例谈导数压轴题中双变量问题的常用解法
导数中双变量问题的四种策略

导数中双变量问题的四种策略双变量问题的几种处理策略策略一:合并思想已知函数$f(x)=\ln x$的图像上任意不同的两点的中点为$A(x_1,y_1)$。
$B(x_2,y_2)$,线段$AB$的中点为$C(x,y)$,记直线$AB$的斜率为$k$,试证明:$k>f'(x)$。
解析:因为$f(x)=\ln x$,所以$f'(x)=\frac{1}{x}$。
又因为k=\frac{f(x_2)-f(x_1)}{x_2-x_1}=\frac{\ln x_2-\lnx_1}{x_2-x_1}=\frac{\ln\frac{x_2}{x_1}}{x_2-x_1}$$不妨设$x_2>x_1$,要比较$k$与$f(x)$的大小,即比较frac{\ln\frac{x_2}{x_1}}{x_2-x_1}\text{和}\frac{1}{x_1}$$的大小,即比较ln\left(\frac{x_2}{x_1}\right)^{\frac{1}{x_2-x_1}}\text{和}e^{\frac{1}{x_2-x_1}}$$的大小。
又因为$x_2>x_1$,所以frac{x_2-x_1}{x_2+1}<\ln\left(\frac{x_2}{x_1}\right)^{\frac{1}{x_2-x_1}}<\frac{x_2-x_1}{x_1}$$因此frac{x_2-x_1}{x_2+1}<k<\frac{x_2-x_1}{x_1}$$又因为$x_2>x_1$,所以$\frac{x_2-x_1}{x_2+1}>\frac{1}{2}$,因此$k>f'(x)$。
策略二:分离思想问题2:若$g(x)=\ln x+\frac{1}{x}$,求$a$的取值范围,使得对任意的$x_1,x_2\in(1,2)$,都有$g(x_2)-g(x_1)<-1$。
导数中双变量问题的四种策略

双变量问题的几种处理策略策略一:合的思想问题1:已知函数x x f ln )(=的图象上任意不同的两点,,线段的中点为,记直线的斜率为,试证明:.解析:因为∴, ∴,又 不妨设 , 要比较与的大小,即比较与的大小, 又∵,∴ 即比较与的大小.令,则, ∴在上位增函数.又,∴, ∴,即二:分的思想问题2:若1ln )(++=x a x x g ,且对任意的(]2,1,21∈x x ,,都有,求a 的取值范围.解析∵ ,∴由题意得在区间(]2,1上是减函数. ∴ ()11,y x A ()22,y x B AB),(00y x C AB k )(0x f k '>x x f ln )(=xx f 1)(='210021)(x x x x f +=='121212121212ln ln ln )()(x x x x x x x x x x x f x f k -=--=--=12x x >k )(0x f '1212lnx x x x -212x x +12x x >12lnx x 1)1(2)(212122112+-=+-x x x x x x x x )1(1)1(2ln )(≥+--=x x x x x h 0)1()1()1(41)(222≥+-=+-='x x x x x x h )(x h [)+∞,1112>x x 0)1()(12=>h x x h 1)1(2ln 121212+->x x x x x x )(0x f k '>21x x ≠1)()(1212-<--x x x g x g 1)()(1212-<--x x x g x g []0)()(121122<-+-+x x x x g x x g x x g x F +=)()(1)1(1)(2++-='x ax x F由在恒成立. 设,,则 ∴在上为增函数,∴.策略3:变得思想设函数x x x f ln )(=,若,求证 解析:, ,所以在上是增函数,上是减函数.因为,所以即,同理. 所以 又因为当且仅当“”时,取等号. 又,, 所以,所以, 所以:.问题4:已知函数()21ln ,2f x x x mx x m R =--∈,若函数()f x 有两个极值点12,x x ,求证: 212x x e >解析:欲证212x x e >,需证: 12ln ln 2x x +>,若()f x 有两个极值点12,x x ,即函数()'f x 有两个零点,又()'ln f x x mx =-, 所以12,x x 是方程()'0f x =的两个不同实根313)1()1(0)(222+++=+++≥⇒≤'xx x x x x a x F []2,1∈x =)(x m 3132+++x x x []2,1∈x 0312)(2>+-='xx x m )(x m []2,1227)2(=≥m a 1),1,1(,2121<+∈x x e x x 42121)(x x x x +<x x xx f x g ln )()(==e x x x g 1,0ln 1)(==+=),1(+∞e )(x g )1,0(e11211<+<<x x x e111212121ln )()ln()()(x x x g x x x x x x g =>++=+)ln(ln 211211x x x x x x ++<)ln(ln 212212x x x x x x ++<)ln()2()ln()(ln ln 2112212112122121x x x xx x x x x x x x x x x x +++=++++<+,421221≥++x x x x 21x x =1),1,1(,2121<+∈x x ex x 0)ln(21<+x x )ln(4)ln()2(21211221x x x x x x x x +≤+++)ln(4ln ln 2121x x x x +<+42121)(x x x x +<于是,有1122ln 0{ln 0x mx x mx -=-=,解得1212ln ln x x m x x +=+,另一方面,由1122ln 0{ln 0x mx x mx -=-=,得()2121ln ln x x m x x -=-,从而可得21122112ln ln ln ln x x x x x x x x -+=-+,于是()()222121111222111lnln ln ln ln 1x x x x x x x x x x x x x x ⎛⎫+ ⎪-+⎝⎭+==--.又120x x <<, 设21x t x =,则1t >.因此, ()121ln ln ln ,1t t x x t ++=-1t >. 要证12ln ln 2x x +>,即证:()1ln 2,11t t t t +>>-.即当1t >时,有()21ln 1t t t ->+. 设函数()()21ln ,11t h t t t t -=-≥+,则()()()()()()222212111011t t t h t t t t t +---'=-=≥++, 所以, ()h t 为()1,+∞上的增函数.注意到, ()10h =,因此, ()()10h t h ≥=.于是,当1t >时,有()21ln 1t t t ->+. 所以,有12ln ln 2x x +>成立, 212x x e >.问题5:x m x x x f x --=221ln )(已知函数,若()x f 有两个极值点x 1,x 2,(x 1<x 2),且x x x x x a 12112ln 2ln ->-恒成立,求整数a 的最大值。
双变量问题的解决策略

g(t) 0 ,即 ln t 1 1 0 ,即 ln t 1 1 ,从而结论得证.
t
t
【题目 6】已知函数 f (x) ln x ax , a R.
(I)讨论 f (x) 的单调性;
( II ) 记 函 数 f (x) 的 两 个 零 点 为 x1, x2 , 且 x1 x2 . 已 知 0 , 若 不 等 式
一、变更主元
对于题目涉及到的两个变元,已知中一个变元在题设给定的范围内任意变动,求另一外
变元的取值范围问题,这类问题我们称之不“伪双变量”问题.这种“伪双变量”问题,往
往会利用我们将字母 x 作为自变量的误区来进行设计.此时,我们变更一元思路,将另一个
变量作为自变量,从而使问题得以解决,我们称这种方法为变更主元法.
二、指定主变量
有些问题虽然有两个变量,只要把其中一个当作常数,另一个看成自变量,便可使问题 得以解决,我们称这种思想方法为指定主变量思想.
【题目 2】求证: e2x 2t(ex x) x2 2t 2 1 3 . 2
1
【解析】令 f (t) 2t2 2(ex x)t e2x x 1
(II)由(I)知,当 1 时, f (x) 1 ln x ex 在 (0, ) 上单调递减,因为
e
e
0
x1
x2 ,所以
f (x1)
f
(
x2
).
即
1 e
ln
x1
e
x1
1 e
ln
x2
e x2 ,
所以 ln x1 e ex1 ln x2 e e x2 ,即 e1x2 e1x1 ln x1 ln x2.
设 g(x) f (x) x ln x k x ( x 0 ),则(*)式等价于 f (x) 在 (0, ) 上单调 x
微专题13 导数解答题之双变量问题

微专题13 导数解答题之双变量问题秒杀总结1.破解双参数不等式的方法:一是转化,即由已知条件入手,寻找双参数满足的关系式,并把含双参数的不等式转化为含单参数的不等式;二是巧构函数,再借用导数,判断函数的单调性,从而求其最值;三是回归双参的不等式的证明,把所求的最值应用到双参不等式,即可证得结果.例1.(广东省潮汕地区精英名校2022届高三第一次联考数学试题)已知函数()()()21e xf x x ax a =+-∈R ,()f x '为()f x 的导函数.(1)若()f x '只有一个零点,求a 的取值范围; (2)当34e a =时,存在1x ,2x 满足()()()12122,0f x f x x x x =<≠,证明:121x x >.例2.(浙江省台州市2021-2022学年高三上学期期末数学试题)已知,a k ∈R ,设函数()()ln f x x a kax =+-. (1)当1k =时,若函数()f x 在(),a -+∞上单调递增,求实数a 的取值范围; (2)若对任意实数a ,函数()f x 均有零点,求实数k 的最大值; (3)若函数()f x 有两个零点12,x x ,证明:()1212221x x a x x k a ++<.例3.(第13讲双变量问题-2022年新高考数学二轮专题突破精练)已知函数221()2ln (0)2f x ax x a x a =-+≠(1)讨论()f x 的单调性;(2)若()f x 存在两个极值点1x ,2x ,证明:121212()()11f x f x x x x x -<+-过关测试1.(四川省成都市树德中学2021-2022学年高三上学期入学考试文科数学试题)已知函数()2ln x x f x ax x =--,a R ∈.(1)若()f x 存在单调递增区间,求a 的取值范围;(2)若1x ,()212x x x <与为()f x 的两个不同极值点,证明:124ln ln 3x x +>.2.(浙江省宁波市2021-2022学年高三上学期11月高考模拟考试数学试题)已知函数()ln 2()f x x x x a =+∈R .(1)当2a =-时,求函数()f x 的单调区间; (2)若函数()f x 有两个不同零点1x ,212()x x x <, ①求实数a 的取值范围;②求证:22124a x x ⋅>.3.(安徽省合肥市第一中学2021-2022学年高三上学期11月月考理科数学试题)已知函数()()e cos x f x x ax a R =+-∈.(1)当1a =时,判断()f x 在区间(0,)+∞上的单调性;(2)当e a =时,若()()()121212,(0,),x x x x f x f x π∈≠=,且()f x 的极值在0x x =处取得,证明:1202x x x +<.4.(第12讲双变量不等式:剪刀模型-突破2022年新高考数学导数压轴解答题精选精练)已知函数()(1)(1)x f x x e =+-.(1)求()f x 在点(1-,(1))f -处的切线方程;(2)若1a e -…,证明:()22f x alnx ex +-…在[1x ∈,)∞+上恒成立; (3)若方程()f x b =有两个实数根1x ,2x ,且12x x <,证明:2111311b e ebx x e e ++-++--….5.(第26讲拐点偏移问题-突破2022年新高考数学导数压轴解答题精选精练)已知函数21()ln (1)2f x x ax a x =-+-,a R ∈.(1)讨论()f x 的单调性;(2)当2a =-时,正实数1x ,2x 满足1212()()0f x f x x x ++=,证明:1214x x +>.6.(第12讲双变量不等式:剪刀模型-突破2022年新高考数学导数压轴解答题精选精练)已知函数()e 1x f x ax =-+,ln3是()f x 的极值点.(1)求a 的值;(2)设曲线()y f x =与x 轴正半轴的交点为P ,曲线在点P 处的切线为直线l .求证:曲线()y f x =上的点都不在直线l 的上方;(3)若关于x 的方程()(0)f x m m =>有两个不等实根1x ,212()x x x <,求证:217210mx x -<-.7.(第13讲双变量问题-2022年新高考数学二轮专题突破精练)已知函数()2ln f x x x ax =+,0a ≥.(1)若曲线()y f x =在e x =处的切线在y 轴上的截距为e -,求a 的值;(2)证明:对于任意两个正数1x 、()212x x x ≠,()()121222x x f f x f x +⎛⎫<+ ⎪⎝⎭.微专题13 导数解答题之双变量问题秒杀总结1.破解双参数不等式的方法:一是转化,即由已知条件入手,寻找双参数满足的关系式,并把含双参数的不等式转化为含单参数的不等式;二是巧构函数,再借用导数,判断函数的单调性,从而求其最值;三是回归双参的不等式的证明,把所求的最值应用到双参不等式,即可证得结果.例1.(广东省潮汕地区精英名校2022届高三第一次联考数学试题)已知函数()()()21e xf x x ax a =+-∈R ,()f x '为()f x 的导函数.(1)若()f x '只有一个零点,求a 的取值范围; (2)当34e a =时,存在1x ,2x 满足()()()12122,0f x f x x x x =<≠,证明:121x x >. 【答案】(1){}34,0e ⎛⎫+∞⋃ ⎪⎝⎭;(2)证明见解析. 【解析】 【分析】(1)求出()()21e x f x x a '=+-,再二次求导,对a 分五种情况讨论得到a 的取值范围; (2)先证明100x x <<,再分120x x <<和120x x <<两种情况讨论证明不等式. (1)解:()f x 的定义域为(),-∞+∞,()()21e x f x x a '=+-,令()()()21e x g x f x x a '==+-,则()()()13e xg x x x '=++.∴当(),3x ∈-∞-时,()0g x '>,()f x '单调递增; 当()3,1x ∈--时,()0g x '<,()f x '单调递减; 当()1,x ∈-+∞时,()0g x '>,()f x '单调递增.①若0a <,则()()21e 0x f x x a '=+->,()f x '无零点,不成立;②若0a =,则()()21e x f x x '=+有且只有1x =-一个零点,符合题意; ③若340e a <<,则()10f a '-=-<,()3430e f a '-=->,()010f a '=->, ∴()3,1α∃∈--,()1,0β∈-,使()()0f f αβ''==, ∴()f x '不只有一个零点,不成立.④若34e a =,则()30f '-=,又f ′(−1)=−4e 3<0,()34010e f =->', ∴()01,0x ∃∈-,使()00f x '=,∴()f x '不只有一个零点,不成立. ⑤若34e a >,则当(),3x ∞∈--时,()()3430e f x f a ''≤-=-<, ()10f a '-=-<,()()()()ln 11ln 110f a a a '+=+++>,∴()()1,ln 1a γ∃∈-+,使()0f γ'=. ∴()f x '有且只有一个零点,符合题意.综上,a 的取值范围是{}34,0e ⎛⎫+∞⋃ ⎪⎝⎭.(2) 解:当34e a =时,()()2341e e x f x x x =+-, 由(1)知,当()0,x x ∈-∞时,()0f x '≤,()f x 单调递减; 当()0,x x ∈+∞时,()0f x '>,()f x 单调递增.又()()12f x f x =,12x x <,则()10,x x ∈-∞,()20,x x ∈+∞, ∴100x x <<. ①若120x x <<,则11221x xx x =>. ②若120x x <<,则1122x xx x =-,要证明121x x >,即证21x x <-. 又2x ,()10,x x -∈+∞,则只要证()()21f x f x <-,即证()()11f x f x <-.令()()()()1121111381e e e x x f x f x x x ---=+--. 先证明一个不等式:e e 2x x x --<,0x <.令()e e 2x xh x x -=--,则()e e 2e e 20x x x x h x --'=+-≥⋅=,∴()h x 在(),0∞-上单调递增.∴当(),0x ∈-∞时,()()00h x h <=,∴e e 2x x x --<,0x <.∴()()()()()112221111111113338881e e 21220e e e x x f x f x x x x x x x x -⎛⎫--=+--<+-=+-< ⎪⎝⎭ ∴()()11f x f x <-,∴121x x >综上,有121x x >. 【点睛】方法点睛:函数的零点问题处理常用的方法有三种:(1)方程法:直接解方程得解;(2)图象法:画出函数的图象分析图象得解;(3)方程+图象法:令()=0f x 得到()()g x h x =,再分析(),()g x h x 的图象即得解. 例2.(浙江省台州市2021-2022学年高三上学期期末数学试题)已知,a k ∈R ,设函数()()ln f x x a kax =+-. (1)当1k =时,若函数()f x 在(),a -+∞上单调递增,求实数a 的取值范围; (2)若对任意实数a ,函数()f x 均有零点,求实数k 的最大值; (3)若函数()f x 有两个零点12,x x ,证明:()1212221x x a x x k a ++<. 【答案】(1)0a ≤(2)2e (3)证明见解析 【解析】 【分析】(1)当1k =时,对函数()f x 求导,再根据0a ≤和0a >两种情况进行分类讨论函数的单调性,即可求出结果.(2)对函数()f x 求导,再根据0ka ≤和0ka >两种情况讨论函数的单调性,进而求出函数的最值; (3)由题意得,要证原命题成立,只要证212221()()x a x a a k a++<+成立;设ln()x a t +=,则11ln()x a t +=,22ln()x a t +=是函数()(e )t h t t ka a =--的两根.再根据0ka ≤和0ka >两种情况讨论函数()h t 的单调性,再记函数()h t 有图象关于直线1ln t ka=对称后是()y m t =函数的图象,再求()()m t g t -的正负情况,最后根据不等式关系,即可证明结果. (1)解:当1k =时,1().()f x a x a x a-'=>-+.. 当0a ≤时,()0f x '>,则()f x 在(,)a -+∞上单调递增. 当0a >时,若1x a a>-,()0f x '<,()f x 在(,)a -+∞上不可能单调递增.. 所以()f x 在(,)a -+∞上单调递增,则0a ≤. (2) 解:1().()f x ka x a x a=->-'+(ⅰ)当0ka ≤时,()0f x '>,()f x 在(,)a -+∞上单调递增.()f x 有零点. (ⅰ)当0ka >时,()f x 在1(,)a a ka--上单调递增,在1(,)a ka -+∞上单调递减.又当x 趋近于a -时,f (x )趋近于∞-;x 趋近于∞+时,f (x )趋近于∞-; 所以只要1()0f a ka-≥恒成立,则()f x 恒有零点. 即2ln()10ka ka --+≥恒成立.因为求k 的最大值,不妨设0k >,0a >.设2()ln()1g a ka ka =--+,则2121'()2ka g a ka a a-=-+=.所以只要min ()(02g a g k=≤. 即1ln(022k --≥,得2k e ≤.所以k 的最大值为2e .(3)解:由题意得:只要证212221()()x a x a a k a++<+. 设ln()x a t +=,e t x a =-.则11ln()x a t +=,22ln()x a t +=是函数()(e )t h t t ka a =--的两根. ()1e t h t ka '=-.当0ka ≤时,()0h t '>,与函数()h t 有两个零点矛盾. 所以0ka >.所以当'()1e 0t h t ka =-=时,1ln t ka=. 所以函数()h t 在1(,ln)ka -∞上递增,在1(ln ,)ka+∞上递减. 记函数()h t 有图象关于直线1ln t ka=对称后是()y m t =函数的图象. 有111()(2ln)2ln e t m t h t t ka ka ka-=-=--⋅. 则11()()2lne 2e t t m t g t ka t ka ka --=+⋅--⋅. 1[()()]e e 20t tm t g t ka ka-'-=⋅+⋅-≥. 所以1lnt ka≥时,()()m t g t ≥.所以1212lnt t ka -≥,即1212ln t t ka+≤. 所以121ln()ln()2ln x a x a ka +++≤.12221()()x a x a k a++≤. 所以21212222211()x x a x x a k a k a++<-<. 例3.(第13讲双变量问题-2022年新高考数学二轮专题突破精练)已知函数221()2ln (0)2f x ax x a x a =-+≠(1)讨论()f x 的单调性;(2)若()f x 存在两个极值点1x ,2x ,证明:121212()()11f x f x x x x x -<+-【答案】(1)答案不唯一,具体见解析 (2)证明见解析 【解析】 【分析】(1)函数()f x 求导后,分子为含参的二次三项式,结合0a ≠,我们可以从0∆…和0∆>结合开口方向和两根的大小来讨论;(2)1x ,2x 为函数()f x 的两个极值点,我们可以通过()f x '结合韦达定理,找到1x ,2x 的关系,带入到要证明的不等式中,然后通过整理,化简成一个关于12x x 的函数关系,再通过换元,构造函数,通过求解函数的值域完成证明. (1)22222()1a ax x a f x ax x x-+'=-+=,设22()2p x ax x a =-+.(0)x >,318a ∆=-,①当12a …时,0∆…,()0p x …,则()0f x '…,()f x 在(0,)+∞上单调递增, ②当102a <<时,0∆>,()p x 的零点为311182a x a -=,321182ax a-=,且120x x <<,令()0f x '>,得10x x <<,或2x x >,令()0f x '<,得12x x x <<,()f x ∴在3118(a --3118)a +-上单调递减,在3118(0,)2a a-,3118(a +-,)∞+单调递增,③当0a <时,0∆>,()p x 3118a--,()f x ∴在3118a --上单调递增,在3118(a --,)∞+上单调递减.综上所述:当12a …时,()f x 在(0,)+∞上单调递增;当102a <<时,()f x 在3118(a --3118a +-上单调递减,在3118a --,3118(a +-,)∞+单调递增;当0a <时,()f x 在3118)a --上单调递增,在3118(a --,)∞+上单调递减. (2)证明:由(1)知,当102a <<时,()f x 存在两个极值点, 不妨设120x x <<,则121x x a +=, 要证:121212()()11f x f x x x x x -<+-,只要证121212121221()()()()x x x x x xf x f x x x x x -+->=-,只需要证211212122211()[()2]2ln 2xxxx x a x x a x x x -+-+>-,即证21121222112ln ()2x x x a x x x x x -+>-,设12x t x =,(01)t <<, 设函数21()2ln g t a t t t =-+,22221()t a t g t t -+∴'=-,∴4440a ∆=-<,22210t a t ∴-+>, ()0g t ∴'<,()g t ∴在(0,1)上单调递减,则()(1)g t g >0=,又121()02x x -<, 则121()0()2g t x x >>-,则21121222112ln ()2x x x a x x x x x -+>-,从而121212()()11f x f x x x x x -<+-. 【点睛】(1)含参的二次三项式再进行分类讨论的时候,如果二次项含参数,在讨论有根无根的情况下要兼顾到开口方向以及两根大小的比较;(2)如果函数()f x 在求导完以后,是一个分子上含有二次三项式,不含指数、对数的式子,那么函数()f x 的极值点关系,可以使用韦达定理来表示.过关测试1.(四川省成都市树德中学2021-2022学年高三上学期入学考试文科数学试题)已知函数()2ln x x f x ax x =--,a R ∈.(1)若()f x 存在单调递增区间,求a 的取值范围;(2)若1x ,()212x x x <与为()f x 的两个不同极值点,证明:124ln ln 3x x +>. 【答案】(1)1,2e ⎛⎫-∞ ⎪⎝⎭;(2)证明见解析.【解析】 【分析】(1)由题意知()ln 20f x x ax '=->有解,分离a 可得ln 2x a x <有解,令()ln 2xg x x=,可得max ()a g x <,利用导数求()g x 的最大值即可求解;(2)由题意知1x ,2x 是()0f x '=的两根,将1x x =,2x x =代入()0f x '=整理可得1212ln ln 2x x a x x -=-,所证明不等式为()1212123ln4x x x x x x -<+12123141x xx x ⎛⎫- ⎪⎝⎭=+,令12x t x =,01t <<问题转化为证明3(1)()ln 0(01)41t t t t t ϕ-=-<<<+成立,利用导数证明单调性求最值即可求证. 【详解】(1)函数定义域为()0,∞+,根据题意知()ln 20f x x ax '=->有解, 即ln 2x a x <有解,令()ln 2xg x x=,()21ln 2x g x x -'=, 且当0e x <<时,()0g x '>,()g x 单调递增, 当e x >时,()0g x '<,()g x 单调递减, 所以max 1()(e)2e a g x g <==,所以1,2e a ⎛⎫∈-∞ ⎪⎝⎭;(2)由1x ,2x 是()f x 的不同极值点,知1x ,2x 是()0f x '=的两根,即1122ln 20ln 20x ax x ax -=⎧⎨-=⎩,所以1122ln 2ln 2x ax x ax =⎧⎨=⎩①, 联立可得:1212ln ln 2x x a x x -=-②,要证124ln ln 3x x +>,由①代入即证124223ax ax ⋅+>,即()12243a x x +>,由②代入可得()121212ln ln 43x x x x x x -+>-③, 因为12x x <,则③等价于()1122112122313ln 441x x x x x x x x x x ⎛⎫- ⎪-⎝⎭<=++, 令12x t x =,01t <<问题转化为证明3(1)()ln 0(01)41t t t t t ϕ-=-<<<+④成立, 而2221151671()0(01)(41)(41)t t t t t t t t ϕ-+'=-=><<++, ()t ϕ在()0,1上单调递增,当()0,1t ∈,()()10t ϕϕ<=④成立,即得证.2.(浙江省宁波市2021-2022学年高三上学期11月高考模拟考试数学试题)已知函数()ln 2()f x x x x a =+∈R .(1)当2a =-时,求函数()f x 的单调区间; (2)若函数()f x 有两个不同零点1x ,212()x x x <, ①求实数a 的取值范围;②求证:22124a x x ⋅>.【答案】(1)单调递增区间是1(0,)4,单调递减区间是1(,)4+∞(2)①2a >;②证明见解析 【解析】 【分析】(1)求出导函数()'f x ,由()0f x '>得增区间,由()0f x '<得减区间; (2)①函数()f x 有两个不同零点1212,()x x x x <,等价于方程2ln 2xa x x=有两个不同的实根1212,()x x x x <.设t x =ln 2a t t t=-有两个不同的实根()1212,t t t t <. 设ln ()(0)tg t t t t=->,由导数确定()g t 的单调性、极值、函数值的变化趋势后可得; ②由①11t x =22t x =要证22124a x x ⋅>,只需证2122a t t ⋅>.由①知,1201t t <<<,故有2222ln 2t a t t t =-<,即22at >.下面证明:121t t ⋅>即可.引入函数()()2221()h t g t g t =-,由导数证明()221()0g t g t ->,利用单调性即可得结论. (1)对函数()f x 求导,得142'()22a x a x f x x x -++=+= 当2a =-时,422(1)(21)'()x x x x f x --+-+-==, 因为函数()f x 的定义域(0,)+∞, 由'()0f x >,得104x <<, 由'()0f x <,得14x >, 所以函数()f x 的单调递增区间是1(0,)4,单调递减区间是1(,)4+∞.(2)由()0f x =,得ln 20x a x x +=, ①函数()f x 有两个不同零点1212,()x x x x <, 等价于方程2ln 2xa x x=有两个不同的实根1212,()x x x x <. 设t x =ln 2a t t t=-有两个不同的实根()1212,t t t t <. 设ln ()(0)tg t t t t=->, 2221ln ln 1'()1t t t g t t t-+-=-=, 再设2()ln 1u t t t =+-,1'()20u t t t =+>所以函数()u t 在(0,)t ∈+∞上单调递增, 注意到2(1)1ln110u =+-=,所以当01t <<时,()0u t <,当1t >时,()0u t >. 所以()g t 在(0,1)上单调递减,在(1,)+∞上单调递增. 当0t +→时,()g t →+∞, 当t →+∞时,()g t →+∞, 当1t =时,()1g t =, 只需12a>, 即所求2a >.②注意到11t x =22t x =22124a x x ⋅>,只需证2122a t t ⋅>.由①知,1201t t <<<,故有2222ln 2t a t t t =-<,即22a t >. 下面证明:121t t ⋅>.设()()222222222222221lnln 1111()()()()ln 1t t h t g t g t t t t t t t t t t =-=---=--+, 有()22222222222211111'1(1)ln ()(1)ln 0h t t t t t t t t t =+---+⋅=--<, 所以函数()2h t 在(1,)+∞上单调递增, 所以()2(1)0h t h >=,所以()221()0g t g t ->,故有()()2121()g g t g t t <=.又2101t <<,101t <<,且()g t 在(0,1)t ∈上单调递减,所以121t t >,即得121t t ⋅>.因此2122at t ⋅>,结论得证. 3.(安徽省合肥市第一中学2021-2022学年高三上学期11月月考理科数学试题)已知函数()()e cos x f x x ax a R =+-∈.(1)当1a =时,判断()f x 在区间(0,)+∞上的单调性;(2)当e a =时,若()()()121212,(0,),x x x x f x f x π∈≠=,且()f x 的极值在0x x =处取得,证明:1202x x x +<. 【答案】(1)()f x 在(0,)+∞上是增函数. (2)证明见解析. 【解析】 【分析】(1)求出导函数()'f x ,设()()g x f x '=,再求导()g x ',由()0g x '>恒成立得()'f x 单调递增,得()(0)0f x f ''>=,从而得()f x 的单调性;(2)利用导数得出()f x 的极小值点0x ,注意0()0f x '=,题设中12()()f x f x =,满足1020x x x π<<<<,考虑到0102x x x ->,引入新函数0()()(2)h x f x f x x =--,00x x <<,利用导数确定()h x 是单调增函数,得0()()0h x h x <=,即得101()(2)f x f x x <-,再利用12,x x 的关系,及函数()f x 的单调性可证得结论成立.(1),()0x ∈+∞,1a =时,()cos e x f x x x =+-,()sin 1e x f x x '=--,设()sin e 1x g x x =--,则()cos 0e x g x x '=+>,0x >时,()0g x '>恒成立,所以()g x ,即()'f x 在(0,)+∞上单调递增,又(0)0f '=,所以0x >时,(0)0f '>恒成立, 所以()f x 在(0,)+∞上是增函数. (2)e a =,()cos e e xf x x x =+-,s e ()in e x f x x '=--,由(1)知()'f x 在(0,)+∞上是增函数,(1)sin10f '=-<,e e ()0f ππ'=->,所以()'f x 在(1,)π,即在(0,)π上存在唯一零点0x ,000()s n e e i 0xf x x '=--=,00x x <<时,()0f x '<,()f x 递减,0x x π<<时,()0f x '>,()f x 递增.0x 是函数()f x 的唯一极小值点.若()()()121212,(0,),x x x x f x f x π∈≠=,则1020x x x π<<<<, 设0()()(2)h x f x f x x =--,00x x <<,02000e ()()(2)cos cos(2)e e (2)e x x x h x f x f x x x x x x x x -=--=+------ 0200cos cos e (2e e 2)x x x x x x x -=-+---,020e e sin sin(2)()x x x x x h x x -+-+-'=00200sin s e e e sin sin in(2)2(2)x x x x x x x x x x -≥+---=⋅+由000()s n e e i 0xf x x '=--=得00si e e n x x =+,所以00e 2sin sin sin(2()2)x x x x h x +-+-'≥,由00x x π<<<,得00sin 1x <≤,0sin 1x <≤,又01sin(2)1x x -≤-≤, 所以e+0()21(1)0h x '>-+->,所以()h x 是增函数, 当100x x <<时,10()()0h x h x <=,所以101()(2)0f x f x x --<,101()(2)f x f x x <-,又2101()()(2)f x f x f x x =<-,1020x x x <<<,所以0102x x x ->,又20x x >,()f x 在0(,)x +∞上单调递增,所以2012x x x <-,所以1202x x x +<. 【点睛】本题考查用导数研究函数的单调性,证明与极值点,方程根有关的不等式,关于不等式的证明,题中涉及到两个未知数,因此解题中需要进行变形,一是利用函数的单调性,一是利用变量的关系,可以对待证不等式进行等价转化,结合函数单调性得出证明方法.如本题要证1202x x x +<2012x x x ⇔<-,不妨设1020x x x <<<后,由()f x 在2(,)x +∞上递增,等价于证明201()(2)f x f x x <-,从而等价于101()(2)f x f x x <-,这里只有一个未知数1x 了,然后引入新函数0()()(2)h x f x f x x =--,00x x <<,再求得单调性达到证明目的.4.(第12讲双变量不等式:剪刀模型-突破2022年新高考数学导数压轴解答题精选精练)已知函数()(1)(1)x f x x e =+-.(1)求()f x 在点(1-,(1))f -处的切线方程;(2)若1a e -…,证明:()22f x alnx ex +-…在[1x ∈,)∞+上恒成立; (3)若方程()f x b =有两个实数根1x ,2x ,且12x x <,证明:2111311b e ebx x e e ++-++--…. 【答案】(1)1(1)ey x e-=+ (2)证明见解析 (3)证明见解析 【解析】 【分析】(1)根据导数的几何意义求解即可;(2)根据题意只需证()(1)22f x e lnx ex -+-…,构造函数()(1)(1)(1)22x g x x e e lnx ex =+----+,求导分析函数的单调性根据单调性分析可得()g x 只能在1x =处取得最小值,进而求解即可; (3)根据题意,构造1()()(1)eF x f x x e-=-+和()()()G x f x t x =-,利用二次求导讨论()F x 和()G x 的单调性和最小值,可得1()(1)ef x x e-+…、()(31)1f x e x e ---…,设方程1()(1)e s x x b e -=+=的根1x '和()(31)1t x e x e b =---=的根2x ',再根据不等式的性质证明即可. (1)函数()(1)(1)x f x x e =+-,由()(2)1x f x x e '=+-, 由1(1)1f e'-=-,(1)0f -=,所以切线方程为1(1)ey x e-=+, (2)当[1x ∈,)∞+时,0lnx …,所以22(1)22alnx ex e lnx ex +--+-…. 故只需证()(1)22f x e lnx ex -+-…, 构造()(1)(1)(1)22x g x x e e lnx ex =+----+,1()(2)12x e g x x e e x-'=+---, 又()g x '在[1x ∈,)∞+上单调递增,且g '(1)0=, 知()g x 在[1x ∈,)∞+上单调递增, 故()g x g …(1)22220e e =--+=. 因此(1)(1)(1)2222x x e e lnx ex alnx ex +--+-+-厖,得证. (3)由(1)知()f x 在点(1-,(1))f -处的切线方程为1(1)ey x e-=+.构造11()()(1)(1)()x e F x f x x x e e e -=-+=+-,1()(2)x F x x e e'=+-,()(3)x F x x e ''=+. 当3x <-时,()0F x ''<;当3x >-时,()0F x ''>; 所以()F x '在(,3)-∞-上单调递减,在(3,)-+∞上单调递增. 又311(3)0F e e'-=--<,1lim ()x F x e →-∞'=-,(1)0F '-=,所以()F x 在(,1)-∞-上单调递减,在(1,)-+∞上单调递增.所以1()(1)0()(1)eF x F f x x e--=⇒+厖. 设方程1()(1)es x x b e -=+=的根111eb x e'=--.又111()()()b s x f x s x '==…,由()s x 在R 上单调递减,所以11x x '…. 另一方面,()f x 在点(1,22)e -处的切线方程为()(31)1t x e x e =---. 构造()()()(1)(1)(31)1(1)3x x G x f x t x x e e x e x e ex e =-=+---++=+-+. ()(2)3x G x x e e '=+-,()(3)x G x x e ''=+.当3x <-时,()0G x ''<;当3x >-时,()0G x ''>;所以()G x '在(,3)-∞-上单调递减,在(3,)-+∞上单调递增. 又31(3)30G e e'-=--<,lim ()3x G x e →-∞'=-,G '(1)0=, 所()G x 在(,1)-∞上单调递减,在(1,)+∞上单调递增.所以()G x G …(1)0()()(31)1f x t x e x e =⇒=---…. 设方程()(31)1t x e x e b =---=的根2131e bx e ++'=-. 又222()()()b t x f x t x '==…,由()t x 在R 上单调递增, 所以22x x '…. 11x x '…,22x x '…, 11x x '∴--…, 所以212111311b e ebx x x x e e ++''--++--剟,得证. 【点睛】破解含双参不等式证明题的3个关键点(1)转化,即由已知条件入手,寻找双参所满足的关系式,并把含双参的不等式转化为含单参的不等式. (2)巧构造函数,再借用导数,判断函数的单调性,从而求其最值.(3)回归双参的不等式的证明,把所求的最值应用到双参不等式,即可证得结果. 5.(第26讲拐点偏移问题-突破2022年新高考数学导数压轴解答题精选精练)已知函数21()ln (1)2f x x ax a x =-+-,a R ∈.(1)讨论()f x 的单调性;(2)当2a =-时,正实数1x ,2x 满足1212()()0f x f x x x ++=,证明:1214x x +>. 【答案】(1)答案见解析 (2)证明见解析 【解析】 【分析】(1)求导,然后分0a …和0a >讨论导函数的正负值即可;(2)代入12,x x 可得2211122212ln 3ln 30x x x x x x x x ++++++=,变形可得212121212()3()ln()x x x x x x x x +++=-,令12t x x =,利用导数求出()ln g t t t =-的最值,然后解不等式,比较大小即可. (1)21()ln (1)2f x x ax a x =-+-,a R ∈,21(1)1()(1)ax a x f x ax a x x-+-+∴'=-+-=, 当0a …时,0x >,()0f x ∴'>.()f x ∴在(0,)+∞上是递增函数, 即()f x 的单调递增区间为(0,)+∞,无递减区间.当0a >时,1()(1)()a x x af x x-+'=-,令()0f x '=,得1x a =. ∴当1(0,)x a ∈时,()0f x '>;当1(x a ∈,)∞+时,()0f x '<.()f x ∴的单调递增区间为1(0,)a ,单调递减区间为1(a ,)∞+.综上,当0a …时,()f x 的单调递增区间为(0,)+∞,无递减区间;当0a >时,()f x 的单调递增区间为1(0,)a ,单调递减区间为1(a ,)∞+.(2)当2a =-时,2()ln 3f x x x x =++,(0)x > 正实数1x ,2x 满足1212()()0f x f x x x ++=,2211122212ln 3ln 30x x x x x x x x ⇒++++++=,212121212()3()ln()x x x x x x x x ⇒+++=-,令12t x x =,则函数()ln g t t t =-,(0)t >,11()1t g t t t-∴'=-=,当(0,1)t ∈时,()0g t '<,当(1,)t ∈+∞时,()0g t '>,()g t g ∴…(1)1=,212121212()3()ln()1x x x x x x x x ∴+++=-….则12133x x -+…12133x x --+…舍去). 12133x x -∴+…1331213752494----, 1214x x ∴+>【点睛】关键点点睛:对于双变量问题,我们要通过变形和换元转化为单变量问题,然后构造函数解决. 6.(第12讲双变量不等式:剪刀模型-突破2022年新高考数学导数压轴解答题精选精练)已知函数()e 1x f x ax =-+,ln3是()f x 的极值点.(1)求a 的值;(2)设曲线()y f x =与x 轴正半轴的交点为P ,曲线在点P 处的切线为直线l .求证:曲线()y f x =上的点都不在直线l 的上方;(3)若关于x 的方程()(0)f x m m =>有两个不等实根1x ,212()x x x <,求证:217210mx x -<-. 【答案】(1)3 (2)证明见解析 (3)证明见解析 【解析】 【分析】(1)利用导数的几何意义即可求解;(2)由(1)可得曲线()y f x =在点P 处的切线l :()()003e x y x x =--. 令()()()003e xg x x x =--,()()()F x f x g x =-,则()()()0000F x f x g x =-=,由()F x 的单调性可得()()00F x F x ≤=,从而可得结论成立;(3)设方程()g x m =的解为2x ',构造新函数()2()e 1x r x x f x x =-=--,(0)x >,利用导数研究函数的单调性,进而可得()(0)0r x r >=,结合2y x =与y m =交点的横坐标12mx '=,求出21x x -即可. (1)()e x f x a '=-;由题意知,ln3(ln3)e 0f a '=-=,3a ∴=;(2)证明:设曲线()y f x =在0(P x ,0)处切线为直线00:(3e )()x l y x x =--;令00()(3e )()x g x x x =--;00()()()3e 1(3e )()x x F x f x g x x x x =-=-+---;∴0()3e (3e )e e x x x x F x '=---=-;()F x ∴在0(,)x -∞上单调递增,在0(x ,)∞+上单调递减;000()()()()0max F x F x f x g x ∴==-=;()()()0F x f x g x ∴=-…,即()()f x g x …,即()y f x =上的点都不在直线l 的上方;(3)由(2)设方程()g x m =的解为2x '; 则有020(3e )()x x x m -'-=,解得0203e x mx x '=+-; 由题意知,22ln 3x x <<';令()2()e 1x r x x f x x =-=--,(0)x >;()e 10x r x '=->;()r x ∴在(0)+∞,上单调递增; ()(0)0r x r ∴>=;2y x ∴=的图象不在()f x 的下方;2y x =与y m =交点的横坐标为12mx '=; 则有1103x x ln <'<<,即11220ln3x x x x <'<<<<';2121023ex m mx x x x x ∴-<'-'=+--; 关于0x 的函数023e x m my x =+--在(32)ln ,上单调递增; 21272223e 227210m m m m mx x ∴-<+-<+-=---. 【点睛】利用导数解决函数综合问题的过程中,难度较大,解决问题的基础是函数的单调性,通过函数的单调性得到函数的极值、最值,然后再结合所求问题逐步求解.证明两函数图象间的位置关系时,可通过构造函数,通过判断出函数的单调性,进而转化为函数最值的问题处理.7.(第13讲双变量问题-2022年新高考数学二轮专题突破精练)已知函数()2ln f x x x ax =+,0a ≥.(1)若曲线()y f x =在e x =处的切线在y 轴上的截距为e -,求a 的值;(2)证明:对于任意两个正数1x 、()212x x x ≠,()()121222x x f f x f x +⎛⎫<+ ⎪⎝⎭.【答案】(1)0a =; (2)证明见解析. 【解析】 【分析】(1)求出曲线()y f x =在e x =处的切线方程,由已知条件可得出关于a 的等式,即可求得实数a 的值;(2)利用分析法可知所证不等式等价于()222121212112212ln 2ln ln 22x x x x x x a x x x x ax ax ++⎛⎫++<+++ ⎪⎝⎭,利用作差法可证得222121222x x a ax ax +⎛⎫≤+ ⎪⎝⎭,构造函数()()1111ln ln ln 2x x g x x x x x x x +=+--,利用导数分析函数()g x 的单调性,可证得()12121122lnln ln 2x x x x x x x x ++<+,再利用不等式的基本性质可证得结论成立. (1)解:由()2ln f x x x ax =+,得()2ln 1f x ax x '=++,则()e 2e 2f a '=+,又()2e e e f a =+,∴曲线()y f x =在e x =处的切线的方程为()()22e 2e e e y a x a =+-++,即()22e 2e e y a x a =+--,由题意得2e e e a --=-,解得0a =.(2)证明:要证明()()121222x x f f x f x +⎛⎫<+ ⎪⎝⎭成立,即证明()222121212112212ln 2ln ln 22x x x x x x a x x x x ax ax ++⎛⎫++<+++ ⎪⎝⎭,一方面,()()222121222221212122222x x a x x x x a ax ax a x x ⎡⎤+-+⎛⎫--=--=-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦, 0a ≥,则()21202a x x --≤,即222121222x x a ax ax +⎛⎫≤+ ⎪⎝⎭,①另一方面,不妨设12x x <,再设()()1111ln ln ln 2x xg x x x x x x x +=+--, 则()11lnln ln 22x x x xg x x x++'=-=,可得()10g x '=, 当1x x >时,()0g x '<,此时()g x 单调递减, ()()210g x g x ∴<=,即()12121122lnln ln 2x x x x x x x x ++<+,② 综合①②可得,()()121222x x f f x f x +⎛⎫<+ ⎪⎝⎭.【点睛】方法点睛:利用导数证明不等式问题,方法如下:(1)直接构造函数法:证明不等式()()f x g x >(或()()f x g x <)转化为证明()()0f x g x ->(或()()0f x g x -<),进而构造辅助函数()()()h x f x g x =-;(2)适当放缩构造法:一是根据已知条件适当放缩;二是利用常见放缩结论;(3)构造“形似”函数,稍作变形再构造,对原不等式同解变形,根据相似结构构造辅助函数.。
导数压轴-双变量问题的探讨

引言导数中有一类问题涉及到两个变量,例如m 和n 、a 和b 、1x 和2x 。
显然涉及两个变量的问题我们是不会处理的,如何把两个变量转化为一个变量就成了我们问题解决的关键。
方法点睛方法一:也是最核心、最常见的方法。
就是进行式子齐次化,进行了齐次化后可以将12x x 或者12x x -作为单元,这样就达到了减元的目的。
方法二:一般可以通过联立12,x x 的等式,通过对两式进行相加(相减)等操作,对所求式等进行化简。
方法三:对于等价双变量不等式问题,我们先令如12x x >,再通过适当的变形,使得等式两边均只含有一个变量,且形式相同,这样我们可以令这个相同的形式为()g x ,问题也许就转化成了()g x 的单调性问题。
还有其他的一些方法技巧性较强,我们在后面的题目中进行详细剖析。
例题讲解【例题1】已知函数(1)()ln 1a x f x x x -=-+. (Ⅰ)若函数()f x 在(0,)+∞上为单调增函数,求a 的取值范围 (Ⅱ)设m ,n +∈R ,且m n ≠,求证:ln ln 2m n m nm n -+<- 对话与解答:(Ⅰ)2a ≤(Ⅱ)不妨设m n >,证明原不等式成立等价于证明()2ln m n mm n n-<+成立,也就是证明第六课:关于导数中双变量问题的探讨21ln 1m m n m n n⎛⎫- ⎪⎝⎭<+成立。
令,1m t t n =>,即证()()21ln 01t g t t t -=->+。
运用(Ⅰ)的结论,()g t 在()0+∞,上单调递增,故()()10g t g >=,不等式得证。
本题我们用到方法一。
看到解答,你可能会觉得将()2m n m n -+处理成211m n m n⎛⎫- ⎪⎝⎭+真是神来之笔,也是解决整个问题的关键。
那么这个处理究竟有没有思路可循呢?当然是有的,不难发现()2ln m n mm n n-<+的右边已经出现了m n 的形式,同时右边分子分母都死其次式,如果一开始就有“转化成一个变量”的思想,就会迅速锁定mn整体换元。
高中数学压轴题系列——导数专题——双变量问题.docx

高中数学压轴题系列——导数专题——双变量问题(2)1.(2010?辽宁)已知函数 f (x) =( a+1)lnx+ax2+1(1)讨论函数 f(x)的单调性;(2)设 a<﹣ 1.如果对任意 x1,x2∈(0, +∞),|f( x1)﹣ f(x2) | ≥4| x1﹣x2| ,求 a 的取值范围.解:(Ⅰ) f(x)的定义域为( 0,+∞) ..当a≥0 时, f ′(x)> 0,故 f( x)在( 0,+∞)单调递增;当a≤﹣ 1 时, f ′(x)< 0,故 f (x)在( 0,+∞)单调递减;当﹣ 1< a<0 时,令 f ′( x) =0,解得.则当时, f'( x)> 0;时, f' (x)< 0.故 f(x)在单调递增,在单调递减.(Ⅱ)不妨假设 x1≥2,而<﹣,由(Ⅰ)知在(,∞)单调递减,x a10 +从而 ? x1, x2∈( 0, +∞),|f(x1)﹣ f( x2) | ≥4| x1﹣ x2|等价于 ? x1,2∈(,+∞),( 2)+ 2≥( 1)+1①x0f x4x f x4x令g(x)=f( x)+4x,则①等价于 g(x)在( 0,+∞)单调递减,即.从而故 a 的取值范围为(﹣∞,﹣2] .(12 分)2.(2018?呼和浩特一模)已知函数f(x)=lnx, g( x) =﹣bx(b为常数).(Ⅰ)当 b=4 时,讨论函数 h(x)=f(x)+g(x)的单调性;(Ⅱ) b≥2 时,如果对于 ?x1,x2∈(1, 2] ,且 x1≠x2,都有|f(x1)﹣ f( x2) | <|g( x1)﹣ g(x2)|成立,求实数 b 的取值范围.解:(1) h(x)=lnx+ x2﹣bx 的定义域为( 0,+∞),当 b=4 时, h(x)=lnx+x2﹣ 4x,h'(x)= +x﹣4=,令 h'(x) =0,解得 x1=2﹣,x2=2+,当 x∈(2﹣,2+)时, h′( x)< 0,当 x∈(0,2﹣),或( 2+,+∞)时, h′(x)> 0,所以, h(x)在∈(0,2﹣),或( 2+ ,+∞)单调递增;在( 2﹣,2+)单调递减;(Ⅱ)因为 f( x)=lnx 在区间( 1,2] 上单调递增,当 b≥ 2 时, g(x)= x2﹣bx 在区间( 1,2] 上单调递减,不妨设 x1>x2,则|f(x1)﹣ f( x2) | <|g(x1)﹣g(x2)|等价化为 f(x1)+g( x1)<f(x2)+g( x2),令φ(x)=f( x)+g(x),则问题等价于函数φ( x)在区间( 1, 2] 上单调递减,即等价于φ′( x) = +x﹣b≤0 在区间( 1,2] 上恒成立,所以得 b≥ +x,因为 y= +x 在( 1,2] 上单调递增,所以y max = +2=所以得b≥3.(2018?乐山二模)已知 f (x)=.(1)求 f( x)的单调区间;(2)令 g( x) =ax2﹣2lnx,则 g(x)=1 时有两个不同的根,求 a 的取值范围;(3)存在 x1,x2∈( 1, +∞)且 x1≠x2,使|f(x1)﹣ f(x2) | ≥k| lnx 1﹣lnx 2| 成立,求 k 的取值范围.解:(1)∵ f(x)=,f′(x)==﹣=﹣,故x∈(0,1)时, f ′(x)> 0,x∈(1,+∞)时, f ′( x)< 0,故f(x)在( 0, 1)上单调递增,在( 1,+∞)上单调递减;(2)∵ g(x)=ax2﹣ 2lnx=1,∴ a==f(x),作函数 f (x)的图象如下,∵f (1)==1,∴结合图象可知, a 的取值范围为(0,1);(3)不妨设 x1> x2>1,∵f( x)在(1, +∞)上单调递减, y=lnx 在(1,+∞)上单调递增;∴|f( x1)﹣ f (x2) | ≥k| lnx1﹣ lnx2| 可化为 f( x2)﹣ f (x1)≥ k( lnx1﹣lnx2),∴f (x2211)+klnx≥f( x)+klnx ,即函数 h(x)=f(x)+klnx 在( 1, +∞)上存在单调减区间,即 h′( x) =f (′x)+ =﹣+ =< 0 在( 1,+∞)上有解,即 m(x)=kx2﹣4lnx<0 在( 1,+∞)上有解,即k<在( 1,+∞)上有解,∵()′=,当x=时,=0;故() max =;∴ k<.4.(2018?衡阳三模)已知函数f( x) =lnx﹣ax2+x(a∈R),函数 g( x)=﹣2x+3.(Ⅰ)判断函数F(x)=f(x)+(Ⅱ)若﹣ 2≤a≤﹣ 1 时,对任意成立,求实数 t 的最小值.解:(I)ag(x)的单调性;x1,x2∈[ 1,2] ,不等式|f( x1)﹣ f (x2) | ≤t| g(x1)﹣ g(x2) | 恒,其定义域为为( 0,+∞),=.(1)当 a≤ 0 时, F'( x)≥ 0,函数 y=F( x)在( 0,+∞)上单调递增;(2)当 a> 0 时,令 F'(x)> 0,解得;令 F'(x)< 0,解得.故函数 y=F(x)在上单调递增,在上单调递减.(II)由题意知 t≥ 0.,当﹣ 2≤ a≤﹣ 1 时,函数 y=f(x)单调递增,不妨设1≤x1≤x2≤ 2,又函数 y=g(x)单调递减,所以原问题等价于:当﹣2≤a≤﹣ 1 时,对任意 1≤x1≤x2≤2,不等式 f( x2)﹣ f(x1)≤ t[ g(x1)﹣ g(x2) ] 恒成立,即 f(x2)+tg( x2)≤ f (x1)+tg(x1)对任意﹣ 2≤a≤﹣ 1,1≤x1≤ x2≤ 2 恒成立.记 h( x)=f(x)+tg( x) =lnx﹣+( 1﹣ 2t)x+3t ,则 h(x)在[1,2] 上单调递减.得对任意 a∈[ ﹣ 2,﹣ 1] , x∈[ 1,2] 恒成立.令,a∈[ ﹣ 2,﹣ 1] ,则2t ≤0 在 x∈(0,+∞)上恒成立.则 2t﹣1≥( 2x+) max,而y=2x+在[1,2]上单调递增,所以函数 y=2x+在[1, 2] 上的最大值为.由 2t﹣1,解得 t.故实数 t 的最小值为.5.(2018?河南模拟)已知函数.(1)若 m<0,曲线 y=f(x)在点( 1, f( 1))处的切线在两坐标轴上的截距之和为2,求 m 的值;(2)若对于任意的及任意的x1,x2∈[ 2,e],x1≠x2,总有成立,求 t 的取值范围.解:(1)因为又因为切点坐标为,所以,所以切线方程为,f' (1)=m﹣1..令 x=0,得;令y=0,得解得 m=﹣2 或,又m<0,所以(2)不妨设 x1> x2,由( 1)知,.由m=﹣2.,,化简得,2m2+m﹣ 6=0,所以f' (x)> 0, f( x)为增函数,从而f(x1)> f(x2).所以等价于,即,所以.设,则g(x1)> g( x2),所以g(x)在[2,e]上为单调递增函数,因此所以g'(x)≥ 0,,即对于对于恒成立,x∈[ 2,e] 恒成立.设 h( x)=x3﹣2x2,则=,所以 h(x)在[2, e] 上单调递增, h(x)min =h(2)=1,因此, t ≤ 1,即 t ∈(﹣∞, 1] .。
再次例谈导数压轴题中双变量问题的常用解法
再次例谈导数压轴题中双变量问题的常用解法长沙市明达中学吴祥云今日在“玩转高中数学交流群”中,由河南的贾老师提供一常规题,很多老师作出了不同的解答,我在这里把它们总结起来,供大家交流学习。
题目虽然简单,但是方法的讲述由浅入深,学生会更容易接受一些。
闲话少说,先上题:已知函数f(x)=xe x,f(x1)=f(x2),x1≠x2,求证:x1+x2>2.解析:f′(x)=1−xe x,易得 f(x)在(−∞,1)递增,(1,+∞)递减,其图像如图,为了更好的看图,横纵轴单位长度取得不同,不妨设0<x1<1<x2,以下是几种不同的证明思路:思路一:(极值点偏移问题+构造对称函数)令g(x)=f(2−x)−f(x),(0<x<1)则g′(x)=(1−x)e x−e2−xe x e2−x<0,则g(x)在(0,1)递减∴g(x)>g(1)=0,即f(2−x)>f(x),∴f(2−x1)> f(x1)=f(x2),又2−x1>1,x2>1,f(x)在(1,+∞)递减,∴2−x1<x2,即x1+x2>2。
思路二:(极值点偏移+对数平均不等式)f(x1)=f(x2)⇒x1e x1=x2e x2⇒lnx1−x1=lnx2−x2⇒lnx1−lnx2=x1−x2⇒x1−x2lnx1−lnx2=1,由对数平均不等式x1−x2lnx1−lnx2<x1+x22(证明略),得x1+x22>1,即x1+x2>2。
思路三:(差值消元)令x2−x1=t>0,x1e x1=x2e x2⇒x2x1=e x2e x1=e x2−x1=e t⇒x1=te t−1,x2=te t−1+t,∴x1+x2=2te t−1+t,欲证x1+x2>2即证2te t−1+t<2即e t(2−t)2+t<1,令g(t)=e t(2−t)2+t,则g′(t)=e t(−t2)(2+t)2<0,故g(t)在(0,+∞)递减,点评:构造对称函数为极值点偏移问题的通法。
(完整版)再次例谈导数压轴题中双变量问题的常用解法
再次例谈导数压轴题中双变量问题的常用解法长沙市明达中学吴祥云今日在“玩转高中数学交流群”中,由河南的贾老师提供一常规题,很多老师作出了不同的解答,我在这里把它们总结起来,供大家交流学习。
题目虽然简单,但是方法的讲述由浅入深,学生会更容易接受一些。
闲话少说,先上题:已知函数f(x)=xe x,f(x1)=f(x2),x1≠x2,求证:x1+x2>2.解析:f′(x)=1−xe x,易得 f(x)在(−∞,1)递增,(1,+∞)递减,其图像如图,为了更好的看图,横纵轴单位长度取得不同,不妨设0<x1<1<x2,以下是几种不同的证明思路:思路一:(极值点偏移问题+构造对称函数)令g(x)=f(2−x)−f(x),(0<x<1)则g′(x)=(1−x)e x−e2−xe x e2−x<0,则g(x)在(0,1)递减∴g(x)>g(1)=0,即f(2−x)>f(x),∴f(2−x1)> f(x1)=f(x2),又2−x1>1,x2>1,f(x)在(1,+∞)递减,∴2−x1<x2,即x1+x2>2。
思路二:(极值点偏移+对数平均不等式)f(x1)=f(x2)⇒x1e x1=x2e x2⇒lnx1−x1=lnx2−x2⇒lnx1−lnx2=x1−x2⇒x1−x2lnx1−lnx2=1,由对数平均不等式x1−x2lnx1−lnx2<x1+x22(证明略),得x1+x22>1,即x1+x2>2。
思路三:(差值消元)令x2−x1=t>0,x1e x1=x2e x2⇒x2x1=e x2e x1=e x2−x1=e t⇒x1=te t−1,x2=te t−1+t,∴x1+x2=2te t−1+t,欲证x1+x2>2即证2te t−1+t<2即e t(2−t)2+t<1,令g(t)=e t(2−t)2+t,则g′(t)=e t(−t2)(2+t)2<0,故g(t)在(0,+∞)递减,点评:构造对称函数为极值点偏移问题的通法。
双变量任意,存在性导数问题
值域法破解双变量压轴题的四种情形1基本原理.第1类.“任意=存在”型2211,D x D x ∈∃∈∀,使得)()(21x g x f =,等价于函数)(x f 在1D 上上的值域A 是函数)(x g 在2D 上的值域B 的子集,即B A ⊆.其等价转化的基本思想:函数)(x f 的任意一个函数值都与函数)(x g 的某一个函数值相等,即)(x f 的函数值都在)(x g 的值域之中.此类型出现频率最高.第2类.“存在=存在”型2211,D x D x ∈∃∈∃,使得)()(21x g x f =,等价于函数)(x f 在1D 上的值域A 与函数)(x g 在2D 上的值域B 的交集不为空集,即∅≠⋂B A .其等价转化的基本思想:两个函数有相等的函数值,即它们的值域有公共部分.第3类.“任意≥(≤、>、<)任意”型2211,D x D x ∈∀∈∀,使得)()(21x g x f ≥恒成立等价于max min )()(x g x f ≥.其等价转化的基本思想是函数)(x f 的任何一个函数值均大于函数)(x g 的任何一个函数值.同理,可得其他类型.第4类.m x f x f b a x x ≤-∈∀|)()(|],,[,2121型.由于闭区间上连续函数必有最值,故此类转化为m x f x f ≤-|)()(|min max ,解决掉双变量转化为求最值.2.典例分析第1类问题问题应用.例1.已知函数()()ln f x ax x a R =+∈.(1)若1a =,求曲线()y f x =在1x =处切线方程;(2)讨论()y f x =的单调性;(3)12a ≥-时,设()222g x x x =-+,若对任意[]11,2x ∈,均存在[]20,3x ∈,使得()()12f x g x =,求实数a 的取值范围.解析:(2)()f x 定义域为()0,∞+,()1'1ax a x f xx +=+=,当0a ≥时,()'0f x >恒成立,所以()f x 在()0,∞+上单调递增;当0a <时,10,x a ⎛⎫∈- ⎪⎝⎭时()'0f x >恒成立,1,x a ⎛⎫∈-+∞ ⎪⎝⎭时()'0f x <恒成立,所以()f x 在10,a ⎛⎫- ⎪⎝⎭上单调递增,在1,a ⎛⎫-+∞ ⎪⎝⎭上单调递减;综上述,当0a ≥时,()f x 在()0,∞+上单调递增;当0a <时,()f x 在10,a ⎛⎫- ⎪⎝⎭上单调递增,在1,a ⎛⎫-+∞ ⎪⎝⎭上单调递减.(3)由已知,转化为()f x 在[]1,2x ∈的值域M 和()g x 在[]0,3x ∈的值域N 满足:M N ⊆,易求[]1,5N =.又()1'1ax a x f xx +=+=且12a ≥-,()f x 在[]1,2x ∈上单调递增,故值域[],2ln 2M a a =+.所以152ln 2a a ≤⎧⎨≥+⎩,解得5ln 212a -≤≤,即5ln 21,2a -⎡⎤∈⎢⎥⎣⎦.第2类问题应用例2.已知曲线()y ln x m =+与x 轴交于点P ,曲线在点P 处的切线方程为()y f x =,且2)1(=f .(1)求()y f x =的解析式;(2)求函数()()xf xg x e =的极值;(3)设2(1)1()ln x a lnx h x x +-+=,若存在实数1[1x ∈,]e ,12[x e -∈,1],使得21222222()(1)h x x ln x a x lnx x <+-+成立,求实数a 的取值范围.解析:(1)曲线()y ln x m =+与x 轴交于点(1,0)P m -,1y x m'=+,∴曲线在点P 处的切线斜率111k m m==-+,可得切线方程为0(1)y x m -=--,f (1)2=,21(1)m ∴=--,解得2m =.()(12)y f x x ∴==--,即()1f x x =+.(2)函数()1()x x f x x g x e e +==,()x xg x e-'=,0x ∴>时,()0g x '<,此时函数()g x 单调递减;0x <时,()0g x '>,此时函数()g x 单调递增.0x ∴=是函数()g x 的极大值点,(0)1g =.(3)设21x m =,12[x e -∈ ,1],则[1m ∈,]e ,2222222(1)1(1)ln m a lnm x ln x a x lnx x m +-++-+=.2(1)1()ln x a lnx h x x +-+= ,∴2(1)1()ln m a lnm h m m+-+=.若存在实数1[1x ∈,]e ,12[x e -∈,1],使21222222()(1)h x x ln x a x lnx x <+-+成立,等价于:12()()h x h m <成立,[1m ∈,]e .即2()()min max h x h x <,[1x ∈,]e .令lnx t =,[1x ∈ ,]e ,则[0t ∈,1].22(1)1(1)1()tln x a lnx t a t h x x e +-++-+∴==,[0t ∈,1],(0)1h =,h (1)3ae -=.221[(1)1](1)()()t tt a t a t t t a h t e e +--+-+--'==,a的取值范围是(-∞,32)(32ee --⋃,)+∞.第3类情形应用实例例3.设函数()(0)kx f x xe k =≠.(1)讨论函数()f x 的单调性;(2)设2()24g x x bx =-+,当1k =时,若对任意的1x R ∈,存在2[1,2]x ∈,使得()()12f x g x ≥,求实数b 的取值范围.解析:(1)令()(1)0kx f x kx e '=+>,所以10kx +>,当0k >时,1x k >-,此时()f x 在1,k ⎛⎫-∞- ⎪⎝⎭上单调递减,在1,k ⎛⎫-+∞ ⎪⎝⎭上单调递增;当k 0<时,1x k <-,此时()f x 在1,k ⎛⎫-∞- ⎪⎝⎭上单调递增,在1,k ⎛⎫-+∞ ⎪⎝⎭上单调递减;(2)当1k =时,,()f x 在(),1-∞-上单调递减,在()1,-+∞单调递增.所以对任意1x R ∈,有()11(1)f x f e ≥-=-,又已知存在2[1,2]x ∈,使()()12f x g x ≥,所以()221,[1,2]g x x e -≥∈即存在2[1,2]x ∈,使21()24g x x bx e =-+≤-,即142e b x x-+≥+,又因为当[1,2]x ∈,14114,52e x x ee -+⎡⎤+∈++⎢⎥⎣⎦,所以1242b e ≥+,124b e ≥+,即实数b 的取值范围124b e ≥+.第4类情形应用实例例4.已知函数()()ln 0bf x a x x a =+≠.(1)当2b =时,若函数()f x 恰有一个零点,求实数a 的取值范围;(2)当0a b +=,0b >时,对任意121,,x x e e ⎡⎤∈⎢⎥⎣⎦,有()()122f x f x e -≤-成立,求实数b 的取值范围.解析:(1)定义域为()0,∞+,当2b =时,22()2a x af x x x x+'=+=;当0a >时,()0f x '>,()f x 为增函数,取10a x e -=,120()1(e )0a f x -=-+<,(1)10f =>所以0()(1)0f x f ⋅<,故此时恰有一个零点;当0a <时,令()0f x '=,x =0x <时,()0f x '<,所以()f x 在⎛ ⎝单调递减,x ()0f x '>,所以()f x 在⎫+∞⎪⎪⎭单调递增;要使函数恰有一个零点,需要ln 02af a ==,解得2a e =-,综上,实数a 的取值范围是2a e =-或0a >.(2)因为对任意121,x x e e ⎡⎤∈⎢⎥⎣⎦,有()()122f x f x e -≤-成立,且12max min ()()()()f x f x f x f x --≤,所以max min ()2(e )f x f x -≤-.因为0a b +=,所以=-a b ,所以()ln bf x b x x =-+,1(1)().b b b b x f x bx x x--'=-+=当01x <<时,()0f x '<,当1x >时,()0f x '>;所以函数在1[,1)e上单调递减,在(1,]e 上单调递增,min ()(1)1,f x f ==因为1()bf b e e -=+与()b f e b e =-+,所以max 1()max (),(e),e f x f f ⎧⎫=⎨⎬⎩⎭令1()(e)()e e 2,eb bg b f f b -=-=--则当0b >时,()220b b g b e e -'=+->-=,所以()g b 在()0,∞+上单调递增,故()(0)0g b g >=,所以1()()f e f e>,从而max ()e .bf x b =-+所以12b b e e -+-≤-,即10b e b e --+≤.令()e e 1(0)t t t t ϕ=--+>,则()e 1t t ϕ'=-.当0t >时,()0t ϕ'>,所以()t ϕ在()0,∞+上单调递增.又(1)0ϕ=,所以10b e b e --+≤,即()(1)b ϕϕ≤,解得1b ≤,所以b 的取值范围是(0,1].。
如何处理导数问题中含有两个变量的问题
, 一 一 2
式 转 化 为l n > —
1 + ( )
, 即证 明l n > - 2 x - 2 :  ̄x ∈( 1 + ) 恒 成 立
,
l + x
x -2 证 明: 设g ( x) : 1 n x 一 — 2
—
,
x∈( 1 , +∞) ,
1 +x 一
二 ! ( X ) >0, / 则g ( x) : 1 n x 一2 x - 2 :  ̄( 1 , + ∞) 上单调递增 , g ( x ) > g ( 1 ) : O .
.
,
1 +x ‘
又. . . 0 < a < b . 一 b
2 b
一
证明: . . . 0 ≤b < a ≤1 。 要证 < ) 二 < 2
=
h , ( x) : 2 x ( 1 n x — l n a ) +( a 2 + x 2 ) . 一 2 a : 2 x ( 1 n x — l n a ) +
—
a +x a +x
[ ( a 2 + x 2 ) ( 1 n x
—
l n z ) 一
例2 : 函数f ( x ) = l n x , 当0 < a < b时 , 求证 : f ( b ) 一 f ( a ) >
2 a ( b — a)
a + b
2 a x + 2 a] , ( x > a )
了
.
,
1 ] ,
( x ) ≥0
恒成立 .
正负情况即可 . 求导过程相对较简单. 如 果 有 的 同 学 对 变 量 集 中不 太 熟 练 .我 们 也 可 以换 一 个 角度来 考虑 , 对我 们要证 明的不等式l n b — l n a > — 2 a ( b - a )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例谈导数压轴题中双变量问题的常用解法
典例:已知函数f(x)=x
e x
,f(x1)=f(x2),x 1≠x2,求证:x1+x2>2.
解析:f′(x)=1−x
e x
,易得 f(x)在(−∞,1)递增,(1,+∞)递减,其图像如图,为了更好的看图,横纵轴单位长度取得不同,不妨设0<x1<1<x2,以下是几种不同的证明思路:
思路一:(极值点偏移问题+构造对称函数)
令g(x)=f(2−x)−f(x),(0<x<1)
则g′(x)=(1−x)e x−e2−x
e x e2−x
<0,则g(x)在(0,1)递减
∴g(x)>g(1)=0,即f(2−x)>f(x),
∴f(2−x1)> f(x1)=f(x2),又2−x1>1,x2>1,f(x)在(1,+∞)递减,∴2−x1<x2,即x1+x2>2。
思路二:(极值点偏移+对数平均不等式)
f(x1)=f(x2)⇒x1
e x1
=
x2
e x2
⇒lnx1−x1=lnx2−x2⇒lnx1−lnx2=x1−x2
⇒
x1−x2
lnx1−lnx2
=1,由对数平均不等式
x1−x2
lnx1−lnx2
<
x1+x2
2
(证明略),
得x1+x2
2
>1,即x1+x2>2。
思路三:(差值消元)
令x2−x1=t>0,x1
e x1=x2
e x2
⇒x2
x1
=e x2
e x1
=e x2−x1=e t⇒x1=t
e t−1
,x2=t
e t−1
+t,
∴x1+x2=
2t
e t−1
+t,欲证x1+x2>2即证
2t
e t−1
+t<2即
e t(2−t)
2+t
<1,
令g(t)=e t(2−t)
2+t
,则g′(t)=
e t(−t2)
(2+t)2
<0,故g(t)在(0,+∞)递减,∴g(t)<g(0)=0,∴x1+x2>2。
点评:构造对称函数为极值点偏移问题的通法。
点评:含指数或者对数的不等式问题中,指对互化是常用技巧,而对数平均不等的
功能更是巨大。
点评:在含指数式的双变量问题中,差值消元是常用策略,而构造函数时又体现了“指数找基友”的思想。
思路四:(比值消元) 令x 2x 1=t,则t >1,x 1e x 1=x 2e x 2⇒x 2x 1=e x 2
e x 1
=t ⇒x 2−x 1=lnt,又x 2=tx 1, ∴x 1=lnt t −1,x 2=tlnt t −1,欲证x 1+x 2>2即证lnt t −1+tlnt t −1
>2, 即证lnt >2(t−1)
t+1,令g (t )=lnt −2(t−1)
t+1,(t >1),g ′(t )=(t−1)2
(1+t )2>0,
故g (t )在(0,+∞)递增,∴g (t )>g (0)=0,∴lnt >2(t −1)t +1,∴x 1+x 2>2。
思路五:(构造对称函数)
f ′(x )=1−x e x ,易证不等式1−x e x −1−x e =(1−x )(1e x −1e
)≥0, 令g ′(x )=1−x
e ,则g (x )=
−(1−x)22e +c,(c 为常数) 由g (1)=f (1)=1e 得 c =1e ,g (x )=−(1−x )2
2e +1
e , 结合两个函数导数的关系作出如右图所示图像, (此处可用不等式来说明,这里省略)
x 3<x 1<x 4<x 2,又g (x )的图像关于
x =1对称,∴x 3+x 4=2,∴x 1+x 2>x 3+x 4
=2,∴x 1+x 2>2。
点评:将条件转化成对数式以后,比值消元则是对数式常用的策略,而构造函数时又体现了“对数单身狗”的思想。
点评:本思路源自于本题是一道极值点偏移问题,可以考虑找到一个关于极值点对称的函数进行交点的代换,则可得到证明。
其中对这个函数的要求是很苛刻的,本人也没有太多研究,故抛转引玉给读者们进行探究学习。