究细胞、组织的结构和功能。
除了科研领域,双光子吸收还在信息技术、光存储和半导体材料等领域中得到广泛应用。
在信息技术中,双光子吸收可以用于光开关、光逻辑门等高速光学器件的设计和制备。
在光存储领域,双光子吸收可以用于高密度光存储介质的研究和开发。
在半导体材料领域,双光子吸收可以被用来制备新型的光电器件,如双光子探测器和传感器。
总之,双光子吸收作为量子光学的重要研究领域,具有其独特的物理特性和应用价值。
双光子吸收截面的测定

双光子吸收截面的测定双光子吸收是一种特殊的光学过程,其中两个光子相互作用并引起反应。
这种现象在化学、生物学和材料科学等领域中有重要的应用。
在理论上,双光子吸收过程的效率与物体的双光子吸收截面有关。
因此,测量物质的双光子吸收截面是理解和控制双光子吸收过程的重要前提。
以下是双光子吸收截面的测定步骤:第一步:准备样品和实验装置首先,需要准备一个合适的样品。
这个样品必须具有双光子吸收的特性。
通常使用有机染料、半导体材料和金属等材料作为样品。
此外,需要准备合适的光源、光学元件、探测器等实验装置。
第二步:调整激光器频率将激光器频率调整到与样品吸收能量相对应的范围。
由于双光子吸收涉及两个光子,其能量是单光子吸收的两倍。
因此,激光器频率应该足够高,以产生双光子吸收过程。
第三步:测量透射谱将激光通过样品并捕获透射光谱。
透射光谱可以帮助测量样品的光学密度,并帮助确定样品的厚度。
从透射谱中,可以计算出单光子吸收系数。
第四步:测量反射谱测量样品的反射谱。
反射谱通常是基于光强的直接测量。
反射光谱提供有关光的界面反射和吸收的重要信息,并且可以确定样品的折射率。
第五步:计算双光子吸收截面通过透射和反射谱,可以计算出样品的光学密度、单光子吸收系数和折射率等参数。
然后可以使用这些参数计算样品的双光子吸收截面。
通常,这需要采用理论计算,并综合考虑样品的结构、成分和光学性质等因素。
在测定双光子吸收截面时,还需要注意几个困难的问题,例如光源的强度、样品的损伤等。
因此,需要仔细设计实验方案,并对结果进行充分分析和处理。
总之,测定双光子吸收截面是理解和应用双光子吸收过程的重要步骤。
通过透射和反射光谱的测量和计算,可以有效地测量不同样品的双光子吸收截面,并为进一步的研究提供有用的信息。
双光子聚合技术的应用

双光子聚合技术的应用1. 引言双光子聚合技术是近年来兴起的一种新型纳米制造技术,具有广泛的应用前景。
本文将详细探讨双光子聚合技术的原理、特点以及在不同领域的应用情况,以期为读者提供全面、详细、完整且深入的了解。
2. 双光子聚合技术的原理2.1 双光子聚合原理概述双光子聚合技术是一种光敏催化反应,利用两束光的相互作用来实现高分辨率的三维纳米打印。
其原理是利用瞬态聚合物的特性,在光聚合剂的作用下,通过调控光的特性和空间纳米级聚焦,使材料在非接触的情况下实现微米尺寸的精确控制。
2.2 双光子聚合技术的关键参数双光子聚合技术的成功应用离不开以下关键参数的控制:1.光强:光强决定了聚合反应的速率和效果,过高或过低的光强都会影响聚合结果;2.建构材料:不同的建构材料对于光的吸收特性有所差异,也会影响聚合的效果;3.扫描速度:扫描速度对于聚合结果的精度和速度均有影响;4.脉冲时间:脉冲时间的长短会直接影响到聚合深度和分辨率。
3. 双光子聚合技术在生物医学领域的应用3.1 细胞生物力学研究双光子聚合技术可以用来研究细胞的生物力学性质,如细胞的硬度和弹性。
通过聚合材料在细胞表面形成微纳米结构,可以对细胞的变形和应力进行实时观测,从而揭示细胞内部的力学行为和细胞外力对细胞的影响。
3.2 人工组织工程双光子聚合技术可以实现高分辨率的三维打印,为人工组织工程提供了新的可能性。
通过精确控制光强和扫描速度,可以将细胞和生物材料精确地定位和堆积,进而构建具有细胞结构和功能的人工组织。
3.3 肿瘤治疗双光子聚合技术在肿瘤治疗中也有广泛应用。
通过聚合光敏剂,可以选择性地杀死肿瘤细胞,而对正常细胞的伤害较小。
另外,该技术还可以用于肿瘤标记和实时监测,提高肿瘤治疗的精确性和疗效。
3.4 器官再生双光子聚合技术在器官再生领域也有重要的应用。
通过精确的三维打印,可以将细胞和生物材料定位到特定的区域,并实现多种细胞类型的组织工程重建,从而促进受损器官的再生和修复。
香豆素衍生物的合成及结构表征_孙一峰

研究论文香豆素衍生物的合成及结构表征孙一峰1,马世营1,张东娣2,程学礼1(1.泰山学院化学系,山东泰安271021;2.河南大学药学院,河南开封475002)摘 要:合成了11个香豆素衍生物,产率53%)79%,利用元素分析、MS 和1HNMR 对其结构进行了表征.同时,由2-氨基苯并噻唑(ABT)和8-甲氧基香豆素-3-甲酸乙酯(M CC)合成了给体-受体加合物ABT -M CC,通过X 射线单晶衍射法测定了其晶体结构,晶体属三斜晶系,P 1空间群,晶胞参数为:a =915978(19)!,b =10.686(2)!,c =10.693(2)!,A =71.30(3)b ,B =70.43(3)b ,C =88.99(3)b ,V =973.9(3)!3,Z =2,D x =1.359mg/m 3,L =0.200mm -1,F (000)=416,R =0.0463,w R =0.0992.结果表明,在ABT -MCC 晶体中,分子间通过N )H ,N 和N )H ,O 氢键作用形成对称的A ,D ,D c ,A c 氢键四聚体,并通过弱的C )H ,O 氢键连接成为一维超分子链状结构,进而分子间通过P -P 堆积作用形成层状结构.关键词:香豆素衍生物;2-氨基苯并噻唑;给体-受体加合物;晶体结构文章编号:1674-0475(2008)05-0393-10 中图分类号:O64 文献标识码:A香豆素衍生物是一类重要的有机杂环化合物,因具有抗菌、消炎、抗凝和抗肿瘤等多种生理活性而引人注目,更为重要的是它们具有优异的光化学和光物理特性,是很好的荧光增白剂、激光染料、荧光探针及双光子荧光材料,并在电致发光器件方面具有独特的性能,已广泛应用于医药、食品、染料、光学材料及生物医学等方面[1-6].同时,尽管我们已经知道香豆素衍生物能够与许多生物大分子上发生作用,但是对它们之间的这种分子识别作用的了解却是非常有限的[7].由于许多生物大分子都含有氨基,而氨基噻唑化合物与许多生物大分子具有类似的结构特点,因此研究香豆素化合物同有机胺(特别是氨基噻唑)之间的超分子氢键自组织作用对于了解香豆素化合物与生物大分子之间的分子识别作用是非常重要的.虽然已有3个香豆素化合物同有机胺2-氨基苯并噻唑加合物晶体的报道[7-9],但是,2-氨基苯并噻唑(ABT)与8-甲氧基香豆素-3-甲收稿日期:2008-01-02;修回日期:2008-03-13.基金项目:泰山学院科研基金资助项目(Y04-2-02).作者简介:孙一峰(1967-),男,博士,副教授,主要从事有机功能材料和药物合成研究,通讯联系人,E -mail:sun -yf50@.393第26卷 第5期影像科学与光化学Vo l.26 N o.5 2008年9月Imaging Science and Photochemistry Sept.,2008394影像科学与光化学第26卷酸乙酯(M CC)形成的给体-受体加合物ABT-M CC的晶体结构和超分子氢键作用仍然没有被研究.作者曾报道过一些含偶氮、唑、均三唑并噻二唑、查尔酮基香豆素化合物的合成和结构表征[10-13],其中一些在二阶非线性光学和双光子诱导吸收等方面表现出较好的性质.为了进一步探索香豆素化合物的结构和应用性能,了解香豆素化合物同有机胺的晶体结构和分子识别作用,扩展理解含多氢键固态超分子体系的物理有机化学特性,本研究合成了11个新的香豆素化合物,并测定了给体-受体加合物ABT-M CC的晶体结构.其合成路线见图1.1实验部分1.1仪器与试剂WRS-1A数字熔点仪(未校正);Perkin-Elmer240元素分析仪;美国Nicolet NEXU S 470FT-IR红外光谱仪;AV-600核磁共振仪;DPX-400;Varian INOVA-300核磁共振仪; API4000或VG ZAB-HS质谱仪;Rigaku-R-AXIS-IV X射线单晶衍射仪.所用试剂中除3-甲酰基-4-羟基苯甲酸、2-羟基-4-苄氧基苯甲醛和3,5-二叔丁基水杨醛为自制外,其余均为市售AR或CP试剂,未加处理直接使用.3-乙酰基香豆素衍生物1a-e按照文献[14]合成.1.2化合物2的合成在50mL圆底烧瓶中分别加入10mmol3-甲酰基-4-羟基苯甲醛或2-羟基-4-苄氧基苯甲醛、10mmol丙二酸二乙酯、30m L无水乙醇和0.5mL哌啶,5滴冰乙酸,搅拌回流5h.冷至室温后,析出沉淀,抽滤,以冷乙醇(95%)洗涤,经干燥后,以乙醇或乙醇-丙酮重结晶,得到纯品.化合物2a:浅棕色粉末,产率61%,m.p.266)268e;1HNMR(DM SO-d6/T MS)D: 1.32(t,J=7.2H z,3H),4.32(q,J=7.2H z,2H),8.22(dd,J1=8.8H z,J2= 2.0Hz, 1H),7.52(d,J=8.8Hz,1H),8.54(d,J=2.0Hz,1H),8.89(s,1H),13.30(s,1H).元素分析,C13H10O6计算值:C59.55,H3.84;实验值:C59.64,H3.68.化合物2b:无色针晶,产率79%,m.p.151)152e;1H NMR(CDCl3/TM S)D:1.41 (t,J=7.1Hz,3H),4.41(q,J=7.1Hz,2H),5.16(s,2H),6.88(d,J=2.3Hz,1H),6.98 (dd,J=8.7,2.3Hz,1H),7.37)7.45(m,5H),8.42(d,J=8.7H z,1H),8.51(s,1H);IR (KBr)M:1756,1706,1616,1561,1458,1383,1216cm-1.C19H16O5计算值:C70.36,H 4.97;实验值:C70.55,H5.08.同法可以制备8-甲氧基香豆素-3-甲酸乙酯(MCC).1.3化合物3的合成在50mL圆底烧瓶中分别加入10mmol3-乙酰基香豆素、10mmol芳醛、30mL无水乙醇和0.5mL哌啶,回流3)5h(TCL跟踪反应).蒸发出少量溶剂后自然冷却,产物结晶出来.抽滤,以冷乙醇(95%)洗涤,经干燥后,以乙醇-丙酮或乙醇-N,N-二甲基甲酰图1 化合物的合成路线与结构Synthetic route and s tructures of compounds胺混合溶剂重结晶,得到纯品.化合物3a:黄色晶体,产率78%,m.p.166)169e ;1HNMR(CDCl 3/TM S)D :7.37(t,J =7.6Hz,1H ),7.42(d,J =8.4H z,1H ),7.51)7.71(m,5H ),7.89(d,J =8.0Hz,1H ),7.94(d,J =8.4Hz,1H),8.01(d,J =7.2Hz,1H),8.05(d,J =15.6Hz,1H ),8.31 第5期孙一峰等:香豆素衍生物的合成及结构表征395396影像科学与光化学第26卷(d,J=8.4H z,1H),8.65(s,1H),8.76(d,J=15.6H z,1H);M S m/z:327.4(M+1).元素分析,C22H14O3:C80.97,H4.32;实验值:C80.85,H4.21.化合物3b:棕黄色粉末,产率61%,m.p.244)246e;1HNM R(CDCl3/TM S)D: 7126)7.66(m,6H),7.91(d,J=8.0H z,1H),7.95(d,J=8.0H z,1H),8.01(d,J=712 Hz,1H),8.02(d,J=15.6Hz,1H),8.31(d,J=8.4Hz,1H),8.66(s,1H)8.77(d,J= 1512H z,1H);MS m/z:343.6(M+1).元素分析,C22H14O4计算值:C77.18,H4.12;实验值:C77.32,H4.06.化合物3c:黄色针状晶体,产率76%,m.p.218)220e;1H NM R(CDCl3/TM S)D: 4.01(s,3H),7.19)7.57(m,5H),7.61(t,J= 6.8H z,1H),7.89(d,J=8.0H z,1H), 7193(d,J=814Hz,1H),8.01(d,J=7.2Hz,1H),8.05(d,J=15.6Hz,1H),8.31(d,J= 8.4H z,1H),8.62(s,1H),8.75(d,J=15.6Hz,1H);FAB-M S m/z:357(M+1).元素分析,C23H16O4计算值:C77.52,H4.53;实验值:C77.40,H4.65.化合物3d:红棕色粉末,产率59%,m.p.>290e;1H NM R(DMSO-d6/TM S)D: 7141(d,J=8.4H z,1H),7.50)8.34(m,10H),8.55(s,1H),8.60)8.67(m,2H),8.76 (s,1H),羧基H未观察到;MS m/z:421.5(M+1).元素分析,C27H16O5计算值:C 77114,H3184;实验值:C77.25,H3.91.化合物3e:红棕色粉末,产率53%,m.p.>290e;1HNMR(DMSO-d6/TM S)D: 7124)8.10(m,8H),8.23(d,J=9.0H z,1H),8.56(s,1H),8.75(s,1H),12.01(s,1H), 13125(s,1H);MS m/z:360.5(M+1).元素分析,C21H13NO5计算值:C70.19,H3.65, N3190;实验值:C77.04,H3.81,N3.72.化合物3f:橙色粉末,产率67%,m.p.179)180e;1H NMR(CDCl3/TMS)D:1.44 (s,9H),1.50(t,J=7.2Hz,3H),1.63(s,9H),4.42(q,J=7.1H z,2H),7.31)7.58(m, 5H),7.76(d,J=2.2H z,1H),7.89(d,J=8.6H z,1H),8.18)8.21(m,3H),8.47(s, 1H),8.69(s,1H);FAB-M S m/z:506(M+1).元素分析,C34H35NO3计算值:C80.76,H 6198,N2.77;实验值:C80.83,H7.16,N2.53.化合物3g:红色絮状晶体,产率63%,m.p.224)226e;1H NMR(DM SO-d6/T MS) D:7.47(t,J=7.5H z,1H),7.54(d,J=8.3Hz,1H),7.79(t,J=7.8H z,1H),7.96(d,J =15.1Hz,1H),8.01(d,J=6.9H z,1H),8.15(t,J=7.6H z,1H),8.26(d,J=8.8Hz, 1H),8.31(d,J=8.8Hz,1H),8.36(d,J=9.3Hz,1H),8.40(d,J=7.4Hz,3H),8159 (d,J=8.1H z,1H),8167(d,J=9.3Hz,1H),8.80(s,1H),8.88(d,J=15.6Hz,1H);M S m/z(%):401.5(M+1).元素分析,C28H16O3计算值:C83.99,H 4.03;实验值:C 84121,H4.15.化合物3h:红色粉末,产率69%,m.p.289e(分解);1HNM R(DMSO-d6/TM S)D: 3.97(s,3H),7.40(t,J=7.9Hz,1H),7.47(d,J=8.1Hz,1H),7.54(d,J=7.7Hz,1H),7.98(d,J=15.6Hz,1H),8.15(t,J=7.5Hz,1H),8.26(d,J=8.9H z,1H),8.31(d,J=8.9H z,1H),8.37(d,J=9.3Hz,1H),8.39)8.41(m,3H),8.59(d,J=8.2Hz,1H), 8167(d,J=9.4H z,1H),8.77(s,1H),8.88(d,J=15.6Hz,1H);FAB-M S m/z(%):431第5期孙一峰等:香豆素衍生物的合成及结构表征397(M+1).元素分析,C29H18O4计算值:C80.92,H4.21;实验值:C80.76,H4.34.化合物3i:黄色粉末,产率55%,m.p.234)236e;1H NM R(DM SO-d6/T MS)D: 1136(s,9H),1.52(s,9H),7.70(d,J=1.8Hz,1H),7.91(d,J=1.8Hz,1H),8.07(d,J= 15.5Hz,1H),8.15(d,J=7.6Hz,1H),8.26(d,J=8.9H z,1H),8.31(d,J=8.9Hz, 1H),8.36)8.42(m,4H),8.60(d,J=8.2H z,1H),8.67(d,J=9.4H z,1H),8.82(s, 1H),8.88(d,J=15.6H z,1H);FAB-MS m/z:513(M+1).元素分析,C36H32O3计算值: C84.35,H6.29;实验值:C84.19,H6.37.1.4加合物ABT-MC C的合成等摩尔的2-氨基苯并噻唑(ABT)和8-甲氧基香豆素-3-甲酸乙酯(M CC)在干燥的苯中回流反应3h,然后趁热过滤,滤液静置于室温下,3天后得到黄色块状晶体.1.5晶体结构的测定测定所选配合物ABT-MCC的单晶尺寸为0.20m m@0.18mm@0.17mm,在Rig aku-R-AXIS-IV X射线单晶衍射仪上,用Mo K A射线(K=0.71073!),在室温291(2) K下,以X/2H扫描方式在2.02b[H[25.00b范围内收集2958个强反射数据,其中独立衍射点2383个.晶体结构由直接法解出,所用程序为SH ELXTL-97.全部非氢原子由差值Fourier合成及差值电子密度函数修正得到.从差值电子密度函数结合几何分析得全部氢原子坐标.全部非氢原子坐标,各向异性热参数及H原子坐标,各向同性热参数经全矩阵最小二乘法修正至收敛.晶体数据:分子式C20H18N2O5S,相对分子量398.42,属三斜晶系,P1空间群,a=9.5978(19)!,b=10.686(2)!,c=10.693(2)!,A=71.30 (3)b,B=70.43(3)b,C=88.99(3)b,V=973.9(3)!3,Z=2,D x=1.359mg/m3,L= 01200mm-1,F(000)=416,结构偏离因子R=0.0463,w R=0.0992,最佳吻合因子S =11058.差值Fourier图中残余最高电子密度峰Q max=0.237e#!-3,最低为Q min= -01223e#!DC672097.2结果与讨论2.1合成本合成所用的原料中,3-甲酰基-4-羟基苯甲酸由4-羟基苯甲酸通过Reim er-Tie-mann反应合成;3,5-二叔丁基水杨醛由2,4-二叔丁基苯酚和六次甲基四胺在乙酸体系中反应合成的;2-羟基-4-苄氧基苯甲醛则是2,4-二羟基苯甲醛和苄基氯在碱性环境中反应得到(见图1).然后以水杨醛或取代水杨醛为原料,与乙酰乙酸乙酯在哌啶催化下缩合可以容易地得到3-乙酰基香豆素类化合物1.化合物2由3-甲酰基-4-羟基苯甲酸或2-羟基-4-苄氧基苯甲醛与丙二酸二乙酯反应合成(见图1).化合物1和芳香醛或杂芳醛缩合得到目标产物3(见图1).在目标产物3的合成中,整个反应条件温和,产物用乙醇-丙酮或乙醇-N,N-二甲基甲酰胺重结晶便可得到较纯的化合物.第一步缩合时醛与乙酰乙酸乙酯的摩尔比尽可能为1B1,否则产物收率明显降低,不易提纯.第二步反应所用乙醇要充分干燥,反应应在回流状态下进行,否则产物收率明显降低.反应结束后,挥发去少量乙醇,冷却后产物会结晶出来.另外,实验表明,利用微波反应技术也可以成功地合成化合物3,在反应收率相当的情况下,其反应时间由原来的3)5h 缩短到2)10min.因此,该方法提供了一条将蒽、咔唑、吲哚及芘等功能基引入香豆素的3-位的有效途径.利用元素分析、M S 、和1H NM R 对合成的化合物进行了表征,结果与预期结构相符合.2.2 ABT -MC C 的晶体结构加合物ABT -MCC 的分子结构见图2,超分子结构见图3,分子一维链状结构见图4,晶体堆积见图5,主要键长和键角见表1,氢键见表2.图2 ABT -M CC 的分子结构M olecular structure of ABT -M CC晶体结构解析结果显示,在晶体中香豆素和苯并噻唑环系都具有平面结构,其中香豆素环系的最大偏差为-0.0728!,苯环和内酯环之间的二面角为2.7b ;苯并噻唑环系的最大偏差为-0.0139!,苯环和噻唑环之间的二面角仅为0.8b ,很显然二者都具有较好的共平面性.同时,这两个环系之间的二面角为2.4b .从图2和图3可以看出,氢键受体香豆素衍生物的C7C8双键和C10O4酯羰基形成反叠式构象,使得受体香豆素衍生物的两个酯羰基处于内酯环的同一边,这归因于双功能N )H ,O 氢键作用(N1)H1E ,O3and N1)H1E ,O4,见图3和表2)的存在.因为受体以这样的构象存在有利于氢键超分子结构的形成.这些结构特点与文献报道的结果相符[8],但明显不同于以顺叠式构象存在的2-aminobenzothiazole -N -[(2-oxo -2H -1-benzopyran -3-yl)carboxyl]phenethylamide [7]398 影 像 科 学 与 光 化 学第26卷和2-aminobenzothiazole -N -[(2-oxo -2H -1-benzopyran -3-yl)carboxyl]benzylamide [9].图3 ABT -M CC 的超分子结构Supramolecular structure of the A ,D ,D c,A c H -bonded tetramer of ABT -MCC图4 ABT -M CC 通过氢键连接的一维链状结构图1D chain structure formed via hydrogen bonds i n ABT -M CC另外,两个给体分子通过一对N1)H1F ,N2氢键自组织成为一个中心对称的二聚体(见图3),这种二聚体是较好的氢键超分子结构构筑模块.然后,这种作为氢键给体的第5期孙一峰等:香豆素衍生物的合成及结构表征399图5 ABT -M CC 的晶胞堆积图Packing diagram of ABT -M CC表1 ABT -M CC 的部分键长(!)和键角(b )Selected bond lengths (!)and bond angles w ith the torsion angles (b )for ABT -EBCC Bond(!)Bond (!)S(1)-C(15)1.746(3)O(2)-C(9) 1.389(3)S(1)-C(14)1.773(2)O(3)-C(9) 1.203(3)N(1)-C(14)1.339(3)O(4)-C(10) 1.203(3)N(2)-C(14)1.314(3)O(5)-C(10) 1.342(3)N(2)-C(16)1.392(3)C(6)-C(7) 1.431(3)O(1)-C(2)1.358(3)C(7)-C(8) 1.355(3)O(1)-C(13)1.439(3)C(8)-C(9) 1.461(3)O(2)-C(1)1.378(3)C(8)-C(10) 1.495(3)Angle(b )Angle (b )C(15)-S(1)-C(14)88.91(11)O(2)-C(9)-C(8)116.4(2)C(14)-N(2)-C(16)110.64(19)O(4)-C(10)-O(5)123.9(2)C(1)-O(2)-C(9)122.73(19)O(4)-C(10)-C(8)125.7(2)C(10)-O(5)-C(11)116.34(19)O(5)-C(10)-C(8)110.4(2)O(2)-C(1)-C(6)121.4(2)O(5)-C(11)-C(12)107.3(2)O(2)-C(1)-C(2)116.6(2)N(2)-C(14)-N(1)124.7(2)C(1)-C(6)-C(7)116.9(2)N(2)-C(14)-S(1)115.33(18)C(5)-C(6)-C(7)123.9(2)N(1)-C(14)-S(1)119.9(2)C(8)-C(7)-C(6)122.3(2)C(20)-C(15)-S(1)129.52(19)C(7)-C(8)-C(10)121.4(2)C(16)-C(15)-S(1)109.46(17)O(3)-C(9)-O(2)115.5(2)C(17)-C(16)-N(2)125.2(2)400 影 像 科 学 与 光 化 学第26卷第5期孙一峰等:香豆素衍生物的合成及结构表征401二聚体又通过双功能N)H,O氢键作用(N1)H1E)O3和N1)H1E)O4)与受体香豆素衍生物形成对称的A,D,D c,A c氢键四聚体(见图3和表2).类似的二聚体和四聚体也存在于其它的香豆素加合物晶体结构中[7-9].进而这些四聚体又通过弱的分子间C)H,O氢键(C13)H13A,O2#1:C13)H13A=0.96!,H13A,O2=2.566!,C13, O2=3.512(3)!,C13)H13A,O2=168.6b;对称码#1:-x+1,-y,-z)连接成为一维无限延伸超分子链(见图4).最后,在晶体中,分子间通过P-P堆积作用形成层状结构(见图5).表2ABT-M CC的氢键键长(!)和键角(b)Hydrogen bond distances(!)an d bond angles(b)for ABT-M CCD)H,A d(D)H)d(H,A)d(D,A)N(D-H,A)N(1)-H(1F),N(2)#10.85(3) 2.17(3) 3.019(3)176(3)N(1)-H(1E),O(3)0.86(3) 2.26(3) 3.047(3)152(2)N(1)-H(1E),O(4)0.86(3) 2.39(3) 3.051(3)134(2)对称码:#1:-x,-y+1,-z+1.3结论本文合成了11个香豆素衍生物,利用元素分析、MS和1HNM R对其结构进行了确认.同时,测定了氢键给体-受体加合物ABT-M CC的晶体结构,结果表明,在ABT-MCC 晶体中,分子间通过氢键作用形成一维超分子链状结构,进而通过P-P堆积作用形成层状结构.这些晶体结构特点在超分子晶体设计,理解生物系统中处于细胞活性位置的香豆素化合物分子的超分子作用和选择性、敏感性探测等方面具有一定指导意义.这类香豆素衍生物可能在有机电致发光材料、双光子吸收材料及荧光探针等方面具有潜在的应用价值,进一步的研究正在进行之中.参考文献:[1]Lee S,S ivakumar K,Shin W S,Xie F,W ang Q.Synthesi s and ant-i angiogenesis activity of coumari n derivatives[J].Bioorg.M ed.Chem.L ett.,2006,16:4596-4599.[2]T urki H,Abid S,Fery-Forgues S,Gharbi R E.Optical properties of new fluorescent iminocoumarins:Part1[J].Dyes Pigme nts,2007,73:311-316.[3]Yu T Z,Zhao Y L,Ding X S,Fan D W,Qian L,Dong W K.Synthesis,crystal structure and photoluminescent be-haviors of3-(1H-benzotriazo-l1-yl)-4-methy-l benzo[7,8]coumari n[J].J.Photoch.Photobio.A:Chem.,2007, 188:245-251.[4]Feau C,Klei n E,Kerth P,Lebeau L.Synthesis of a coumarin-based europium complex for bioanalyte labeling[J].Bioorg.M ed.Chem.L ett.,2007,17:1499-1503.[5]Paula R D,M achado A E D H,M iranda J A D.3-Benzoxazo-l2-y-l7-(N,N-diethylamino)-chromen-2-one as a fluo-rescence probe for the inves tigation of micell ar microenvironments[J].J.Photoch.Photobio.A:Chem.,2004, 165:109-114.[6]Kim H M,Fang X Z,Yang P R,Yi J S,Ko Y G,Piao M J,Chung Y D,Park Y W,Jeon S J,Cho B R.Designof molecular two-photon probes for i n vivo imaging.2H-Benzo[h]chrom ene-2-one deri vatives[J].T etr ahed ron L ett., 2007,48:2791-2795.[7]Garc a-B ez E V,M art n ez-M art nez F J,HÊpfl H,Padilla-M art nez I I.Supramolecular assembly of2-aminoben-zothi azole and N-[(2-oxo-2H-1-benzopyran-3-yl)carboxyl]phen ethylam ide donor-acceptor complex.A comparative402影像科学与光化学第26卷study[J].Ar kiv oc,2003,xi,100-111.[8]Padilla-M art nez I I,Garc a-B ez E V,HÊpfl H,M art nez-M art nez F J.2-Amino-1,3-benzothiazole-ethyl coumari n-3-carboxylate(1/1)[J].Acta Cryst.,2003,C59:o544-o546.[9]M art nez-M art nez F J,Garc a-B ez E V,HÊpfl H,Padilla-M art nez I I.The2-aminobenzothiazole-N-benzy-l2-oxo-2H-1-benzopyran-3-carboxam i de(1/1)donor-acceptor complex[J].A cta Cryst.,2003,E59,o1628-o1630. [10]孙一峰,宋化灿,孙献忠,许遵乐.新型3-取代-6-芳偶氮香豆素化合物的合成及结构表征[J].有机化学,2003,23(2):162-166.Sun Y F,Song H C,S un X Z,Xu Z L.Synthesis and s tructure characterization of new3-substituted-6-arylazo-coumarins[J].Chem.,2003,23(2):162-166.[11]孙一峰,宋化灿,李卫明,许遵乐,有机电致发光材料二唑衍生物的合成[J].有机化学,2003,23(11):1286-1290.Sun Y F,Song H C,Li W M,Xu Z L.Synthesis of oxadiazole derivatives[J].Chem.,2003,23(11):1286-1290.[12]孙一峰,陶秀俊,宋化灿,偶氮香豆素化合物的二阶非线性极化率[J].感光科学与光化学(影像科学与光化学),2004,22(6):9-15.Sun Y F,Tao X J,Song H C.The second-order nonli n ear optical properties of novel azocoumarin derivatives[J].Photog rap hic Scie nc e and Photoc he mistry(I maging Scie nc e and Photoc he mistry),2004,22(6):9-15.[13]Huang Z L,Li N,Sun Y F,Wang H Z,Song H C.Synth esis and structure-photophysical property relationsh i ps fortw o coum ariny-l based two-photon induced fluorescent molecules[J].J.M ol.S tru ct.,2003,657:343-350. [14]M urata C,M asuda T,Kamochi Y,Todoroki K,Yoshida H,Nohta H,M asatoshi Yamaguch i M,Takadate A.Im-provem ent of fluorescence characteristics of coumarins:syntheses and fluorescence properties of6-methoxycoumarin and benzocoumarin derivatives as novel fluorophores emitting in the longer w avelength region and their application to analytical reagents[J].Chem.Pharm.Bull.,2005,53:750-758.Synthesis and Structure Characterization of Cou marin DerivativesSUN Y-i feng1,M A Sh-i ying1,ZHAN G Dong-di2,CHENG Xue-li1(1.De p artment o f Ch em istry,Taishan Univer sity,T aian271021,S han d ong,P.R.China;2.College of Pharmac y,Henan University,kaif en g475002,H enan,P.R.China)Abstract:Eleven new coumarin derivatives were prepared in53%to79%yields.T he struc t ures of the t itle compounds were characterized by elemental analysis,1HN M R and M S.T he cryst al struc-t ure of donor-acceptor complex ABT-M CC derived from2-amino-1,3-benzot hiazole(ABT)and ethyl8-mthoxycoumarin-3-carboxylat e(M CC)was det ermined by X-ray diffraction analysis.T he crystal of ABT-M CC belongs to the t riclinic system,spac e group P1,cell paramet ers:a=9.5978 (19)!,b=10.686(2)!,c=10.693(2)!,A=71.30(3)b,B=70.43(3)b,C=88.99(3)b, V=973.9(3)!3,Z=2,D x=1.359mg/m3,L=0.200mm-1,F(000)=416,R=0.0463, wR=010992.X-ray diffrac t ion reveals that the c omplex shows the A,D,D c,A c H-bonded te-t ramer.T he molec ules are connect ed via intermolecular hydrogen bonds into a one-dimensional chain structure,and are further assembled to form a layer structure via the P-P stacking.Key words:coumarin derivat ives;2-aminobenzot hiazole;donor-acceptor c omplex;synt hesis;crys-t al structureCorresponding author:SUN Y-i feng,E-mail:sunyf50@。
手性材料的合成与性质研究

手性材料的合成与性质研究一、引言手性材料是现代材料科学一个重要的研究领域,其具有丰富的洛克区分异构体和光电磁响应等特点。
研究手性材料的合成与性质对于理解和应用手性现象具有重要意义。
本文将介绍手性材料的合成方法以及其在光电子学、药物和生物科学等领域中的应用。
二、手性材料的合成方法1. 手性诱导法手性诱导法是合成手性材料的常用方法之一。
该方法通过引入手性诱导剂来诱导材料分子的手性。
手性诱导剂可以是手性小分子,也可以是手性聚合物。
通过与材料分子作用,手性诱导剂能够让材料分子按照特定的手性排列,从而形成手性结构。
2. 手性催化法手性催化法是合成手性材料的另一个重要方法。
该方法利用手性催化剂来催化反应过程中的手性转化。
手性催化剂通常是具有手性中心的有机化合物,通过其特殊的立体结构与反应物发生作用,使得反应物在反应过程中选择性地生成手性产物。
3. 分子模板法分子模板法是一种利用分子模板来合成手性材料的方法。
分子模板是具有手性结构的分子,通过与反应物作用,可以选择性地催化反应或者诱导反应方向,从而合成特定的手性产物。
分子模板法常用于有机合成中,尤其在合成手性药物方面具有广泛的应用。
三、手性材料的性质研究手性材料具有与普通材料截然不同的性质,其研究对于理解手性现象的原理具有重要意义。
1. 对旋光性的研究旋光性是手性材料最基本的性质之一。
旋光性是指材料对入射光产生的旋光偏振光的旋转效应。
通过测量材料的旋光度和旋光方向,可以了解材料分子的立体结构和手性度。
旋光性对于药物合成和分析等领域具有重要的应用价值。
2. 对非线性光学性质的研究手性材料具有丰富的非线性光学性质。
非线性光学性质是指材料在光强较高时,表现出与光线的强度不成正比的效应。
双光子吸收、二次谐波产生和非线性折射率等是手性材料常见的非线性光学性质。
研究手性材料的非线性光学性质有助于开发高效、快速的光电子学元件。
3. 对手性催化性质的研究手性催化是手性材料的重要应用之一。
did染料的双光子激发波长___概述说明

did染料的双光子激发波长概述说明1. 引言1.1 概述引言部分将对本篇文章的主题进行简要概述。
本文将探讨双光子激发技术中DID染料的双光子激发波长,重点关注该染料在荧光材料中的特性及其相关研究现状。
双光子激发技术是一种新型的激发方式,通过同时吸收两个低能量光子来实现单一大能量光子的效果,广泛应用于荧光显微成像、生物医学和材料科学等领域。
而DID染料是一类常用于荧光标记和成像的材料,了解其双光子激发波长对于进一步优化材料性能和拓宽应用领域具有重要意义。
1.2 文章结构本文按如下结构组织:首先,在引言部分简要介绍双光子激发技术及其在不同领域的应用;接着,在第三部分详细介绍了DID染料以及与其相关的属性和分类;然后,在第四部分中描述了我们设计的实验流程、使用的材料以及获得的实验结果,并对结果进行解读和讨论;最后,在结论部分总结研究发现并展望未来可能的研究方向。
1.3 目的本文旨在通过探究DID染料的双光子激发波长,深入了解DID染料在双光子激发技术中的应用潜力。
通过分析实验结果和讨论其意义,我们希望能够提供有关DID染料在荧光材料方面性能优化和扩大应用领域的相关建议。
同时,将探讨双光子激发技术在其他领域中可能的应用前景,并指出目前存在的问题和未来研究方向,为该领域的进一步研究提供参考和启示。
2. 双光子激发技术:2.1 原理介绍双光子激发技术是一种利用两个相互作用的低能量光子来激发样品中的荧光现象的方法。
与传统的单光子激发技术相比,双光子激发技术具有较大的优势。
在双光子激发过程中,两个能量较低的光子几乎同时吸收,通过非线性过程引起样品中分子或原子能级跃迁并产生荧光。
2.2 应用领域双光子激发技术在生物医学领域得到了广泛应用。
由于其较高的空间解析度和深度穿透能力,它可以应用于活体成像、组织工程、药物输送等方面。
例如,在神经科学研究中,双光子显微镜可以实现对活体动物大脑内部结构和功能的三维成像。
此外,双光子激发技术还被广泛运用于材料科学、化学分析等领域。
双光子聚合光刻技术

双光子聚合光刻技术1. 原理和工作原理:双光子聚合光刻技术基于非线性光学效应,利用两个光子的能量共同作用下,使光敏材料发生聚合反应。
在双光子聚合光刻中,使用长波长的激光束(通常是红外激光)和具有较高能量的脉冲激光束。
红外激光束用于提供高能量,而脉冲激光束用于实现高分辨率。
当两束激光同时照射在光敏材料上时,只有在高能量激光束的焦点处,才会发生双光子吸收,导致局部的光敏材料聚合反应。
通过控制激光束的位置和强度,可以在纳米尺度上进行精确的光刻。
2. 优点和特点:双光子聚合光刻技术相比传统的紫外光刻技术具有以下优点和特点:高分辨率,由于双光子吸收只发生在激光束的焦点处,因此可以实现超高分辨率的光刻,达到亚微米甚至纳米级别的精度。
三维加工,双光子聚合光刻不受传统光刻技术的限制,可以在三维空间内进行加工,实现复杂的微纳结构。
适用范围广,双光子聚合光刻可用于各种材料,包括有机材料、无机材料和生物材料等。
高对比度,由于双光子吸收的非线性特性,可以实现高对比度的光刻,提高图案的清晰度和边缘锐利度。
3. 应用领域:双光子聚合光刻技术在微纳加工领域有着广泛的应用,包括但不限于以下领域:光子学器件制造,双光子聚合光刻技术可用于制造光子晶体、光波导器件、微透镜等光子学器件。
生物医学领域,双光子聚合光刻技术可以制造微流控芯片、微针阵列、组织工程支架等用于生物医学研究和临床应用的微纳结构。
纳米加工,双光子聚合光刻技术可用于纳米光子学、纳米电子学和纳米机械学等领域的纳米结构制造。
光子晶体材料研究,双光子聚合光刻技术可用于制备光子晶体材料,研究其光学性质和应用。
总结起来,双光子聚合光刻技术是一种高分辨率、三维加工的微纳加工技术,具有广泛的应用前景。
它在光子学器件制造、生物医学领域、纳米加工和光子晶体材料研究等领域都有重要的应用。
应用飞秒激光双光子吸收还原金属离子

应用飞秒激光双光子吸收还原金属离子马竞;朱煜;杨开明【摘要】为了探讨利用有机高分子材料的飞秒激光双光子吸收来引发金属离子还原的可行性,在自行研制的双光子微细加工系统中,采用物质的量的比为1:1的硝酸银/聚乙烯吡咯烷酮混和凝胶进行还原试验,加工出宽25μm的线条以及4mm×0.4mm的测试导线.由X射线光电子能谱分析可知,加工生成物主要元素是银,通过测试导线电阻,测算其电阻率范围在10-3Ω·m~10-5Ω·m之间.结果表明,用双光子吸收还原金属离子,可以控制反应区域,这对加工导电金属微结构是有帮助的.【期刊名称】《激光技术》【年(卷),期】2010(034)003【总页数】3页(P395-397)【关键词】非线性光学;双光子吸收;飞秒激光;聚乙烯吡咯烷酮【作者】马竞;朱煜;杨开明【作者单位】清华大学,精密仪器与机械学系,摩擦学国家重点实验室,北京,100084;清华大学,精密仪器与机械学系,摩擦学国家重点实验室,北京,100084;清华大学,精密仪器与机械学系,摩擦学国家重点实验室,北京,100084【正文语种】中文【中图分类】TG665;TN249引言飞秒激光双光子微细加工技术的原理是通过双光子吸收使双光子吸收材料发生一系列的物理或化学性质的改变。
飞秒激光有着更优异的加工特性,其加工对周围区域热学、力学、化学影响小,其横向加工精度可达几十纳米,而深度加工精度甚至可达亚纳米级[1],因此,应用双光子微细加工技术可以加工任意的3维微结构。
国内外很多研究小组都利用该技术进行了大量研究,将该技术应用到3维微结构的制备上。
日本大阪大学的研究组制作出3维螺旋结构及红细胞大小(长10μm、高7μm)的公牛像[2],澳大利亚STRAUB研究组用该技术制作出悉尼歌剧院模型[3],中国科学院理化技术研究所的DONG等人也制作出微型千里马造型[4]。
虽然双光子微细加工技术已经展示出加工真3维结构的优越性,然而受加工材料性质(强度、导电性等)等因素的限制,该技术并未在微机电系统、微光学器件和生物医学等潜在的应用领域得到广泛的运用[5]。