简述典型实时数字信号处理系统的组成部分
数字信号处理绪论

8、应用
DSP这一学科近二、三十年发展十分迅速,特别是FFT算法的出现 及大规模集成电路和计算机技术的快速发展,使DSP的应用领域不断 扩大。
应用领域有: 通信 雷达 地震预测 声纳 遥感 图像处理和模式识别 语音处理和识别 生物医学 自动控制 消费电子
雷达是利用电磁波探测目标的电子设备。发 射电磁波对目标进行照射并接收其回波,由此获 得目标至电磁波发射点的距离、距离变化率(径 向速度)、方位、高度等信息。
时变系统
非平稳信号 非高斯信号 非线性信号
处理方法的发展: 自适应滤波 离散小波变换 高阶矩分析 信号盲处理 分形、混沌理论 目的:数学模型更加符合实际,或者降低对信号先验知识 的要求,充分利用观测信号中的一切有用信息,提高信息 利用率。
一阶矩就是随机变量的期望,二阶矩 就是随机变量平方的期望,以此可以类推 高阶的矩。
讲授内容
0.绪论--DSP的发展和应用 (1学时) 1.离散时间信号与系统 (3学时) 2.Z变换与离散时间傅里叶变换(DTFT)(4学时) 3.离散傅里叶变换(DFT) (6学时) 4.快速傅里叶变换(FFT)(6学时) 5.数字滤波器的基本结构(2学时) 6.IIR DF的设计(无限长单位脉冲响应数字滤波器的设 计)(5学时) 7.FIR DF 的设计(有限长单位脉冲响应数字滤波器的设 计)(5学时)
2、数字信号处理系统
以下所讨论的是模拟信号的数字信号处理系统.
模拟 前置预
滤波器 Xa(t) PrF
A/D 变换器 ADC
数字信号 处理器 DSP
D/A 变换器 DAC
模拟 模拟 滤波器 Ya(t) PoF
(1)前置滤波器
也称为抗混叠滤波器,将输入信号xa(t)中高 于某一频率(称折叠频率,等于抽样频率的 一半)的分量加以滤除。
数字信号处理器

数字信号处理是将信号以数字方式表示并处理的理论和技术。
数字信号处理与模拟信号处理是信号处理的子集。
数字信号处理的目的是对真实世界的连续模拟信号进行测量或滤波。
因此在进行数字信号处理之前需要将信号从模拟域转换到数字域,这通常通过模数转换器实现。
而数字信号处理的输出经常也要变换到模拟域,这是通过数模转换器实现的。
1. 数字信号处理器是什么数字信号处理器(digital signal processor) 由大规模或超大规模集成电路芯片组成的用来完成某种信号处理任务的处理器。
它是为适应高速实时信号处理任务的需要而逐渐发展起来的。
随着集成电路技术和数字信号处理算法的发展,数字信号处理器的实现方法也在不断变化,处理功能不断提高和扩大。
内置数字信号处理器(DSP,DigitalSignalProcessor)是车载主机内以逻辑电路对音视频数字信号进行再加工处理的专用元件,是一个统称名词,包括数字效果器、EQ、3D环绕等等。
数字信号处理器(DSP,即DigitalSignalProcessor)是进行数字信号处理的专用芯片,是伴随着微电子学、数字信号处理技术、计算机技术的发展而产生的新器件。
2. 数字信号处理器的作用数字信号处理器并非只局限于音视频层面,它广泛的应用于通信与信息系统、信号与信息处理、自动控制、雷达、军事、航空航天、医疗、家用电器等许多领域。
以往是采用通用的微处理器来完成大量数字信号处理运算,速度较慢,难以满足实际需要;而同时使用位片式微处理器和快速并联乘法器,曾经是实现数字信号处理的有效途径,但此方法器件较多,逻辑设计和程序设计复杂,耗电较大,价格昂贵。
数字信号处理器DSP的出现,很好的解决了上述问题。
DSP可以快速的实现对信号的采集、变换、滤波、估值、增强、压缩、识别等处理,以得到符合人们需要的信号形式。
对于车载主机而言,数字信号处理器DSP目前主要是提供特定的音场或效果,例如剧场、爵士乐等等,有些还能接收高清晰度(HD)无线电和卫星无线电等等,以达到最大的视听享受。
dsp原理及应用-(修订版)邹彦

第一章:1、数字信号处理的实现方法一般有哪几种?答:数字信号处理的实现是用硬件软件或软硬结合的方法来实现各种算法。
(1)在通用的计算机上用软件实现;(2) 在通用计算机系统中加上专用的加速处理机实现;(3) 用通用的单片机实现,这种方法可用于一些不太复杂的数字信号处理,如数字控制;(4)用通用的可编程DSP 芯片实现。
与单片机相比,DSP 芯片具有更加适合于数字信号处理的软件和硬件资源,可用于复杂的数字信号处理算法;(5) 用专用的DSP 芯片实现。
在一些特殊的场合,要求的信号处理速度极高,用通用DSP 芯片很难实现(6)用基于通用dsp 核的asic 芯片实现。
2、简单的叙述一下dsp 芯片的发展概况?答:第一阶段,DSP 的雏形阶段(1980 年前后)。
代表产品:S2811。
主要用途:军事或航空航天部门。
第二阶段,DSP 的成熟阶段(1990 年前后)。
代表产品:TI 公司的TMS320C20主要用途:通信、计算机领域。
第三阶段,DSP 的完善阶段(2000 年以后)。
代表产品:TI 公司的TMS320C54 主要用途:各个行业领域。
3、可编程dsp 芯片有哪些特点?答:1、采用哈佛结构(1)冯。
诺依曼结构,(2)哈佛结构(3)改进型哈佛结构2、采用多总线结构3.采用流水线技术4、配有专用的硬件乘法-累加器5、具有特殊的dsp 指令6、快速的指令周期7、硬件配置强8、支持多处理器结构9、省电管理和低功耗4、什么是哈佛结构和冯。
诺依曼结构?它们有什么区别?答:哈佛结构:该结构采用双存储空间,程序存储器和数据存储器分开,有各自独立的程序总线和数据总线,可独立编址和独立访问,可对程序和数据进行独立传输,使取指令操作、指令执行操作、数据吞吐并行完成,大大地提高了数据处理能力和指令的执行速度,非常适合于实时的数字信号处理。
冯。
诺依曼结构:该结构采用单存储空间,即程序指令和数据共用一个存储空间,使用单一的地址和数据总线,取指令和取操作数都是通过一条总线分时进行。
数字信号处理Digital Signal Processing(DSP)

(一)数字信号处理实现方法
1.采用大、中小型计算机和微机。 2.用单片机。 3.利用通用DSP芯片 4.利用特殊用途的DSP芯片
1.采用大、中小型计算机和微机
• 工作站和微机上各厂家的数字信号软件, 如有各种图象压缩和解压软件。
• 优点:可适用于各种数字信号处理的应用 场合,很灵活。
2. 用单片机
• 滤波 • 变换 • 检测 • 谱分析 • 估计 • 压缩 • 识别 • 等一系列的加工处理。
(2)数字信号处理引入
• 多数科学和工程中遇到的是模拟信号。 • 以前都是研究模拟信号处理的理论和实现。
• 模拟信号处理缺点:难以做到高精度,受环境 影响较大,可靠性差,且不灵活等。
• 随着大规模集成电路以及数字计算机的飞速发 展,加之从60年代末以来数字信号处理理论和 技术的成熟和完善,用数字方法来处理信号, 即数字信号处理,已逐渐取代模拟信号处理。
• 连续时间系统:处理连续时间信号。 • 系统输入、输出均为连续时间连续幅度
的模拟信号。
(b)离散时间系统
• 离散时间系统:处理离散时间信号(序 列)。
• 系统输入、输出均为连续时间信号。
(c)模拟系统
• 模拟系统:处理模拟信号。 • 系统输入、输出均为连续时间连续幅度
的模拟信号。
(d)数字系统
能被感觉到。(处于VLF Very low frequency)甚低频 • 频率20Hz~20KHz称为声波,Low frequency (处于LF)低频 • 频率>20KHz称为超声波 ,具有方向性,可以成束(处于LF)
(2)信号分类
• 同一种信号,如电信号,可从不同角度进行 分类:
(a)一维信号、二维信号、矢量信号 (b)周期信号和非周期信号 (c)确定性信号和随机信号 (d)能量信号和功率信号 (e)连续信号、离散信号 (f)模拟信号和数字信号
数字信号处理器

数字信号处理器概述数字信号处理器(Digital Signal Processor,DSP)是一种专用的微处理器,主要用于数字信号处理和算法执行。
它采用专门的硬件和软件设计,能够高效地执行各种数字信号处理任务,如滤波、编解码、音频处理和图像处理等。
数字信号处理器在很多领域被广泛应用,包括通信、音频、视频、雷达、电力、医疗等。
架构和特点数字信号处理器具有独特的架构和特点,以满足对高性能、低功耗、高可编程性和低成本的需求。
1. 单指令多数据(SIMD)架构:数字信号处理器采用SIMD架构,具有多个数据通路和一个控制单元。
这样可以并行处理多个数据,提高处理速度和效率。
2. 数据内存和指令内存分离:数字信号处理器有独立的数据内存和指令内存,这使得其能够在执行指令的同时读写数据。
这样可以减少数据传输的延迟,提高处理速度。
3. 浮点数运算支持:数字信号处理器支持浮点数运算,可以进行高精度的计算。
这对于信号处理和算法执行非常重要。
4. 高速时钟和并行运算单元:数字信号处理器的时钟频率通常很高,可以达到几百兆赫兹甚至更高。
同时,它通常具有多个并行运算单元,可以同时执行多条指令,提高处理能力。
5. 低功耗设计:数字信号处理器通常被应用于移动设备和嵌入式系统,因此功耗是一个非常重要的考虑因素。
数字信号处理器采用了低功耗的设计,通过减少供电电压和优化电路结构来降低功耗。
应用领域数字信号处理器在许多领域都有广泛的应用。
1. 通信:数字信号处理器在通信系统中起着重要的作用。
它可以处理和调制数字信号,实现信号的传输和接收。
同样,数字信号处理器也可以进行解调和解码,还可以执行音频和视频编码。
2. 音频:数字信号处理器广泛应用于音频处理领域。
它可以实现音频信号的滤波、降噪、混响等处理,提高音质和音乐效果。
3. 视频:数字信号处理器可以用于视频编码和解码,实现视频的压缩和解压缩。
此外,它也可以进行图像处理,如图像滤波、边缘检测等。
数字信号处理第一章(1)

绪论
• 为何要上数字信号处理?
在当今科学技术迅速发展的时代,大量 数据和信息需要传递和处理,数字信号处理 就是研究用数学的手段,正确快速地处理数 字信号,提取各类信息的一门学科.
一、数字信号处理
1、信号 • 数字信号处理的研究对象为信号。 • 所谓信号就是信息传递的载体。 • 信号是随时间、空间或其它独立变量变化的物理量,为了便 于处理,通常都使用传感器把这些真实世界的物理信号----->电信号,经处理的电信号--->传感器--->真实世界的物理 信号。 • 例如:现实生活中最常见的传感器是话筒、扬声器 话筒(将声压变化)--->电压信号-->空气压力信号(扬声器) • 数学上,我们用一个一元或多元函数来表示信号,如 s1 (t ) 5t 这是一个时间轴上的一维信号。
用通用的可编程的数字信号处理器实现法—是目前 重要的数字信号处理实现方法,它即有硬件实现法 实时的优点,又具有软件实现的灵活性优点。
五、本课程教学内容
• 作为本课程,因受到各种条件的制约,只能向大家介 绍数字信号处理的基础理论和基本知识。具体内容见 课本的第一章~第三章。
第一章:我们主要介绍离散时间信号和系统的基本概念以及 傅利叶变换Z变换,它们是分析离散信号与系统的 基本数学工具。 第二章:我们讲解信号的离散傅利叶变换(DFT)和DFT的快速 算法(FFT),内容涉及课本第二章的1~5节。 第三章:介绍无限冲激响应(IIR)数字滤波器和有限冲激响 应(FIR)的设计方法,其中我们只介绍通过变换公 式逼近的经典设计方法。
第一章 离散时间信号、系统和Z变换
1-1 引言
x(t ) s(t ) n(t )
实时数字信号处理 绪论完美版PPT

• 循环
数字信号处理实现方法
• 理论、实现、应用 • 1822年傅立叶级数理论 • 研究各种应用算法和快速算法 • 1965年快速傅立叶变换(FFT) • 数字信号处理的实现方法经历了一个较长的发展过程。 • 1982,TI TMS320C10 • 数字信号处理的实现方法
是20世纪60年代前后发展起来的一门新兴学科。 • 现代信号处理理论
– 涉及到非常复杂的算法和大量的计算 – 增加了实时处理难度 – 分布式、并行计算 – 并行计算机系统 、DSP芯片的阵列处理系统 – 通用计算机和DSP都朝着多核发展数字信号处理算法基本特点
• 乘累加(MAC)
– 根据线性时不变离散时间系统的单位脉冲响应, 系统响应可采用卷积和来计算。
• ADI
– 16位的定点DSP产品ADSP-21xx系列、Blackfin ADSP-215xx系 列
– 32位的浮点DSP产品SHARC系列、TigerSHARC系列 – 混合信号处理DSP产品ADSP-2199X系列 – 嵌入式电机控制DSP产品ADMC系列等
数字信号处理器基本概念
系列
型号
类型
数字信号处理器基本概念
• 一种特别适合于进行数字信号处理运算的微处理器,或者 说主要是为快速实现各种数字信号处理算法而设计的。
• 目前,DSP芯片已广泛应用 • 第一颗DSP芯片,1978年AMI公司发布的S2811 • 1979,Intel,商用可编程器件2920
– 是DSP芯片的一个主要里程碑 – 但上述两种芯片内部都没有单周期乘法器
• 新型数字信号处理器在实现复杂音视频媒体处理算法基础 上,提供了完成事务管理的控制功能
数字信号处理

DFT方法计算量太大,限制了应用。直到1965年,美 国的Cooly和Turkey提出了一种快速计算DFT的算法。例如: 当N=1024时,DFT的复数乘法次数约为105万次,Cooly和 Turkey的复数乘法次数5120次,仅为DFT的1/200。人们称 这种快速算法为快速傅里叶变换(FFT)。算法中,规定N 取2的整数次幂,因此也称基2型FFT。 目前实现FFT主 要有软件和硬件两种方法。FFT是功率谱、互谱、频率响 应函数、相干函数等经典频域分析和许多相关分析方法的 基础。
ቤተ መጻሕፍቲ ባይዱ
思考题: 1、将连续时间信号进行离散化时产生混叠的主要原因是什么?
2、叙述采样定理,并说明你对该定理是如何理解的?
3 、从波形特点上说明什么是低通、高通、带通、带阻滤波器? 4、调制与解调的作用是什么?简述其工作原理。 5、将随时间连续变化的模拟信号转变成离散的数字信号需要经 过几个环节的变化,并说明各自的特点。
二、测试信号数字化处理的基本步骤
1) 信号调整
(预处理)
2) 模数转换 3) 数字信号分析 4) 输出结果
数字信号处理步骤简图
• 预处理
是指在数字处理之前,对信号用模拟方法进行的处
理。把信号变成适于数字处理的形式,以减小数字处理
的困难。它包括: 1. 对输人信号的幅值进行处理,使信号幅值与A/D转 换器的动态范围相适应; 2. 衰减信号中不感兴趣的高频成分,减小频混的影响; 3. 隔离被分析信号中的直流分量,消除趋势项及直流分 量的干扰等项处理。
5.4 数字信号处理基础
一、数字信号处理的主要研究内容
数字信号处理主要研究用数字序列或符号序列表示信号, 并用数字计算方法对这些序列进行处理,以便把信号变换成符 合某种需要的形式。数字信号处理的主要内容包括频谱分析与 数字滤波及信号的识别等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
简述典型实时数字信号处理系统的组成部分典型实时数字信号处理系统是将实时信号从一种格式转换成另
一种格式,以提高信号传输效率并增强功能的系统。
它是一种混合式系统,由若干部件组成,其中一些部件是硬件,另一些部件是软件。
硬件是指典型实时数字信号处理系统中最重要的元器件。
其中包括模拟和数字接口单元、信号采集器、信号处理器、信号调制器、信号解调器、视频处理器和AV处理器等。
这些元器件结合在一起形成实时数字信号处理系统框架,为系统的正常运行提供必要的条件和保障。
另外,硬件中还包括控制器、存储器、外设、数据路径和通信接口等。
控制器主要负责控制整个系统的工作,外设主要负责与外部设备的通信,存储器主要负责系统的存储,数据路径主要负责数据的通信,通信接口负责与外部网络的连接。
软件是指在实时数字信号处理系统中有用的计算机程序,其中包括实时系统内核、驱动程序、用户界面和算法等。
实时系统内核主要处理系统中各个硬件设备之间的资源协调和管理,驱动程序可以支持硬件设备的正常工作,用户界面可以为用户提供便利的操作环境,算法则可以用来实现系统的复杂功能。
总的来说,一个典型的实时数字信号处理系统主要由硬件和软件组成,其中硬件主要负责信号的捕获、处理和输出,软件主要负责控制硬件的工作、处理信号和提供系统的功能。
实时数字信号处理系统技术正在不断发展,为我们提供了新的思路和方法,以提高实时信号
处理的功能和效率。