热压罐成型工艺特点
热压罐成型复合材料成型工艺的常见缺陷及对策

热压罐成型复合材料成型工艺的常见缺陷及对策
新能源汽车已经成为未来汽车发展的趋势,其制造过程中涉及对复合材料的使用和加工。
热压罐成型是一种常见的复合材料成型工艺,可以制造大型一体化复合材料件。
但是,该工艺也存在一些常见的缺陷,需要通过一些对策来解决。
1. 空气波纹
空气波纹是由于加热和压缩过程中,在复合材料中产生了气体滞留,而导致的材料表
面波动。
该缺陷不仅影响产品外观,还可能影响产品性能。
对于这一缺陷,可以加强预热
过程,增加相应的热压时间,将空气排出,减少材料中气体含量,并在成型过程中加强挤
压力度。
2. 节理
节理是由于材料的纤维方向和受力方向不一致,导致材料在弯曲和拉伸时出现开裂。
这可以通过合理选择纤维的方向和设计合适的成型方法来避免。
同时,在使用材料时可以
钻探样品,确定材料的力学性能,调整工艺参数以达到最佳成型效果。
3. 气泡和夹层
气泡和夹层是由于工艺过程中材料中存在的气体未完全排出所导致的。
这将影响材料
的力学性能和美观程度。
应采取适当的加热和压缩工艺,以确保完全排除气体,并在成型
前通过振动加热对材料进行处理。
4. 熔体渗透
熔体渗透是指只有部分纤维浸润于树脂中,因此在热压罐成型中可能出现的问题。
该
缺陷可以通过加强纤维和树脂的混合,以及预热和挤压来解决。
总的来说,热压罐成型工艺是一个十分复杂的成型工艺,需要严格控制各个环节,以
保证产品质量和一致性。
同时,在解决常见缺陷时,应结合材料特点和成型工艺特点,选
择合适的解决方案。
复合材料热压罐成型技

(2)加热与气体循环系统 加热方式: 间接气体点火----常用方式 热油(联苯400oC,硅油425oC)----可燃---潜在危险 蒸汽加热----150oC~180oC-----温度低,使用少 电加热----(适用直径小于2米)-----运营成本高
(6)周边挡条----橡胶
School of Materials Science and Engineering
四、固化成型工艺流程
成型工艺流程
模具准备----裁减与铺叠----组合与装袋----固化与出罐脱模----检测----修整---二次成型----装配
School of Materials Science and Engineering
《复合材料制备新技术》
复合材料热压罐成型技术
主讲:梅启林 单位:材料学院
School of Materials Science and Engineering
一、前言
热压罐:
航空复合材料制品的主要生产设备,具有整体加热系统的大型压力容器。
优点:
(1)大范围内适应各种材料对加工条件的要求 高温环氧175oC,600KPa 聚酰亚胺300~400oC, 1MPa
五、热压罐成型工艺的仿真模拟
热压罐固化成型过程中发生的主要物理化学变化:
(1)促进树脂流动,确保浸渍充分,和预浸料准确到位 (2)纤维网络压实,实现纤维体积含量最大化 (3)合适的压力以抑制基体中空隙的形成 (4)合适的成型温度保证固化充分
成型过程的数值仿真模拟
热压罐介绍

热压罐介绍目录热压罐概述 (2)热压罐性能 (2)控制系统的优越性 (3)安全可靠性 (3)提供多种选择性 (4)主要技术参数 (4)热压罐用途 (4)热压罐工艺成型典型产品 (5)热压罐概述热压罐主要用于金属/非金属胶接结构件和树脂基高强度玻璃纤维、碳纤维、硼纤维、芳纶纤维和环氧树脂复合材料热压固化成型关键设备。
该设备可在对复合材料产品抽真空的情况下,实现加温、加压固化成型。
热压罐是聚合物基复合材料构件制品成型的关键工艺设备。
热压罐成型工艺是将复合材料毛坯、蜂窝夹心结构或胶接结构用真空袋密封在模具上,置于热压罐中,在真空(或非真空)的状态下,经过升温、加压、保温(中温或高温)保压、降温卸压过程,使其成为所需要形状和质量状态制品的成型工艺方法。
热压罐成型工艺是广泛应用的复合材料结构、蜂窝夹心结构及金属或复合材料胶接结构的主要成型方法之一。
材料成型时,利用热压罐提供的均匀温度和压力环境实现固化,所以可得到表面与内部质量较高,结构复杂,面积巨大的符合材料制作。
复合材料基体树脂的固化,除了与树脂分子结构有关,还与其它组分(固化剂,交联促进剂等)有关。
外界条件--温度、压力和时间因素对固化起着重要作用,通常称这三个因素为主要工艺参数,一切热压罐成型工艺方法都要根据基体树脂的分子结构变化规律确定其相应的工艺参数,热压罐必须具备实现控制这些工艺参数的功能。
热压罐性能我公司生产的热压罐温度、压力、真空的控制均满足符合波音BAC5621“K”、D6-56273“B”、D6-49327“E”和AMS2750“D”工艺标准、我公司生产的热压罐可达到真空袋内工件、模具与罐内空气温度的统一性,有效控制工件不同位置的温差,工作温差能够控制在±0.5℃控制系统的优越性1、操作简单:一键式自动化工艺过程控制(可实现无人值守)。
2、系统控制可靠性:采用高品质、高性能控制元件(确保控制系统运行可靠性)。
3、先进的固化控制理念:单台设备及多台设备控制(实现系统冗余及DCS集散控制)。
SEET-神鹰-热压罐成型工艺安全性分析

一、热压罐成型工艺热压罐成型技术是航空、航天领城应用最广泛的成型技术之一,它能在宽广范圈内适应各种材料对加工工艺条件的要求。
二、工艺过程包括:1、模具清理和脱模剂涂抹。
2、预浸料裁切与铺叠。
3、真空袋组合系统制作和坯件装袋.真空袋组合系统制作需要采用各种辅助材料,其中包括:真空袋材料(改性尼龙薄膜或聚酸胺薄膜)、橡胶密封胶条、有孔或无孔隔离膜(聚四氟乙烯或改性氟塑料)。
吸胶材料、透气材料、脱模布和周边胶条等。
按图、所示顺序将坯件与各种辅助材料依次组合并装袋,形成真空组合系统。
装袋后应进行真空检漏,确认无误后,便可闭合锁锁热压罐门,升温固化。
1.真空袋.2.透气材料.3.压板04.有孔隔离层5.预浸料叠层,6.有孔脱模布,7.吸胶材料,8.隔离膜面.9.底模板,10.周边挡条.11.周边密封带 12.热压罐金属基板 13.密封胶条,14.真空管路。
4、固化。
各种树脂体系的固化制度,应根据各种不同树脂体系的固化反应特性和物理特性分别给予制定,要慎重考虑加压时机和关闭真空系统的时机。
固化完毕要控制降温速率,以防止因降温速度过快导致制品内部产生残余应力。
5、出罐脱模。
罐内温度降至接近室温时方可出罐脱模。
6、检测与修整。
三、成型过程中的危险性分析由于根据现场使用方介绍,所有预浸料工序均外委完成,该工房主要进行铺料和成型工序,在此仅对成型过程中的危险性进行分析。
1、辅助材料可燃性由下图可以看出,热压罐成型过程的物理化学变化,一般都会达到120-160℃,因此热压罐成型工艺所选择的辅助材料都应该在此温度范围内不应发生化学变化,物理性能稳定。
各种材料均选用阻燃材料,不应存在发生火灾的危险。
2、设备的阻燃性设备的系统分为:罐体、罐门、开门系统、加热系统、冷却系统、加压系统、空气循环系统、真空系统、隔热系统、控制系统等组成,产品的设计均按照国家机电产品安全标准要求设计。
设备的原材料、电气元器件均按照阻燃设计,隔热材料为阻燃材料,不存在发生火灾的隐患。
热压罐成型复合材料成型工艺的常见缺陷及对策

热压罐成型复合材料成型工艺的常见缺陷及对策热压罐成型复合材料成型工艺是一种广泛应用于航空、汽车、船舶等领域的高性能材料成型技术。
由于其具有质量轻、刚性高、耐高温耐腐蚀等优点,因此备受青睐。
在实际生产中,热压罐成型复合材料成型工艺常常会出现各种缺陷,影响产品质量和性能。
本文将重点介绍热压罐成型复合材料成型工艺中常见的缺陷及相应的对策。
一、气泡气泡是热压罐成型复合材料成型工艺中常见的缺陷之一。
气泡的存在会导致制品的密度不均匀,影响其力学性能和耐久性。
气泡的形成原因主要包括树脂充填不足、工装表面粗糙和工艺参数设置不当等。
对策:1. 提高树脂充填效率,保证充填充分;2. 提高工装表面光洁度,减少气泡的产生;3. 调整工艺参数,如温度、压力和时间,使树脂更好地充填并排除气泡。
二、裂纹裂纹是热压罐成型复合材料成型工艺中另一个常见的缺陷。
裂纹的存在会降低制品的强度和韧性,影响其使用寿命。
裂纹的形成主要受到成型温度、成型压力和成型时间的影响,同时也与工装的设计和加工精度有关。
对策:1. 控制成型温度,避免温度过高导致树脂的膨胀收缩,产生裂纹;2. 合理控制成型压力,保证树脂充填充分但不会过大导致裂纹;3. 控制成型时间,避免过长造成树脂过度固化产生裂纹;4. 设计合理的工装结构,减少应力集中和变形,避免裂纹的产生。
三、毛刺对策:1. 优化模具的设计,减少脱模力和剪切力,避免毛刺的产生;2. 提高模具表面的加工精度和光洁度,减少毛刺的生成;3. 采用表面喷涂、电镀等方法,形成一层平滑的保护层,减少毛刺的产生。
四、变形变形是热压罐成型复合材料成型工艺中常见的内部缺陷。
制品的变形会导致尺寸偏差和形状不规则,影响其使用功能和外观美观。
变形的产生主要与工装设计、成型参数和材料性能有关。
对策:1. 优化工装设计,减少应力集中和变形;2. 调整成型参数,如温度、压力和时间,使成型过程更加稳定;3. 选择合适的复合材料,提高材料的强度和韧性,减少变形的产生。
航空复合材料结构件常用的成型方法

航空复合材料结构件常用的成型方法航空工业,作为国家科技实力和工业水平的代表,始终在追求更高的性能和更轻的重量。
复合材料,作为一种先进的材料技术,在航空领域的应用日益广泛。
本文将重点探讨航空复合材料结构件常用的成型方法。
一、预浸料成型预浸料成型是一种常用的复合材料成型方法,它首先将纤维和树脂预先制成片材,然后在一定的温度和压力下将片材压制成所需的形状。
预浸料成型的优点在于其可重复性强,产品质量稳定,适合大规模生产。
二、热压罐成型热压罐成型是一种利用热压工艺将预浸料或手糊玻璃纤维材料固化成型的工艺。
该方法可以制造出形状复杂、尺寸精度高的复合材料构件。
热压罐成型的优点在于其产品性能优异,但设备成本和维护成本较高。
三、真空袋成型真空袋成型是一种利用真空负压原理将预浸料或手糊玻璃纤维材料吸附在模具上固化的工艺。
该方法适用于制造大型、平面或曲率较小的复合材料构件。
真空袋成型的优点在于其设备简单、成本低,但产品质量和生产效率相对较低。
四、喷射成型喷射成型是一种将树脂和纤维同时喷涂在模具表面,通过加热和加压使其固化的工艺。
该方法适用于制造形状复杂、大型且高性能要求的复合材料构件。
喷射成型的优点在于其生产效率高、产品性能优异,但设备成本和维护成本较高。
五、拉挤成型拉挤成型是一种将纤维浸渍树脂后,在模具中加热加压固化成型的工艺。
该方法适用于制造具有连续纤维增强结构的复合材料构件,如梁、柱等。
拉挤成型的优点在于其产品性能优异、可连续生产,但设备成本和维护成本较高。
六、树脂转移模塑(RTM)RTM是一种闭模成型工艺,它将纤维增强材料置于闭模的型腔中,然后注入树脂,在一定的温度和压力下固化成型。
RTM的优点在于其产品性能优异、适合制造大型和形状复杂的构件,但设备成本和维护成本较高。
七、纤维缠绕成型纤维缠绕成型是一种利用纤维缠绕机将纤维连续缠绕在芯轴上的工艺。
该方法适用于制造具有旋转对称性的复合材料构件,如压力容器、管道等。
复合材料热压罐成型工艺

复合材料热压罐成型工艺是一种常见的制备复合材料的工艺。
其主要步骤包括:
1.制备预浸料:将纤维(如玻璃纤维、碳纤维等)浸入预浸料中,
使其充分浸润预浸料,形成预浸料纤维束。
2.排列纤维束:将预浸料纤维束按照设计方案排列成预定形状。
3.制备复合材料主体:将排列好的纤维束放入复合材料热压罐中,
进行固化处理。
固化处理的温度和时间根据预测的复合材料性
能进行调节。
4.切割和修整:完成固化后,将复合材料主体从热压罐中取出,
进行切割和修整,使其符合设计要求。
复合材料热压罐成型工艺可以制备出高强度、高刚度的复合材料,广泛应用于航空航天、汽车、体育器材等领域。
碳纤维铺层及热压罐成型工艺

碳纤维铺层及热压罐成型工艺碳纤维是一种轻、高强度的复合材料,具有优异的力学性能和化学稳定性,因此在航空航天、汽车制造、体育器材等领域得到广泛应用。
碳纤维制品的制造过程中,碳纤维铺层及热压罐成型工艺是关键步骤之一。
碳纤维铺层是将碳纤维布按照一定规律和层数铺放于工件模具上的过程。
碳纤维布一般采用预浸料形式,即将碳纤维与树脂预先浸渍,以提高其成型性和力学性能。
在铺放过程中,需要注意碳纤维布的方向和重叠度,以确保最终制品的力学性能和外观质量。
热压罐成型是将铺放好的碳纤维布放入热压罐中,在高温和高压的环境下进行成型的工艺。
热压罐通常由压力容器和加热系统组成。
在加热过程中,树脂预浸料中的树脂会熔化,填充碳纤维之间的空隙,形成固态复合材料。
通过控制压力、温度和时间等参数,可以实现对制品成型过程的控制,确保最终制品的性能和质量。
碳纤维铺层及热压罐成型工艺的关键在于控制各个环节的工艺参数。
首先是铺层工艺中的碳纤维布的方向和重叠度的控制。
碳纤维布的方向决定了最终制品的力学性能,因此需要根据设计要求进行合理的安排。
重叠度的控制则影响了制品的表面光洁度和力学性能的均匀性。
其次是热压罐成型过程中的温度、压力和时间的控制。
温度过高可能导致树脂过热、烧焦或产生气泡等问题,而温度过低则无法使树脂充分熔化。
压力的控制可以调节树脂的渗透性和制品的密实度,影响最终制品的强度和硬度。
时间的控制则决定了树脂的熔化和固化过程,过长或过短的时间都会影响制品的性能。
为了提高制品的表面质量,还可以采用真空辅助成型技术。
在热压罐成型过程中,通过抽取热压罐内的空气,可以减少树脂中的气泡和制品表面的缺陷,提高制品的光洁度和外观质量。
碳纤维铺层及热压罐成型工艺是制造碳纤维制品的重要工艺之一。
合理控制铺层工艺中的碳纤维布方向和重叠度,以及热压罐成型过程中的温度、压力和时间等参数,可以实现制品的成型和质量要求。
随着碳纤维技术的不断发展和应用的扩大,碳纤维铺层及热压罐成型工艺也将进一步完善和优化,为碳纤维制品的制造提供更好的解决方案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
热压罐成型工艺特点
热压罐成型工艺特点及其在制造领域中的应用
热压罐成型工艺是一种常见的热成型工艺,主要用于塑料、橡胶等材料的成型。
该工艺具有以下几个特点:
1. 高温高压:热压罐成型工艺需要在高温高压下进行,一般温度在100℃以上,压力在10MPa以上。
这种高温高压的环境可以使材料分子间的键合更紧密,从而提高材料的密度、硬度、强度等性能。
2. 短周期:与其他热成型工艺相比,热压罐成型工艺的周期较短,一般在几十秒到几分钟之间。
这种短周期可以提高生产效率,降低生产成本。
3. 薄壁成型:热压罐成型工艺可以实现薄壁成型,即在不影响产品质量的前提下,可以制造出较薄的产品。
这种薄壁成型可以提高产品的轻量化程度,降低产品的重量和成本。
4. 多样化生产:热压罐成型工艺可以应用于多种材料和产品的生产,可以制造出各种形状、尺寸的产品。
这种多样化生产可以满足不同领域的需求,广泛应用于汽车、电子、家电等领域。
热压罐成型工艺在制造领域中的应用非常广泛,主要应用于以下几个方面:
1. 汽车零部件制造:热压罐成型工艺可以制造出汽车内外饰件、发动机部件、座椅配件等零部件。
这些零部件具有高强度、高耐热性、轻量化等特点,能够提高汽车的安全性和舒适性。
2. 电子产品制造:热压罐成型工艺可以制造出各种电子产品外壳、键盘、开关等零部件。
这些零部件具有高密度、高硬度、防水防尘等特点,能够提高电子产品的性能和使用寿命。
3. 家电制造:热压罐成型工艺可以制造出各种家电外壳、控制面板、配件等零部件。
这些零部件具有高强度、高硬度、耐磨损等特点,能够提高家电的耐用性和美观度。
热压罐成型工艺具有高效、多样化、高性能等优点,在制造领域中得到广泛应用。
随着技术的不断发展,热压罐成型工艺将会在更多的领域得到应用和推广。