四围地震勘探(时移地震)
三维地震勘探概述

第六章三维地震勘探技术
概述
第1节三维地震勘探优点
第2节三维地震资料采集
第3节三维地震资料处理
主讲教师:刘洋
第1节三维地震勘探优点
第6章
VSP 地面地震勘探
地面激发井中接收地面接收接收点激发点
(3)海上四分量地震勘探(单源—四分量)(4)陆上三分量地震勘探(单源—三分量)
模型示意图二维地震成果剖面三维地震成果剖面
第6章
二维资料作的构造等值线图三维资料作的构造等值线图
第6章
第2节三维地震资料采集
第6章
宽线弯线
十字线环形排列
章
常规正交线束砖墙式奇偶式非正交式
常用三维观测系统--束状观测系统
第6章
8线8炮观测系统
第3节三维地震资料处理
第6章
第六章总结
1.地震勘探的分类
2.三维地震勘探的优点
3.三维观测系统设计的要求
4.三维地震野外采集过程
第六章词汇
时移地震time-lapse seismic
三维地震3D seismic
三分量地震three-component seismic 三维三分量地震3D-3C seismic
面元bin
方位角azimuth。
石油行业油气勘探开发技术创新方案

石油行业油气勘探开发技术创新方案第一章油气勘探开发技术概述 (2)1.1 油气勘探开发技术现状 (2)1.1.1 勘探技术现状 (2)1.1.2 开发技术现状 (2)1.2 技术发展趋势 (3)1.2.1 勘探技术发展趋势 (3)1.2.2 开发技术发展趋势 (3)第二章地震勘探技术创新 (3)2.1 高精度地震勘探技术 (3)2.1.1 技术原理 (3)2.1.2 技术特点 (4)2.2 四维地震勘探技术 (4)2.2.1 技术原理 (4)2.2.2 技术特点 (4)2.3 深海地震勘探技术 (4)2.3.1 技术原理 (4)2.3.2 技术特点 (5)第三章钻井技术创新 (5)3.1 钻井液技术创新 (5)3.2 钻头及钻具技术创新 (5)3.3 钻井工艺技术创新 (6)第四章油气田开发技术创新 (6)4.1 油气藏评价技术创新 (6)4.2 开发方案优化技术创新 (6)4.3 提高采收率技术创新 (7)第五章油气藏改造技术创新 (7)5.1 水力压裂技术创新 (7)5.2 酸化处理技术创新 (8)5.3 增产措施技术创新 (8)第六章油气田提高采收率技术 (8)6.1 注水驱油技术创新 (8)6.1.1 技术概述 (8)6.1.2 创新内容 (8)6.2 气驱油技术创新 (9)6.2.1 技术概述 (9)6.2.2 创新内容 (9)6.3 化学驱油技术创新 (9)6.3.1 技术概述 (9)6.3.2 创新内容 (9)第七章油气藏监测技术创新 (9)7.1 地面监测技术创新 (9)7.1.1 高精度地震勘探技术 (10)7.1.2 微地震监测技术 (10)7.1.3 地面地球物理监测技术 (10)7.2 地下监测技术创新 (10)7.2.1 钻井监测技术 (10)7.2.2 生产监测技术 (10)7.2.3 地下光纤监测技术 (10)7.3 遥感监测技术创新 (11)7.3.1 合成孔径雷达遥感技术 (11)7.3.2 高光谱遥感技术 (11)7.3.3 无人机遥感监测技术 (11)第八章油气田环境保护技术创新 (11)8.1 油气开采污染治理技术创新 (11)8.2 油气开采废弃物处理技术创新 (12)8.3 油气开采环保监测技术创新 (12)第九章油气行业智能化技术创新 (13)9.1 物联网技术在油气行业的应用 (13)9.2 大数据技术在油气行业的应用 (13)9.3 人工智能技术在油气行业的应用 (14)第十章油气勘探开发技术管理创新 (14)10.1 技术创新管理体系构建 (14)10.2 技术创新激励机制 (15)10.3 技术创新成果转化与推广 (15)第一章油气勘探开发技术概述1.1 油气勘探开发技术现状1.1.1 勘探技术现状当前,我国油气勘探技术取得了显著成果,主要包括以下方面:(1)地震勘探技术:地震勘探技术在我国已经得到广泛应用,主要包括二维、三维地震勘探和地震资料处理解释技术。
四维多波地震在油藏动态监测中的应用

2021年4月第56卷第2期•综合研究•文章编号:1000-7210(2021)02-0340-06四维多波地震在油藏动态监测中的应用王波*聂其海陈进娥王春燕郭静茹刘渊(东方地球物理公司研究院,河北涿州072751)王波,聂其海,陈进娥,王春燕,郭静茹,刘渊.四维多波地震在油藏动态监测中的应用.石油地球物理勘探,2021,56(2) :340-345.摘要研究区位于加拿大阿萨巴斯卡油砂区,该区目的层埋深极小,地表条件复杂.油藏开发时间短。
因此.开 发前、后地震数据差异小,四维地震一致性处理、提取可靠的油藏变化信息及二次测丼数据难度大,限制了四维 地震反演方法的推广、应用。
为此,提出了一种基于低频模型驱动的四维多波联合反演方法,在反演模型中考虑了两期转换波的差异信息,在反演过程中加入转换波数据,利用四维三分量(4 D3 C)地震资料,充分融合“四维”和“多波”两项前沿地震勘探技术,实现了油藏精细描述及动态监测。
获得以下认识:①处理与解释实时结合•逐步质控,提高了非油藏信息的一致性,保留并突出了油藏信息真实差异。
②岩石物理分析结果表明,纵横 波速度比对油藏变化最敏感.可作为油藏动态监测的敏感参数。
③充分利用纵波与转换波时移量信息.建立了反映油藏变化趋势的低频模型,规避了缺少二次测井数据的限制.方法简单易行,蒸汽腔预测结果准确、可靠。
关键词四维三分量地震数据体匹配岩石物理联合反演纵横波速度比油藏监测中图分类号:P631 文献标识码:A doi: 10. 13810/j. cnki. issn. 1000-7210. 2021. 02. 016〇引言随着地球物理服务业务逐渐由勘探地球物理向油藏地球物理转变,四维地震作为最重要的油藏开发地震技术之一,已成为油藏监测、剩余油气预测及提高采收率等的重要手段。
四维地震通过求取两期地震数据的差异获得油藏动态变化信息[1-2]。
多波 地震通过纵、横波震源激发、多分量检波器接收,较 常规地震可获得更丰富的地质信息,在气云区构造成像、裂缝检测及岩相、流体识别等方面具有常规纵波无可比拟的优势[34]。
地震勘探

技术简介发展三三维地震勘探维地震勘探技术是一项集物理学、数学、计算机学为一体的综合性应用技术,其应用目的是为了使地下目标的图像更加清晰、位置预测更加可靠。
三维地震勘探技术是从二维地震勘探逐步发展起来的,是地球物理勘探中最重要的方法,也是当前全球石油、天然气、煤炭等地下天然矿产的主要勘探技术。
二维相比与二维地震勘探相比,三维地震勘探不仅能获得一张张地震剖面图,还能获得一个三维空间上的数据体。
三维数据体的信息点的密度可达12.5米×12.5米(即在12.5米×12.5米的面积内便采集一个数据),而二维测线信息点的密度一般最高为1千米×1千米。
由于三维地震勘探获得信息量丰富,地震剖面分辨率高,地下的古河流、古湖泊、古高山、古喀斯特地貌、断层等均可直接或间接反映出来。
地质勘探人员利用高品质的三维地震资料找油找气,中国近期发现的渤海湾南堡大油田、四川普光大气田、塔里木盆地塔中Ⅰ号大气田等,全要归功于高精度的三维地震勘探技术。
基本原理要了解三维地震勘探技术,有必要先了解一下二维地震勘探的基本原理。
二维地震勘探方法是在地面上布置一条条的测线,沿各条测线进行地震勘探施工,采集地下地层反射回地面的地震波信息,然后经过电子计算机处理得出一张张地震剖面图。
经过地质解释的地震剖面图就像从地面向下切了一刀,在二维空间(长度和深度方向)上显示地下的地质构造情况。
同时几十条相交的二维测线共同使用,即可编制出地下某地质时期沉积前地表的起伏情况。
如果发现哪些地方可能储有油气,则可确定其为油气钻探井位。
勘探的理论与工作流程三维地震勘探的理论与工作流程和二维地震勘探大体相似,但其工作内容及达到的效果却今非昔比了。
三维地震勘探主要由野外地震数据资料采集、室内地震数据处理、地震资料解释3个步骤组成,这是一项系统工程,甚至每个步骤就是一个系统,因为这3个步骤既相互独立,又相互影响,而且每一步骤均需要最先进的计算机硬件和软件的支撑。
物探专业面试题目(3篇)

第1篇一、基本概念与理论1. 请简述物探的基本原理及其在石油勘探中的应用。
解析:物探(地球物理勘探)是利用地球物理场的变化来研究地球内部结构、性质及其变化规律的一种科学方法。
在石油勘探中,物探主要用于查明地下油气藏的分布、规模、类型和含油气性等,为油气田的勘探开发提供科学依据。
2. 解释地震勘探中“反射波”、“折射波”和“转换波”的概念,并说明它们在油气勘探中的应用。
解析:地震勘探是物探中最常用的方法之一。
反射波是指地震波在地下地层界面发生反射后返回地表的波;折射波是指地震波进入另一种介质后,传播方向发生改变而继续传播的波;转换波是指地震波在地下地层界面发生反射和折射的同时,部分能量发生转换而形成的波。
这三种波在油气勘探中都有重要应用,如通过分析反射波的振幅、相位、频率等特征,可以判断地下地层性质;通过分析折射波和转换波的传播特性,可以确定地层的速度和密度。
3. 简述重力勘探和磁法勘探的基本原理及其在地质勘探中的应用。
解析:重力勘探是利用地球重力场的变化来研究地下地质构造的一种方法。
通过测量地面重力异常,可以推断地下岩层的密度、厚度等特征。
磁法勘探是利用地球磁场的变化来研究地下岩层磁性特征的一种方法。
通过测量地面磁异常,可以推断地下岩层的磁性性质,如磁性矿床的分布等。
4. 请解释物探中的“分辨率”和“信噪比”两个概念,并说明它们对物探结果的影响。
解析:分辨率是指物探仪器能够区分两个相邻目标的最小距离。
分辨率越高,探测结果越精确。
信噪比是指物探信号中有效信息与噪声的比值。
信噪比越高,探测结果越可靠。
分辨率和信噪比是影响物探结果的两个重要因素,需要在实际应用中加以关注。
二、物探技术与方法5. 请列举物探中的几种常用技术,并简要介绍它们的特点。
解析:(1)地震勘探:通过发射和接收地震波,分析地震波的传播特征来探测地下地质构造。
(2)电法勘探:利用地下岩石的电性差异,通过测量电流或电压的变化来探测地下地质构造。
地震勘探新方法新技术

VSP简介
随钻VSP测量(利用钻头噪声作震源)作为R-VSP技 术的一种,具有资料应用的实时性,可以对钻前 地层进行预测,在钻头尚未钻开地层之前进行标 志层识别、归位,确定层速度,对钻头周围及前 方目标成像,是钻前预测的有力工具。 尽管VSP技术有诸多优点,但占用井场时间长,经 费开支大,接收器组合级数少,叠加次数低,而 且处理流程不完善,三维VSP技术尚未成为常规的 勘探技术方法。进一步提高资料采集效率,降低 成本,开发新的资料处理解释技术,挖掘资料所 蕴涵的实用价值,是VSP技术常规化的基础和前提。
– 井间地震:井中激发、井中接收 – 四维地震:多次采集 – 多波多分量:纵波、横波激发。 – 山地地震: – 高分辨率采集 – 高密度采集
井间地震采集
井间地震记录
井间地震的应用
直接结果:
– 井间的速度分布 – 高分辨率的井间构造像
井间地震的应用
在稠油热采中的应用。监视蒸汽驱(火 驱)前沿,提高采收率。 储层连通性填图(RCM),可以测量和确 定储层的特征:
VSP简介
井区域附近构造及盐丘成像,需要逐步加大偏移 距,因而发展了变偏VSP成像技术。为了克服覆 盖区域上有一定角度限制的缺陷,发展了井周区 域全方位激发的三维VSP技术。三维VSP资料分 辨率高,可以对井眼附近区域地面地震无法成像 的小构造进行成像。三维VSP资料的各向异性信 息丰富,可以实现井周高分辨率三维成像,有利 于岩性特征研究和井位评价。因此,尽管成本比 较高,VSP技术还是成为不可缺少的勘探开发工 具。
–单个河道砂岩 –自然裂隙 –连通性和封堵 –估算垂直渗透性 –垂直裂隙
寻找未圈闭的气藏。 在工程地质中寻找裂隙。
井间地震分辨率
在地震和测井之间起桥梁作用的井间地震方法
地震勘探重点总结

绪 论一、石油勘探的主要方法 地质法—岩石露头 物探法—面积覆盖、连续测量、间接 钻井法—一点、直接勘探二、地球物理勘探方法 重力法—岩石密度差异 磁法—岩石磁性差异电法—岩石电性差异 地震勘探—岩石弹性差异(3) 地震勘探: 通过人工方法激发地震波, 研究地震波在地层中传播的情况, 以查明地下的地质构造、地层岩性等, 为寻找油气田或其它勘探目的服务的一种物探方法。
地震勘探具有精度高、作业范围大、布局灵活、成本低等特点, 是最有效的物探方法。
地震波的传播路径: 透射波路径 反射波路径 滑行波路径 (4)地震勘探的几种方法 折射波法 反射波法—主要的地震勘探方法 (基本原理: 回声测距原理)h=1/2vt 透射波法地震勘探的三大环节 野外采集 室内处理 资料解释 (1) 野外采集 按照预先设计的观测系统, 炮点激发、检波器接收、仪器记录, 得到原始地震资料(按时分道)。
数据通常记成SEGB 或SEGD 格式, 班报有电子格式的和手写格式的。
这一部分工作由物探地震小队完成 (2)室内处理 将野外采集的原始地震资料转化为可用于地质解释的地震剖面 包括: 预处理、常规处理和特殊处理三块内容。
这部分工作由资料处理中心完成 (3)资料解释 结合地质、测井、录井、油藏工程等, 进行综合解释。
多由物探研究院、物探公司、地质研究院、采油厂地质所等完成。
井间地震技术可以提供高精度地下成像资料, 能分辨2-5米薄层和小断层, 为描述井间精细构造、薄层砂体分布, 确定储层连通性、剩余油分布等复杂地质问题, 指导调整井的布署和采收率的提高, 提供非常可靠的技术手段 地震勘探期望解决的问题⏹ 1. h=1/2vt, 时间t 不仅包含有地下界面的深度信息, 而且还有炮检距(x )的信息。
如何消除? -----动校正⏹ 2、地表的起伏变化、表层低速带厚度变化等如何消除? ------静校正。
⏹ 3.地下地层的成层性导致地震波传播速度的差异, 如何认识和利用速度及其差异。
4实验四地震勘探实验(面波法)

4实验四地震勘探实验(面波法)实验四地震勘探实验(面波法)一、实验原理瑞雷面波法用于勘探,与以往的弹性波法(反射波法和折射波法)差别在于:它应用的不是纵波和横波,而是以前反射波法和折射波法视为干扰的面波。
其原理是:面波具有频散的特性,其传播的相速度随频率的改变而改变。
这种频散特性可以反映地下介质的特性。
瑞雷面波的特点:瑞雷面波速度低、瑞雷面波在介质中泊松比在0.4~0.5范围内,面波速度与横波速度关系基本接近、瑞雷面波对地层的分辨能力,决定于频率,频率高则分辨能力强。
上图为72道的面波采集记录:震源在左上角,同一震源下的直达波、折射波、反射波和面波遵循各自的传播规律,分布在不同的区域。
其中面波传播的特征:近震源处发育、震幅大、传播速度低。
上图为实际勘探过程中采集得到的面波记录:以近震源、小道距、长采样、宽频率激发、低频率接收。
工程检测方面的应用实例:上图采集地点为:云南某高速公路的路基检测,检测深度为4米。
由图中的“频散曲线”分层可以看出:每层的厚度约在0.3米-0.5米。
填筑路基施工是分层进行,松散料经过压实,达到压实度后再进行下一层的填料。
图中频散曲线的拐点清晰,分析的层厚度在0.35米-0.5米之间。
二、实验目的1.了解面波法的原理;2.了解面波法工作布置及观测方法;3.掌握面波法数据采集、处理和解释,熟练操作相关软件。
三、实验仪器SWS型多波列数字图像工程勘察与工程检测仪。
该系统由主机、多芯电缆、检波器、触发器、震源(大锤或炸药)、铁板、直流电源、直流电源线以及数据采集、处理和解释软件等组成。
四、实验步骤1.在工区布设测线在工区布设测线,原则:由南向北、由西向东测线号与测点号依次增大。
使用皮尺标注检波器位置与激发点位置。
2.连接仪器的各个部分将主机、电源、多芯电缆、检波器、大锤、触发器按正确的方式一一连接起来。
注意:各接口均使用“防呆”设计,电缆插头与对应的插槽才能连接,电缆插头与非对应的插槽不能连接。