分形理论及其发展历程.
分形理论的详细介绍

(三)标度不变性
所谓标度不变性,是指在分形上任选一局部区域,
对它进行放大,这时得到的放大图形又会显示出原图的 形态特性。因此,对于分形,不论将其放大或缩小,它 的形态、复杂程度、不规则性等各种特点均不会变化。 所以标度不变性又称为伸缩对称性。通俗一点说,如果 用放大镜来观察一个分形,不管放大倍数如何变化,看 到的情形是一样的,从观察到的图象,无法判断所用放 大镜的倍数。 所以具有自相似特性的物体(系统),必定满足标 度不变性,或者说这类物体设有特性长度。上面介绍的 koch曲线是具有严格的自相似性的有规分形,无论将它 放大与缩小多少倍,它的基本几何特性都保持不变,很 显然,它具有标度不变性。 因此,可以看到,自相似性与标度不变性是密切相关 的。自相似性和标度不变性是分形的两个重要特性。
对于“特征长度”这一名词,作一简单的说明, 自然界存在的所有物体的形状和人类迄今所考虑的一 切图形,大致可分为如下两种:具有特征长度的图形 和不具有特征长度的图形。对于特征长度,并没有严 格的定义,一般认为能代表物体的几何特征的长度, 就称之为该物体的特征长度。如一个球的半径、正方 体的边长、人的身高、汽车的长度,这些都是各个物 体的特征长度,它们很好地反映了这些物体的几何特 征。对具有特征长度的物体的形状,对它们即使稍加 简化,但只要其特征长度不变,其几何性质也不会有 太大的变化。如竖起一个代替人的、与人具有相同高 度的圆柱,那么从远处去看,也不会有太大的差错; 如果再精细一点,以小圆柱代替手和腿,以矩形代替 身躯,以球代替头,那么就会很像人了。换句话说, 关于这类物体,可以用几何学上熟知的矩形体、圆柱、
图1.1 布达拉宫中藏族壁画中的云的形状
图1.2 日本传统绘画中对海浪的描述
图1.3 山脉的复杂形态
分形简介

分形的发展
波瑞(Perrir)在1913年对布朗运动的 轨迹图进行了深入的研究,明确指出 布朗运动作为运动曲线不具有导数。 他
分形的发展
在此期间,维数理论得到了进一步发展并日臻 成熟.Bouligand于1928年引入了Bouligand 维数,Poutrjagin与Schnirelman于1932年引 入覆盖维数,Kolmogorov与Tikomirov干 1959年引入摘维数.
分形的发展
在此期间,Levy在下面两个方面的工作极为重要 一其一,他第一个系统地研究了自相似集,我们现 今研究的许多自相似集的性质可追溯到他的工作. 其二,他建立了分式布朗运动的理论,实际上,他 是随机分形理论系统研究的最重要的先驱者之一
分形的发展
曼德尔布罗特于1977年以《分形:形、机遇和维 数》发表了他的划时代的专著,第一次系统性的 阐述了分形几何的思想内容、意义和方法。 此专著的发表标志着分形几何作为一个独立的学 科正式诞生,从而把分形理论推进到一个更为迅 猛发展的新阶段
分形简介
目录
序言
分形的发展
分形维度
分形理论的应用
序言
一切的一切都要从
海岸线的长度 说起
序言
序言
序言
“你要了解大千世界的奥秘,首先需要懂得
它的语言,它的语言是用数学、三角形、圆 及其他几何图形所书写的。你若不掌握这种 语言,你就什么也不会知道,你只能在黑暗 的迷宫中徘徊。” ——《哲学原理》,伽利略
序言
“云团不是球,山岳不是锥 体,海岸线不是圆,树皮不 是光滑的,闪电也不是沿直 线传播。 ——曼德尔布罗特
分形的发展
“分形”(fractal)一词由美籍法国数学家曼德尔布 罗特(Benoit B.mandelbrot)教授在1975年首次提 出,其源于拉丁文fractus,原意为“分数的,不 规则的,破碎的”。
分形理论及其应用

分形理论及其应⽤分形⼏何及其在城市研究中的应⽤⼀、分形概述1975年,著名科学家曼德布罗特(B.B.Mandelbrot)发表了其专著《分形:形态、机遇和维数》,这标志着分形⼏何学的诞⽣。
分形⼏何学是相对于传统欧⽒⼏何学的不⾜⽽建⽴的,由此发展起来的分形理论是现代⾮线性科学研究中的⼀门新兴数学分⽀,在众多学科领域中有着⼴泛的应⽤。
普通的⼏何对象,具有整数维数。
零维的点、⼀维的线、⼆维的⾯、三维的体、四维的时空等。
⽽分形则是具有⾮整数的分维的⼏何对象。
其主要的价值是在极端有序和极端混沌之间提供了⼀种可能性。
其显著的特征是:看来⼗分复杂的事物,事实上⼤多数均可⽤公含很少参数的简单公式来表达。
1、科赫曲线分形⼏何学的研究对象是不光滑的、不规则的,甚⾄⽀离破碎的空间⼏何形态。
分形的典型例⼦,科赫曲线(Koch Curve)便是以初等数学⽅法构造的⼀类处处不可导。
构造过程如下图:取长度为1的直线段,称为初始元(initiator),将该线段的中间1/3⽤⼀个隆起等边三⾓形的另两边替代,得到⼀条由四个等长直线段构成的折线,称为⽣成元(generator)。
再将⽣成元中的四个直线段中的每⼀个,都⽤⼀个缩⼩为1/3的⽣成元代替,从⾯形成了⼀条有次级隆起的折线。
这样⼀直进⾏下去,得到科赫曲线。
显然,科赫曲线的“内部”结构与整体相似。
2.⾃相似性与标度不变性如果⼏何对象的⼀个局部放⼤后与其整体相似,这种性质称为⾃相似性,⽐如树。
地质现象的描述离不开标度,在地质上,对⼀些地质现象拍照时,⼀定要放上⼀个能表⽰尺度⼤⼩的物体,如⼀枚硬币,⼀把锤⼦等。
因为,如果没有这些东西,就很难在确定这些照⽚是反映什么尺度范围内的现象,可能是10⽶还是10公⾥等。
当观测标度变化时,⼏何体的许多性质保持不变,称为标度不变性。
具有⾃相似性或标度不变性的⼏何对象,我们说它们是分形的。
3.分形的定义1.部分以某种形式与整体相似的形状叫做分形。
(B.B.Mandelbrot)2.分形集合是这样⼀种集合,它⽐传统⼏何学研究的所有集合更加的不规则,⽆论是放⼤还是缩⼩,这种集合的不规则性仍然是明显的。
分形几何及其在地球物理中的应用初探

分形几何及其在地球物理中的应用初探摘要:本文简要介绍分形的基本概念,发展历史,简述它在地球物理学中的应用,并探讨未来可能它在地球物理中可能的应用。
限于篇幅,文中将略去理论的细节及数学推导,也不涉及分形在其它领域的应用。
关键字:分形,分形几何,分维,地球物理,应用一、分形几何发展的历史回顾分形的发展大致可分为三个阶段。
第一阶段为1 8 75 年至19 2 5 年。
在此阶段,人们己认识到几类典型的分形集,并力图对这类集合与经典几何的差别进行描述、分析和刻划。
第二阶段大致为19 26 年到1 9 75 年。
在这半个世纪,人们实际上对分形集的性质作了深入的研究,特别是维数理论的研究已获得了丰富的结果。
第三阶段为19 75 年至今,是分形几何在各个领域的应用取得全面发展,并形成独立学科的阶段。
下面对这三个阶段作简要回顾。
19 世纪,尽管人们已能区别连续与可微的差别,但普遍认为连续但不可微的情形是极为例外的,并且在理论与研究中应排除这类“怪物”,特别认为一条连续曲线上不可微的点应是极少的。
在1872年,Weierestras证明了连续函数:(1)(0<a<1,b为奇整数,ab>1+2π)在任一点x均不具有有限或无限导数。
(Hardy于1916年证明只要ab≥1,上述结果仍成立)Weierestras这一结果在他所处的时代引起了极大的震动;但尽管人们在观念上产生了改变,但仍认为Weierestras 型的函数是极为“病态”的例子。
即使如此,人们仍从不同方面推广了上述函数,并对这类函数的奇异性质作了深入的研究,获得了丰富的结果。
Van Koch于1904年通过初等方法构造了现今称为Van Koch曲线的处处不可微的连续曲线(见图1),并讨论了该曲线的性质。
由于该曲线的构造极为简单,改变了人们认为连续不可微曲线的构造一定非常复杂的看法。
特别重要的是,该曲线是第一个人为构造成的具有局部与整体相似的结构的例子,即现在称为自相似的结构。
分形理论简介ppt

进一步对形成的9条子线段作分割和“日” 字型折线框形构造,便形成81条子折线,而 每条折线的长度为1/9; 如此分割构造下去便得到了皮亚诺曲线。
分割次数越多,得到的皮亚诺曲线就越密。
由于皮亚诺曲线最终可以穿行(遍历)一个 平面上的每一个点,因此它也被称作空间填 充曲线。
例子6:谢尔宾斯基三角垫
Nr A 1/ r d
则称d为A的盒计数维数
盒维数为d,当且仅当存在一个正数k使得 lim r 0
lim log Nr A d log r log k
r 0
N r A k 1 rd
d lim
log k log N r A log N r A lim r 0 r 0 log r log r
自仿射性
ቤተ መጻሕፍቲ ባይዱ
自仿射性是自相似性的一种拓展和延伸,如果局部到整体在各个方向上的变换比率是相同的, 那么就是自相似性变换;而当局部到整体在不同方向上的变换比率不一定相同时,就称为自仿 射性变换。自相似性变换是自仿射性变换的特例。
分形几何与欧氏几何的区别
11
两种几何学 欧氏几何
描述对象 人类创造的简单标 准物体(连续、光 滑、规则、可微) 大自然创造的复杂 的真实物体(不连 续、粗糙、不规则、 不可微)
N×r3=1
小正方体的测量数目为N(r)=r -3
分形维数:相似维数
14
线、面、体的维数为1、2、3,归纳为 N (r ) r D
两边取对数 D
log N r 1 log r
相似维数的定义:如果一个分形对象 A(整体)可以划分为 N(A,r) 个 同等大小的子集(局部单元),每个子集以相似比 r 与原集合相似, 则分形集 A 的相似维数 Ds 定义为
分形艺术与传统绘画的融合尝试

分形艺术与传统绘画的融合尝试一、分形艺术的起源与发展分形艺术是一种基于数学分形理论的艺术形式,其核心在于通过数学公式和算法生成具有无限细节和自相似性的图案。
这种艺术形式最早可以追溯到20世纪70年代,由数学家本华·曼德布罗特提出分形理论后逐渐发展起来。
分形艺术的发展历程可以分为几个阶段:1.1 分形理论的提出本华·曼德布罗特在1975年的论文《英国的海岸线有多长?统计自相似和分形维度》中首次提出了分形的概念。
他发现自然界中的许多现象,如海岸线、山脉、河流等,都具有自相似性,即在不同的尺度上展现出相似的形态。
这种自相似性可以通过数学公式和算法进行模拟和再现。
1.2 分形艺术的初步探索随着分形理论的提出,艺术家们开始尝试将这一理论应用于艺术创作中。
最初的分形艺术作品主要是通过计算机生成的图形,这些图形具有高度的对称性和复杂性,能够展现出令人惊叹的视觉效果。
艺术家们通过调整算法参数,创造出各种各样的分形图案。
1.3 分形艺术的多样化发展随着技术的进步和艺术观念的更新,分形艺术逐渐从单一的图形生成发展到更为多样化的表现形式。
艺术家们不仅在二维平面上创作分形艺术,还将其应用于三维空间和动态影像中。
此外,分形艺术也开始与其他艺术形式相结合,如绘画、雕塑、装置艺术等,展现出更为丰富的艺术表现力。
二、传统绘画的特点与价值传统绘画是一种历史悠久的艺术形式,其发展历程可以追溯到史前时代。
传统绘画具有以下几个显著特点:2.1 丰富的表现手法传统绘画包括油画、水彩画、素描、版画等多种表现手法。
每种手法都有其独特的技巧和表现力,能够展现出不同的视觉效果和艺术风格。
艺术家们通过对色彩、线条、光影等元素的精细处理,创作出具有深刻内涵和艺术感染力的作品。
2.2 深厚的文化内涵传统绘画不仅仅是一种视觉艺术,更是一种文化表达。
许多传统绘画作品都蕴含着丰富的历史、哲学、等文化内涵。
通过对这些文化内涵的挖掘和表现,传统绘画作品能够引发观众的思考和共鸣,具有较高的文化价值。
分形理论的发展与科技和社会的进步

初曾嗣惑肴大量数学家 的 “ 病态 曲线或 几何体 , 如
I 8 年 由拣嘲 数学 家康托 尔构 造 的康托 尔 三分集 、 83
10 由瑞典 数学家柯 曲构造 的柯 曲雪 花以及 1l 94年 95 年由波兰数学家谢尔宾斯 基构造的谢尔宾 斯箍垫片和
维普资讯
8CI NCE & E J TI l E OL ̄ Ob 科
B
段。 这也是分形的黄金时代 , 分形理沦进人其发展时代ቤተ መጻሕፍቲ ባይዱ, 分形理 论的产 生 一 分形理论始创立 于 7 年代 中期 创立伊糖就日 广泛应用在自然利一 O 淌: 学的各个领域。18 年 . 9 1 两位美 国密 人们极大的兴趣 . 与耗散结构 、 并称为 7 年代科学 执安大学教授介绍 rf ̄ 在计算机 卜所作 的一个模拟 混沌 0 g] LI
体相似的形 这位被科学界尊称为 “ 分形之 父” 的数学 家在其著作中总结 r 系列存 1 一 9世纪后 期与 2 0世纪
审视分形理论 .逐渐认识到分形理论 自身存在的缺陷, 即在一些基本 问题上傲有明确的答案 . 诸如分形1严格 l l 勺 数学定义是什么?D A模型的物瑚本质是什‘ . L 么 它究竟 是按什么规 律进行生长? 作为分形理 论的一个重要表征 参数 . 分维的明确意 义是什么等 所有这些均 说明分形 这一理论作 为非线形学科 的一个分支学科 还是不成熟 的. 这就是分形在现 阶段所面临 的攻 任务 由于非线
地毯. 他将这类 儿何体命 名为 “ 分形”. 并指 出它们 的共
同特点是且前结构上的自相 似性与 无特征 尺度 , 而它们 的维散可以用蠹斯道夫维来 表示 曼德布罗特出色的 J : 作和思想. 使褥 分形这 一新思维避渐 做人们接受
分形几何概述阮火军

分形几何的研究对象(一) —自相似集
1 Cantor集
2 Sierpinski垫片
3 Koch曲线
Cantor集C
Cantor集C中的点的表示
• x[0,1],可用三进 : x 制a小 j 3j, 数 aj 展 {0,1,2} 开 . j1 记x为 (a1a2 an ).
• k 若x aj 3j,其a中 k 0.我们规定: j1 当 a k 2 时 x ( , a 1 a 2 a k 0 取 ) 0 ; 0
在大多数令人感兴趣的情形下,E以非常 简单的方式定义,可能由迭代产生。
分形几何的研究方法 ——维数和测度
我们仅讨论维数 传统意义下的维数:
点是0维的,线是1维的,平面是2维的, 立方体是三维的,… 用这个维数去刻画分形集合时的困难:
Cantor集:含有无穷多个点,长度为0. Koch曲线:长度为无穷,面积为0. Sierpinski垫片:长度为无穷,面积为0.
Koch曲线
Koch曲线的生成过程 —第0步、第1步
Koch曲线的生成过程 —第2步、第3步
Koch曲线与雪花曲线
—连接在一起的三段Koch曲线构成一个雪花曲线
Koch曲线的一些基本性质
Koch曲线具有与Cantor集,Sierpinski垫 片类似的性质.
长度等于无穷.
自相似集合的定义
f的斥性周期点合 所的 组闭 成包 集 f的 称Ju为li集 a .
若f(z)z2,则f的Jul集 ia 为单位(圆 验周 证 ) . ! 若f(z)z2C,则 当C0时f, 的Jul集 ia 将非常复
Julia集的图象
C = -1
C = -0.5+0.5i
C=-0.2+0.75 i
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分形理论及其发展历程 李后强 汪富泉 被誉为大自然的几何学的分形(Fractal)理论,是现代数学的一个新分支,但其本质却是一种新的世界观和方法论。它与动力系统的混沌理论交叉结合,相辅相成。它承认世界的局部可能在一定条件下。过程中,在某一方面(形态,结构,信息,功能,时间,能量等)表现出与整体的相似性,它承认空间维数的变化既可以是离散的也可以是连续的,因而拓展了视野。
分形几何的概念是美籍法国数学家曼德尔布罗特(B.B.Mandelbrot)1975年首先提出的,但最早的工作可追朔到1875年,德国数学家维尔斯特拉斯(K.Weierestrass)构造了处处连续但处处不可微的函数,集合论创始人康托(G.Cantor,德国数学家)构造了有许多奇异性质的三分康托集。1890年,意大利数学家皮亚诺(G.Peano)构造了填充空间的曲线。1904年,瑞典数学家科赫(H.von Koch)设计出类似雪花和岛屿边缘的一类曲线。1915年,波兰数学家谢尔宾斯基(W.Sierpinski)设计了象地毯和海绵一样的几何图形。这些都是为解决分析与拓朴学中的问题而提出的反例,但它们正是分形几何思想的源泉。1910年,德国数学家豪斯道夫(F.Hausdorff)开始了奇异集合性质与量的研究,提出分数维概念。1928年布利干(G.Bouligand)将闵可夫斯基容度应用于非整数维,由此能将螺线作很好的分类。1932年庞特里亚金(L.S.Pontryagin)等引入盒维数。1934年,贝塞考维奇(A.S.Besicovitch)更深刻地提示了豪斯道夫测度的性质和奇异集的分数维,他在豪斯道夫测度及其几何的研究领域中作出了主要贡献,从而产生了豪斯道夫-贝塞考维奇维数概念。以后,这一领域的研究工作没有引起更多人的注意,先驱们的工作只是作为分析与拓扑学教科书中的反例而流传开来。
二 1960年,曼德尔布罗特在研究棉价变化的长期性态时,发现了价格在大小尺度间的对称性。同年在研究信号的传输误差时,发现误差传输与无误差传输在时间上按康托集排列。在对尼罗河水位和英国海岸线的数学分析中,发现类似规律。他总结自然界中很多现象从标度变换角度表现出的对称性。他将这类集合称作自相似集,其严格定义可由相似映射给出。他认为,欧氏测度不能刻划这类集的本质,转向维数的研究,发现维数是尺度变换下的不变量,主张用维数来刻划这类集合。1975年,曼德尔布罗特用法文出版了分形几何第一部著作《分开:形状、机遇和维数》。1977年该书再次用英文出版。它集中了1975年以前曼德尔布罗特关于分形几何的主要思想,它将分形定义为豪斯道夫维数严格大于其拓朴维数的集合,总结了根据自相似性计算实验维数的方法,由于相似维数只对严格自相似这一小类集有意义,豪斯道夫维数虽然广泛,但在很多情形下难以用计算方法求得,因此分形几何的应用受到局限。1982年,曼德尔布罗特的新著《自然界的分形几何》出版,将分形定义为局部以某种方式与整体相似的集,重新讨论盒维数,它比豪斯道夫维数容易计算,但是稠密可列集盒维数与集所在空间维数相等。为避免这一缺陷,1982年特里科特(C.Tricot)引入填充维数,1983年格拉斯伯格(P.Grassberger)和普罗克西娅(I.Procaccia)提出根据观测记录的时间数据列直接计算动力系统吸引子维数的算法。1985年,曼德尔布罗特提出并研究自然界中广泛存在的自仿射集,它包括自相似集并可通过仿射映射严格定义。1982年德金(F.M.Dekking)研究递归集,这类分形集由迭代过程和嵌入方法生成,范围更广泛,但维数研究非常困难。德金获得维数上界。1989年,钟红柳等人解决了德金猜想,确定了一大类递归集的维数。随着分形理论的发展和维数计算方法的逐步提出与改进,1982年以后,分形理论逐渐在很多领域得到应用并越来越广泛。建立简便盛行的维数计算方法,以满足应用发展的需要,还是一项艰巨的任务。 自然界中的分形,与概率统计、随机过程关系密切。确定性的古典分形集加入随机性,就会产生出随机康托集、随机科契曲线等各种随机分形。1968年,曼德尔布罗特研究布朗运动这一随机过程时,将其推广到与分形有关的分数布朗运动。1974年他又提出了分形渗流模型。1988年,柴叶斯(j.T.Chayes)给出了详细的数学分析。1984年,扎乐(U.Zahle)通过随机删除而得到十分有趣的分形构造,随机分形能更真实地描述和模拟自然现象。
三 动力系统中的分形集是近年分形几何中最活跃和引人入胜的一个研究领域。动力系统的奇异吸引子通常都是分形集,它们产生于非线性函数的迭代和非线性微分方程中。1963年,气象学家洛伦兹(E.N.Lorenz)在研究流体的对流运动时,发现了以他的名字命名的第一个奇异吸引子,它是一个典型的分形集。1976年,法国天文学家伊侬(M.Henon)考虑标准二次映射迭代系统时获得伊侬吸引子。它具有某种自相似性和分形性质。1986年劳威尔(H.A.Lauwerier)将斯梅尔的马蹄映射变形成劳威尔映射,其迭代下不稳定流形的极限集成为典型的奇异吸引子,它与水平线的截面为康托集。1985年,格雷波基(C.Grebogi)等构造了一个二维迭代函数系统,其吸附界是维尔斯特拉斯函数,并得到盒维数。1985年,迈克多纳(S.M.MacDonald)和格雷波基等得到分形吸附界的三种类型:(!)局部不连通的分形集;(2)局部连通的分形拟圆周;(3)既不局部连能又不是拟圆周。前两者具有拟自相似性。
动力系统中另一类分形集来源于复平面上解析映射的迭代。朱利亚(G.Julia)和法图(P.Fatou)于1918-1919年间开创这一研究。他们发现,解析映射的迭代把复平面划分成两部分,一部分为法图集,另一部分为朱利亚集(J集)。他们在处理这一问题时还没有计算机,完全依赖于他们自身固有的想象力,因此他们的智力成就受到局限。随后50年间,这方面的研究没有得到什么进展。随着可用机算机来做实验,这一研究课题才又获得生机。1980年,曼德尔布罗特用计算机绘出用他名字命名的曼德尔布罗特集(M集)的第一张图来。1982道迪(A.Douady)构造了含参二次复映射fc ,其朱利亚集J(fc)随参数C的变化呈现各种各样的分形图象,著名的有道迪免子,圣马科吸引子等。同年,茹厄勒(D.Ruelle)得到J集与映射系数的关系,解新局面了解析映射击集豪斯道夫维数的计算问题。茄勒特(L.Garnett)得到J(fc)集豪斯道夫维数的数值解法。1983年,韦当(M.Widom)进一步推广了部分结果 。法图1926年就就开始整函数迭代的研究。1981年密休威茨(M.Misiuterwicz)证明指数映射的J集为复平面,解决了法图提出的问题,引起研究者极大兴趣。发现超越整函数的J集与有理映射J的性质差异,1984年德万尼(R.L.Devanney)证明指数映射Eλ的J(Eλ)集是康托束或复平面而J(fc)是康托尘或连通集。
复平面上使J(fc)成为连通集的点C组成M集即曼德尔布罗特集,尤更斯(H.Jurgens)和培特根(H-O.Peitgen)认为,M集的性质过去一直是并且将来继续是数学研究的一个巨大难题。通过将数学理论与计算机图形学实验加以融合,及道迪、扈巴德(H.Hubbard)等人在这方面进行的基础性研究工作,在解决这一难题方面已取得重大进展,使人们加深了对M集的了解。道迪和扈巴德1982年证明M集是连通的和单连通的,人们猜测M集是局部连通的,目前每一张计算机图形都证实了这一猜测,但至今还没有人能给予证明。M是否为弧连通,目前尚不清楚。M集边界的维数也是值得研究的问题之一。
M集除了将J集分成连通与非连通的两类之外,还起着无穷个J集的图解目录表作用,即把M集C点周围的图形放大就是与C点有关的J集的组成部分。但这一发现的数学密性至今仍未确定,谭磊(Tan Lei)1985年证明了在每一个密休威茨点邻近M集与相关的J集之间存在着相似性。尤金斯等在M集的静电位研究中获得与自然形貌相似的分形图象。目前包括尤金斯等在内的很多研究人员都致力于借助计算机活动录象探索M集。其它一些分形集的研究工作正在取得进展。1990年德万尼通过数值实验观察到M集的复杂图形由许多不同周期的周期轨道的稳定区域共同构成。1991年黄永念运用他提出的代数分析法证明了这一事实,研究了M集及其广义情况周期轨道整体解析特性。
巴斯莱(B.M.Barnsley)和德门科(S.Demko)1985年引入迭代函数系统,J集及其其它很多分形集都是某些迭代函数的吸引集,用其它方法产生的分形集也可用迭代函数系逼近。1988年,劳威尔通过数值研究发现毕达哥拉斯树花是一迭代函数系的J集。1985年巴斯莱等研究含参数的函数系迭代动力系统,得到M集D并D与M在连通性上的差异。在一线性映射系迭代下,可以产生著名的分形曲线——双生龙曲线。1986年水谷(M.Mitzutani)等对其动力系统进行了研究。
一般动力系统中的分形集,其豪斯道夫维数dH难以通过理论方法或计算方法求得。对于有迭式构造的分形集,贝德浮德(T.Bedford)等在1986年已给出卓有成效的算法,但对一般非线性映射迭代动力系统产生的分形集,这些结果都难以应用,其豪斯道夫维数dH的结论与算法实际上没有。卡普兰(j.L.Kaplan)和约克(J.A.York) 1979年引入李雅普洛夫维数dL并猜测dL=dH。1981年勒拉皮尔证明dH≤dL。杨(L.S.Young)1982年证明二维情况下dH=dL。艾茄瓦(A.K.Agarwal)等1986年给出例子说明高维情形卡普兰-约克猜测不成立。这一猜测力图从动力学特征推断几何结构,其反问题是由吸引子维数推断混沌力学,这是值得研究的问题。但目前工作甚少且主要限于计算机研究。此外,含参动力系统在混沌临界态或突变处的分形集维数也有待进一步研究。
多重分形(multifractals)是与动力系统奇异吸引子有关的另一类重要分形集,其概念首先由曼德布罗特和伦依(A.Renyi)引入。法默(J.D.Farmer)等在1983年定义了多重分形广义维数。1988年博尔(T.Bohr)等人将拓扑熵引入多重分形的动力学描述与热力学类比。1988年,阿内多(A.Arneodo)等人将子波变换用于多重分形研究。费德(J.Feder)、特尔(T.Tel)等人进行了多重分形子集及标度指数的研究。阿姆特里卡等研究了多重分形的逆问题,提出广义配分函数,给出广义超越维数,对过去的维数进行了修正。李(J.Lee)等发现了多重分形热力学形式上的相变。1990年,伯克(C.Beck)得到广义维数的上下界和极限并研究了多重分形的均匀性量度。曼德布罗特研究了随机多重分形及负分维。1991年科维克(Z.Kov.acs)等引入双变量迭代系统,最大特征值和吉布斯势导出维数、熵、李雅普洛夫指数,提供了对多重分形相变分类的一般方案。对于多重分形相变分类的一般方案。对于多重分形目前虽已提出不少处理方法,但从数学的观点上看,还不够严格,部分问题的数学处理难度也较大。