概论论与数理统计作业

概论论与数理统计作业
概论论与数理统计作业

《概率论与数理统计》作业

第1章 概率论的基本概念

§1 .1 随机试验及随机事件

1. (1) 一枚硬币连丢3次,观察正面H ﹑反面T 出现的情形. 样本空间是:S= {HHH,HHT,HTH,THH,THT,TTH,TTT} ;

(2) 一枚硬币连丢3次,观察出现正面的次数. 样本空间是:S= {0,1,2,3} ;

2.(1) 丢一颗骰子. A :出现奇数点,则A= {1,2,3} ;B :数点大于2,则B= {3,4,5,6} .

(2) 一枚硬币连丢2次, A :第一次出现正面,则A= {正正,正反} ;

B :两次出现同一面,则= {正正,反反};

C :至少有一次出现正面,则C= {正

正,正反,反正 .

§1 .2 随机事件的运算)(B A P ?

1. 设A 、B 、C 为三事件,用A 、B 、C 的运算关系表示下列各事件:

(1)A 、B 、C 都不发生表示为: ABC .(2)A 与B 都发生,而C 不发生表示为: C AB . (3)A 与B 都不发生,而C 发生表示为: C B A .(4)A 、B 、C 中最多二个发生表示为:

C B A ?? .(5)A 、B 、C 中至少二个发生表示为: BC AC AB ?? .(6)A 、B 、C

中不多于一个发生表示为: C B C A B A ?? . 2. 设}42:{},31:{},50:{≤<=≤<=≤≤=x B x x A x x S :则

(1)=?B A {x:1

(4)B A ?= {x:0<=x<=1}或2<=x<=5} ,(5)B A = {x:1

§1 .3 概率的定义和性质

1. 已知6.0)(,5.0)(,8.0)(===?B P A P B A P ,则

(1) =)(AB P P(A)+P(B)-P(AUB)=0.5+0.6-0.8=0.3 , (2)()(B A P )= 1-P(AUB)=1-0.8=0.2 , (3))(B A P ?= 1-P(AB)=1-0.3=0.7 . 2. 已知,3.0)(,7.0)(==AB P A P 则)(B A P = 0.4 .

§1 .4 古典概型

1. 某班有30个同学,其中8个女同学, 随机地选10个,求:(1)正好有2个女同学的概率,

(2)最多有2个女同学的概率,(3) 至少有2个女同学的概率.

1) 103022228/C C C 2)(82228922181022C C C C C ++)/1030C 3)1-(922181022C C C +)/1030

C 2. 将3个不同的球随机地投入到4个盒子中,求有三个盒子各一球的概率.

§1 .5 条件概率与乘法公式

1.丢甲、乙两颗均匀的骰子,已知点数之和为7, 则其中一颗为1的概率是 2/6 。

2. 已知,2/1)|(,3/1)|(,4/1)(===B A P A B P A P 则=?)(B A P 1/3 。

§1 .6 全概率公式

1. 有10个签,其中2个“中”,第一人随机地抽一个签,不放回,第二人再随机

地抽一个签,说明两人抽“中‘的概率相同。 设A 表示第一人“中”,则P (A)=2/10,

设B 表示第二人“中”,则)|()()|()()(A B P A P A B P A P B P += =

10

2

9210891102=?+? 2. 第一盒中有4个红球6个白球,第二盒中有5个红球5个白球,随机地取一

盒,从中随机地取一个球,求取到红球的概率。

设1R 表示第一次取到红球,表示2R 第二次取到红球,则:

52

)|()()|()()(,12

4)|(,106)|(,106)(,104)(1211212121211=

+=====

R R P R P R R P R P R P R R P R R P R P R P ,

§1 .7 贝叶斯公式

1. 某厂产品有70%不需要调试即可出厂,另30%需经过调试,调试后有80%能出厂,求(1)该厂产品能出厂的概率,(2)任取一出厂产品, 求未经调试的概率。

设A 需要调试 A 不要调试 B 出厂 1)|(%,80)|(%,70)(%,30)(====A B P A B P A P A P , 1),由全概率公式:)|()()|()()(A B P A P A B P A P B P += =30%X80%+70%X1=94% 2)由贝叶斯公式:%

94)

|()()()()|(A B P A P B P B A P B A P ==

=

94

70

2. 将两信息分别编码为A 和B 传递出去,接收站收到时,A 被误收作B 的概率为0.02,

B 被误收作A 的概率为0.01,信息A 与信息B 传递的频繁程度为3 : 2,若接收站收到的信息是A ,问原发信息是A 的概率是多少?

§1 .8 随机事件的独立性

1. 电路如图,其中A,B,C,D 为开关。设各开关闭合与否相互独立,且每一开关闭合的概率均为p,求L 与R 为通路(用T 表示)的概率。 A B L R

C D

用A B C D 表示开关闭合,于是 CD AB T ?=,从而,由概率的性质及A,B,C,D 相互独立性

P(T)=P(AB)+P(CD)-P(ABCD)

=P(A)P(B)+P(C)P(D)- P(A)P(B)P(C)P(D) =424222p p p p p -=-+

3. 甲,乙,丙三人向同一目标各射击一次,命中率分别为0.4,0.5和0.6,是否

命中,相互独立, 求下列概率: (1) 恰好命中一次,(2) 至少命中一次。 1)、6.0)5.01()4.01()6.01(5.0)4.01()6.01()5.01(4.0?-?-+-??-+-?-?=0.38 2)、88.0)6.01()5.01()4.01(1=-?-?--

第2章 随机变量及其分布

§2.1 随机变量的概念,离散型随机变量

1 一盒中有编号为1,2,3,4,5的五个球,从中随机地取3个,用X 表示取出的3个球

中的最大号码., 试写出X 的分布律. 2 某射手有5发子弹,每次命中率是0.4,一次接

一次地射击,直到命中为止或子弹用

尽为止,用X 表示射击的次数, 试写出X

的分布律。

X | 1 2 3 4 5 ____________________________________________________ i P | 0.4 0.24 0.144 0.0864 0.1296

§2.2 10-分布和泊松分布

1 某程控交换机在一分钟内接到用户的呼叫次数X 是服从λ=4的泊松分布,求

(1)每分钟恰有1次呼叫的概率;(2)每分钟只少有1次呼叫的概率; (3)每分钟最多有1次呼叫的概率;

1)、P(X=1)=P(X ≥1)–P(X ≥2)=0.981684–0.908422=0.073262 2)、P(X ≥1)=0.981684

3)、P(X ≤1=1–P(X ≥2)=1-0.908422=0.091578

2 设随机变量X 有分布律: X 2

3 , Y ~π(X), 试求: p 0.

4 0.6

(1)P(X=2,Y ≤2); (2)P(Y ≤2); (3) 已知 Y ≤2, 求X=2 的概率。 1)、由乘法公式:P(X=2,Y ≤2)=P(X=2)P(Y ≤2|X=2)=0.4e ×(2+2e -2+2e -2)=2e -2 2)、P(Y ≤2)=P(X=2)P(Y ≤2|X=2)+P(X=3)P(Y ≤2|X=3) =0.4×5e -2+0.6×2

17e -3

=0.27067+0.25391=0.52458 3)、由贝叶斯公式:

P(X=2,Y ≤2)=P(X=2)P(Y ≤2|X=2)/P(Y ≤2)=0.27067/0.52458=0.516

§2.3 贝努里分布

1 一办公室内有5台计算机,调查表明在任一时刻每台计算机被使用的概率为0.6,计算机是否被使用相互独立,问在同一时刻 (1) 恰有2台计算机被使用的概率是多少? (2) 至少有3台计算机被使用的概率是多少? (3) 至多有3台计算机被使用的概率是多少? (4) 至少有1台计算机被使用的概率是多少? 贝努里公式:k n k k n p p C k X P -==)( 1)、3225252254.06.0)2(??===-C q p C X P

2)、544523356.04.06.04.06.0)3(+??+??=≥C C X P 3)、56.01)5(1)4(-==-=≤X P X P 4)、54.01)0(1)1(-==-=≥X P X P

2 设每次射击命中率为0.2,问至少必须进行多少次独立射击,才能使至少击中一次的概率不小于0.9 ?

设至少进行n 次射击,X 表示n 次命中的次数,则X--B(n,0.2),已经,

9.0)2.01(1)1(≥--=≥n X P 即1.08.0≤n ,两边取对数,得32.108.0lg /1.0lg =≥n

至少进行11次的独立射击

§2.4 随机变量的分布函数

1设随机变量X 的分布函数是: F(x) = ??

?

??≥<≤--<11115.010

x x x

(1)求 P(X ≤0 ); P ()10≤

2 设随机变量X 的分布函数是:F(x) = ???

??≤>+0

01x x x

Ax

, 求(1)常数A, (2)

P ()21≤

§2.5 连续型随机变量

1 设连续型随机变量X 的密度函数为:??

?<<=他

其01

0)(x kx x f

(1)求常数k 的值;(2)求X 的分布函数F(x),画出F(x) 的图形, (3)用二种方法计算 P(- 0.5

1)、2,2

)(11

==

==??

+∞

-k k

kxdx ds x f 2)、当x <0时,00)(==?∞-x

dt x F

当2020)(10x tdt dt x F x x

x

=+=<≤??∞-时, 当1≥x 时,1020)(11

00

=++=???∞-x

dt tdt dt x F 3)、4

1

20)()5.05.0(5

.00

05

.05.05.0=

+==<<-???

--xdx dx dx x f X P 2 设连续型随机变量0≥x 的分布函数为:F(x) = ??

?

??≥<≤

(1)求X 的密度函数)(x f ,画出)(x f 的图形,(2)并用二种方法计算 P(X>0.5).

1)、?????<<=他

其011

)(e

x x x f

2)、

2

ln 1/12ln 1)2(1)2(2-==-=-=>?e

xdx F X P 或

§2.6 均匀分布和指数分布

1设随机变量K 在区间 (0, 5) 上服从均匀分布, 求方程 42x + 4Kx + K + 2 = 0

有实根的概率。

2 假设打一次电话所用时间(单位:分)X 服从2.0=α的指数分布,如某人正好在你前面走进电话亭,试求你等待:(1)超过10分钟的概率;(2)10分钟 到20分钟的概率。

1)、2)10(-=>e X P 2)、42)2010(---=<

§2.7 正态分布

1 随机变量X ~N (3, 4), (1) 求 P(22), P(X>3);

(2)确定c ,使得 P(X>c) = P(X

密度函数:2

22)(21

)(σμσ

π--

=

x e x f 分布函数:?

-∞

--

=-Φ=σ

μ

π

σ

μ

x ds s e x x F 2

2

21)(

)(

1)、0.5328, 0.9996, 0.6977, 0.5 2) c=3

2 某产品的质量指标X 服从正态分布,μ=160,若要求P(120

§2.8 随机变量函数的分布

1设随机变量X 的分布律为; p 0.3 0.4 0.3 Y = 2X – 1, 求随机变量X 的分布律。 X -1 1 3 pi 0.3 0.4 0.3

2设随机变量X 的密度函数为:?

??<<-=他其01

0)1(2)(x x x f ,

2X Y =;求随机变量Y 的密度函数。

3. 设随机变量X 服从(0, 1)上的均匀分布,X Y ln 2-= ,求随机变量Y 的密

度函数。

第3章 多维随机变量

§3.1 二维离散型随机变量

1. 设盒子中有2个红球,2个白球,1个黑球,从中随机地取3个,用X 表示取到的红球个数,用Y 表示取到的白球个数,写出 (X, Y) 的联合分布律及边缘分布律。

1 0 0.4 0.

2 0.6 2 0.1 0.2 0 0.

3 0.1 0.6 0.3 1

2. 设二维随机变量),(Y X 的联合分布律为:试根椐下列条件分别求a 和b 的值;(1)6.0)1(==X P ; 1 0.1 b 0.2 (2)5.0)2|1(===Y X P ; (3)设)(x F 是Y 的分布函数,5.0)5.1(=F 。 1) a=0.1,b=0.3 2) a=0.2,b=0.2 3) a=0.3,b=0.1

§3.2 二维连续型随机变量

1. )(Y X 、的联合密度函数为:?

??<<<<+=他其01

0,10)(),(y x y x k y x f

求(1)常数k ;(2)P(X<1/2,Y<1/2);(3) P(X+Y<1);(4) P(X<1/2)。 1) ???

?∞

∞-∞

∞-+==0

)(),(1dxdy y x k dxdy y x f ,得 k=1

2.)(Y X 、的联合密度函数为:?

??<<<<=他其00,10),(x

y x kxy y x f

求(1)常数k ;(2)P(X+Y<1);(3) P(X<1/2)。 1) k=8

§3.3 边缘密度函数

1. 设(X, Y) 的联合密度函数如下,分别求X 与Y 的边缘密度函数。 答: )

1(1

)1)(1(1)(2222x dy y x x f x +=++=?∞

-ππ +∞<<∞-x

2. 设(X, Y) 的联合密度函数如下,分别求X 与Y 的边缘密度函数。

答: ?????<<+=他其01021)(x x x f x ?????<<+=他其0

1

021)(y y y f y

§3.4 随机变量的独立性

1. (X, Y) 的联合分布律如下, X Y 1 2 3 试根椐下列条件分别求a 和b 的值; 1 1/6 1/9 1/18

(1) 3/1)1(==Y P ; 2 a b 1/9 (2) 5.0)2|1(==>Y X P ; (3)已知X 与Y 相互独立。 1) a=1/6,b=7/18 2) a=1/9 b=4/9 3) a=1/3 b=2/9

2. (X,Y) 的联合密度函数如下,求常数c ,并讨论X 与Y 是否相互独立?

C=6, X,Y 相互独立

*§3.5 多个随机变量的函数的分布 *§3.6 几种特殊随机变量函数的分布

第4章 随机变量的数字特征

§4.1 数学期望

1.盒中有5个球,其中2个红球,随机地取3个,用X 表示取到的红球的个数,则EX 是:

(A )1; (B )1.2; (C )1.5; (D )2. 答: 1.2

2. 设X 有密度函数:??

?

??=0

83)(2

x x f 他其20≤≤x , 求)1(),12(),(2X E X E X E -,并求X

大于数学期望)(X E 的概率。

答:2

383)()(2

2=?==??∞

+∞-dx x x dx x xf X E

37/64

3. 设二维随机变量),(Y X 的联合分布律为:已知65.0)(=XY E ,则a 和b 的值是: (A )a=0.1, b=0.3; (B )a=0.3, b=0.1; (C )a=0.2, b=0.2; (D )a=0.15, b=0.25。 答: D

4.设随机变量 (X, Y) 的联合密度函数如下:求)1(,,+XY E EY EX 。 EX=2/3,EY=4/3 ,E(XY+1)=17/9

§4.2 数学期望的性质

1.设X 有分布律: X 0 1 2 3 则)32(2+-X X E 是: p 0.1 0.2 0.3 0.4

(A )1; (B )2; (C )3; (D )4. 答:D

2. 设),(Y X 有?????<<=他其0

1

45

),(2y x y y x f ,试验证 )()()(Y E X E XY E =,但X 与Y 不

相互独立。

E(XY)=E(X)E(Y)=0x5/7=0,但f(x,y)≠)(y f y

§4.3 方差

1.丢一颗均匀的骰子,用X 表示点数,求DX EX ,. E(X)=2,D(X)=35/12

2.X 有密度函数:?

??+=04

/)1()(x x f 他其20≤≤x ,求 D(X).

D(X)=11/36

§4.4 常见的几种随机变量的期望与方差

1. 设)2(~πX ,)6.0,3(~B Y ,相互独立,则)2(),2(Y X D Y X E --的值分别是:

(A )-1.6和4.88; (B )-1和4; (C )1.6和4.88; (D )1.6和-4.88. A

2. 设)3,4(~),,(~N Y b a U X ,X 与Y 有相同的期望和方差,求b a ,的值。

(A ) 0和8; (B ) 1和7; (C ) 2和6; (D ) 3和5.

B

§4.5 协方差与相关系数

1.随机变量 (X,Y) 的联合分布律如下:试求协方差 ),(Y X Cov 和相关系数XY ρ,

1 0.1 0.3 0.3 Cov(X,Y)=0.

2 563.0=XY ρ

2.设随机变量 (X, Y) 有联合密度函数如下:试求协方差 ),(Y X Cov 和相关系数

XY ρ,

Cov(X,Y)=-1/144 11/1-=XY ρ

§4.6 独立性与不相关性 矩

1.下列结论不正确的是( C )

(A )X 与Y 相互独立,则X 与Y 不相关; (B )X 与Y 相关,则X 与Y 不相互独立; (C ))()()(Y E X E XY E =,则X 与Y 相互独立; (D ))()(),(y f x f y x f Y X =,则X 与Y 不相关; 2.若 0),(=Y X COV ,则不正确的是( C )

(A ))()()(Y E X E XY E =;(B ))()()(Y E X E Y X E +=+;

(C))

X

XY

D=;(D))

D

D

)

(Y

(

(

)

X

Y

D+

=

+;

D

X

(

)

(

)

(Y

D

3.(Y

X,)有联合分布律如下,试分析X与Y的相关性和独立性。

0 1/8 0 1/8

1 1/8 1/8 1/8

X,Y不相关,但X与Y不相互独立

4.)

X

E

E=是X与Y不相关的( C )

XY

E

(

(

)

)

(Y

(A)必要条件;(B)充分条件:(C)充要条件;(D)既不必要,也不充分。

5. )

X

E

E

E=是X与Y相互独立的( C )

XY

(Y

)

(

)

(

(A)必要条件;(B)充分条件:(C)充要条件;(D)既不必要,也不充分。

6. 设随机变量 (X, Y) 有联合密度函数如下:试验证X与Y不相关,但不独立。

第5章极限定理

*§5.1 大数定理

§5.2 中心极限定理

1.一批元件的寿命(以小时计)服从参数为0.004的指数分布,现有元件30只,一只在用,其余29只备用,当使用的一只损坏时,立即换上备用件,利用中

心极限定理求30只元件至少能使用一年(8760小时)的近似概率。

0.1788

2.某一随机试验,“成功”的概率为0.04,独立重复100次,由泊松定理和中心极限定理分别求最多“成功”6次的概率的近似值。

0.889, 0.841

第6章数理统计基础

§6.1 数理统计中的几个概念

1. 有n=10的样本;1.2, 1.4, 1.9, 2.0, 1.5, 1.5, 1.6, 1.4, 1.8, 1.4,则样本均值X = 1.57 ,样本均方差=S 0.254 ,样本方差=2S 0.0646 。

2.设总体方差为2b 有样本n X X X ,,,21Λ,样本均值为X ,则=),(1X X Cov 。

§6.2 数理统计中常用的三个分布

1. 查有关的附表,下列分位点的值:9.0Z = -1.29 ,)5(2

1.0χ= 9.236 ,)10(9

.0t = -1.3722 。

2.设n X X X ,,,21Λ是总体)(2m χ的样本,求)(),(X D X E 。

§6.3 一个正态总体的三个统计量的分布

1.设总体),(~2σμN X ,样本n X X X ,,,21Λ,样本均值X ,样本方差2S ,则

~/n

X σμ

- N(0,1) ,

~/n

S X μ

- t(n-1) ,

∑=-n

i i

X X

1

2

2

)(1

σ

~ ,

∑=-n

i i

X

1

22

)(1

μσ

~ ,

*§6.4 二个正态总体的三个统计量的分布

第7章 参数估计

§7.1 矩估计法和顺序统计量法

1.设总体X 的密度函数为:????

?≤≤=-他

10)(1

x x

x f θθ,有样本n X X X ,,,21Λ,求未

知参数θ 的矩估计。

2.每分钟通过某桥量的汽车辆数)(~λπX ,为估计λ的值,在实地随机地调查了20次,每次1分钟,结果如下:次数: 2 3 4 5 6 量数: 9 5 3 7 4 试求λ的一阶矩估计和二阶矩估计。

λ=5 λ=4.97 §7.2 极大似然估计

1.设总体X 的密度函数为:????

?≤≤+=他

10)1()(x x

x f θ

θ,有样本n X X X ,,,21Λ,求

未知参数θ 的极大似然估计。

§7.3 估计量的评价标准

1.设总体X 服从区间)1,(a 上的均匀分布,有样本n X X X ,,,21Λ,证明=a

?12-X 是a 的无偏估计。

2.设总体X ~)(λπ,有样本n X X X ,,,21Λ,证明2)1(S a X a -+是参数λ的无偏估计(10<

§7.4 参数的区间估计

1. 纤度是衡量纤维粗细程度的一个量,某厂化纤纤度),(~2σμN X ,抽取9根纤维,测量其纤度为:1.36,1.49,1.43,1.41,1.27,1.40,1.32,1.42,1.47,试求μ的置信度为95.0的置信区间,(1)若22048.0=σ,(2)若2σ未知。 1)μ (1.377,1.439) 2) (1.346,1.454)

2. 为分析某自动设备加工的另件的精度,抽查16个另件,测量其长度,得075

.12=x ㎜,s = 0.0494㎜, 设另件长度),(~2σμN X ,取置信度为95.0,(1)求2σ的置信区间,(2)求σ的置信区间。

1) 2σ (0.0013,0.0058) 2) σ (0.036,0.076)

*§7.5 二个正态总体的参数的区间估计

*§7.6 区间估计的二种特殊情形

第8章 假设检验

§8.1 假设检验的基本概念

1. 某种电子元件的阻值(欧姆))400,1000(~N X ,随机抽取25个元件,测得平均电阻值992=x ,试在1.0=α下检验电阻值的期望μ是否符合要求? 拒绝1000:0=μH

2. 在上题中若2σ未知,而25个元件的均方差25=s ,则需如何检验,结论是什么?

接受:1000:0=μH

§8.2 假设检验的说明

1. 设第一道工序后,半成品的某一质量指标)64,(~μN X ,品质管理部规定在进入下一工序前必需对该质量指标作假设检验00:μμ=H ,01:μμ≠H ;16=n ,当X 与0μ的绝对偏差不超过3.29时,许进入下一工序,试推算该检验的显着性水平。 0.1

§8.3 一个正态总体下参数的假设检验

1.

成年男子肺活量为3750=μ毫升的正态分布,选取20名成年男子参加某项体育锻练一定时期后,测定他们的肺活量,得平均值为3808=x 毫升,设方差为

22120=σ,试检验肺活量均值的提高是否显着(取02.0=α)?

拒绝0H

*§8.4 二个正态总体下参数的假设检验 *§8.5 假设检验的三种特殊情形

(完整版)概率论与数理统计课后习题答案

·1· 习 题 一 1.写出下列随机试验的样本空间及下列事件中的样本点: (1)掷一颗骰子,记录出现的点数. A =‘出现奇数点’; (2)将一颗骰子掷两次,记录出现点数. A =‘两次点数之和为10’,B =‘第一次的点数,比第二次的点数大2’; (3)一个口袋中有5只外形完全相同的球,编号分别为1,2,3,4,5;从中同时取出3只球,观察其结果,A =‘球的最小号码为1’; (4)将,a b 两个球,随机地放入到甲、乙、丙三个盒子中去,观察放球情况,A =‘甲盒中至少有一球’; (5)记录在一段时间内,通过某桥的汽车流量,A =‘通过汽车不足5台’,B =‘通过的汽车不少于3台’。 解 (1)123456{,,,,,}S e e e e e e =其中i e =‘出现i 点’ 1,2,,6i =L , 135{,,}A e e e =。 (2){(1,1),(1,2),(1,3),(1,4),(1,5),(1,6)S = (2,1),(2,2),(2,3),(2,4),(2,5),(2,6) (3,1),(3,2),(3,3),(3,4),(3,5),(3,6) (4,1),(4,2),(4,3),(4,4),(4,5),(4,6) (5,1),(5,2),(5,3),(5,4),(5,5),(5,6) (6,1),(6,2),(6,3),(6,4),(6,5),(6,6)}; {(4,6),(5,5),(6,4)}A =; {(3,1),(4,2),(5,3),(6,4)}B =。 ( 3 ) {(1,2,3),(2,3,4),(3,4,5),(1,3,4),(1,4,5),(1,2,4),(1,2,5) S = (2,3,5),(2,4,5),(1,3,5)} {(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5)}A = ( 4 ) {(,,),(,,),(,,),(,,),(,,),(,,), S ab ab ab a b a b b a =--------- (,,),(,,,),(,,)}b a a b b a ---,其中‘-’表示空盒; {(,,),(,,),(,,),(,,),(,,)}A ab a b a b b a b a =------。 (5){0,1,2,},{0,1,2,3,4},{3,4,}S A B ===L L 。 2.设,,A B C 是随机试验E 的三个事件,试用,,A B C 表示下列事件:

概率论与数理统计习题集及答案

* 《概率论与数理统计》作业集及答案 第1章 概率论的基本概念 §1 .1 随机试验及随机事件 1. (1) 一枚硬币连丢3次,观察正面H ﹑反面T 出现的情形. 样本空间是:S= ; (2) 一枚硬币连丢3次,观察出现正面的次数. 样本空间是:S= ; 2.(1) 丢一颗骰子. A :出现奇数点,则A= ;B :数点大于2,则B= . (2) 一枚硬币连丢2次, A :第一次出现正面,则A= ; B :两次出现同一面,则= ; C :至少有一次出现正面,则C= . ? §1 .2 随机事件的运算 1. 设A 、B 、C 为三事件,用A 、B 、C 的运算关系表示下列各事件: (1)A 、B 、C 都不发生表示为: .(2)A 与B 都发生,而C 不发生表示为: . (3)A 与B 都不发生,而C 发生表示为: .(4)A 、B 、C 中最多二个发生表示为: . (5)A 、B 、C 中至少二个发生表示为: .(6)A 、B 、C 中不多于一个发生表示为: . 2. 设}42:{},31:{},50:{≤<=≤<=≤≤=x B x x A x x S :则 (1)=?B A ,(2)=AB ,(3)=B A , (4)B A ?= ,(5)B A = 。 \ §1 .3 概率的定义和性质 1. 已知6.0)(,5.0)(,8.0)(===?B P A P B A P ,则 (1) =)(AB P , (2)()(B A P )= , (3))(B A P ?= . 2. 已知,3.0)(,7.0)(==AB P A P 则)(B A P = . §1 .4 古典概型 1. 某班有30个同学,其中8个女同学, 随机地选10个,求:(1)正好有2个女同学的概率, (2)最多有2个女同学的概率,(3) 至少有2个女同学的概率. 2. 将3个不同的球随机地投入到4个盒子中,求有三个盒子各一球的概率. — §1 .5 条件概率与乘法公式 1.丢甲、乙两颗均匀的骰子,已知点数之和为7, 则其中一颗为1的概率是 。 2. 已知,2/1)|(,3/1)|(,4/1)(===B A P A B P A P 则=?)(B A P 。 §1 .6 全概率公式 1. 有10个签,其中2个“中”,第一人随机地抽一个签,不放回,第二人再随机地抽一个 签,说明两人抽“中‘的概率相同。

5概率论与数理统计doc - 沈阳农业大学

概率论与数理统计 Probability and Functional Statistics 课程代码:L204011 学时数:72学分数:4 执笔人:吴素文讨论参加人:惠淑荣, 吴素文, 鲁春铭,张阚等 审核人:惠淑荣 一、教学目的 通过对本课程的学习,要求学生掌握概率论的基本理论和计算方法,明确数理统计的基本原理,熟练掌握数理统计的多种方法。让学生了解数理统计与生物统计、农业经济管理等学科间的密切联系。 在教学过程中,注重该门课程在农业中的应用,加强培养学生的统计计算能力。为进一步学习有关专业课程打下较好的基础。 二、教学内容、教学目标及学时分配 绪论:该门课程的性质、研究对象、历史发展、学习目的、任务及学习方法。 第一部分概率论 第一章事件与概率(9学时) 理解概率的定义,明确有关概率的性质及基本定理,从而掌握概率的基本运算。 1.随机试验、样本空间及随机事件的定义 2.事件的概率及概率的公理化体系 3. 条件概率,事件的独立性 4.全概率公式、贝叶斯(Bayes)公式、贝努里概型 第二章一维随机变量及其分布(8学时) 理解随机变量的定义和作用,掌握一维离散型随机变量和一维连续型随机变量的概率分布及其表示方法,明确分布函数和密度函数在概率分布中所起的作用。熟练掌握一维随机变量中几种常见的分布并会计算有关求概率的问题。 1.随机变量的概念 2.离散型随机变量及其概率分布 3.随机变量的分布函数 4. 连续型随机变量及其分布 5.一维随机变量函数的分布 第三章二维随机变量及其分布(10学时) 掌握二维随机变量的联合概率分布、边缘概率及条件分布,明确多维随机变量相互间独立的概念,并会求几种简单的随机变量函数的分布。 1.二维随机变量的联合概率分布及边缘分布; 2. 随机变量的独立性及条件分布; 3.两个随机变量函数的分布。 第四章随机变量的数字特征(6学时) 明确随机变量主要的数字特征的意义、作用,掌握其性质与计算方法,并熟知几个常见分布的数字特 1

概率论与数理统计习题集及答案

《概率论与数理统计》作业集及答案 第1章 概率论的基本概念 §1 .1 随机试验及随机事件 1. (1) 一枚硬币连丢3次,观察正面H ﹑反面T 出现的情形. 样本空间是:S= ; (2) 一枚硬币连丢3次,观察出现正面的次数. 样本空间是:S= ; 2.(1) 丢一颗骰子. A :出现奇数点,则A= ;B :数点大于2,则B= . (2) 一枚硬币连丢2次, A :第一次出现正面,则A= ; B :两次出现同一面,则= ; C :至少有一次出现正面,则C= . §1 .2 随机事件的运算 1. 设A 、B 、C 为三事件,用A 、B 、C 的运算关系表示下列各事件: (1)A 、B 、C 都不发生表示为: .(2)A 与B 都发生,而C 不发生表示为: . (3)A 与B 都不发生,而C 发生表示为: .(4)A 、B 、C 中最多二个发生表示为: . (5)A 、B 、C 中至少二个发生表示为: .(6)A 、B 、C 中不多于一个发生表示为: . 2. 设}42:{},31:{},50:{≤<=≤<=≤≤=x B x x A x x S :则 (1)=?B A ,(2)=AB ,(3)=B A , (4)B A ?= ,(5)B A = 。 §1 .3 概率的定义和性质 1. 已知6.0)(,5.0)(,8.0)(===?B P A P B A P ,则 (1) =)(AB P , (2)()(B A P )= , (3))(B A P ?= . 2. 已知,3.0)(,7.0)(==AB P A P 则)(B A P = . §1 .4 古典概型 1. 某班有30个同学,其中8个女同学, 随机地选10个,求:(1)正好有2个女同学的概率, (2)最多有2个女同学的概率,(3) 至少有2个女同学的概率. 2. 将3个不同的球随机地投入到4个盒子中,求有三个盒子各一球的概率. §1 .5 条件概率与乘法公式 1.丢甲、乙两颗均匀的骰子,已知点数之和为7, 则其中一颗为1的概率是 。 2. 已知,2/1)|(,3/1)|(,4/1)(===B A P A B P A P 则=?)(B A P 。 §1 .6 全概率公式 1. 有10个签,其中2个“中”,第一人随机地抽一个签,不放回,第二人再随机地抽一个 签,说明两人抽“中‘的概率相同。 2. 第一盒中有4个红球6个白球,第二盒中有5个红球5个白球,随机地取一盒,从中 随机地取一个球,求取到红球的概率。

概率论与数理统计第三章课后习题答案

习题三 1.将一硬币抛掷三次,以X 表示在三次中出现正面的次数,以Y 表示三次中出现正面次数与 出现反面次数之差的绝对值.试写出X 和Y 的联合分布律. 【解】X 和Y 的联合分布律如表: 222??222 ??= 2.盒子里装有3只黑球、2只红球、2只白球,在其中任取4只球,以X 表示取到黑球的只数,以Y 表示取到红球的只数.求X 和Y 的联合分布律. 【解】X 和Y 的联合分布律如表: 324 C 35= 32 4 C 35= 322 4 C 35= 11322 4 C C 12C 35=132 4 C 2C 35 = 21322 4 C C 6C 35 = 2324 C 3 C 35 = 3.设二维随机变量(X ,Y )的联合分布函数为 F (x ,y )=?????≤ ≤≤≤., 020,20,sin sin 其他ππy x y x 求二维随机变量(X ,Y )在长方形域? ?? ? ??≤<≤<36,40πππy x 内的概率. 【解】如图πππ {0,}(3.2)463 P X Y <≤ <≤公式 ππππππ(,)(,)(0,)(0,)434636 F F F F --+

ππππππ sin sin sin sin sin0sin sin0sin 434636 2 (31). 4 =--+ =- 题3图 说明:也可先求出密度函数,再求概率。 4.设随机变量(X,Y)的分布密度 f(x,y)= ? ? ?> > + - . ,0 ,0 ,0 ,)4 3( 其他 y x A y x e 求:(1)常数A; (2)随机变量(X,Y)的分布函数; (3)P{0≤X<1,0≤Y<2}. 【解】(1)由-(34) 00 (,)d d e d d1 12 x y A f x y x y A x y +∞+∞+∞+∞ + -∞-∞ === ???? 得A=12 (2)由定义,有 (,)(,)d d y x F x y f u v u v -∞-∞ =?? (34)34 00 12e d d(1e)(1e)0,0, 0, 0, y y u v x y u v y x -+-- ??-->> ? == ?? ? ?? ?? 其他 (3) {01,02} P X Y ≤<≤< 12(34)38 00 {01,02} 12e d d(1e)(1e)0.9499. x y P X Y x y -+-- =<≤<≤ ==--≈ ?? 5.设随机变量(X,Y)的概率密度为 f(x,y)= ? ? ?< < < < - - . ,0 ,4 2,2 ), 6( 其他 y x y x k

概率论与数理统计练习题

概率论与数理统计练习题 一、填空题 1、设A 、B 为随机事件,且P (A)=,P (B)=,P (B A)=,则P (A+B)=__ __。 2、θθθ是常数21? ,?的两个 无偏 估计量,若)? ()?(21θθD D <,则称1?θ比2?θ有效。 3、设A 、B 为随机事件,且P (A )=, P (B )=, P (A ∪B )=,则P (B A )=。 4. 设随机变量X 服从[0,2]上的均匀分布,Y =2X +1,则D (Y )= 4/3 。 5. 设随机变量X 的概率密度是: ?? ?<<=其他 103)(2 x x x f ,且{}784 .0=≥αX P ,则α= 。 6. 已知随机向量(X ,Y )的联合密度函数 ?????≤≤≤≤=其他 , 010,20, 2 3 ),(2y x xy y x f ,则 E (Y )= 3/4 。 7. 若随机变量X ~N (1,4),Y ~N (2,9),且X 与Y 相互独立。设Z =X -Y +3,则Z ~ N (2, 13) 。 * 8. 设A ,B 为随机事件,且P (A)=,P (A -B)=,则=?)(B A P 。 9. 设随机变量X ~ N (1, 4),已知Φ=,Φ=,则{}=<2X P 。 10. 随机变量X 的概率密度函数1 22 1 )(-+-= x x e x f π ,则E (X )= 1 。 11. 已知随机向量(X ,Y )的联合密度函数 ?? ?≤≤≤≤=其他 , 010,20, ),(y x xy y x f ,则 E (X )= 4/3 。 12. 设A ,B 为随机事件,且P (A)=, P (AB)= P (B A ), 则P (B )= 。 13. 设随机变量),(~2σμN X ,其密度函数6 4 4261)(+-- = x x e x f π ,则μ= 2 。 14. 设随机变量X 的数学期望EX 和方差DX >0都存在,令DX EX X Y /)(-=,则D Y= 1 。 15. 随机变量X 与Y 相互独立,且D (X )=4,D (Y )=2,则D (3X -2Y )= 44。 16. 三个人独立地向某一目标进行射击,已知各人能击中的概率分别为3 1 ,41,51,则目标能被击中 的概率是3/5 。 17. 设随机变量X ~N (2,2σ),且P {2 < X <4}=,则P {X < 0}= 。 ! 18. 设随机变量X 的概率分布为5.0)3(,3.0)2(,2.0)1(======X P X P X P ,则X 的期望

概率论与数理统计各章节

第五章 大数定理和中心极限定理 1.[一] 据以往经验某种电器元件的寿命服从均值为100小时的指数分布,现在随机的抽取16只,设它们的寿命是相互独立的,求这16只元件寿命总和大于1920小时的概率。 解:设第i 只寿命为X i ,(1≤i ≤16),故E (X i )=100,D (X i )=1002 (l=1,2,…,16).依本章定理1知 ?????? ? ? ?≤-=??????? ? ? ?-≤?-=≤∑ ∑ ∑ ===8.0400 1600 1001616001920100161600 )1920( 16 16 16 1 i i i i i i X P X P X P .7881.0)8.0(=Φ= 从而.2119.07881.01)1920( 1)1920( 16 1 16 1 =-=≤-=>∑∑==i i i i X P X P 3.[三] 计算机在进行加法时,对每个加数取整(取为最接近它的整数),设所有的取整误差是相互独立的,且它们都在(-,)上服从均匀分布, (1)若将1500个数相加,问误差总和的绝对值超过15的概率是多少 (2)几个数相加在一起使得误差总和的绝对值小于10的概率不小于 解: (1)设取整误差为X i ( ,2,1=i ,1500),它们都在(-, )上服从均匀分布。 于是: 02 5 .05.0)(=+-= =p X E i 12 1 12)]5.0(5.0[)(2= --=i X D 18.1112512 1 1500)(, 0)(==? ==i i X nD X nE ? ? ????≤≤--=??????????≤-=??????? ???>∑ ∑ ∑===15151151151500 11500115000i i i i i i X P X P X P ??? ???? ???????≤≤--=∑=18.111518.1118.111511500 1 i i X P 1802 .0]9099.01[2)]34.1(1[2)] 34.1()34.1([1=-?=Φ-=-Φ-Φ-=

概率论与数理统计第二版_课后答案_科学出版社_参考答案_

习题2参考答案 X 2 3 4 5 6 7 8 9 10 11 12 P 1/36 1/18 1/12 1/9 5/36 1/6 5/36 1/9 1/12 1/18 1/36 解:根据 1)(0 ==∑∞ =k k X P ,得10 =∑∞ =-k k ae ,即111 1 =---e ae 。 故 1-=e a 解:用X 表示甲在两次投篮中所投中的次数,X~B(2, 用Y 表示乙在两次投篮中所投中的次数, Y~B(2, (1)两人投中的次数相同 P{X=Y}= P{X=0,Y=0}+ P{X=1,Y=1} +P{X=2,Y=2}= 1 1 2 2 020********* 2222220.70.30.40.60.70.30.40.60.70.30.40.60.3124C C C C C C ?+?+?=(2)甲比乙投中的次数多 P{X>Y}= P{X=1,Y=0}+ P{X=2,Y=0} +P{X=2,Y=1}= 1 2 2 1 110220022011222222 0.70.30.40.60.70.30.40.60.70.30.40.60.5628C C C C C C ?+?+?=解:(1)P{1≤X ≤3}= P{X=1}+ P{X=2}+ P{X=3}=12321515155 ++= (2)P{

解:(1)P{X=2,4,6,…}=246211112222k +++L =11[1()] 14 41314 k k lim →∞-=- (2)P{X ≥3}=1―P{X<3}=1―P{X=1}- P{X=2}=111 1244 --= 解:设i A 表示第i 次取出的是次品,X 的所有可能取值为0,1,2 12341213124123{0}{}()(|)(|)(|)P X P A A A A P A P A A P A A A P A A A A ====18171615122019181719 ???= 1123412342341234{1}{}{}{}{} 2181716182171618182161817162322019181720191817201918172019181795 P X P A A A A P A A A A P A A A A P A A A A ==+++=???+???+???+???= 12323 {2}1{0}{1}1199595 P X P X P X ==-=-==- -= 解:(1)设X 表示4次独立试验中A 发生的次数,则X~B(4, 34 314044(3)(3)(4)0.40.60.40.60.1792P X P X P X C C ≥==+==+= (2)设Y 表示5次独立试验中A 发生的次数,则Y~B(5, 3 4 5 324150555(3)(3)(4)(5)0.40.60.40.60.40.60.31744P X P X P X P X C C C ≥==+=+==++= (1)X ~P(λ)=P ×3)= P 0 1.51.5{0}0! P X e -=== 1.5 e - (2)X ~P(λ)=P ×4)= P(2) 0122 222{2}1{0}{1}1130!1! P X P X P X e e e ---≥=-=-==--=-

概率论与数理统计知识点总结(详细)

《概率论与数理统计》 第一章概率论的基本概念 (2) §2.样本空间、随机事件..................................... 2.. §4 等可能概型(古典概型)................................... 3.. §5.条件概率.............................................................. 4.. . §6.独立性.............................................................. 4.. . 第二章随机变量及其分布 (5) §1随机变量.............................................................. 5.. . §2 离散性随机变量及其分布律................................. 5..§3 随机变量的分布函数....................................... 6..§4 连续性随机变量及其概率密度............................... 6..§5 随机变量的函数的分布..................................... 7..第三章多维随机变量. (7) §1 二维随机变量............................................ 7...§2边缘分布................................................ 8...§3条件分布................................................ 8...§4 相互独立的随机变量....................................... 9..§5 两个随机变量的函数的分布................................. 9..第四章随机变量的数字特征.. (10)

《概率论与数理统计》在线作业

第一阶段在线作业 第1题 您的答案:B 题目分数:0.5 此题得分:0.5 批注:对立不是独立。两个集合互补。第2题 您的答案:D 题目分数:0.5 此题得分:0.5 批注:A发生,必然导致和事件发生。第3题

您的答案:B 题目分数:0.5 此题得分:0.5 批注:分布函数的取值最大为1,最小为0. 第4题 您的答案:A 题目分数:0.5 此题得分:0.5 批注:密度函数在【-1,1】区间积分。第5题

您的答案:A 题目分数:0.5 此题得分:0.5 批注:A答案,包括了BC两种情况。 第6题 您的答案:A 题目分数:0.5 此题得分:0.5 批注:古典概型,等可能概型,16种总共的投法。第7题

您的答案:C 题目分数:0.5 此题得分:0.5 批注:几何概型,前两次没有命中,且第三次命中,三次相互独立,概率相乘。 第8题 您的答案:D 题目分数:0.5 此题得分:0.5 批注:利用随机变量单调性函数的概率密度求解公式公式。中间有反函数求导数,加绝对值。第9题

您的答案:C 题目分数:0.5 此题得分:0.5 批注:利用概率密度的性质,概率密度在相应范围上的积分值为1.验证四个区间。 第10题 您的答案:B 题目分数:0.5 此题得分:0.5 批注:利用分布函数的性质,包括分布函数的值域[0,1]当自变量趋向无穷时,分布函数取值应该是1.排除答案。 第11题

您的答案:C 题目分数:0.5 此题得分:0.5 批注:利用上分位点的定义。 第12题 您的答案:B 题目分数:0.5 此题得分:0.5 批注:利用和事件的公式,还有概率小于等于1.P(AB)小于等于P(C)。第13题

天津理工大学概率论与数理统计同步练习册标准答案详解

天津理工大学概率论与数理统计同步练习册答案详解

————————————————————————————————作者:————————————————————————————————日期: 2

第一章 随机变量 习题一 1、写出下列随机试验的样本空间 (1)同时掷三颗骰子,记录三颗骰子点数之和 Ω= { }1843,,,Λ (2)生产产品直到有10件正品为止,记录生产产品的总件数 Ω= { }Λ,,1110 (3)对某工厂出厂的产品进行检验,合格的记上“正品”,不合格的记上“次品”, 如连续查出2个次品就停止,或检查4个产品就停止检查,记录检查的结果。用“0”表示次品,用“1”表示正品。 Ω={111111101101011110111010110001100101010010000,,,,,,,,,,,} (4)在单位圆内任意取一点,记录它的坐标 Ω= }|),{(122<+y x y x (5)将一尺长的木棍折成三段,观察各段的长度 Ω=},,,|),,{(1000=++>>>z y x z y x z y x 其中z y x ,,分别表示第一、二、三段的长度 (6 ) .10只产品中有3只次品 ,每次从其中取一只(取后不放回) ,直到将3只次品都取出 , 写出抽取次数的基本空间U = “在 ( 6 ) 中 ,改写有放回抽取” 写出抽取次数的基本空间U = 解: ( 1 ) U = { e3 , e4 ,… e10 。} 其 中 ei 表 示 “ 抽 取 i 次 ” 的 事 件 。 i = 3、 4、 …、 10 ( 2 ) U = { e3 , e4 ,… } 其 中 ei 表 示 “ 抽 取 i 次 ” 的 事 件 。 i = 3、 4、 … 2、互不相容事件与对立事件的区别何在?说出下列各对事件的关系 (1)δ<-||a x 与δ≥-||a x 互不相容 (2)20>x 与20≤x 对立事件 (3)20>x 与18x 与22≤x 相容事件 (5)20个产品全是合格品与20个产品中只有一个废品 互不相容 (6)20个产品全是合格品与20个产品中至少有一个废品 对立事件

(完整版)概率论与数理统计课程标准

《概率论与数理统计》课程标准 一、课程概述 (一)课程定位 《概率论与数理统计》(Probability Theory and Mathematical Statistics),由概率论和数理统计两部分组成。它是研究随机现象并找出其统计规律的一门学科,是广泛应用于社会、经济、科学等各个领域的定量和定性分析的科学体系。从学科性质讲,它是一门基础性学科,它为建筑专业学生后继专业课程的学习提供方法论的指导。 (二)先修后续课程 《概率论与数理统计》的先修课程为《高等数学》、《线性代数》等,这些课程为本课程的学习奠定了理论基础。 《概率论与数理统计》的后续课程为《混凝土结构设计》、《地基与基础》等课程。通过该课程的学习可为这些课程中的模型建立等内容的知识学习奠定良好的基础,在教学中起到了承上启下的作用。 二.课程设计思路 本课程的基本设计思路是极力用较为通俗的语言阐释概率论的基本理论和数理统计思想方法;理论和方法相结合,以强调数理统计理论的应用价值。总之,强调理论与实际应用相结合的特点,力求在实际应用方面做些有益的探索,也为其它学科的

进一步学习打下一个良好的基础。 三、课程目标 《概率论与数理统计》是一门几乎遍及所有的科学技术领域以及工农业生产和国民经济各部门之中。通过学习该课程使学生掌握概率、统计的基本概念,熟悉数据处理、数据分析、数据推断的各种基本方法,并能用所掌握的方法具体解决工程实践中所遇到的各种问题。 (一)能力目标 力求在简洁的基础上使学生能从整体上了解和掌握该课程的内容体系,使学生能够在实际工作中、其它学科的学习中能灵活、自如地应用这些理论。 (二)知识目标 1.理解掌握概率论中的相关概念和公式定理; 2.学会应用概率论的知识解决一些基本的概率计算; 3.理解数理统计的基本思想和解决实际问题的方法。 (三)素质目标 1.培养学生乐于观察、分析、不断创新的精神; 2.培养具有较好的逻辑思维、较强的计划、组织和协调能力; 3.培养具有认真、细致严谨的职业能力。 四、课程内容 根据能力培养目标的要求,本课程的主要内容是随机事件、随机变量、随机向量、数字特征、极限定理。具体内容和学时分配见表4-1。 表4-1 课程内容和学时分配

概率论与数理统计习题解答

第一章随机事件及其概率 1. 写出下列随机试验的样本空间: (1)同时掷两颗骰子,记录两颗骰子的点数之和; (2)在单位圆内任意一点,记录它的坐标; (3)10件产品中有三件是次品,每次从其中取一件,取后不放回,直到三件次品都取出为止,记录抽取的次数; (4)测量一汽车通过给定点的速度. 解所求的样本空间如下 (1)S= {2,3,4,5,6,7,8,9,10,11,12} (2)S= {(x, y)| x2+y2<1} (3)S= {3,4,5,6,7,8,9,10} (4)S= {v |v>0} 2. 设A、B、C为三个事件,用A、B、C的运算关系表示下列事件: (1)A发生,B和C不发生; (2)A与B都发生,而C不发生; (3)A、B、C都发生;

(4)A、B、C都不发生; (5)A、B、C不都发生; (6)A、B、C至少有一个发生; (7)A、B、C不多于一个发生; (8)A、B、C至少有两个发生. 解所求的事件表示如下 3.在某小学的学生中任选一名,若事件A表示被选学生是男生,事件B表示该生是三年级学生,事件C表示该学生是运动员,则 (1)事件AB表示什么? (2)在什么条件下ABC=C成立? ?是正确的? (3)在什么条件下关系式C B (4)在什么条件下A B =成立? 解所求的事件表示如下 (1)事件AB表示该生是三年级男生,但不是运动员. (2)当全校运动员都是三年级男生时,ABC=C成立. ?是正确的. (3)当全校运动员都是三年级学生时,关系式C B

(4)当全校女生都在三年级,并且三年级学生都是女生时,A B =成立. 4.设P (A )=,P (A -B )=,试求()P AB 解 由于 A ?B = A – AB , P (A )= 所以 P (A ?B ) = P (A ?AB ) = P (A )??P (AB ) = , 所以 P (AB )=, 故 ()P AB = 1? = . 5. 对事件A 、B 和C ,已知P(A) = P(B)=P(C)=1 4 ,P(AB) = P(CB) = 0, P(AC)= 1 8 求A 、B 、C 中至少有一个发生的概率. 解 由于,()0,?=ABC AB P AB 故P(ABC) = 0 则P(A+B+C) = P(A)+P(B)+P(C) –P(AB) –P(BC) –P(AC)+P(ABC) 6. 设盒中有α只红球和b 只白球,现从中随机地取出两只球,试求下列事件的概率: A ={两球颜色相同}, B ={两球颜色不同}. 解 由题意,基本事件总数为2a b A +,有利于A 的事件数为2 2a b A A +,有利于B 的事件数为111111 2a b b a a b A A A A A A +=, 则 2 2 11 2 22()()a b a b a b a b A A A A P A P B A A +++==

概率论与数理统计第一章

一、选择题 1.设A, B, C 为任意三个事件,则与A 一定互不相容的事件为 (A )C B A ?? (B )C A B A ? (C ) ABC (D ))(C B A ? 2.对于任意二事件A 和B ,与B B A =?不等价的是 (A )B A ? (B )A ?B (C )φ=B A (D )φ=B A 3.设A 、B 是任意两个事件,A B ?,()0P B >,则下列不等式中成立的是( ) .A ()()P A P A B < .B ()()P A P A B ≤ .C ()()P A P A B > .D ()()P A P A B ≥ 4.设()01P A <<,()01P B <<,()()1P A B P A B +=,则( ) .A 事件A 与B 互不相容 .B 事件A 与B 相互独立 .C 事件A 与B 相互对立 .D 事件A 与B 互不独立 5.对于任意两事件A 与B ,()P A B -=( ) .A ()()P A P B - .B ()()()P A P B P AB -+ .C ()()P A P AB - .D ()()() P A P A P AB +- 6.若A 、B 互斥,且()()0,0P A P B >>,则下列式子成立的是( ) .A ()()P A B P A = .B ()0P B A > .C ()()()P AB P A P B = .D ()0P B A = 7.设A 、B 、C 为三个事件,已知()()0.6,0.4P B A P C AB ==,则()P BC A =( ) .A .B .C .D 8.设A ,B 是两个随机事件,且00,)|()|(A B P A B P =,则必有 ( ) (A ))|()|(B A P B A P = (B ))|()|(B A P B A P ≠ (C ))()()(B P A P AB P = (D ))()()(B P A P AB P ≠

概率论与数理统计习题答案

习题五 1.一颗骰子连续掷4次,点数总和记为X .估计P {10

【解】令1,,0,i i X ?? ?若第个产品是合格品其他情形. 而至少要生产n 件,则i =1,2,…,n ,且 X 1,X 2,…,X n 独立同分布,p =P {X i =1}=. 现要求n ,使得 1 {0.760.84}0.9.n i i X P n =≤ ≤≥∑ 即 0.80.9n i X n P -≤≤≥∑ 由中心极限定理得 0.9,Φ-Φ≥ 整理得0.95,Φ≥?? 查表 1.64,10≥ n ≥, 故取n =269. 3. 某车间有同型号机床200部,每部机床开动的概率为,假定各机床开动与否互不影响,开动时每部机床消耗电能15个单位.问至少供应多少单位电能 才可以95%的概率保证不致因供电不足而影响生产. 【解】要确定最低的供应的电能量,应先确定此车间同时开动的机床数目最大值m ,而m 要满足200部机床中同时开动的机床数目不超过m 的概率为95%,

概率论与数理统计答案第四版第2章(浙大)

1、考虑为期一年的一张保险单,若投保人在投保一年后因意外死亡,则公司赔付20万元, 若投保人因其他原因死亡,则公司赔付5万元,若投保人在投保期末生存,则公司无需付给任何费用。若投保人在一年内因意外死亡的概率为0.0002,因其他愿意死亡的概率为0.0010,求公司赔付金额的分布律。 解:设X为公司的赔付金额,X=0,5,20 P(X=0)=1-0.0002-0.0010=0.9988 P(X=5)=0.0010 P(X=20)=0.0002 X 0 5 20 P 0.9988 0.0010 0.0002 2.(1) 一袋中装有5只球,编号为1,2,3,4,5.在袋中同时取3只球,以X表示取出的三只中的最大号码,写出随机变量的分布律. 解:方法一: 考虑到5个球取3个一共有=10种取法,数量不多可以枚举来解此题。 设样本空间为S S={123,124,125,134,135,145,234,235,245,345 } 易得,P{X=3}=;P{X=4}=;P{X=5}=; X 3 4 5 1/10 3/10 6/10 方法二:X的取值为3,4,5 当X=3时,1与2必然存在,P{X=3}= =; 当X=4时,1,2,3中必然存在2个,P{X=4}= =; 当X=5时,1,2,3,4中必然存在2个,P{X=5}= =; X 3 4 5 1/10 3/10 6/10 (2)将一颗骰子抛掷两次,以X表示两次中得到的小的点数,试求X的分布律. 解:P{X=1}= P (第一次为1点)+P(第二次为1点)- P(两次都为一点) = =; P{X=2}= P (第一次为2点,第二次大于1点)+P(第二次为2点,第一次大于1点)- P(两次都为2点) = =; P{X=3}= P (第一次为3点,第二次大于2点)+P(第二次为3点,第一次大于2点)- P(两次都为3点)

概率论与数理统计课后习题答案

习题1.1解答 1. 将一枚均匀的硬币抛两次,事件C B A ,,分别表示“第一次出现正面”,“两次出现同一面”,“至少有一次出现正面”。试写出样本空间及事件C B A ,,中的样本点。 解:{=Ω(正,正),(正,反),(反,正),(反,反)} {=A (正,正),(正,反)};{=B (正,正),(反,反)} {=C (正,正),(正,反),(反,正)} 2. 在掷两颗骰子的试验中,事件D C B A ,,,分别表示“点数之和为偶数”,“点数之和小于5”,“点数相等”,“至少有一颗骰子的点数为3”。试写出样本空间及事件D C B A BC C A B A AB ---+,,,,中的样本点。 解:{})6,6(,),2,6(),1,6(,),6,2(,),2,2(),1,2(),6,1(,),2,1(),1,1( =Ω; {})1,3(),2,2(),3,1(),1,1(=AB ; {})1,2(),2,1(),6,6(),4,6(),2,6(,),5,1(),3,1(),1,1( =+B A ; Φ=C A ;{})2,2(),1,1(=BC ; {})4,6(),2,6(),1,5(),6,4(),2,4(),6,2(),4,2(),5,1(=---D C B A 3. 以C B A ,,分别表示某城市居民订阅日报、晚报和体育报。试用C B A ,,表示以下事件: (1)只订阅日报; (2)只订日报和晚报; (3)只订一种报; (4)正好订两种报; (5)至少订阅一种报; (6)不订阅任何报; (7)至多订阅一种报; (8)三种报纸都订阅; (9)三种报纸不全订阅。 解:(1)C B A ; (2)C AB ; (3)C B A C B A C B A ++; (4)BC A C B A C AB ++; (5)C B A ++; (6)C B A ; (7)C B A C B A C B A C B A +++或C B C A B A ++ (8)ABC ; (9)C B A ++ 4. 甲、乙、丙三人各射击一次,事件321,,A A A 分别表示甲、乙、丙射中。试说明下列事件所表示的结果:2A , 32A A +, 21A A , 21A A +, 321A A A , 313221A A A A A A ++. 解:甲未击中;乙和丙至少一人击中;甲和乙至多有一人击中或甲和乙至少有一人未击中;甲和乙都未击中;甲和乙击中而丙未击中;甲、乙、丙三人至少有两人击中。 5. 设事件C B A ,,满足Φ≠ABC ,试把下列事件表示为一些互不相容的事件的和:C B A ++,C AB +,AC B -. 解:如图:

概率论与数理统计学习地总结

概率论与数理统计 学习报告 学院 学号: 姓名:

概率论与数理统计学习报告 通过短短一学期的学习,虽然学习、研究地并不深入,但该课程的每一处内容都有不同的奇妙吸引着我,让我对它在生活中饰演的角色充满遐想;它将我带入了一个由随机变量为桥梁,通过表面偶然性找出其内在规律性,从而与其它的数学分支建立联系的世界,让我对这种进行大量的随机重复实验,通过分析研究得出统计规律性的过程产生了极大地兴趣。我很喜欢这门课程,但也不得不说课后在它上面花的时间并不多,因此学得还不深入,但它真的深深地吸引了我,我一定会找时间进一步深入地学习它。 先简单地介绍一下概率论与数理统计这门学科。 概率论是基于给出随机现象的数学模型,并用数学语言来描述它们,然后研究其基本规律,透过表面的偶然性,找出其内在的规律性,建立随机现象与数学其他分支的桥梁,使得人们可以利用已成熟的数学工具和方法来研究随机现象,进而也为其他数学分支和其他新兴学科提供了解决问题的新思路和新方法。数理统计是以概率论为基础,基于有效的观测、收集、整理、分析带有随机性的数据来研究随机现象,进而对所观察的问题作出推断和预测,直至为采取一定的决策和行动提供依据和建议。 概率论与数理统计是研究随机现象及其规律性的一门数学学科。研究随机现象的规律性有其独特的思想方法,它不是寻求出现每一现象的一切物理因素,不能用研究确定性现象的方法研究随机现象,而是承认在所研究的问题中存在一些人们不能认识或者根本不知道的

随机因素作用下,发生随机现象。这样,人们既可以通过试验来观察随机现象,揭示其规律性,作出决策,也可根据实际问题的具体情况找出随机现象的规律,作出决策。 至今,概率论与数理统计的理论与方法已经广泛应用于自然科学、社会科学以及人文科学等各个领域中,并随着计算机的普及,概率论与数理统计已成为处理信息、制定决策的重要理论和方法。它们不仅是许多新兴学科,如信息论、控制论、排队论、可靠性论以及人工智能的数学理论基础,而且与其他领域的新兴学科的相互交叉而产生了许多新的分支和边缘学科,如生物统计、统计物理、数理金融、神经网络统计分析、统计计算等。 概率论应用随机变量与随机变量的概率分布、数字特征及特征函数为数学工具对随机现象进行描述、分析与研究,其前提条件是假设随机变量的概率分布是已知的;而数理统计中作为研究对象的随机变量的概率分布是完全未知的,或者分布类型已知,但其中的某些参数或某些数字特征是未知的。概率论研究问题的方法是从假设、命题、已知的随机现象的事实出发,按一定的逻辑推理得到结论,在方法上是演绎式的。而统计学的方法是归纳式的,从所研究地对象的全体中随机抽取一部分进行试验或观测,以获得试验数据,依据试验数据所获取的信息,对整体进行推断,是归纳而得到结论的。因此掌握它特有的学习方法是很重要的。 在学习的过程中,不论是老师提出的一些希望我们课后讨论的问题还是自己在做作业看书过程中遇到的一些问题都引发了我的一些

相关文档
最新文档