电磁场与电磁波课后习题及答案--第四章习题解答
《电磁场与电磁波》习题参考答案

《电磁场与电磁波》知识点及参考答案第1章 矢量分析1、如果矢量场F 的散度处处为0,即0F∇⋅≡,则矢量场是无散场,由旋涡源所产生,通过任何闭合曲面S 的通量等于0。
2、如果矢量场F 的旋度处处为0,即0F ∇⨯≡,则矢量场是无旋场,由散度源所产生,沿任何闭合路径C 的环流等于0。
3、矢量分析中的两个重要定理分别是散度定理(高斯定理)和斯托克斯定理, 它们的表达式分别是:散度(高斯)定理:SVFdV F dS ∇⋅=⋅⎰⎰和斯托克斯定理:sCF dS F dl∇⨯⋅=⋅⎰⎰。
4、在有限空间V 中,矢量场的性质由其散度、旋度和V 边界上所满足的条件唯一的确定。
( √ )5、描绘物理状态空间分布的标量函数和矢量函数,在时间为一定值的情况下,它们是唯一的。
( √ )6、标量场的梯度运算和矢量场的旋度运算都是矢量。
( √ )7、梯度的方向是等值面的切线方向。
(× )8、标量场梯度的旋度恒等于0。
( √ ) 9、习题, 。
第2章 电磁场的基本规律(电场部分)1、静止电荷所产生的电场,称之为静电场;电场强度的方向与正电荷在电场中受力的方向相同。
2、在国际单位制中,电场强度的单位是V/m(伏特/米)。
3、静电系统在真空中的基本方程的积分形式是:V V sD dS dV Q ρ⋅==⎰⎰和0lE dl ⋅=⎰。
4、静电系统在真空中的基本方程的微分形式是:V D ρ∇⋅=和0E∇⨯=。
5、电荷之间的相互作用力是通过电场发生的,电流与电流之间的相互作用力是通过磁场发生的。
6、在两种媒质分界面的两侧,电场→E 的切向分量E 1t -E 2t =0;而磁场→B 的法向分量B 1n -B 2n =0。
7、在介电常数为的均匀各向同性介质中,电位函数为 2211522x y z ϕ=+-,则电场强度E=5x y zxe ye e --+。
8、静电平衡状态下,导体内部电场强度、磁场强度等于零,导体表面为等位面;在导体表面只有电场的法向分量。
工程电磁场与电磁波 丁君版 答案第四章习题答案

工程电磁场与电磁波丁君版答案第四章习题答案第四章习题4-1解:选柱坐标系,在所求无源区内电位函数满足:02=?φφ只和r 相关0=???φ0=??z φ方程化为 0)(1=????rr r r φ21ln C r C +=φ为常数21,C C 由 006.0==φ时r 501.0-==φ时r得 88.27588.9721=-=C C88.275ln 88.97+-=r φr a rE ?188.97=-?=φ4—2:解:图一依据边界条件:?????====021R R R R U φφ0可得:???????--=-=00UR R R B U R R R R A 1211221 ∴()120212021R R U R R R R U R R ---=φ(2) ()R R a RR R U R R a R E ?1?212021?-=??-=-?=φφ (1) 如图一,依据题意可知:电位函数φ满足拉普拉斯方程。
接受球坐标系:2=?φ0=??θφ0=???φR 相关只于φ,方程化为: 0)(122=????R R R R φφ积分得:B RA +?=1φ(3) ()R R R aR R R U R E D ?12102001-?===εε内表 S S d D s Sρ=??内表S S D s ρ=内表∴)(12102R R R U R D s -==ερ内表4—3:解:选择直角坐标如图,由恒定电场的泊松方程可得:xy设两板间距离为d,代入边界条件?????====000U dz z φφ???????+=+==?ερερ22002021d d U d d U C C ∴)2()2(2002ερερφερερφd d U z E zdd U z +-=-?=++-=4—4:解:选择柱坐标系,依据恒定电磁场的拉普拉斯方程,(1) 02=?m φ,m φ只在?方向上有变化,所以:B A r m m+==???φ?φ:,01222积分得由 0=?时:0,0==B m 得φ∴?φA m = l m m a dld Hφφ-=-?=l d H d m?-=φ??-=?-=ππφ2020I l d H d m0,0,2=??=??-=?xy φφερφ方程可化为:,22ερφ-=??z2122:C z C z ++-=ερφ积分得B A I m m+=-==?φφπ?代入,2π2?=-A I π2I A -= ?πφ2Im -= (2) ??π?φφφa rI a d d r a dl d H m l m m21==-=-?=可见,利用拉普拉斯方程与安培环路定理求出来的结果一样。
电磁场与电磁波 课后答案(冯恩信 著)

第一章 矢量场 1.1 z y x C z y x B z y x A ˆˆˆ3;ˆ2ˆˆ;ˆˆ3ˆ2+-=-+=-+= 求:(a) A ; (b) b ; (c) A B ⋅ ; (d) B C ⨯ ; (e) () A B C ⨯⨯ (f) () A B C ⨯⋅ 解:(a) 14132222222=++=++=z y x A A A A ; (b) )ˆ2ˆˆ(61ˆz y x BB b -+== ( c) 7=⋅B A ; (d) z y xC B ˆ4ˆ7ˆ---=⨯ (e) z y x C B A ˆ4ˆ2ˆ2)(-+=⨯⨯ (f) 19)(-=⋅⨯C B A 1.2 A z =++2 ρπϕ; B z =-+- ρϕ32 求:(a) A ; (b) b ; (c) A B ⋅ ; (d) B A ⨯ ; (e) B A + 解:(a) 25π+=A ;(b) )ˆ2ˆ3ˆ(141ˆz b -+-=ϕρ;(c) 43-=⋅πB A (d) z A B ˆ)6(ˆ3ˆ)23(+--+=⨯πϕρπ (e) z B A ˆˆ)3(ˆ-++=+ϕπρ 1.3 A r =+-22 πθπϕ; B r =- πθ 求:(a) A ; (b) b ; (c) A B ⋅ ; (d) B A ⨯ ; (e) A B + 解:(a) 254π+=A ; (b) )ˆˆ(11ˆ2θππ-+=r b ; (c) 22π-=⋅B A ;(d) ϕπθππˆ3ˆ2ˆ22++=⨯r A B ; (e) ϕπˆ2ˆ3-=+r B A 1.4 A x y z =+- 2; B x y z =+-α 3 当 A B ⊥时,求α。
解:当 A B ⊥时, A B ⋅=0, 由此得 5-=α 1.5 将直角坐标系中的矢量场 F x y z x F x y z y 12(,,) ,(,,) ==分别用圆柱和圆球坐标系中的坐标分量表示。
第四章第2节电磁场与电磁波练习(word版含答案)

2021-2022学年人教版(2019)选择性必修第二册第四章第2节电磁场与电磁波过关演练一、单选题1.下列关于电磁波的说法,正确的是()A.只要有电场和磁场就能产生电磁波B.电场随时间变化时一定能产生电磁波C.要想产生持续的电磁波,变化的电场(或磁场)产生的磁场(或电场)必须是均匀变化的D.振荡电流能在空间中产生电磁波2.对于电磁波的发现过程,下列说法正确的是()A.麦克斯韦通过实验证实了电磁波的存在B.麦克斯韦预言了电磁波的存在C.赫兹根据自然规律的统一性,提出变化的电场产生磁场D.电磁波在任何介质中的传播速度均为8310m/s3.关于电磁波的形成机理,一些认识,正确的是()A.电磁波由赫兹预言提出,并指出光也属于电磁波B.磁场能产生电场,电场也能产生磁场C.变化的磁场能产生电场,所产生的这个电场还能继续产生磁场D.变化的电场能产生磁场,所产生的这个磁场不一定还能继续产生电场4.如图所示是我国500m口径球面射电望远镜(F AST),它可以接收来自宇宙深处的电磁波。
关于电磁波,下列说法正确的是()A.赫兹预言了电磁波的存在B.麦克斯韦通过实验捕捉到电磁波C.频率越高的电磁波,波长越长D.电磁波可以传递信息和能量5.以下有关电磁场理论,正确的是()A.稳定的电场周围产生稳定的磁场B.有磁场就有电场C.变化的电场周围产生变化的电场D.周期性变化的磁场产生周期性变化的电场6.关于电磁场和电磁波,下列叙述中不正确的是()A.均匀变化电场在它的周围产生均匀变化的磁场B.振荡电场在它的周围产生同频振荡的磁场C.电磁波从一种介质进入另一种介质,频率不变,传播速度与波长发生变化D.电磁波能产生干涉和衍射现象7.下列说法正确的是()A.电磁波在真空中的传播速度与电磁波的频率有关B.电磁波可以由电磁振荡产生,若波源的电磁振荡停止,空间的电磁波随即消失C.声波从空气进入水中时,其波速增大,波长变长D.均匀变化的磁场产生变化的电场,均匀变化的电场产生变化的磁场E.当波源与观察者相向运动时,波源自身的频率变大8.关于电磁波理论,下列说法正确的是()A.在变化的电场周围一定产生变化的磁场,在变化的磁场周围一定产生变化的电场B.均匀变化的电场周围一定产生均匀变化的磁场C.做非匀变速运动的电荷可以产生电磁波D.麦克斯韦第一次用实验证实了电磁波的存在9.下列说法正确的是()A.电场随时间变化时一定产生电磁波B.X射线和 射线的波长比较短,穿透力比较弱C.太阳光通过三棱镜形成彩色光谱,这是光衍射的结果D.在照相机镜头前加装偏振滤光片拍摄日落时水面下的景物,可使景物清晰10.真空中所有电磁波都有相同的()A.频率B.波长C.波速D.能量二、多选题11.以下叙述正确的是()A.法拉第发现了电磁感应现象B.电磁感应现象即电流产生磁场的现象C.只要闭合线圈在磁场中做切割磁感线的运动,线圈内部便会有感应电流D.感应电流遵从楞次定律所描述的方向,这是能量守恒的必然结果12.下列说法正确的是()A.波的衍射现象必须具备一定的条件,否则不可能发生衍射现象B.要观察到水波明显的衍射现象,必须使狭缝的宽度远大于水波波长C.波长越长的波,越容易发生明显的衍射现象D.只有波才有衍射现象13.间距为L=1m的导轨固定在水平面上,如图甲所示,导轨的左端接有阻值为R=10Ω的定值电阻,长度为L=1m、阻值为r=10Ω的金属棒PQ放在水平导轨上,与导轨有良好的接触,现在空间施加一垂直导轨平面的磁场,磁感应强度随时间的变化规律如图乙所示,已知磁场的方向如图甲所示,且0~0.2s的时间内金属棒始终处于静止状态,其他电阻不计。
《电磁场与电磁波》习题参考答案

况下,电场和磁场可以独立进行分析。( √ )
12、静电场和恒定磁场都是矢量场,在本质上也是相同的。( × )
13、静电场是有源无旋场,恒定磁场是有旋无源场。( √ ) 14、位移电流是一种假设,因此它不能象真实电流一样产生磁效应。(
×)
15、法拉第电磁感应定律反映了变化的磁场可以产生变化的电场。( √ ) 16、物质被磁化问题和磁化物质产生的宏观磁效应问题是不
D.有限差分法
6、对于静电场问题,仅满足给定的泊松方程和边界条件,
而形式上不同的两个解是不等价的。( × )
7、研究物质空间内的电场时,仅用电场强度一个场变量不能完全反映物 质内发生的静电现象。( √ )
8、泊松方程和拉普拉斯方程都适用于有源区域。( × )
9、静电场的边值问题,在每一类的边界条件下,泊松方程或拉普拉斯方 程的解都是唯一的。( √ )
是( D )。
A.镜像电荷是否对称
B.电位所满足的方程是否未改变
C.边界条件是否保持不变 D.同时选择B和C
5、静电场边值问题的求解,可归结为在给定边界条件下,对拉普拉斯
方程的求解,若边界形状为圆柱体,则宜适用( B )。
A.直角坐标中的分离变量法
B.圆柱坐标中的分离变量法
C.球坐标中的分离变量法
两个基本方程:
3、写出麦克斯韦方程组,并简述其物理意义。
答:麦克斯韦方程组的积分形式:
麦克斯韦方程组的微分形式:
每个方程的物理意义: (a) 安培环路定理,其物理意义为分布电流和时变电场均为磁
场的源。 (b) 法拉第电磁感应定律,表示时变磁场产生时变电场,即动
磁生电。 (c) 磁场高斯定理,表明磁场的无散性和磁通连续性。 (d)高斯定理,表示电荷为激发电场的源。
人教版高中物理选择性必修第二册课后习题 第4章 电磁振荡与电磁波 2.电磁场与电磁波

2.电磁场与电磁波课后训练巩固提升一、基础巩固1.关于电磁场理论,下列说法正确的是( )A.在电场周围一定产生磁场,磁场周围一定产生电场B.在变化的电场周围一定产生变化的磁场,变化的磁场周围一定产生变化的电场C.均匀变化的电场周围一定产生均匀变化的磁场D.正弦交变的电场在其周围空间一定产生同频率交变的磁场,只有变化的电场才产生磁场,均匀变化的电场产生稳定的磁场,非均匀变化的电场产生变化的磁场,周期性变化的电场周围一定产生同频率变化的磁场。
本题考查麦克斯韦电磁场理论,提高学生的理解和分析能力,培养科学思维。
2.建立完整的电磁场理论,并首先预言电磁波存在的科学家是( )A.法拉第B.奥斯特C.赫兹D.麦克斯韦,赫兹用实验证明了电磁波的存在。
3.电磁波在传播时,不变的物理量是( )A.振幅B.频率C.波速D.波长,振幅越小。
电磁波在不同介质中的波速不一样,波长也不一样,但频率不变。
4.下列关于电磁波的说法正确的是( )A.电磁波必须依赖介质传播B.电磁波可以发生衍射现象C.电磁波不会发生偏振现象D.电磁波无法携带信息传播,可以发生衍射现象,故B正确。
电磁波是横波,能发生偏振现象,故C错误。
电磁波能携带信息传播,且传播不依赖介质,在真空中也可以传播,故A、D错误。
本题考查电磁波的特点,提高学生的辨析能力,培养科学思维。
5.某电路中电场强度随时间变化的关系图像如图所示,能发射电磁波的是( ),当空间出现恒定的电场时(如A图),由于它不激发磁场,故无电磁波产生;当出现均匀变化的电场时(如B图、C图),会激发出磁场,但磁场恒定,不会在较远处激发出电场,故也不会产生电磁波;只有周期性变化的电场(如D图),才会激发出周期性变化的磁场,它又激发出周期性变化的电场……如此交替的产生磁场和电场,便会形成电磁波,故D正确。
6.电磁波与机械波具有的共同性质是( )A.都能在真空中传播B.都能传输能量C.都有横波和纵波D.都需要介质传播,而机械波不能在真空中传播,故A错误。
电磁场与电磁波第5版王家礼答案

电磁场与电磁波第5版王家礼答案电磁场与电磁波第5版王家礼答案第一章电磁场和电磁波的基本概念1.1 什么是电磁场?电磁场是描述电荷运动影响的物理场。
它可以被看作是一种对空间的划分,并且在各个空间区域内具有不同的物理状态。
1.2 电磁场的基本方程式是哪些?电磁场的基本方程式包括:麦克斯韦方程组、库仑定律、法拉第电磁感应定律、安培环路定律等。
1.3 什么是电磁波?电磁波是由振动的电荷和振动的磁场所产生的波动现象。
它具有电场和磁场的相互作用,且在真空和各种介质中都能传播。
第二章静电场和静磁场2.1 什么是静电场?静电场是指当电荷分布不随时间变化、不产生磁场时,所产生的电场。
2.2 静电场的基本定律有哪些?静电场的基本定律包括库仑定律、电场线、电势能和电势。
2.3 什么是静磁场?静磁场是指当电荷分布不随时间变化,但产生了磁场时,所产生的磁场。
2.4 静磁场的基本定律有哪些?静磁场的基本定律包括安培环路定律、比奥萨伐尔定律和洛伦兹力定律。
第三章时变电磁场和电磁波的基本概念3.1 什么是时变电磁场?时变电磁场是指电荷分布随时间变化,且产生了磁场时,所产生的电磁场。
3.2 时变电磁场的基本方程式是哪些?时变电磁场的基本方程式是麦克斯韦方程组,包括麦克斯韦-安培定律、麦克斯韦-法拉第定律、法拉第感应定律和电场定律等。
3.3 什么是电磁波?电磁波是由振动的电荷和振动的磁场所产生的波动现象,它具有电场和磁场的相互作用,可以在真空和各种介质中传播。
3.4 电磁波的基本特征有哪些?电磁波的基本特征包括电场和磁场垂直于传播方向、具有可见光、红外线、紫外线、X射线和γ射线等不同频率和能量等。
第四章电磁波在真空和介质中的传播4.1 电磁波如何在真空中传播?电磁波在真空中传播速度等于光速,即299792458m/s。
4.2 介质是如何影响电磁波传播的?介质对电磁波的传播速度、方向和振动方向都有影响,介质内的电磁波速度取决于介质的介电常数和磁导率。
《电磁场与电磁波》(第四版)习题集:第4章 时变电磁场

4. 4惟一性定理
在分析有界区域的时变电磁场问题时,常常需要在给定的初始条件和边界条件下,求解麦克斯韦方程。那么,在什么定解条件下,有界区域中的麦克斯韦方程的解才是惟一的呢?这就是麦克斯韦方程的解的惟一问题。
电磁能量一如其它能量服从能量守恒原理,本章将讨论电磁场的能流和表征电磁场能量守恒关系的坡印廷定理。
本章在最后讨论了随时间按正弦函数变化的时变电磁场,这种时变电磁场称为时谐电磁场或正弦电磁场。
4. 1波动方程
由麦克斯韦方程可以建立电磁场的波动方程,揭示了时变电磁场的运动规律,即电磁场的波动性。下面建立无源空间中电磁场的波动方程。
第4章 时变电磁场
在时变的情况下,电场和磁场相互激励,在空间形成电磁波,时变电磁场的能量以电磁波的形式进行传播。电磁场的波动方程描述了电磁场的波动性,本章首先对电磁场的波动方程进行讨论。
在时变电磁场的情况下,也可以引入辅助位函数来描述电磁场,使一些复杂问题的分析求解过程得以简化。本章对时变电磁场的位函数及其微分方程进行了讨论。
惟一性定理指出:在以闭曲面 为边界的有界区域 内,如果给定 时刻的电场强度 和磁场强度 的初始值,并且在 时,给定边界面 上的电场强度 的切向分量或磁场强度 的切向分量,那么,在 时,区域 内的电磁场由麦克斯韦方程惟一地确定。
下面利用反证法对惟一性定理给予证明。假设区域 内的解不是惟一的,那么至少存在两组解 、 和 、 满足同样的麦克斯韦方程,且具有相同的初始条件和边界条件。令
电磁能量一如其它能量服从能量守恒原理。下面将讨论表征电磁场能量守恒关系的坡印廷定理,以及描述电磁能量流动的坡印廷矢量的表达式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习题解答4.1 如题4.1图所示为一长方形截面的导体槽,槽可视为无限长,其上有一块与槽相绝缘的盖板,槽的电位为零,上边盖板的电位为U ,求槽内的电位函数。
解 根据题意,电位(,)x y ϕ满足的边界条件为 ① (0,)(,)0y a y ϕϕ== ② (,0)0x ϕ= ③0(,)x b U ϕ=根据条件①和②,电位(,)x y ϕ的通解应取为1(,)sinh()sin()n n n y n xx y A a a ππϕ∞==∑由条件③,有01sinh()sin()n n n b n x U A a a ππ∞==∑两边同乘以sin()n x a π,并从0到a 对x 积分,得到002sin()d sinh()an U n xA x a n b a a ππ==⎰02(1cos )sinh()U n n n b a πππ-=04,1,3,5,sinh()02,4,6,U n n n b a n ππ⎧=⎪⎨⎪=⎩L L ,故得到槽内的电位分布1,3,5,41(,)sinh()sin()sinh()n U n y n xx y n n b a a a ππϕππ==∑L4.2 两平行无限大导体平面,距离为b ,其间有一极薄的导体片由d y =到b y =)(∞<<-∞x 。
上板和薄片保持电位U ,下板保持零电位,求板间电位的解。
设在薄片平面上,从0=y 到d y =,电位线性变化,0(0,)y U y d ϕ=。
a题4.1图解 应用叠加原理,设板间的电位为(,)x y ϕ=12(,)(,)x y x y ϕϕ+其中,1(,)x y ϕ为不存在薄片的平行无限大导体平面间(电压为U )的电位,即10(,)x y U y b ϕ=;2(,)x y ϕ是两个电位为零的平行导体板间有导体薄片时的电位,其边界条件为: ①22(,0)(,)0x x b ϕϕ==②2(,)0()x y x ϕ=→∞③002100(0)(0,)(0,)(0,)()U U y y d by y y U U y y d y b d b ϕϕϕ⎧-≤≤⎪⎪=-=⎨⎪-≤≤⎪⎩根据条件①和②,可设2(,)x y ϕ的通解为 21(,)sin()en x bn n n y x y A b ππϕ∞-==∑由条件③有00100(0)sin()()n n U U y y d n y b A U U b y yd y b d b π∞=⎧-≤≤⎪⎪=⎨⎪-≤≤⎪⎩∑两边同乘以sin()n yb π,并从0到b 对y 积分,得到0002211(1)sin()d ()sin()d dbn d U U y n y n y A y y y b b b b d b b ππ=-+-=⎰⎰022sin()()U b n d n d b ππ故得到 (,)x y ϕ=0022121sin()sin()e n x bn U bU n d n y y b d n b b ππππ∞-=+∑4.3 求在上题的解中,除开0U y 一项外,其他所有项对电场总储能的贡献。
并按202U W C ef =定出边缘电容。
解 在导体板(0=y )上,相应于2(,)x y ϕ的电荷面密度题 4.2图002200121sin()e n x by n U n d yd n b πεϕπσεπ∞-==∂=-=-∂∑则导体板上(沿z 方向单位长)相应的总电荷2220d 2d q x x σσ∞∞-∞===⎰⎰001022sin()e d n x b n U n d x n d b πεππ∞∞-=-=∑⎰0022141sin()n U b n d d n b εππ∞=-∑相应的电场储能为20020221211sin()2e n bU n dW q U d n b εππ∞===-∑ 其边缘电容为022210241sin()e f n W b n dC U d n b εππ∞===∑ 4.4 如题4.4图所示的导体槽,底面保持电位U ,其余两面电位为零,求槽内的电位的解。
解 根据题意,电位(,)x y ϕ满足的边界条件为 ① (0,)(,)0y a y ϕϕ==② (,)0()x y y ϕ→→∞ ③0(,0)x U ϕ=根据条件①和②,电位(,)x y ϕ的通解应取为1(,)sin()n n n y a n xx y A e a ππϕ∞-==∑由条件③,有01sin()n n n xU A a π∞==∑两边同乘以sin()n xa π,并从0到a 对x 积分,得到002sin()d an U n x A x a a π==⎰02(1cos )U n n ππ-=04,1,3,5,02,4,6,U n n n π⎧=⎪⎨⎪=⎩L L,故得到槽内的电位分布为1,3,5,41(,)sin()n y a n U n xx y e n a ππϕπ-==∑L题4.4图a4.5 一长、宽、高分别为a 、b 、c 的长方体表面保持零电位,体积内填充密度为()sin()sin()xzy y b ac ππρ=-的电荷。
求体积内的电位ϕ。
解 在体积内,电位ϕ满足泊松方程22222201()sin()sin()x zy y b x y z a c ϕϕϕππε∂∂∂++=--∂∂∂ (1)长方体表面S 上,电位ϕ满足边界条件Sϕ=。
由此设电位ϕ的通解为1111(,,)sin()sin()sin()mnp m n p m x n y p zx y z A a b c πππϕε∞∞∞====∑∑∑代入泊松方程(1),可得222111[()()()]mnp m n p m n p A a b c πππ∞∞∞===++⨯∑∑∑sin()sin()sin()m x n y p z a b c πππ=()sin()sin()x z y y b a c ππ-由此可得mnp A = (1m ≠或1)p ≠222111[()()()]sin()n p n n y A a b c b ππππ∞=++=∑()y y b - (2) 由式(2),可得2221102[()()()]()sin()d bn n n yA y y b y a b c b b ππππ++=-=⎰34()(cos 1)b n b n ππ-=2381,3,5,()02,4,6,b n n n π⎧-=⎪⎨⎪=⎩L L故2532221,3,5,081(,,)sin()sin()sin()11[()()()]n b x n y zx y z n a b c n a b c πππϕπε∞==-++∑L4.6 如题4.6图所示的一对无限大接地平行导体板,板间有一与z 轴平行的线电荷lq ,其位置为),0(d 。
求板间的电位函数。
解 由于在(0,)d 处有一与z 轴平行的线电荷lq ,以0x =为界将场空间分割为0x >和0x <两个区域,则这两个区域中的电位1(,)x y ϕ和2(,)x y ϕ都满足拉普拉斯方程。
而在0x =的分界面上,可利用δ函数将线电荷lq 表示成电荷面密度0()()l y q y y σδ=-。
电位的边界条件为①11(,0)(,)0x x a ϕϕ==22(,0)(,)0x x a ϕϕ==②1(,)0x y ϕ→()x →∞2(,)0x y ϕ→()x →-∞③12(0,)(0,)y y ϕϕ=21()()lx q y d x xϕϕδε=∂∂-=--∂∂由条件①和②,可设电位函数的通解为11(,)sin()n n n x a n y x y A e a ππϕ∞=-=∑ (0)x >21(,)sin()n n n x a n yx y B e a ππϕ∞==∑ (0)x <由条件③,有1sin()nn n y A a π∞==∑1sin()n n n yB a π∞=∑ (1) 1sin()n n n n yA a a ππ∞=--∑1sin()nn n n yB a a ππ∞=∑ 0()l q y d δε=- (2)由式(1),可得n nA B = (3)将式(2)两边同乘以sin()m ya π,并从0到a 对y 积分,有题 4.6图n nA B +02()sin()d a l q n y y d y n a πδπε=-=⎰02sin()l q n d n a ππε (4)由式(3)和(4)解得sin()l n n q n dA B n a ππε==故1101(,)sin()sin()ln n x a q n d n y x y e n a a πππϕπε∞=-=∑ (0)x > 2101(,)sin()sin()ln n x a q n d n yx y e n a a πππϕπε∞==∑ (0)x < 4.7 如题4.7图所示的矩形导体槽的电位为零,槽中有一与槽平行的线电荷lq 。
求槽内的电位函数。
解 由于在),(00y x 处有一与z 轴平行的线电荷lq ,以x x =为界将场空间分割为00x x <<和0x x a<<两个区域,则这两个区),(00y x 域中的电位1(,)x y ϕ和2(,)x y ϕ都满足拉普拉斯方程。
而在0x x =的分界面上,可利用δ函数将线电荷l q 表示成电荷面密度0()()l y q y y σδ=-,电位的边界条件为① 1(0,)0y =ϕ,2(,)0a y ϕ=② 11(,0)(,)0x x b =ϕϕ=22(,0)(,)0x x b =ϕϕ= ③1020(,)(,)x y x y ϕϕ=2100()()lx x q y y x xϕϕδε=∂∂-=--∂∂由条件①和②,可设电位函数的通解为11(,)sin()sinh()n n n y n xx y A b b ππϕ∞==∑ )0(0x x <<题4.7图2(,)x y ϕ=1sin()sinh[()]nn n y n Ba xb b ππ∞=-∑)(0a x x <<由条件③,有0011sin()sinh()sin()sinh[()]n nn n n x n y n y n A B a x b b b b ππππ∞∞===-∑∑ (1) 01sin()cosh()nn n x n n y A b b b πππ∞=-∑01sin()cosh[()]n n n n y n B a x b b b πππ∞=-∑ )(00y y q l -δε= (2)由式(1),可得00sinh()sinh[()]0n n n x n A B a x b b ππ--= (3)将式(2)两边同乘以sin()m yb π,并从0到b 对y 积分,有)](cosh[)cosh(00x a b n B b x n A n n -π+π0002()sin()d b l q n yy y y n b πδπε=-=⎰02sin()l q n y n b ππε (4)由式(3)和(4)解得00021sinh[()]sin()sinh()l n q n y n A a x n a b n b b ππππε=-00021sinh()sin()sinh()l n q n x n y B n a b n b b ππππε=故101021(,)sinh[()]sinh()ln q n x y a x n n a b b πϕπεπ∞==-∑ 0sin()sinh()sin()n y n x n yb b b πππ⋅ )0(0x x <<021021(,)sinh()sinh()ln q n x x y n n a b πϕπεπ∞==∑0sin()sinh[()]sin()n y n n ya xb b b πππ⋅- )(0a x x << 若以y y =为界将场空间分割为0y y <<和0y y b<<两个区域,则可类似地得到101021(,)sinh[()]sinh()ln q n x y b y n n b a a πϕπεπ∞==-∑ 0sin()sinh()sin()n x n y n xa a a πππ⋅ 0(0)y y <<021021(,)sinh()sinh()ln q n y x y n n b a a πϕπεπ∞==∑ 0sin()sinh[()]sin()n x n n xb y a a a πππ⋅- 0()y y b <<4.8 如题4.8图所示,在均匀电场00x E E e =中垂直于电场方向放置一根无限长导体圆柱,圆柱的半径为a 。