备战中考数学压轴题之反比例函数(备战中考题型整理,突破提升)附答案

备战中考数学压轴题之反比例函数(备战中考题型整理,突破提升)附答案
备战中考数学压轴题之反比例函数(备战中考题型整理,突破提升)附答案

一、反比例函数真题与模拟题分类汇编(难题易错题)

1.如图,一次函数y=x+4的图象与反比例函数y= (k为常数,且k≠0)的图象交于A (﹣1,a),B(b,1)两点.

(1)求反比例函数的表达式;

(2)在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标;

(3)求△PAB的面积.

【答案】(1)解:当x=﹣1时,a=x+4=3,

∴点A的坐标为(﹣1,3).

将点A(﹣1,3)代入y= 中,

3= ,解得:k=﹣3,

∴反比例函数的表达式为y=﹣

(2)解:当y=b+4=1时,b=﹣3,

∴点B的坐标为(﹣3,1).

作点B关于x轴的对称点D,连接AD,交x轴于点P,此时PA+PB的值最小,如图所示.

∵点B的坐标为(﹣3,1),

∴点D的坐标为(﹣3,﹣1).

设直线AD的函数表达式为y=mx+n,

将点A(﹣1,3)、D(﹣3,﹣1)代入y=mx+n中,

,解得:,

∴直线AD的函数表达式为y=2x+5.

当y=2x+5=0时,x=﹣,

∴点P的坐标为(﹣,0)

(3)解:S△PAB=S△ABD﹣S△BDP= ×2×2﹣ ×2× =

【解析】【分析】(1)由一次函数图象上点的坐标特征可求出点A的坐标,根据点A的坐标利用待定系数法,即可求出反比例函数的表达式;(2)利用一次函数图象上点的坐标特征可求出点B的坐标,作点B关于x轴的对称点D,连接AD,交x轴于点P,此时PA+PB的值最小,由点B的坐标可得出点D的坐标,根据点A、D的坐标利用待定系数法,即可求出直线AB的函数表达式,再由一次函数图象上点的坐标特征即可求出点P的坐标;(3)根据三角形的面积公式结合S△PAB=S△ABD﹣S△BDP,即可得出结论.

2.如图,点P(x,y1)与Q(x,y2)分别是两个函数图象C1与C2上的任一点.当a≤x≤b 时,有﹣1≤y1﹣y2≤1成立,则称这两个函数在a≤x≤b上是“相邻函数”,否则称它们在a≤x≤b 上是“非相邻函数”.例如,点P(x,y1)与Q (x,y2)分别是两个函数y=3x+1与y=2x﹣1图象上的任一点,当﹣3≤x≤﹣1时,y1﹣y2=(3x+1)﹣(2x﹣1)=x+2,通过构造函数y=x+2并研究它在﹣3≤x≤﹣1上的性质,得到该函数值的范围是﹣1≤y≤1,所以﹣1≤y1﹣y2≤1成立,因此这两个函数在﹣3≤x≤﹣1上是“相邻函数”.

(1)判断函数y=3x+2与y=2x+1在﹣2≤x≤0上是否为“相邻函数”,并说明理由;

(2)若函数y=x2﹣x与y=x﹣a在0≤x≤2上是“相邻函数”,求a的取值范围;

(3)若函数y= 与y=﹣2x+4在1≤x≤2上是“相邻函数”,直接写出a的最大值与最小值.【答案】(1)解:是“相邻函数”,

理由如下:y1﹣y2=(3x+2)﹣(2x+1)=x+1,构造函数y=x+1,

∵y=x+1在﹣2≤x≤0,是随着x的增大而增大,

∴当x=0时,函数有最大值1,当x=﹣2时,函数有最小值﹣1,即﹣1≤y≤1,

∴﹣1≤y1﹣y2≤1,

即函数y=3x+2与y=2x+1在﹣2≤x≤0上是“相邻函数”

(2)解:y1﹣y2=(x2﹣x)﹣(x﹣a)=x2﹣2x+a,构造函数y=x2﹣2x+a,

∵y=x2﹣2x+a=(x﹣1)2+(a﹣1),

∴顶点坐标为:(1,a﹣1),

又∵抛物线y=x2﹣2x+a的开口向上,

∴当x=1时,函数有最小值a﹣1,当x=0或x=2时,函数有最大值a,即a﹣1≤y≤a,

∵函数y=x2﹣x与y=x﹣a在0≤x≤2上是“相邻函数”,

∴﹣1≤y1﹣y2≤1,即,

∴0≤a≤1

(3)解:y1﹣y2= ﹣(﹣2x+4)= +2x﹣4,构造函数y= +2x﹣4,

∵y= +2x﹣4

∴当x=1时,函数有最小值a﹣2,

当x=2时,函数有最大值,即a﹣2≤y≤ ,

∵函数y= 与y=﹣2x+4在1≤x≤2上是“相邻函数”,

∴﹣1≤y1﹣y2≤1,即,

∴1≤a≤2;

∴a的最大值是2,a的最小值1

【解析】【分析】(1)y1﹣y2=(3x+2)﹣(2x+1)=x+1,构造函数y=x+1,因为y=x+1在﹣2≤x≤0,是随着x的增大而增大,所以当x=0时,函数有最大值1,当x=﹣2时,函数有最小值﹣1,即﹣1≤y≤1,所以﹣1≤y1﹣y2≤1,即函数y=3x+2与y=2x+1在﹣2≤x≤0上是“相邻函数”;(2)y1﹣y2=(x2﹣x)﹣(x﹣a)=x2﹣2x+a,构造函数y=x2﹣2x+a,因为y=x2﹣2x+a=(x﹣1)2+(a﹣1),所以顶点坐标为:(1,a﹣1),又抛物线y=x2﹣2x+a的开口向上,所以当x=1时,函数有最小值a﹣1,当x=0或x=2时,函数有最大值a,即a﹣1≤y≤a,因为函数y=x2﹣x与y=x﹣a在0≤x≤2上是“相邻函数”,所以﹣1≤y1﹣y2≤1,即

0≤a≤1;(3)当x=1时,函数有最小值a﹣2,当x=2时,函数有最大值,因为函数y=与y=﹣2x+4在1≤x≤2上是“相邻函数”,﹣1≤y1﹣y2≤1,即1≤a≤2,所以a的最大值是2,a 的最小值1.

3.如图,四边形OP1A1B1、A1P2A2B2、A2P3A3B3、…、A n﹣1P n A n B n都是正方形,对角线OA1、A1A2、A2A3、…、A n﹣1A n都在y轴上(n≥1的整数),点P1(x1,y1),点P2(x2,

y2),…,P n(x n, y n)在反比例函数y= (x>0)的图象上,并已知B1(﹣1,1).

(1)求反比例函数y= 的解析式;

(2)求点P2和点P3的坐标;

(3)由(1)、(2)的结果或规律试猜想并直接写出:△P n B n O的面积为 ________ ,点P n的坐标为________ (用含n的式子表示).

【答案】(1)解:在正方形OP1A1B1中,OA1是对角线,

则B1与P1关于y轴对称,

∵B1(﹣1,1),

∴P1(1,1).

则k=1×1=1,即反比例函数解析式为y=

(2)解:连接P2B2、P3B3,分别交y轴于点E、F,

又点P1的坐标为(1,1),

∴OA1=2,

设点P2的坐标为(a,a+2),

代入y=得a=-1,

故点P2的坐标为(-1,+1),

则A1E=A2E=2-2,OA2=OA1+A1A2=2,

设点P3的坐标为(b,b+2),

代入y=(>0)可得b=-,

故点P3的坐标为(-,+)

(3)1;(-,+)

【解析】【解答】解:(3)∵=2=2×=1,=2=2×=1,…

∴△P n B n O的面积为1,

由P1(1,1)、P2(﹣1, +1)、P3(﹣,+ )知点P n的坐标为(﹣,+ ),

故答案为:1、(﹣, +).

【分析】(1)由四边形OP1A1B1为正方形且OA1是对角线知B1与P1关于y轴对称,得出点P1(1,1),然后利用待定系数法求解即可;

(2)连接P2B2、P3B3,分别交y轴于点E、F,由点P1坐标及正方形的性质知OA1=2,设P2的坐标为(a,a+2),代入解析式求得a的值即可,同理可得点P3的坐标;

(3)先分别求得S△P1B1O、S△P2B2O的值,然后找出其中的规律,最后依据规律进行计算即可.

4.如图1,经过原点的抛物线y=ax2+bx+c与x轴的另一个交点为点C;与双曲线y= 相交于点A,B;直线AB与分别与x轴、y轴交于点D,E.已知点A的坐标为(﹣1,4),点B在第四象限内且到x轴、y轴的距离相等.

(1)求双曲线和抛物线的解析式;

(2)计算△ABC的面积;

(3)如图2,将抛物线平移至顶点在原点上时,直线AB随之平移,试判断:在y轴的负半轴上是否存在点P,使△PAB的内切圆的圆心在y轴上?若存在,求出点P的坐标;若不存在,请说明理由.

【答案】(1)解:把点A的坐标代入双曲线的解析式得:k=﹣1×4=﹣4.

所以双曲线的解析式为y=﹣.

设点B的坐标为(m,﹣m).

∵点B在双曲线上,

∴﹣m2=﹣4,解得m=2或m=﹣2.

∵点B在第四象限,

∴m=2.

∴B(2,﹣2).

将点A、B、C的坐标代入得:,

解得:.

∴抛物线的解析式为y=x2﹣3x.

(2)解:如图1,连接AC、BC.

令y=0,则x2﹣3x=0,

∴x=0或x=3,

∴C(3,0),

∵A(﹣1,4),B(2,﹣2),

∴直线AB的解析式为y=﹣2x+2,

∵点D是直线AB与x轴的交点,

∴D(1,0),

∴S△ABC=S△ADC+S△BDC= ×2×4+ ×2×2=6;

(3)解:存在,理由:如图2,

由原抛物线的解析式为y=x2﹣3x=(x﹣)2﹣,

∴原抛物线的顶点坐标为(,﹣),

∴抛物线向左平移个单位,再向上平移个单位,

而平移前A(﹣1,4),B(2,﹣2),

∴平移后点A(﹣,),B(,),

∴点A关于y轴的对称点A'(,),

连接A'B并延长交y轴于点P,连接AP,

由对称性知,∠APE=∠BPE,

∴△APB的内切圆的圆心在y轴上,

∵B(,),A'(,),

∴直线A'B的解析式为y=3x﹣,

∴P(0,﹣).

【解析】【分析】(1)首先将点A的坐标代入反比例函数的解析式求得k的值,然后再求得B的值,最后根据点A的坐标求出双曲线的解析式,进而得出点B的坐标,最后,将点A、B、O三点的坐标代入抛物线的解析式,求得a、b、c的值即可;

(2)由点A和点B的坐标可求得直线AB的解析式,然后将y=0可求得点D的横坐标,最后用三角形的面积和求解即可;

(3)先确定出平移后点A,B的坐标,进而求出点A关于y轴的对称点的坐标,求出直线BA'的解析式即可得出点P的坐标.

5.平面直角坐标系xOy中,点A、B分别在函数y1= (x>0)与y2=﹣(x<0)的图象上,A、B的横坐标分别为a、b.

(1)若AB∥x轴,求△OAB的面积;

(2)若△OAB是以AB为底边的等腰三角形,且a+b≠0,求ab的值;

(3)作边长为2的正方形ACDE,使AC∥x轴,点D在点A的左上方,那么,对大于或等于3的任意实数a,CD边与函数y1= (x>0)的图象都有交点,请说明理由.

【答案】(1)解:由题意知,点A(a,),B(b,﹣),

∵AB∥x轴,

∴,

∴a=﹣b;

∴AB=a﹣b=2a,

∴S△OAB= ?2a? =3

(2)解:由(1)知,点A(a,),B(b,﹣),

∴OA2=a2+()2, OB2=b2+(﹣)2,

∵△OAB是以AB为底边的等腰三角形,

∴OA=OB,

∴OA2=OB2,

∴a2+()2=b2+(﹣)2,

∴a2﹣b2=()2﹣()2,

∴(a+b)(a﹣b)=( + )(﹣)= ,

∵a>0,b<0,

∴ab<0,a﹣b≠0,

∵a+b≠0,

∴1= ,

∴ab=3(舍)或ab=﹣3,

即:ab的值为﹣3;

(3)解:对大于或等于3的任意实数a,CD边与函数y1= (x>0)的图象都有交点.

理由:如图,

∵a≥3,AC=2,

∴直线CD在y轴右侧且平行于y轴,

∴直线CD一定与函数y1= (x>0)的图象有交点,

∵四边形ACDE是边长为2的正方形,且点D在点A(a,)的左上方,

∴C(a﹣2,),

∴D(a﹣2, +2),

设直线CD与函数y1= (x>0)相交于点F,

∴F(a﹣2,),

∴FC= ﹣ = ,

∴2﹣FC=2﹣ = ,

∵a≥3,

∴a﹣2>0,a﹣3≥0,

∴≥0,

∴2﹣FC≥0,

∴FC≤2,

∴点F在线段CD上,

即:对大于或等于3的任意实数a,CD边与函数y1= (x>0)的图象都有交点.

【解析】【分析】(1)先判断出a=﹣b,即可得出AB=2a,再利用三角形的面积公式即可

得出结论;(2)利用等腰三角形的两腰相等建立方程求解即可得出结论;(3)先判断出

直线CD和函数y1= (x>0)必有交点,根据点A的坐标确定出点C,F的坐标,进而得出FC,再判断FC与2的大小即可.

6.平面直角坐标系xOy中,已知函数y1= (x>0)与y2=﹣(x<0)的图象如图所示,

点A、B是函数y1= (x>0)图象上的两点,点P是y2=﹣(x<0)的图象上的一点,且AP∥x轴,点Q是x轴上一点,设点A、B的横坐标分别为m、n(m≠n).

(1)求△APQ的面积;

(2)若△APQ是等腰直角三角形,求点Q的坐标;

(3)若△OAB是以AB为底的等腰三角形,求mn的值.

【答案】(1)解:过点P、A、Q分别作PM x轴交x轴于点M,PN x轴交x轴于点N,QR AP轴交AP轴于点R,则四边形APMN、四边形PMQR、四边形ARQN是矩形,如图所示:

∵点A的横坐标为m,且在函数上,AP∥x轴,且点P在函数上,

∴点A(m, ),点P(-m, ),

∴MN=m-(-m)=2m,PM= ,

∴S矩形PMNA=2m╳ =8,

∵四边形PMQR、四边形ARQN是矩形,

∴S△PQM=S△PRQ, S△ANQ=S△ARQ,

∴S△APQ=S△PRQ+ S△ARQ= S矩形PMNA=4

(2)解:当PQ x轴时,则PQ=,,AP=2m,

∵PQ=AP

∴2m= ,

∴m=

∴ ,

当PQ=AQ时,则

(3)解:∵△OAB是以AB为底的等腰三角形,

∴OA=OB,

∵A(m, ),B(n, ),

∴mn=4.

【解析】【分析】(1)过点P、A、Q分别作PM ⊥ x轴交x轴于点M,PN ⊥ x轴交x轴于点N,QR ⊥ AP轴交AP轴于点R,则四边形APMN、四边形PMQR、四边形ARQN是矩形,根据点A的横坐标为m,利用函数解析式表示出点A的坐标和点P的坐标,最后用三角形的面积公式即可得出结论。

(2)分情况讨论:当PQ=AP和当PQ=AQ时,利用等腰直角三角形和AP∥x轴,建立方程求解即可;

(3)利用等腰三角形的两腰相等建立方程,即可得出结论。

7.如图,过原点O的直线与双曲线交于上A(m,n)、B,过点A的直线交x轴正半轴于点D,交y轴负半轴于点E,交双曲线于点P.

(1)当m=2时,求n的值;

(2)当OD:OE=1:2,且m=3时,求点P的坐标;

(3)若AD=DE,连接BE,BP,求△PBE的面积.

【答案】(1)解:∵点A(m,n)在双曲线y=上,

∴mn=6,

∵m=2,

∴n=3;

(2)解:由(1)知,mn=6,

∵m=3,

∴n=2,

∴A(3,2),

∵OD:OE=1:2,

设OD=a,则OE=2a,

∵点D在x轴坐标轴上,点E在y轴负半轴上,

∴D(a,0),E(0,﹣2a),

∴直线DE的解析式为y=2x﹣2a,

∵点A(3,2)在直线y=2x﹣2a上,

∴6﹣2a=2,

∴a=2,

∴直线DE的解析式为y=2x﹣4①,

∵双曲线的解析式为y=②,

联立①②解得,(点A的横纵坐标,所以舍去)或,∴P(﹣2,﹣3);

(3)解:∵AD=DE,点D在x轴坐标轴上,点E在y轴负半轴上,A(m,n),

∴E(0,﹣n),D( m,0),

∴直线DE的解析式为y= x﹣n,

∵mn=6,

∴m=,

∴y= x﹣n③,

∵双曲线的解析式为y=④,

联立③④解得,

∴(点A的横纵坐标,所以舍去)或,

∴P(﹣2m,﹣2n),

∵A(m,n),

∴直线AB的解析式为y=x⑤.

联立④⑤解得,(点A的横纵坐标,所以舍去)或

∴B(﹣m,﹣n),

∵E(0,﹣n),

∴BE∥x轴,

∴S△PBE= BE×|y E﹣y P|= ×m×|﹣n﹣(﹣2n)|= mn=3.

【解析】【分析】(1)把A(2,n)代入解析式即可求出n;(2)先求出A点坐标,设OD=a,则OE=2a,得D(a,0),E(0,﹣2a),直线DE的解析式为y=2x﹣2a,把点A(3,2)代入求出a,再联立两函数即可求出交点P;(3)由AD=DE,点D在x轴坐标

轴上,点E在y轴负半轴上,故A(m,n),E(0,﹣n),D( m,0),求得直线DE 的解析式为y= x﹣n,又mn=6,得y= x﹣n,与y=联立得,即为P点坐标,由直线AB的解析式为y= x与双曲线联立解得B (﹣m,﹣n),再根据S△PBE= BE×|y E﹣y P|= ×m×|﹣n﹣(﹣2n)|求出等于3.

8.如图,反比例函数的图象与一次函数y=kx+5(k为常数,且k≠0)的图象交于A (﹣2,b),B两点.

(1)求一次函数的表达式;

(2)若将直线AB向下平移m(m>0)个单位长度后与反比例函数的图象有且只有一个公共点,求m的值.

【答案】(1)解:把A(﹣2,b)代入,

得b=﹣ =4,

所以A点坐标为(﹣2,4),

把A(﹣2,4)代入y=kx+5,

得﹣2k+5=4,解得k= ,

所以一次函数解析式为y= x+5;

(2)解:将直线AB向下平移m(m>0)个单位长度得直线解析式为y= x+5﹣m,

根据题意方程组只有一组解,

消去y得﹣ = x+5﹣m,

整理得 x2﹣(m﹣5)x+8=0,

△=(m﹣5)2﹣4× ×8=0,

解得m=9或m=1,

即m的值为1或9.

【解析】【分析】(1)先利用反比例函数解析式求出b=4,得到A点坐标为(-2,4),

然后把A点坐标代入y=kx+5中求出k,从而得到一次函数解析式;

(2)由于将直线AB向下平移m(m>0)个单位长度得直线解析式为y=,又与反比例函数有且只有一个公共点,可组成方程组,且只有一组解,然后消去y得到关于x的一元二次方程,再根据判别式=0得到关于m的方程,最后解方程求出m的值.

9.理数学兴趣小组在探究如何求tan15°的值,经过思考、讨论、交流,得到以下思路:

思路一如图1,在Rt△ABC中,∠C=90°,∠ABC=30°,延长CB至点D,使BD=BA,连接

AD.设AC=1,则BD=BA=2,BC= .tanD=tan15°= = = .

思路二利用科普书上的和(差)角正切公式:tan(α±β)= .假设

α=60°,β=45°代入差角正切公式:tan15°=tan(60°﹣45°)= =

= .

思路三在顶角为30°的等腰三角形中,作腰上的高也可以…

思路四…

请解决下列问题(上述思路仅供参考).

(1)类比:求出tan75°的值;

(2)应用:如图2,某电视塔建在一座小山上,山高BC为30米,在地平面上有一点A,测得A,C两点间距离为60米,从A测得电视塔的视角(∠CAD)为45°,求这座电视塔CD的高度;

(3)拓展:如图3,直线与双曲线交于A,B两点,与y轴交于点C,将直线AB绕点C旋转45°后,是否仍与双曲线相交?若能,求出交点P的坐标;若不能,

请说明理由.

【答案】(1)解:方法一:如图1,

在Rt△ABC中,∠C=90°,∠ABC=30°,延长CB至点D,使BD=BA,连接AD.设AC=1,则BD=BA=2,BC= .tan∠DAC=tan75°= = = = ;

方法二:tan75°=tan(45°+30°)= = = =

(2)解:如图2,

在Rt△ABC中,AB= = = ,sin∠BAC= ,即

∠BAC=30°.∵∠DAC=45°,∴∠DAB=45°+30°=75°.在Rt△ABD中,tan∠DAB= ,∴DB=AB?tan∠DAB= ?()= ,∴DC=DB﹣BC= = .

答:这座电视塔CD的高度为()米

(3)解:①若直线AB绕点C逆时针旋转45°后,与双曲线相交于点P,如图3.过点C 作CD∥x轴,过点P作PE⊥CD于E,过点A作AF⊥CD于F.

解方程组:,得:或,∴点A(4,1),点B(﹣2,﹣2).对于,当x=0时,y=﹣1,则C(0,﹣1),OC=1,∴CF=4,AF=1﹣(﹣1)=2,∴tan∠ACF= ,∴tan∠PCE=tan(∠ACP+∠ACF)=tan

(45°+∠ACF)= = =3,即 =3.设点P的坐标为(a,b),则有:,

解得:或,∴点P的坐标为(﹣1,﹣4)或(,3);

②若直线AB绕点C顺时针旋转45°后,与x轴相交于点G,如图4.

由①可知∠ACP=45°,P(,3),则CP⊥CG.过点P作PH⊥y轴于H,则∠GOC=∠CHP=90°,∠GCO=90°﹣∠HCP=∠CPH,∴△GOC∽△CHP,∴.∵CH=3

﹣(﹣1)=4,PH= ,OC=1,∴,∴GO=3,G(﹣3,0).设直线CG的解析式为,则有:,解得:,∴直线CG的解析式为

.联立:,消去y,得:,整理得:,∵△= ,∴方程没有实数根,∴点P 不存在.

综上所述:直线AB绕点C旋转45°后,能与双曲线相交,交点P的坐标为(﹣1,﹣4)或

(,3).

【解析】【分析】tan∠DAC=tan75°,tan∠DAC用边的比值表示.在Rt△ABC中,由勾股定理求出AB,由三角函数得出∠BAC=30°,从而得到∠DAB=75°,在Rt△ABD中,可求出DB,DC=DB﹣BC.分两种情况讨论,设点P的坐标为(a,b),根据tan∠PCE和P在图像上列出含有a,b的方程组,求出a,b.利用已知证明△GOC∽△CHP,根据相似三角形的性质可求出G的坐标,设出直线CG的解析式,与反比例函数组成方程组消元,△<0 点P不存在.

10.如图,正方形AOCB的边长为4,反比例函数y= (k≠0,且k为常数)的图象过点

E,且S△AOE=3S△OBE.

(1)求k的值;

(2)反比例函数图象与线段BC交于点D,直线y= x+b过点D与线段AB交于点F,延长

OF交反比例函数y= (x<0)的图象于点N,求N点坐标.

【答案】(1)解:∵S△AOE=3S△OBE,∴AE=3BE,

∴AE=3,

∴E(﹣3,4)

反比例函数y= (k≠0,且k为常数)的图象过点E,

∴4= ,即k=﹣12

(2)解:∵正方形AOCB的边长为4,∴点D的横坐标为﹣4,点F的纵坐标为4.

∵点D在反比例函数的图象上,

∴点D的纵坐标为3,即D(﹣4,3).

∵点D在直线y= x+b上,

∴3= ×(﹣4)+b,解得b=5.

∴直线DF为y= x+5,

将y=4代入y= x+5,得4= x+5,解得x=﹣2.

∴点F的坐标为(﹣2,4),

设直线OF的解析式为y=mx,

代入F的坐标得,4=﹣2m,

解得m=﹣2,

∴直线OF的解析式为y=﹣2x,

解,得.

∴N(﹣,2 )

【解析】【分析】(1)根据题意求得E的坐标,把点E(﹣3,4)代入利用待定系数法即可求出k的值;(2)由正方形AOCB的边长为4,故可知点D的横坐标为﹣4,点F的纵坐标为4.由于点D在反比例函数的图象上,所以点D的纵坐标为3,即D(﹣4,3),

由点D在直线y= x+b上可得出b的值,进而得出该直线的解析式,再把y=4代入直线的解析式即可求出点F的坐标,然后根据待定系数法求得直线OF的解析式,然后联立方程解方程组即可求得.

11.如图,已知,A(0,4),B(﹣3,0),C(2,0),D为B点关于AC的对称点,反比例函数y= 的图象经过D点.

(1)证明四边形ABCD为菱形;

(2)求此反比例函数的解析式;

(3)已知在y= 的图象(x>0)上一点N,y轴正半轴上一点M,且四边形ABMN是平行四边形,求M点的坐标.

【答案】(1)解:∵A(0,4),B(﹣3,0),C(2,0),

∴OA=4,OB=3,OC=2,

∴AB= =5,BC=5,

∴AB=BC,

∵D为B点关于AC的对称点,

∴AB=AD,CB=CD,

∴AB=AD=CD=CB,

∴四边形ABCD为菱形

(2)解:∵四边形ABCD为菱形,

∴D点的坐标为(5,4),反比例函数y= 的图象经过D点,

∴4= ,

∴k=20,

∴反比例函数的解析式为:y=

(3)解:∵四边形ABMN是平行四边形,

∴AN∥BM,AN=BM,

∴AN是BM经过平移得到的,

∴首先BM向右平移了3个单位长度,

∴N点的横坐标为3,

代入y= ,

得y= ,

∴M点的纵坐标为:﹣4= ,

2020上海中考数学压轴题专项训练

1文档来源为:从网络收集整理.word 版本可编辑. 24.(本题满分12分,第(1)小题满分3分,第(2)小题满分4分,第(3)小题满分5分) 如图,已知抛物线2y x bx c =++经过()01A -, 、()43B -,两点. (1)求抛物线的解析式; (2 求tan ABO ∠的值; (3)过点B 作BC ⊥x 轴,垂足为点C ,点M 是抛物线上一点,直线MN 平行于y 轴交直线AB 于点N ,如果M 、N 、B 、C 为顶点的四边形是平行四边形,求点N 的坐标. 24.解:(1)将A (0,-1)、B (4,-3)分别代入2 y x bx c =++ 得 1, 1643 c b c =-?? ++=-?, ………………………………………………………………(1分) 解,得9 ,12b c =-=- …………………………………………………………………(1分) 所以抛物线的解析式为29 12y x x =- - …………………………………………… (1分) (2)过点B 作BC ⊥x 轴,垂足为C ,过点A 作AH ⊥OB ,垂足为点H ………(1分) 在Rt AOH ?中,OA =1,4 sin sin ,5AOH OBC ∠=∠= ……………………………(1分) ∴4sin 5AH OA AOH =∠= ,∴322,55 OH BH OB OH ==-=, ………………(1分) 在Rt ABH ?中,4222 tan 5511AH ABO BH ∠==÷= ………………………………(1分) (3)直线AB 的解析式为1 12y x =--, ……………………………………………(1分) 设点M 的坐标为29(,1)2m m m --,点N 坐标为1 (,1)2 m m -- 那么MN =2291 (1)(1)422 m m m m m - ----=-; …………………………(1分) ∵M 、N 、B 、C 为顶点的四边形是平行四边形,∴MN =BC =3 解方程2 4m m -=3 得2m =± ……………………………………………(1分) 解方程2 43m m -+=得1m =或3m =; ………………………………………(1分) 所以符合题意的点N 有4 个35 (22),(22),(1,),(3,)22 --+--- ……………………………………………………………………………………(1分) 25.(本题满分14分,第(1)小题满分4分,第(2)小题满分5分,第(3)小题满分5

中考数学压轴题题型解题思路技巧

中考数学压轴题题型解题思路技巧 数学综压轴题是为考察考生综合运用知识的能力而设计的,集中体现知识的综合性和方法的综合性,多数为函数型综合题和几何型综合题。 函数型综合题: 是给定直角坐标系和几何图形,先求函数的解析式,再进行图形的研究,求点的坐标或研究图形的某些性质。求已知函数的解析式主要方法是待定系数法,关键是求点的坐标,而求点的坐标基本方法是几何法(图形法)和代数法(解析法)。 几何型综合题: 是先给定几何图形,根据已知条件进行计算,然后有动点(或动线段)运动,对应产生线段、面积等的变化,求对应的(未知)函数的解析式,求函数的自变量的取值范围,最后根据所求的函数关系进行探索研究。一般有:在什么条件下图形是等腰三角形、直角三角形,四边形是平行四边形、菱形、梯形等,或探索两个三角形满足什么条件相似等,或探究线段之间的数量、位置关系等,或探索面积之间满足一定关系时求x的值等,或直线(圆)与圆的相切时求自变量的值等。求未知函数解析式的关键是列出包含自变量和因变量之间的等量关系(即列出含有x、y的方程),变形写成y=f(x)的形式。找等量关系的途径在初中主要有利用勾股定理、平行线截得比例线段、三角形相似、面积相等方法。求函数的自变量的取值范围主要是寻找图形的特殊位置(极端位置)和根据解析式求解。而最后的探索问题千变万化,但少不了对图形的分析和研究,用几何和代数的方法求出x的值。 解中考压轴题思路:

中考压轴题大多是以坐标系为桥梁,运用数形结合思想,通过建立点与数即坐标之间的对应关系,一方面可用代数方法研究几何图形的性质,另一方面又可借助几何直观,得到某些代数问题的解答。关键是掌握几种常用的数学思想方法。 一是运用函数与方程思想。以直线或抛物线知识为载体,列(解)方程或方程组求其解析式、研究其性质。 二是运用分类讨论的思想。对问题的条件或结论的多变性进行考察和探究。 三是运用转化的数学的思想。由已知向未知,由复杂向简单的转换。中考压轴题它是对考生综合能力的一个全面考察,所涉及的知识面广,所使用的数学思想方法也较全面。因此,可把压轴题分离为相对独立而又单一的知识或方法组块去思考和探究。 解中考压轴题技巧: 一是对自身数学学习状况做一个完整的全面的认识。根据自己的情况考试的时候重心定位准确,防止“捡芝麻丢西瓜”。所以,在心中一定要给压轴题或几个“难点”一个时间上的限制,如果超过你设置的上限,必须要停止,回头认真检查前面的题,尽量要保证选择、填空万无一失,前面的解答题尽可能的检查一遍。 二是解数学压轴题做一问是一问。第一问对绝大多数同学来说,不是问题;如果第一小问不会解,切忌不可轻易放弃第二小问。过程会多少写多少,因为数学解答题是按步骤给分的,写上去的东西必须要规范,字迹要工整,布局要合理;过程会写多少写多少,但是不要说废话,计算中尽量回避非必求成分;尽量多用几何知识,少用代数计算,尽量用三角函数,少在直角三角形中使用相似三角形的性质。

中考数学中二次函数压轴题分类总结

中考数学中二次函数压 轴题分类总结 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

二次函数的压轴题分类复习 一、抛物线关于三角形面积问题 例题 二次函数k m x y ++=2)(的图象,其顶点坐标为M(1,4-). (1)求出图象与x 轴的交点A ,B 的坐标; (2)在二次函数的图象上是否存在点P ,使MAB PAB S S ??=4 5 ,若存在,求出P 点的坐标;若不存在,请说明理由; (3)将二次函数的图象在x 轴下方的部分沿x 轴翻折,图象的其余部分保持不变,得到一个新的图象,请你结合这个新的图象回答:当直线)1(<+=b b x y 与此图象有两个公共点时,b 的取值范围. 练习: 1. 如图.平面直角坐标系xOy 中,点A 的坐标为(-2,2),点B 的坐标为(6,6),抛物线经过A 、O 、B 三点,线段AB 交y 轴与点E . (1)求点E 的坐标; (2)求抛物线的函数解析式; (3)点F 为线段OB 上的一个动点(不与O 、B 重合),直线EF 与抛物线交与M 、N 两点(点N 在y 轴右侧),连结ON 、BN ,当点F 在线段OB 上运动时,求?BON 的面积的最大值,并求 出此时点N 的坐标; 2. 如图,已知抛物线42 12++-=x x y 交x 轴的正半轴于点A ,交y 轴于点B . (1)求A 、B 两点的坐标,并求直线AB 的解析式; (2)设),(y x P (0>x )是直线x y =上的一点,Q 是OP 的中点(O 是原点),以PQ 为对角线作 正方形PEQF .若正方形PEQF 与直线AB 有公共点,求x 的取值范围; (3)在(2)的条件下,记正方形PEQF 与△OAB 公共部分的面积为S ,求S 关于x 的函数解析式,并探究S 的最大值. y x O B N A M E F B y

最新中考之反比例函数填空选择压轴题

精品文档
中考之反比例函数填空选择压轴题
1、(2011?宁波)正方形的 A1B1P1P2 顶点 P1、P2 在反比例函数 y= 2 (x>0)的图象上,顶 x
点 A1、B1 分别在 x 轴、y 轴的正半轴上,再在其右侧作正方形 P2P3A2B2,顶点 P3 在反比例函
数 y= 2 (x>0)的图象上,顶点 A2 在 x 轴的正半轴上,则 P2 点的坐标为___________,则 x
点 P3 的坐标为__________。 2、已知关于 x 的方程 x2+3x+a=0 的两个实数根的倒数和等于 3,且关于 x 的方程(k-1)
x2+3x-2a=0
有实根,且
k
为正整数,正方形
ABP1P2
的顶点
P1、P2
在反比例函数
y=
k
? 1(x x
>0)图象上,顶点 A、B 分别在 x 轴和 y 轴的正半轴上,求点 P2 的坐标.
3、如图,正方形 OABC 和正方形 AEDF 各有一个顶点在一反比例函数图象上,且正方形
OABC 的边长为 2.(1)求反比例函数的解析式;(2)求点 D 的坐标.
4、两个反比例函数
y=
3 x
,y=
6 x
在第一象限内的图象如图所示,点
P1、P2
在反比例函数图象
上,过点 P1 作 x 轴的平行线与过点 P2 作 y 轴的平行线相交于点 N,若点 N(m,n)恰好在
y=
3 x
的图象上,则
NP1

NP2
的乘积是______。
4、两个反比例函数
y=
3 x
,y=
6 x
在第一象限内的图象如图所示,点
P1、P2
在反比例函数图
象上,过点 P1 作 x 轴的平行线与过点 P2 作 y 轴的平行线相交于点 N,若点 N(m,n)恰好

y=
3 x
的图象上,则
NP1

NP2
的乘积是______。
5、2007?泰安)已知三点
P1(x1,y1),P2(x2,y2),P3(1,-2)都在反比例函数
y=
k x

图象上,若 x1<0,x2>0,则下列式子正确的是( )
A.y1<y2<0
B.y1<0<y2
C.y1>y2>0
D.y1>0>y2
精品文档

中考数学压轴题 易错题难题专项训练检测试题

一、中考数学压轴题 1.如图,一张半径为3cm 的圆形纸片,点O 为圆心,将该圆形纸片沿直线l 折叠,直线l 交O 于A B 、两点. (1)若折叠后的圆弧恰好经过点O ,利用直尺和圆规在图中作出满足条件的一条直线l (不写作法,保留作图痕迹),并求此时线段AB 的长度. (2)已知M 是 O 一点,1cm OM =. ①若折叠后的圆弧经过点M ,则线段AB 长度的取值范围是________. ②若折叠后的圆弧与直线OM 相切于点M ,则线段AB 的长度为_________cm . 2.如图1,在 O 中,弦AB ⊥弦CD ,垂足为点E ,连接AD 、BC 、AO , AD AB =. (1)求证:2CAO CDB ∠=∠ (2)如图2,过点O 作OH AD ⊥,垂足为点H ,求证:2OH CE DE += (3)如图3,在(2)的条件下,延长DB 、AC 交于点F ,过点D 作DM AC ⊥,垂足为M ,交AB 于N ,若12BC =,3AF BF =,求MN 的长. 3.已知抛物线2 17 22 2 y x mx m 的顶点为点C . (1)求证:不论m 为何实数,该抛物线与x 轴总有两个不同的交点; (2)若抛物线的对称轴为直线3x =,求m 的值和C 点坐标; (3)如图,直线1y x =-与(2)中的抛物线并于A B 、两点,并与它的对称轴交于点D ,直线x k =交直线AB 于点M ,交抛物线于点N .求当k 为何值时,以C D M N 、、、为顶点的四边形为平行四边形.

4.已知,在Rt △ABC 和Rt △DEF 中,∠ACB=∠EDF=90°,∠A=30°,∠E=45°,AB =EF =6,如图1,D 是斜边AB 的中点,将等腰Rt △DEF 绕点D 顺时针方向旋转角α(0°<α<90°),在旋转过程中,直线DE ,AC 相交于点M ,直线DF ,BC 相交于点N . (1)如图1,当α=60°时,求证:DM =BN ; (2)在上述旋转过程中, DN DM 的值是一个定值吗?请在图2中画出图形并加以证明; (3)如图3,在上述旋转过程中,当点C 落在斜边EF 上时,求两个三角形重合部分四边形CMDN 的面积. 5.如图,在等边ABC ?中,延长AB 至点D ,延长AC 交BD 的中垂线于点E ,连接 BE ,DE . (1)如图1,若310DE =,23BC =,求CE 的长; (2)如图2,连接CD 交BE 于点M ,在CE 上取一点F ,连接DF 交BE 于点N ,且 DF CD =,求证:12 AB EF =; (3)在(2)的条件下,若45AED ∠=?直接写出线段BD ,EF ,ED 的等量关系 6.如图,90EOF ∠=?,矩形ABCD 的边BA 、BC 分别在OF 、OE 上,4AB =, 3BC =,矩形ABCD 沿射线OD 方向,以每秒1个单位长度的速度运动.同时点P 从点A 出发沿折线AD DC -以每秒1个单位长度的速度向终点C 运动,当点P 到达点C 时,

中考数学压轴题解题技巧之欧阳数创编

中考数学压轴题解题技巧 时间:2021.03.02 创作:欧阳数 数学压轴题是初中数学中覆盖知识面最广,综合性最强的题型。综合近年来各地中考的实际情况,压轴题多以数学综合题的形式出现,常见题型有两类:函数型压轴题和几何形压轴题。压轴题考查知识点多,条件也相当隐晦,这就要求学生有较强的理解问题、分析问题、解决问题的能力,对数学知识、数学方法有较强的驾驭能力,并有较强的创新意识和创新能力,当然,还必须具有强大的心理素质。 下面从知识角度和技术角度谈谈中考数学压轴题的解题技巧。 先以2009年河南中考数学压轴题为例: 如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(4,0)、C(8,0)、D(8,8).抛物线y=ax2+bx过A、C两点. (1)直接写出点A的坐标,并求出抛物线

的解析式; (2)动点P从点A出发.沿线段AB向终点B运动,同时点Q从点C出发,沿线段CD向终点D运动.速度均为每秒1个单位长度,运动时间为t秒.过点P作PE⊥AB交AC于点E. ①过点E作EF⊥AD于点F,交抛物线于点G.当t为何值时,线段EG最长? ②连接EQ.在点P、Q运动的过程中,判断有几个时刻使得△CEQ是等腰三角形?请直接写出相应的t值. 这是一道函数型压轴题。函数型压轴题主要有:几何与函数相结合型、坐标与几何、方程与函数相结合型。这些压轴题主要以函数为主线,涉及函数的图象、方程、点的坐标及线段长度、图形面积等问题。 先从知识角度来分析: (1)通过观察图象可以发现,直线AD和轴平行,直线AB和轴平行,因此,A点与D点的纵坐标相同,A点与B的横坐标相同,因此A的坐标为

反比例函数压轴题

反比例函数 经典结论: 如图,反比例函数k 的几何意义: (I ) 1 2 AOB AOC S S k ??== ; (II ) OBAC S k =矩形。 下面两个结论是上述结论的拓展. (1) 如图①, OPA OCD S S ??=,OPC PADC S S ?=梯形。 (2)如图②, O A P B O B C S S =梯形梯形,BPE ACE S S ??=。 1.如图,已知双曲线(0)k y x x = >经过矩形OABC 边AB 的中点F 且交BC 于点E ,四边形OEBF 的面积为2,则k = ; 2.如图,点A B 、为直线y x =上的两点,过A B 、两点分别作y 轴的平行线交双曲线 1 (0)y x x =>于C D 、两点,若2BD AC =,则224OC OD -= . 3.如果一个正比例函数的图象与一个反比例函数x y 6 =的图象交),(),,(2211y x B y x A ,那么 ))((1212y y x x --值为 .

4. 如图,一次函数b kx y +=的图象与反比例函数x m y =的图象交于点A ﹙-2,-5﹚,C ﹙5,n ﹚,交y 轴于点B ,交x 轴于点D . (1) 求反比例函数x m y = 和一次函数b kx y +=的表达式; (2) 连接OA ,OC .求△AOC 的面积. 5.如图,已知直线12y x =与双曲线(0)k y k x =>交于A B ,两点,且点A 的横坐标为4. (1)求k 的值; (2)若双曲线(0)k y k x = >上一点C 的纵坐标为8,求AOC △的面积; (3)过原点O 的另一条直线l 交双曲线(0)k y k x =>于P Q ,两点(P 点在第一象限), 若由点A B P Q ,,,为顶点组成的四边形面积为24,求点P 的坐标.

中考数学压轴题解题方法大全及技巧

专业资料整理分享 中考数学压轴题解题技巧 湖北竹溪城关中学明道银 解中考数学压轴题秘诀(一) 数学综合题关键是第24题和25题,我们不妨把它分为函数型综合题和几何型综合题。 (一)函数型综合题:是先给定直角坐标系和几何图形,求(已知)函数的解析式(即在求解前已知函数的类型),然后进行图形的研究,求点的坐标或研究图形的某些性质。初中已知函数有:①一次函数(包括正比例函数)和常值函数,它们所对应的图像是直线;②反比例函数,它所对应的图像是双曲线; ③二次函数,它所对应的图像是抛物线。求已知函数的解析式主要方法是待定系数法,关键是求点的坐标,而求点的坐标基本方法是几何法(图形法)和代数法(解析法)。此类题基本在第24题,满分12分,基本分2-3小题来呈现。 (二)几何型综合题:是先给定几何图形,根据已知条件进行计算,然后有动点(或动线段)运动,对应产生线段、面积等的变化,求对应的(未知)函数的解析式(即在没有求出之前不知道函数解析式的形式是什么)和求函数的定义域,最后根据所求的函数关系进行探索研究,一般有:在什么条件下图形是等腰三角形、直角三角形、四边形是菱形、梯形等或探索两个三角形满足什么条件相似等或探究线段之间的位置关系等或探索面积之间满足一定关系求x的值等和直线(圆)与圆的相切时求自变量的值等。求未知函数解析式的关键是

列出包含自变量和因变量之间的等量关系(即列出含有x、y的方程),变形写成y=f(x)的形式。一般有直接法(直接列出含有x和y的方程)和复合法(列出含有x和y和第三个变量的方程,然后求出第三个变量和x之间的函数关系式,代入消去第三个变量,得到y=f(x)的形式),当然还有参数法,这个已超出初中数学教学要求。找等量关系的途径在初中主要有利用勾股定理、平行线截得比例线段、三角形相似、面积相等方法。求定义域主要是寻找图形的特殊位置(极限位置)和根据解析式求解。而最后的探索问题千变万化,但少不了对图形的分析和研究,用几何和代数的方法求出x的值。几何型综合题基本在第25题做为压轴题出现,满分14分,一般分三小题呈现。 在解数学综合题时我们要做到:数形结合记心头,大题小作来转化,潜在条件不能忘,化动为静多画图,分类讨论要严密,方程函数是工具,计算推理要严谨,创新品质得提高。 解中考数学压轴题秘诀(二) 具有选拔功能的中考压轴题是为考察考生综合运用知识的能力而设计的题目,其特点是知识点多,覆盖面广,条件隐蔽,关系复杂,思路难觅,解法灵活。解数学压轴题,一要树立必胜的信心,二要具备扎实的基础知识和熟练的基本技能,三要掌握常用的解题策略。现介绍几种常用的解题策略,供初三同学参考。 1、以坐标系为桥梁,运用数形结合思想:

中考数学二次函数压轴题(含答案)

中考数学二次函数压轴题(含答案) 面积类 1.如图,已知抛物线经过点A(﹣1,0)、B(3,0)、C(0,3)三点. (1)求抛物线的解析式. (2)点M是线段BC上的点(不与B,C重合),过M作MN∥y轴交抛物线于N,若点M的横坐标为m,请用m的代数式表示MN的长. (3)在(2)的条件下,连接NB、NC,是否存在m,使△BNC的面积最大?若存在,求m的值;若不存在,说明理由. 解答: 解:(1)设抛物线的解析式为:y=a(x+1)(x﹣3),则: a(0+1)(0﹣3)=3,a=﹣1; ∴抛物线的解析式:y=﹣(x+1)(x﹣3)=﹣x2+2x+3. (2)设直线BC的解析式为:y=kx+b,则有: , 解得;

故直线BC的解析式:y=﹣x+3. 已知点M的横坐标为m,MN∥y,则M(m,﹣m+3)、N(m,﹣m2+2m+3); ∴故MN=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m(0<m<3). (3)如图; ∵S△BNC=S△MNC+S△MNB=MN(OD+DB)=MN?OB, ∴S△BNC=(﹣m2+3m)?3=﹣(m﹣)2+(0<m<3); ∴当m=时,△BNC的面积最大,最大值为. 2.如图,抛物线的图象与x轴交于A、B两点,与y轴交于C点,已知B点坐标为(4,0). (1)求抛物线的解析式; (2)试探究△ABC的外接圆的圆心位置,并求出圆心坐标; (3)若点M是线段BC下方的抛物线上一点,求△MBC的面积的最大值,并求出此时M点的坐标. 解答:

解:(1)将B(4,0)代入抛物线的解析式中,得: 0=16a﹣×4﹣2,即:a=; ∴抛物线的解析式为:y=x2﹣x﹣2. (2)由(1)的函数解析式可求得:A(﹣1,0)、C(0,﹣2); ∴OA=1,OC=2,OB=4, 即:OC2=OA?OB,又:OC⊥AB, ∴△OAC∽△OCB,得:∠OCA=∠OBC; ∴∠ACB=∠OCA+∠OCB=∠OBC+∠OCB=90°, ∴△ABC为直角三角形,AB为△ABC外接圆的直径; 所以该外接圆的圆心为AB的中点,且坐标为:(,0). (3)已求得:B(4,0)、C(0,﹣2),可得直线BC的解析式为:y=x﹣2; 设直线l∥BC,则该直线的解析式可表示为:y=x+b,当直线l与抛物线只有一个交点时,可列方程:x+b=x2﹣x﹣2,即:x2﹣2x﹣2﹣b=0,且△=0; ∴4﹣4×(﹣2﹣b)=0,即b=﹣4; ∴直线l:y=x﹣4. 所以点M即直线l和抛物线的唯一交点,有: ,解得:即M(2,﹣3). 过M点作MN⊥x轴于N, S△BMC=S梯形OCMN+S△MNB﹣S△OCB=×2×(2+3)+×2×3﹣×2×4=4.

中考数学函数之一次函数和反比例函数综合问题压轴题专题

中考数学函数之一次函数和反比例函数综 合问题压轴题专题Revised on November 25, 2020

《中考压轴题全揭秘》三年经典中考压轴题 函数之一次函数和反比例函数综合问题 1.(2014年福建泉州14分)如图,直线y =﹣x +3与x ,y 轴分别交于点A ,B ,与反比例函数的图象交于点P (2,1). (1)求该反比例函数的关系式; (2)设PC ⊥y 轴于点C ,点A 关于y 轴的对称点为A ′; ①求△A ′BC 的周长和sin ∠BA ′C 的值; ②对大于1的常数m ,求x 轴上的点M 的坐标,使得sin ∠BMC = 1m . 2.(2014年黑龙江牡丹江10分)如图,在平面直角坐标系中,直线AB 与x 轴、y 轴分别交于点A ,B ,直线CD 与x 轴、y 轴分别交于点C ,D ,AB 与CD 相交于点E ,线段OA ,OC 的长是一元二次方程x 2﹣18x +72=0的两根(OA >OC ),BE =5,tan ∠ABO =4 3. (1)求点A ,C 的坐标; (2)若反比例函数y = k x 的图象经过点E ,求k 的值; (3)若点P 在坐标轴上,在平面内是否存在一点Q ,使以点C ,E ,P ,Q 为顶点的四边形是矩形若存在,请写出满足条件的点Q 的个数,并直接写出位于x 轴下方的点Q 的坐标;若不存在,请说明理由. 3.(2014年江苏淮安12分)如图,点A (1,6)和点M (m ,n )都在反比例函数k y x =(x >0)的图象上, (1)k 的值为 ; (2)当m =3,求直线AM 的解析式; (3)当m >1时,过点M 作MP ⊥x 轴,垂足为P ,过点A 作AB ⊥y 轴,垂足为B ,试判断直线BP 与直线AM 的位置关系,并说明理由. 4.(2014年山东枣庄10分)如图,一次函数y =ax +b 与反比例函数k y x =的图象交于A 、B 两点,点A 坐标为(m ,2),点B 坐标为(﹣4,n ),OA 与x 轴正半轴夹角的正切值为1 3 ,直线AB 交y 轴于点C ,过C 作y 轴 的垂线,交反比例函数图象于点D ,连接OD 、B D . (1)求一次函数与反比例函数的解析式; (2)求四边形OCBD 的面积. 5. (2014年四川巴中10分)如图,在平面直角坐标系xOy 中,已知四边形DOBC 是矩形,且D (0,4),B (6,0).若反比例函数1 k y x = (x >0)的图象经过线段OC 的中点A ,交DC 于点E ,交BC 于点F .设直线EF 的解析式为2y k x b =+.(1)求反比例函数和直线EF 的解析式; (2)求△OEF 的面积; (3)请结合图象直接写出不等式1 2k k x b >0x +- 的解集.

2017上海历年中考数学压轴题专项训练

24.(本题满分12分,第(1)小题满分3分,第(2)小题满分4分,第(3)小题满分5分) 如图,已知抛物线2y x bx c =++经过()01A -, 、()43B -,两点. (1)求抛物线的解析式; (2 求tan ABO ∠的值; (3)过点B 作BC ⊥x 轴,垂足为点C ,点M 是抛物线上一点,直线MN 平行于y 轴交直线AB 于点N ,如果M 、N 、B 、C 为顶点的四边形是平行四边形,求点N 的坐标. 24.解:(1)将A (0,-1)、B (4,-3)分别代入2 y x bx c =++ 得1, 1643c b c =-?? ++=-? , ………………………………………………………………(1分) 解,得9 ,12 b c =-=-…………………………………………………………………(1分) 所以抛物线的解析式为29 12 y x x =- -……………………………………………(1分) (2)过点B 作BC ⊥x 轴,垂足为C ,过点A 作AH ⊥OB ,垂足为点H ………(1分) 在Rt AOH ?中,OA =1,4 sin sin ,5 AOH OBC ∠=∠=……………………………(1分) ∴4sin 5AH OA AOH =∠= g ,∴322,55 OH BH OB OH ==-=, ………………(1分) 在Rt ABH ?中,4222 tan 5511 AH ABO BH ∠==÷=………………………………(1分) (3)直线AB 的解析式为1 12y x =- -, ……………………………………………(1分) 设点M 的坐标为29(,1)2m m m --,点N 坐标为1 (,1)2 m m -- 那么MN =2 291 (1)(1)422 m m m m m - ----=-; …………………………(1分) ∵M 、N 、B 、C 为顶点的四边形是平行四边形,∴MN =BC =3 解方程2 4m m -=3 得2m =± ……………………………………………(1分) 解方程2 43m m -+=得1m =或3m =; ………………………………………(1分)

(完整版)2017中考数学压轴题解题技巧

中考数学压轴题解题技巧 解中考数学压轴题秘诀(一) 数学综合题关键是第22题和23题,我们不妨把它分为函数型综合题和几何型综合题。 (一)函数型综合题:是先给定直角坐标系和几何图形,求(已知)函数的解析式(即在求解前已知函数的类型),然后进行图形的研究,求点的坐标或研究图形的某些性质。初中已知函数有:①一次函数(包括正比例函数)和常值函数,它们所对应的图像是直线;②反比例函数,它所对应的图像是双曲线; ③二次函数,它所对应的图像是抛物线。求已知函数的解析式主要方法是待定系数法,关键是求点的坐标,而求点的坐标基本方法是几何法(图形法)和代数法(解析法)。此类题基本在第22题,满分12分,基本分2-3小题来呈现。 (二)几何型综合题:是先给定几何图形,根据已知条件进行计算,然后有动点(或动线段)运动,对应产生线段、面积等的变化,求对应的(未知)函数的解析式(即在没有求出之前不知道函数解析式的形式是什么)和求函数的定义域,最后根据所求的函数关系进行探索研究,一般有:在什么条件下图形是等腰三角形、直角三角形、四边形是菱形、梯形等或探索两个三角形满足什么条件相似等或探究线段之间的位置关系等或探索面积之间满足一定关系求x的值等和直线(圆)与圆的相切时求自变量的值等。求未知函数解析式的关键是列出包含自变量和因变量之间的等量关系(即列出含有x、y的方程),变形写成y =f(x)的形式。一般有直接法(直接列出含有x和y的方程)和复合法(列出含有x和y和第三个变量的方程,然后求出第三个变量和x之间的函数关系式,代入消去第三个变量,得到y=f(x)的形式),当然还有参数法,这个已超出初中数学教学要求。找等量关系的途径在初中主要有利用勾股定理、平行线截得比例线段、三角形相似、面积相等方法。求定义域主要是寻找图形的特殊位置(极限位置)和根据解析式求解。而最后的探索问题千变万化,但少不了对图形的分析和研究,用几何和代数的方法求出x的值。几何型综合题基本在第23题做为压轴题出现,满分14分,一般分三小题呈现。 在解数学综合题时我们要做到:数形结合记心头,大题小作来转化,潜在条件不能忘,化动为静多画图,分类讨论要严密,方程函数是工具,计算推理要严谨,创新品质得提高。 解中考数学压轴题秘诀(二) 具有选拔功能的中考压轴题是为考察考生综合运用知识的能力而设计的题目,其特点是知识点多,覆盖面广,条件隐蔽,关系复杂,思路难觅,解法灵活。解数学压轴题,一要树立必胜的信心,二要具备扎实的基础知识和熟练的基本技能,三要掌握常用的解题策略。现介绍几种常用的解题策略,供初三同学参考。 1、以坐标系为桥梁,运用数形结合思想: 纵观最近几年各地的中考压轴题,绝大部分都是与坐标系有关的,其特点是通过建立点与数即坐标之间的对应关系,一方面可用代数方法研究几何图形的性质,另一方面又可借助几何直观,得到某些代数问题的解答。 2、以直线或抛物线知识为载体,运用函数与方程思想: 直线与抛物线是初中数学中的两类重要函数,即一次函数与二次函数所表示的图形。因此,无论是求其解析式还是研究其性质,都离不开函数与方程的思想。例如函数解析式的确定,往往需要根据已知条件列方程或方程组并解之而得。 3、利用条件或结论的多变性,运用分类讨论的思想: 分类讨论思想可用来检测学生思维的准确性与严密性,常常通过条件的多变性或结论的不确定性来进行考察,有些问题,如果不注意对各种情况分类讨论,就有可能造成错解或漏解,纵观近几年的中考压轴题分类讨论思想解题已成为新的热点。 4、综合多个知识点,运用等价转换思想: 任何一个数学问题的解决都离不开转换的思想,初中数学中的转换大体包括由已知向未知,由复杂向简单的转换,而作为中考压轴题,更注意不同知识之间的联系与转换,一道中考压轴题一般是融代数、几

二次函数与几何综合(有答案)中考数学压轴题必做(经典)

二次函数与几何综合
题目背景
07 年课改后,最后一题普遍为抛物线和几何结合(主要是与三角形结合)的 代数几何综合题,计算量较大。几何题可能想很久都不能动笔,而代数题则可以 想到哪里写到哪里,这就让很多考生能够拿到一些步骤分。因此,课改之后,武 汉市数学中考最后一题相对来说要比以前简单不少,而这也符合教育部要求给学 生减轻负担的主旨,因此也会继续下去。要做好这最后一题,主要是要在有限的 时间里面找到的简便的计算方法。要做到这一点,一是要加强本身的观察力,二 是需要在平时要多积累一些好的算法,并能够熟练运用,最后就是培养计算的耐 心,做到计算又快又准。
题型分析
题目分析及对考生要求 (1)第一问通常为求点坐标、解析式:本小问要求学生能够熟练地掌握待定系 数法求函数解析式,属于送分题。 (2)第二问为代数几何综合题,题型不固定。解题偏代数,要求学生能够熟练 掌握函数的平移,左加右减,上加下减。要求学生有较好的计算能力,能够把题 目中所给的几何信息进行转化,得到相应的点坐标,再进行相应的代数计算。 (3)第三问为几何代数综合,题型不固定。解题偏几何,要求学生能够对题目 所给条件进行转化,合理设参数,将点坐标转化为相应的线段长,再根据题目条 件合理构造相似、全等,或者利用锐角三角函数,将这些线段与题目构建起联系, 再进行相应计算求解,此处要求学生能够熟练运用韦达定理,本小问综合性较强。
在我们解题时,往往有一些几何条件,我们直接在坐标系中话不是很好用, 这时我们需要对它进行相应的条件转化,变成方便我们使用的条件,以下为两种 常见的条件转化思想。 1、遇到面积条件:a.不规则图形先进行分割,变成规则的图形面积;b.在第一 步变化后仍不是很好使用时,根据同底等高,或者等底同高的三角形面积相等这 一性质,将面积进行转化;c.当面积转化为一边与坐标轴平行时,以这条边为底, 根据面积公式转化为线段条件。 2、遇到角度条件:找到所有与这些角相等的角,以这些角为基础构造相似、全 等或者利用锐角三角函数,转化为线段条件。
二次函数与三角形综合
【例1】. (2012 武汉中考)如图 1,点 A 为抛物线 C1:y= x2﹣2 的顶点,点 B 的坐标为(1,
0)直线 AB 交抛物线 C1 于另一点 C

中考数学反比例函数-经典压轴题附答案解析

一、反比例函数真题与模拟题分类汇编(难题易错题) 1.如图,已知抛物线y=﹣x2+9的顶点为A,曲线DE是双曲线y= (3≤x≤12)的一部分,记作G1,且D(3,m)、E(12,m﹣3),将抛物线y=﹣x2+9水平向右移动a个单位,得到抛物线G2. (1)求双曲线的解析式; (2)设抛物线y=﹣x2+9与x轴的交点为B、C,且B在C的左侧,则线段BD的长为________; (3)点(6,n)为G1与G2的交点坐标,求a的值. (4)解:在移动过程中,若G1与G2有两个交点,设G2的对称轴分别交线段DE和G1于M、N两点,若MN<,直接写出a的取值范围. 【答案】(1)把D(3,m)、E(12,m﹣3)代入y= 得,解得, 所以双曲线的解析式为y= ; (2)2 (3)解:把(6,n)代入y= 得6n=12,解得n=2,即交点坐标为(6,2), 抛物线G2的解析式为y=﹣(x﹣a)2+9, 把(6,2)代入y=﹣(x﹣a)2+9得﹣(6﹣a)2+9=2,解得a=6± , 即a的值为6± ; (4)抛物线G2的解析式为y=﹣(x﹣a)2+9, 把D(3,4)代入y=﹣(x﹣a)2+9得﹣(3﹣a)2+9=4,解得a=3﹣或a=3+ ; 把E(12,1)代入y=﹣(x﹣a)2+9得﹣(12﹣a)2+9=1,解得a=12﹣2 或a=12+2 ; ∵G1与G2有两个交点, ∴3+ ≤a≤12﹣2 , 设直线DE的解析式为y=px+q,

把D(3,4),E(12,1)代入得,解得, ∴直线DE的解析式为y=﹣ x+5, ∵G2的对称轴分别交线段DE和G1于M、N两点, ∴M(a,﹣ a+5),N(a,), ∵MN<, ∴﹣ a+5﹣<, 整理得a2﹣13a+36>0,即(a﹣4)(a﹣9)>0, ∴a<4或a>9, ∴a的取值范围为9<a≤12﹣2 . 【解析】【解答】解:(2)当y=0时,﹣x2+9=0,解得x1=﹣3,x2=3,则B(﹣3,0),而D(3,4), 所以BE= =2 . 故答案为2 ; 【分析】(1)把D(3,m)、E(12,m﹣3)代入y= 得关于k、m的方程组,然后解方程组求出m、k,即可得到反比例函数解析式和D、E点坐标;(2)先解方程﹣x2+9=0得到B(﹣3,0),而D(3,4),然后利用两点间的距离公式计算DE的长;(3)先利用反比例函数图象上点的坐标特征确定交点坐标为(6,2),然后把(6,2)代入y=﹣(x ﹣a)2+9得a的值;(4)分别把D点和E点坐标代入y=﹣(x﹣a)2+9得a的值,则利用图象和G1与G2有两个交点可得到3+ ≤a≤12﹣2 ,再利用待定系数法求出直线DE的 解析式为y=﹣ x+5,则M(a,﹣ a+5),N(a,),于是利用MN<得到﹣ a+5﹣<,然后解此不等式得到a<4或a>9,最后确定满足条件的a的取值范围. 2.如图,已知一次函数y= x+b的图象与反比例函数y= (x<0)的图象交于点A(﹣1,2)和点B,点C在y轴上.

2018中考数学压轴题常考的9种题型

2018中考数学压轴题常考的9种题型 中考数学压轴题常考的9种出题形式 1、线段、角的计算与证明问题 中考的解答题一般是分两到三部分的。 第一部分基本上都是一些简单题或者中档题,目的在于考察基础。第二部分往往就是开始拉分的中难题了。对这些题轻松掌握的意义不仅仅在于获得分数,更重要的是对于整个做题过程中士气,军心的影响。 2、图形位置关系 中学数学当中,图形位置关系主要包括点、线、三角形、矩形/正方形以及圆这么几类图形之间的关系。 在中考中会包含在函数,坐标系以及几何问题当中,但主要还是通过圆与其他图形的关系来考察,这其中最重要的就是圆与三角形的各种问题。 3、动态几何 从历年中考来看,动态问题经常作为压轴题目出现,得分率也是最低的。 动态问题一般分两类,一类是代数综合方面,在坐标系中有动点,动直线,一般是利用多种函数交叉求解。 另一类就是几何综合题,在梯形,矩形,三角形中设立动点、线以及整体平移翻转,对考生的综合分析能力进行考察。所以说,动态问题是中考数学当中的重中之重,只有完全掌握,才有机会拼高分。 4、一元二次方程与二次函数 在这一类问题当中,尤以涉及的动态几何问题最为艰难。几何问题的难点在于想象,构造,往往有时候一条辅助线没有想到,整个一道题就卡壳了。相比几何综合题来说,代数综合题倒不需要太多巧妙的方法,但是对考生的计算能力以及代数功底有了比较高的要求。 中考数学当中,代数问题往往是以一元二次方程与二次函数为主体,多种其他知识点辅助的形式出现的。一元二次方程与二次函数问题当中,纯粹的一元二次方程解法通常会以简单解答题的方式考察。但是在后面的中难档大题当中,通常会和根的判别式,整数根和抛物线等知识点结合 5、多种函数交叉综合问题 初中数学所涉及的函数就一次函数,反比例函数以及二次函数。 这类题目本身并不会太难,很少作为压轴题出现,一般都是作为一道中档次题目来考察考生对于一次函数以及反比例函数的掌握。所以在中考中面对这类问题,一定要做到避免失分。 6、列方程(组)解应用题 在中考中,有一类题目说难不难,说不难又难,有的时候三两下就有了思路,有的时候苦思冥想很久也没有想法,这就是列方程或方程组解应用题。方程可以说是初中数学当中最重要的部分,所以也是中考中必考内容。 实际考试中,这类题目几乎要么得全分,要么一分不得,但是也就那么几种题型,所以考生只需多练多掌握各个题类,总结出一些定式,就可以从容应对了。 7、动态几何与函数问题 整体说来,代几综合题大概有两个侧重,第一个是侧重几何方面,利用几何图形的性质结合代数知识来考察。而另一个则是侧重代数方面,几何性质只是一个引入点,更多的考察了考生的计算功夫。

2018年中考数学二次函数压轴题集锦(50道含解析)

1.如图1,已知二次函数y=ax2+x+c(a≠0)的图象与y轴交于点A(0,4),与x轴交于点B、C,点C坐标为(8,0),连接AB、AC. (1)请直接写出二次函数y=ax2+x+c的表达式; (2)判断△ABC的形状,并说明理由; (3)若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,请写出此时点N的坐标; (4)如图2,若点N在线段BC上运动(不与点B、C重合),过点N作NM∥AC,交AB于点M,当△AMN面积最大时,求此时点N的坐标. 2.对于平面直角坐标系xOy中的图形M,N,给出如下定义:P为图形M上任意一点,Q为图形N上任意一点,如果P,Q两点间的距离有最小值,那么称这个最小值为图形M,N间的“闭距离“,记作d(M,N). 已知点A(﹣2,6),B(﹣2,﹣2),C(6,﹣2). (1)求d(点O,△ABC); (2)记函数y=kx(﹣1≤x≤1,k≠0)的图象为图形G.若d(G,△ABC)=1,直接写出k的取值范围; (3)⊙T的圆心为T(t,0),半径为1.若d(⊙T,△ABC)=1,直接写出t 的取值范围. 3.如图,在平面直角坐标系中,点A在抛物线y=﹣x2+4x上,且横坐标为1,点B与点A关于抛物线的对称轴对称,直线AB与y轴交于点C,点D为抛物线的顶点,点E的坐标为(1,1). (1)求线段AB的长; (2)点P为线段AB上方抛物线上的任意一点,过点P作AB的垂线交AB于点 H,点F为y轴上一点,当△PBE的面积最大时,求PH+HF+FO的最小值;

(3)在(2)中,PH+HF+FO取得最小值时,将△CFH绕点C顺时针旋转60°后得到△CF′H′,过点F'作CF′的垂线与直线AB交于点Q,点R为抛物线对称轴上的一点,在平面直角坐标系中是否存在点S,使以点D,Q,R,S为顶点的四边形为菱形,若存在,请直接写出点S的坐标,若不存在,请说明理由. 4.如图,抛物线y=ax2+6x+c交x轴于A,B两点,交y轴于点C.直线y=x﹣5经过点B,C. (1)求抛物线的解析式; (2)过点A的直线交直线BC于点M. ①当AM⊥BC时,过抛物线上一动点P(不与点B,C重合),作直线AM的平行线交直线BC于点Q,若以点A,M,P,Q为顶点的四边形是平行四边形,求点P的横坐标; ②连接AC,当直线AM与直线BC的夹角等于∠ACB的2倍时,请直接写出点M 的坐标.

反比例函数压轴题精选(含标准答案)

中考反比例函数 经典结论: 如图,反比例函数k 的几何意义: (I ) 12 AOB AOC S S k ??==; (II ) OBAC S k =矩形。 下面两个结论是上述结论的拓展. (1) 如图①, OPA OCD S S ??=,OPC PADC S S ?=梯形 (2)如图②, OAPB OBCA S S =梯形梯形,BPE S S ??= 经典例题 例 1.(1)(兰州)如图,已知双曲线(0)k y x x => 经过矩形 OABC 边AB 的中点F 且交BC 于点E ,四边形OEBF 的面积 为2,则k = ; (2) 如图,点A B 、为直线y x =上的两点,过A B 、两点分别作y 轴的平行线交双曲线1 (0)y x x =>于C D 、两点,若2BD AC =,则224OC OD -= 例2.如果一个正比例函数的图象与一

个反比例函数x y 6 =的图象交),(),,(2211y x B y x A ,那么))((1212y y x x --值为 . 例3.如图,一次函数b kx y +=的图象与反比例函数x m y =的图象交于点A ﹙-2,-5﹚, C ﹙5,n ﹚,交y 轴于点B ,交x 轴于点 D . (1) 求反比例函数x m y =和一次函数 kx y +=(2) 连接OA ,OC .求△AOC 的面积. 例4.

如图,已知直线1 2y x =与双曲线(0)k y k x =>交于A B ,两点,且点A 的横坐标为4. (1)求k 的值; (2)若双曲线(0)k y k x =>上一点C 的纵坐标为8,求AOC △的面积; (3)过原点O 的另一条直线l 交双曲线(0)k y k x =>于P Q ,两点(P 点在第一象限),若由点A B P Q ,,,为顶点组成的四边形面积为24,求点P 的坐标. 例5.(山东淄博) 如图,正方形AOCB 的边长为4,反比例函数的图象过点E (3,4). (1)求反比例函数的解读式; 图2 图 4 y 图1

相关文档
最新文档