辨识方法4人工神经网络

合集下载

3-第三章-辨识方法-1-相关函数法

3-第三章-辨识方法-1-相关函数法

3-第三章-辨识方法-1-相关函数法清华大学电机系辨识技术1第三章辨识方法——辨识技术课程主要内容清华大学电机系辨识技术相关辨识法时域--最小二乘辨识法频域—模态分析法现代辨识方法—神经网络ANN 非线性辨识方法—遗传算法GA 6. 实时在线辨识方法1. 2. 3. 4. 5.2辨识方法(1)经典方法特点:假定系统是线性的,而不需要确定模型的具体结构。

通常是获得非参数模型,再转化为传递函数模型。

缺点是要求无噪声,系统是确定的。

清华大学电机系阶跃响应法、频率响应法、脉冲响应法相关辨识法辨识技术3(2)现代辨识法特点:基于随机性系统的辨识方法。

对噪声大小不限制。

系统可以是非线性的。

与现代控制律结合起来可用于闭环系统的自适应控制。

最小二乘法——通过使广义误差的平方和(准则函数)极小来确定模型的参数。

梯度校正法——根据快速下降寻优原理,沿着误差准则函数对应于模型参数的负梯度方向,逐步逼近使准则函数达到极小的参数估计值。

极大似然法--使似然函数达到最大来确定模型参数。

人工神经网络遗传基因卡尔曼滤波清华大学电机系辨识技术(1)经典方法阶跃响应法清华大学电机系试验获取过程的阶跃响应利用阶跃响应曲线来确定传递函数由阶跃响应求取过程的传递函数等面积法、切线法、两点法等辨识技术——《系统辨识基础》-李鹏波5脉冲响应法清华大学电机系Z变换理想脉冲作用下获得系统的输出响应简单的可以直接从曲线上获取参数 h(n) H(z)辨识技术6*相关辨识法*清华大学电机系辨识技术特点经典方法,获得非参数型模型根据被辨识对象在平稳随机信号输入于平稳随机输出之间的互相关函数,求出对象的脉冲响应函数的一种办法。

7背景知识能量信号与功率信号能量信号定义:信号电压(电流)加到1欧姆上的给定信号f(t),若0<e< ∞,="" 则称为能量有限信号。

清华大学电机系E=∫所消耗的能源.∞2f (t ) dt平均功率定义1 P = lim T ?∞ T辨识技术∫2 ?T 2 T 2f (t ) dt给定信号f(t),若0<p< ∞,="" 则称为功率有限信号。

研究生必备的人工神经网络电子书汇总(31本)

研究生必备的人工神经网络电子书汇总(31本)

研究生必备的人工神经网络电子书汇总(31本)这些都是我从淘宝和百度文库里面搜集到的电子书,需要的可以联系我QQ:415295747,或者登录我的博客/u/17236977421.神经网络在应用科学和工程中的应用——从基础原理到复杂的模式识别5 译者序6 前9 致谢10 作者简介11 目录19 第1章从数据到模型:理解生物学、生态学和自然系统的复杂性和挑战27 第2章神经网络基础和线性数据分析模型72 第3章用于非线性模式识别的神经网络105 第4章神经网对非线性模式的学习166 第5章从数据中抽取可靠模式的神经网络模型的实现205 第6章数据探测、维数约简和特征提取235 第7章使用贝叶斯统计的神经网络模型的不确定性评估276 第8章应用自组织映射的方法发现数据中的未知聚类359 第9章神经网络在时间序列预测中的应用458 附录2.MATLB 神经网络30个案例分析第1章BP神经网络的数据分类——语音特征信号分类23 第2章BP神经网络的非线性系统建模——非线性函数拟合33 第3章遗传算法优化BP神经网络——非线性函数拟合48 第4章神经网络遗传算法函数极值寻优——非线性函数极值寻优57 第5章基于BP_Adsboost的强分类器设计——公司财务预警建模66 第6章PID神经元网络解耦控制算法——多变量系统控制77 第7章RBF网络的回归——非线性函数回归的实现85 第8章GRNN的数据预测——基于广义回归神经网络的货运量预测93 第9章离散Hopfield神经网络的联想记忆——数字识别102 第10章离散Hopfield神经网络的分类——高校科研能力评价112 第11章连续Hopfield神经网络的优化——旅行商问题优化计算124 第12章SVM的数据分类预测——意大利葡萄酒种类识别134 第13章SVM的参数优化——如何更好的提升分类器的性能145 第14章SVM的回归预测分析——上证指数开盘指数预测153 第15章SVM的信息粒化时序回归预测——上证指数开盘指数变化趋势和变化空间预测165 第16章自组织竞争网络在模式分类中的应用——患者癌症发病预测171 第17章SOM神经网络的数据分类——柴油机故障诊断182 第18章Elman神经网络的数据预测——电力负荷预测模型研究188 第19章概率神经网络的分类预测——基于PNN的变压器故障诊断195 第20章神经网络变量筛选——基于BP的神经网络变量筛选200 第21章LVQ神经网络的分类——乳腺肿瘤诊断210 第22章LVQ神经网络的预测——人脸朝向识别220 第23章小波神经网络的时间序列预测——短时交通流量预测230 第24章模糊神经网络的预测算法——嘉陵江水质评价241 第25章广义神经网络的聚类算法——网络入侵聚类248 第26章粒子群优化算法的寻优算法——非线性函数极值寻优255 第27章遗传算法优化计算——建模自变量降维270 第28章基于灰色神经网络的预测算法研究——订单需求预测280 第29章基于Kohonen网络的聚类算法——网络入侵聚类289 第30章神经网络GUI的实现——基于GUI的神经网络拟合、模式识别、聚类2.MATLAB 神经网络仿真与应用章节信息7 目录15 第1章神经网络概述38 第2章感知神经网络64 第3章自组织竞争神经网络106 第4章BP神经网络143 第5章线性神经网络171 第6章径向基函数神经网络196 第7章反馈神经网络及MA TLAB实现228 第8章神经网络预测与控制273 第9章神经网络优化及故障诊断302 第10章图形用户界面设计334 参考文献4.混合神经网络技术7 目录11 第1章绪论26 第2章基础知识43 第3章BP神经网络70 第4章RBF神经网络84 第5章Hopfield神经网络96 第6章随机神经网络114 第7章遗传神经网络158 第8章粒子群神经网络193 第9章模糊神经网络244 第lO章混沌神经网络293 第11章小波神经网络331 第12章神经网络集成356 附录5.神经网络控制(第三版)7 目录13 第1章绪19 第2章神经网络理论基础63 第3章基于神经网络的系统辨识101 第4章神经网络控制142 第5章遗传算法与神经控制179 附录203 参考文献6.脉冲耦合神经网络与数字图像处理丛书题名:智能科学技术著作丛书主要责任者:马义德主题词:神经网络; 数字图像处理出版者:科学出版社ISBN:978-7-03-022389-0出版地:北京出版日期:200807页数:3047 《智能科学技术著作丛书》序9 前13 目录21 第1章脉冲耦合神经网络50 第2章图像滤波及脉冲噪声滤波器77 第3章脉冲耦合神经网络在图像分割中的应用142 第4章脉冲耦合神经网络与图像编码185 第5章脉冲耦合神经网络与图像增强195 第6章脉冲耦合神经网络与图像融合210 第7章脉冲耦合神经网络与形态学245 第8章脉冲耦合神经网络在特征提取中的应用278 第9章脉冲耦合神经网络与数字图像签名技术292 第10章脉冲耦合神经网络与组合决策优化306 第11章脉冲耦合神经网络和小波变换322 参考文献7.混沌系统的模糊神经网络控制理论与方法主要责任者:谭文; 王耀南主题词:混沌学; 应用; 模糊控制; 神经网络出版者:科学出版社ISBN:978-7-03-021258-0出版地:北京出版日期:200805页数:2364 内容简介5 前7 目录13 第1章绪论37 第2章模糊神经网络控制理论基础70 第3章神经网络在混沌控制中的作用83 第4章基于径向基神经网络的非线性混沌控制99 第5章超混沌系统的模糊滑模控制111 第6章不确定混沌系统的模糊自适应控制120 第7章模糊神经网络在混沌时间序列预测中的应用134 第8章混沌系统的混合遗传神经网络控制150 第9章不确定混沌系统的模糊神经网络自适应控制165 第10章基于动态神经网络的混沌系统控制200 第11章基于线性矩阵不等式方法的混沌系统模糊控制223 第12章基于递归神经网络的不确定混沌系统同步245 结束语8. 智能预测控制及其MATLB 实现(第2版)丛书题名:自动控制技术应用丛书主要责任者:李国勇主题词:人工智能; 预测控制; 计算机辅助计算; 软件包出版者:电子工业出版社ISBN:978-7-121-10147-2出版地:北京出版日期:201001页数:3364 内容简介5 前7 目录13 第一篇神经网络控制及其MA TLAB实现13 第1章神经网络控制理论87 第2章MATLAB神经网络工具箱函数160 第3章基于Simulink的神经网络控制系统175 第二篇模糊逻辑控制及其MATLAB实现175 第4章模糊逻辑控制理论208 第5章MA TLAB模糊逻辑工具箱函数237 第6章模糊神经和模糊聚类及其MA TLAB实现267 第三篇模型预测控制及其MATLAB实现267 第7章模型预测控制理论281 第8章MA TLAB预测控制工具箱函数320 第9章隐式广义预测自校正控制及其MA TLAB实现334 附录A 隐式广义预测自校正控制仿真程序清单341 附录B MA TLAB函数一览表347 附录C MA TLAB函数分类索引349 参考文献9. 基于神经网络的优化设计及应用主要责任者:孙虎儿出版者:国防工业出版社ISBN:978-7-118-06282-3出版地:北京出版日期:200905页数:111目录11 第1章绪论11 1.1 优化设计发展概况20 1.2 信号处理的主要方法22 1.3 正交设计方法25 1.4 基于神经网络的立体正交优化设计概述28 第一篇基拙理论篇28 第2章基于小波变换的信号处理28 2.1 小波变换的源起与发展概述30 2.2 小波分析基础34 2.3 小波分析的工程解释35 2.4 基于小波分析的信号处理38 第3章神经网络结构的确定38 3.1 神经网络综论42 3.2 神经网络的基本原理47 3.3 人工神经网络的建模53 3.4 前馈型神经网络57 第4章正交设计法57 4.1 正交设计法的基本内容60 4.2 正交设计法的基本内容60 4.3 有交互作用的正交设计法63 4.4 方差分析法67 第二篇创新篇67 第5章立体正交表67 5.1 建立立体正交表70 5.2 立体正交表的基本性质71 5.3 立体正交试验的误差分析75 第6章立体正交优化设计75 6.1 立体正交优化设计概述77 6.2 立体正交优化设计的建模基础78 6.3 立体正交优化设计的特点79 6.4 立体正交设计的步骤及实现85 第三篇实践篇85 第7章液压振动筛参数优化设计与试验85 7.1 振动筛基本原理89 7.2 试验台设计91 7.3 模拟试验101 7.4 液压振动筛参数的立体正交优化设计108 第8章液压激振压路机的液压振动系统优化108 8.1 液压激振压路机基本原理110 8.2 液压振动轮的模型试验117 参考文献10.神经网络稳定性理论主要责任者:钟守铭; 刘碧森; 王晓梅; 范小明主题词:人工神经网络; 运动稳定性理论; 高等学校; 教材出版者:科学出版社ISBN:978-7-03-02116-2出版地:北京出版日期:200806页数:289内容简介5 前7 目录11 第1章绪论73 第2章Hopfield型神经网络的稳定性97 第3章细胞神经网络的稳定性150 第4章二阶神经网络的稳定性212 第5章随机神经网络的稳定性243 第6章神经网络的应用291 参考文献11. 神经模糊控制理论及应用丛书题名:自动控制技术应用丛书主要责任者:李国勇主题词:神经网络; 应用; 模糊控制出版者:电子工业出版社ISBN:978-7-121-07537-7出版地:北京出版日期:200901页数:3326 目录10 第一篇神经网络理论及其MA TLAB实现12 第1章神经网络理论77 第2章MATLAB神经网络工具箱191 第3章神经网络控制系统218 第二篇模糊逻辑理论及其MATLAB实现220 第4章模糊逻辑理论258 第5章MA TLAB模糊逻辑工具箱295 第6章模糊神经和模糊聚类及其MA TLAB实现327 附录A MA TLAB程序清单334 附录B MA TLAB函数一览表340 附录C MA TLAB函数分类索引342 参考文献12.时滞递归神经网络主要责任者:王林山主题词:时滞; 递归论; 神经网络出版者:科学出版社ISBN:978-7-03-020533-9出版地:北京出版日期:200804页数:254出版说明9 前言13 目录15 第1章概述29 第2章几类递归神经网络模型44 第3章时滞局域递归神经网络的动力行为116 第4章时滞静态递归神经网络的动力行为154 第5章时滞反应扩散递归神经网络的动力行为214 第6章时滞反应扩散方程的吸引子与波动方程核截面的Hausdorff维数估计244 第7章Ляпунов定理的推广与矩阵微分方程的渐近行为研究265 索引13. 神经网络实用教程丛书题名:普通高等教育“十一五”规划教材主要责任者:张良均; 曹晶; 蒋世忠主题词:人工神经元网络; 高等学校; 教材出版者:机械工业出版社ISBN:978-7-111-23178-3出版地:北京出版日期:200802页数:1840001 7 目录0002 5 前言0003 11 第1章人工神经网络概述0004 19 第2章实用神经网络模型与学习算法0005 83 第3章神经网络优化方法0006 98 第4章nnToolKit神经网络工具包0007 135 第5章MA TLAB混合编程技术0008 175 第6章神经网络混合编程案例0009 181 附录2NDN神经网络建模仿真工具0010 194 参考文献14.细胞神经网络动力学主要责任者:黄立宏; 李雪梅主题词:神经网络; 细胞动力学; 生物数学出版者:科学出版社ISBN:978-7-03-018109-1出版地:北京出版日期:200704页数:3334 内容简介5 前7 目录9 第一章细胞神经网络的模型及基本概念30 第二章基本理论60 第三章细胞神经网络的完全稳定性118 第四章细胞神经网络的全局渐近稳定性和指数稳定性176 第五章细胞神经网络的周期解与概周期解242 第六章细胞神经网络的动力学复杂性285 第七章一维细胞神经网络的动力学性质322 参考文献15. 人工神经网络基础丛书题名:研究生用教材主要责任者:丁士圻; 郭丽华主题词:人工神经元网络出版者:哈尔滨工程大学出版社ISBN:978-7-81133-206-3出版地:哈尔滨出版日期:200803页数:2084 内容简介5 前7 目录9 第1章绪论44 第2章前向多层网络86 第3章Hopfield网络110 第4章波尔兹曼机(BM)网络简介131 第5章自组织特征映射网络(SOFM)163 第6章ART网络197 第7章人工神经网络的软件实践和仿真15.智能控制理论及应用丛书题名:国家精品课程教材主要责任者:师黎; 陈铁军; 等主题词:智能控制出版者:清华大学出版社ISBN:978-7-302-16157-8出版地:北京出版日期:200904页数:408目录17 第1章绪论30 第2章模糊控制91 第3章模糊建模和模糊辨识118 第4章神经网络控制227 第5章模糊神经网络259 第6章专家系统301 第7章遗传算法333 第8章蚁群算法351 第9章DNA计算与基于DNA的软计算389 第10章其他智能控制16. 人工神经网络及其融合应用技术∙丛书题名:智能科学技术著作丛书∙主要责任者:钟珞 ; 饶文碧 ; 邹承明∙主题词:人工神经元网络 ; 研究∙出版者:科学出版社∙ISBN:978-7-03-018325-5∙出版地:北京∙出版日期:200701∙页数:1607 目录13 第1章绪论24 第2章前馈型神经网络47 第3章反馈型神经网络58 第4章自组织型神经网络72 第5章量子神经网络81 第6章神经网络与遗传算法103 第7章神经网络与灰色系统123 第8章神经网络与专家系统139 第9章模糊神经网络159 参考文献164 附录Matlab简介17.智能技术及其应用:邵世煌教授论文集∙主要责任者:丁永生 ; 应浩 ; 等∙主题词:人工智能 ; 文集∙出版者:科学出版社∙ISBN:978-7-03-023230-4∙出版地:北京∙出版日期:200902∙页数:573目录15 治学之路,开拓之道117 解析模糊控制理论:模糊控制系统的结构和稳定性分析127 不同模糊逻辑下模糊控制器的解析结构134 一个基于“类神经元”模型的智能控制系统及其在柔性臂上的应用研究142 交通系统的模糊控制及其神经网络实现149 采用遗传算法学习的神经网络控制器164 一种采用增强式学习的模糊控制系统研究169 基因算法及其在最优搜索上的应用191 DNA计算与软计算199 采用DNA遗传算法优化设计的TS模糊控制系统206 DNA计算研究的现状与展望223 混沌系统的一种自学习模糊控制228 用遗传算法引导混沌轨道405 模糊环境的表示及机器人轨迹规划409 多变地形下机器人路径规划415 一个环境知识的自学习方法444 含有模糊和随机参数的混合机会约束规划模型469 基于规则的模糊离散事件系统建模与控制研究491 基于最优HANKEL范数近似的线性相位IIR滤波器设计507 自适应逆控制的异步电机变频调速系统研究514 带有神经网络估计器的模糊直接转矩控制551 基于移动Agent的数字水印跟踪系统的设计和实现573 采用元胞自动机机理的针织电脑编织系统591 语词计算的广义模糊约束及其传播研究598 后记18.人工神经网络原理及应用∙丛书题名:现代计算机科学技术精品教材∙主要责任者:朱大奇 ; 史慧∙主题词:人工神经元网络∙出版者:科学出版社∙ISBN:7-03-016570-5∙出版地:北京∙出版日期:200603∙页数:218目录12 第1章人工神经网络的基础知识44 第2章BP误差反传神经网络76 第3章Hopfield反馈神经网络104 第4章BAM双向联想记忆神经网络117 第5章CMAC小脑神经网络139 第6章RBF径向基函数神经网络155 第7章SOM自组织特征映射神经网络175 第8章CPN对偶传播神经网络190 第9章ART自适应谐振理论210 第10章量子神经网络19.软计算及其应用要责任者:温显斌; 张桦; 张颖等主题词:电子计算机; 计算方法出版者:科学出版社ISBN:978-7-03-023427-8出版地:北京出版日期:200902页数:189前7 目录11 第1章绪论24 第2章模拟退火算法45 第3章人工神经网络93 第4章遗传算法138 第5章支持向量机162 第6章模糊计算20计算智能与科学配方∙主要责任者:冯天瑾 ; 丁香乾∙其他责任者:杨宁 ; 马琳涛∙主题词:人工智能 ; 神经网络 ; 计算 ; 研究∙出版者:科学出版社∙ISBN:978-7-03-020603-9∙出版地:北京∙出版日期:200801∙页数:272前10 目录16 第一章绪论38 第二章产品配方与感觉品质评估65 第三章神经网络与感觉评估99 第四章知识发现与复杂相关性分析154 第五章模式识别与原料分类187 第六章支持向量机方法214 第七章进化计算配方寻优方法243 第八章计算智能的若干哲理256 第九章人机交互智能配方系统278 参考文献287 致谢21.计算智能与计算电磁学主要责任者:田雨波; 钱鉴主题词:人工智能; 神经网络; 计算; 研究出版者:科学出版社ISBN:978-7-03-021201-6出版地:北京出版日期:200804页数:2337 目录11 第1章绪论19 第2章遗传算法基本原理50 第3章遗传算法电磁应用98 第4章模糊理论基本原理122 第5章神经网络基本原理188 第6章神经网络电磁应用235 附录1 计算智能和计算电磁学相关网站236 附录2 相关程序22.脉冲耦合神经网络原理及其应用丛书题名:智能科学技术著作丛书主要责任者:马义德主题词:神经网络; 理论; 应用出版者:科学出版社ISBN:7-03-016657-4出版地:北京出版日期:200604页数:1826 内容简介9 《智能科字技术著作丛书》库11 前15 目录19 第1章神经网络图像处理技术34 第2章PCNN模型及其应用概述49 第3章PCNN在图像滤波中的应用66 第4章PCNN在图像分割中的应用120 第5章PCNN在图像编码中的应用137 第6章PCNN与图像增强152 第7章PCNN与粗集理论、形态学和小波变换182 第8章PCNN的其他应用23.人工神经网络教程主要责任者:韩力群主题词:人工神经元网络; 研究生; 教材出版者:北京邮电大学出版社ISBN:7-5635-1367-1出版地:北京出版日期:200612页数:3307 序9 目录17 第1章绪论38 第2章人工神经网络建模基础63 第3章感知器神经网络100 第4章自组织竞争神经网络143 第5章径向基函数神经网络162 第6章反馈神经网络192 第7章小脑模型神经网络201 第8章支持向量机218 第9章遗传算法与神经网络进化237 第10章神经网络系统设计与软硬件实现267 第11章人工神经系统281 附录A 常用算法的MA TLAB程序298 附录B 常用神经网络源程序340 附录C 神经网络常用术语英汉对照344 参考文献24.神经网络专家系统主要责任者:冯定主题词:人工神经元网络出版者:科学出版社ISBN:7-03-017734-7出版地:北京出版日期:200609页数:3487 目录11 第1章从专家系统到神经网络专家系统22 第2章神经网络设计75 第3章数据的前后处理94 第4章神经网络专家系统中的模糊数146 第5章基于神经网络的知识表示199 第6章机器学习218 第7章基于神经网络的推理251 参考文献254 附录神经网络源程序25.神经网络新理论与方法主要责任者:张代远主题词:人工神经元网络出版者:清华大学出版社ISBN:7-302-13938-5出版地:北京出版日期:200611页数:1259 目录11 第1章概论17 第2章基本概念24 第3章实神经网络的代数算法44 第4章全局最小值分析51 第5章复数神经网络的代数算法61 第6章样条权函数神经网络及其学习算法124 第7章神经网络的统计灵敏度分析26.人工神经网络算法研究及应用主要责任者:田景文; 高美娟主题词:人工神经元网络; 计算方法; 研究出版者:北京理工大学出版社ISBN:7-5640-0786-9出版地:北京出版日期:200607页数:2837 目录9 第1章绪论32 第2章人工神经网络49 第3章改进遗传算法的径向基函数网络方法研究及应用95 第4章小波变换及小波神经网络方法研究及应用140 第5章模糊神经网络方法研究及应用189 第6章改进的模拟退火人工神经网络方法研究及应用235 第7章支持向量机方法研究及应用278 第8章结论281 参考文献27.神经计算与生长自组织网络主要责任者:程国建主题词:人工神经元网络; 计算; 自组织系统出版者:西安交通大学出版社ISBN:978-7-5605-2979-0出版地:西安出版日期:200810页数:242内容简介5 作者简介7 前17 目录23 第1章神经计算概述37 第2章人工神经网络的基本结构及其特性56 第3章神经感知器69 第4章自适应线性元件87 第5章多层前馈神经网络105 第6章径向基函数网络118 第7章古典生长型神经网络135 第8章生长型自组织神经网络158 第9章生长神经元结构及其变种182 第10章外生长型神经元结构206 第11章多生长神经元结构230 第12章双生长神经气网络252 参考文献28.神经计算原理丛书题名:计算机科学丛书主要责任者:(美)科斯塔尼克其他责任者:叶世伟; 王海娟主题词:突然南宫神经元网络; 计算出版者:机械工业出版社ISBN:978-7-111-20637-8出版地:北京出版日期:200705页数:491出版者的话7 专家指导委员会8 译者序9 前12 致谢13 重要符号和算符17 重要缩写词20 目录25 第一部分神经计算的基本概念和部分神经网络体系结构及其学习规则25 第1章神经计算概述40 第2章神经计算的基本概念95 第3章映射网络144 第4章自组织网络168 第5章递归网络和时间前馈网络201 第二部分神经计算的应用201 第6章用神经网络解决最优化问题238 第7章用神经网络解决矩阵代数问题275 第8章使用神经网络求解线性代数方程组318 第9章使用神经网络的统计方法372 第10章使用神经网络进行辨识、控制和枯计435 附录A 神经计算的数学基础497 主题索引29. 人工神经网络与模拟进化计算主要责任者:阎平凡主题词:人工神经元网络; 计算出版者:清华大学出版社ISBN:7-302-10663-0出版地:北京出版日期:200509页数:639出版说明9 前11 第一版前15 目录27 第1章绪论37 第2章前馈网络77 第3章径向基函数网络112 第4章学习理论与网络结构选择166 第5章核方法与支持向量机210 第6章自组织系统(Ⅰ)236 第7章自组织系统(Ⅱ)271 第8章自组织系统(Ⅲ)302 第9章动态信号与系统的处理361 第10章多神经网络集成386 第11章反馈网络与联想存储器424 第12章神经网络用于优化计算441 第13章神经网络中的动力学问题463 第14章误差函数与参数优化方法487 第15章贝叶斯方法505 第16章神经网络在信号处理中的应用552 第17章进化计算概论与进化策略575 第18章遗传算法及其理论分析596 第19章遗传算法的设计与实现619 第20章遗传算法在神经网络中的应用626 第21章遗传算法在作业调度中的应用636 第22章分布估计算法660 索引30.人工神经网络与盲信号处理主要责任者:杨行竣; 郑君里主题词:人工神经元网络; 信号处理; 应用; 人工神经元网络出版者:清华大学出版社ISBN:7-302-05880-6出版地:北京出版日期:200301页数:3997 目录11 第1章绪论33 第2章前向多层神经网络与递归神经网络123 第3章自组织神经网络163 第4章Hopfield神经网络244 第5章模糊神经网络311 第6章遗传算法及其在人工神经网络中的应用337 第7章盲信号处理31.人工神经网络理论、设计及应用(第二版)主要责任者:韩力群主题词:人工神经元网络; 高等学校; 教材出版者:化学工业出版社ISBN:978-7-5025-9523-4出版地:北京出版日期:2000709页数:2437 前9 目录15 1 绪论34 2 神经网络基础知识52 3 监督学习神经网络85 4 竞争学习神经网络121 5 组合学习神经网络133 6 反馈神经网络168 7 小脑模型神经网络178 8 基于数学原理的神经网络207 9 神经网络的系统设计与软件实现220 10 神经网络研究展望223 附录1 常用神经网络C语言源程序254 附录2 神经网络常用术语英汉对照256 参考文献。

基于神经网络的发电机参数辨识

基于神经网络的发电机参数辨识

和无功功率 Qe 给定) , 在发电机励磁系统加小的阶
跃扰动 ,将引起发电机偏离其运行点 ,经过一段时间
的过渡过程后 , 系统将回到原运行点. 对于给定系
统 , G( S) 的各项系数 b1 , a0 , a1 , a2 可由 Pe 、Qe 唯一
确定 ,也就是说 ,以 Pe 、Qe 为输入 , b1 , a0 , a1 , a2 为输
0 引 言
现代电力系统主要特征之一就是将现代控制理 论与计算机技术引入系统. 这就为系统的离线分析 计算和在线的实时控制创造了条件 ,但无论是计算 或控制都必须建立在准确的数学模型的基础上.
在参数辨识中 ,要根据用途来确定模型的类型 , 在分析计算中多数模型采用连续系统模型 ,可为时 域也可为频域 ,以状态空间方程或传递函数 (阵) 表 示 ;在实时控制中 ,可以离散系统模型即差分方程表 示.
人工神经网络 ( ANN) 由于其能以任意精度逼 近任意非线性映射 ,所以可利用神经网络 ,对受控系 统 (发电机及其励磁系统) 的传递函数进行实时辨 识.
1 神经网络算法的选择
本文主要讨论如何利用神经网络来辨识在多运 行点情况下发电机传递函数的参数. 因为已有国内 外文献报道过三阶系统既能较好地体现发电机的动 态特性 ,又具有易于拟合的优点 ,因此本文将传递函 数的阶次选定为三阶 ,并设其模型具有如下形式 :
- 01 18 11 1 11 59 11 51
- 01 36 - 11 3 - 11 81 - 01 71
4 神经网络的训练
神经网络的训练过程就是通过网络权值和偏置 值的不断调整来减少神经网络输出与实际输出之间 的误差. 由于采用的是 sigmoid 激励函数 ,因此 ,如 果训练样本不在区间[ - 1 ,1 ]之间 ,则首先应对训练 样本进行归一化处理 ,以获得性能更好的神经网络 训练结果. 神经网络各层之间的权值{ w ij } 和偏置值 { bi} 是根据上述输入/ 输出样本 , 并采用上述算法来 进行训练调整的. 经过多次选择 , 发现取加速因子α = 0. 5 ,动量因子β= 0. 8 可以得到比较理想的效果. 以下是训练后的权值和偏置值. 其中 w1 是输入层 与隐层之间的连接权值 , w2 是隐层与输出层的连 接权值 , b01 , b12 , b23 分别是各层的偏置值. 图 3 是网 络训 练 的 过 程 曲 线. 可 以 看 出 , 在 训 练 误 差 为 01 01 %的情况下 ,也只要 91 步就能达到误差要求.

一种基于改进神经网络的系统辨识方法

一种基于改进神经网络的系统辨识方法

wo kwa sa l h d S c ndy,alweg sa d t e h di e r ln t r so tmie y g nei lo ih ,S s t p i z tS r set hi e . e o l s l iht n hrs ol BP n u a ewo k wa p i zd b e tcag rt m n O a o o tmiei’ sr cur.Fial tu t e nl y,a e tf a e ’ mo e set bih db tr t n n t n ni nii trS d lwa sa l e yie ai .I hee d,t ep p rp o e h o ghasmua ino h r- r e o d c s o h a e r v dt r u i lto f id o d rn n— t
( . eh n cl8 lcr ncE gn ei gC l g , iu n Unv ri f c n ea dTe h oo y Tay a 0 0 2 ) 1 M c a ia LE eto i n i er ol e Ta a ie s yo i c n c n lg , iu n 3 0 4 n e y t S e
l e rM I O y t m ,t i e tf ae a u hc aa t rsisa h r i ea dhg r cso .Th a e r vd sane ie n to o i a S s se n hsi n ie t rh ss c h r ceitc ss o tt n ih p e iin d i m ep p rp o ie w d aa dmeh df r r sa c n n n u a t r d n ic to . e e rhigo e rlnewo k ie tf ain i Ke or s n urln t r yW d e a ewo k,ie ie t r e tcag rtm ,o tmie,n nl e rs se d ntf ae ,g nei lo ih i pi z o i a y tm n Cls m b r TP3 ] 9 a s Nu e 9.

离散控制系统的系统辨识技术

离散控制系统的系统辨识技术

离散控制系统的系统辨识技术离散控制系统的系统辨识技术是在离散时间下对系统进行建模和参数估计的一种方法。

通过系统辨识技术,我们可以获取到系统的数学模型和参数,从而实现对系统的控制。

本文将介绍离散控制系统的系统辨识技术及其应用。

一、系统辨识的基本概念系统辨识是指通过实验和数据分析,推导出系统的数学模型和参数的过程。

在离散控制系统中,由于系统的输入和输出变量是按照离散时间采样得到的,因此需要采用特定的辨识方法进行处理。

常见的离散控制系统的系统辨识方法包括:参数辨识、经验模型辨识和神经网络辨识等。

参数辨识方法通过对系统的输入-输出数据进行数学建模和参数估计,得到系统的差分方程或状态空间模型。

经验模型辨识方法则利用系统的输入-输出数据建立经验模型,这种方法不需要对系统做具体的建模,适用于复杂系统。

而神经网络辨识方法是通过训练神经网络模型来拟合系统的输入-输出数据,从而得到系统的模型和参数。

二、离散控制系统的参数辨识方法参数辨识是离散控制系统中常用的系统辨识方法之一。

参数辨识方法假设系统的数学模型已知,但其中的参数未知或者不准确,通过实验数据对这些参数进行估计。

在实际应用中,参数辨识方法可以分为两类:基于频域的辨识方法和基于时域的辨识方法。

基于频域的辨识方法主要利用系统的频率响应函数来识别参数,例如最小二乘法、极大似然法等。

而基于时域的辨识方法则是利用系统的时序数据来进行参数估计,例如递推最小二乘法、扩展卡尔曼滤波法等。

三、离散控制系统的经验模型辨识方法经验模型辨识方法是一种不需要假设系统的具体数学模型的系统辨识方法。

该方法通过将系统的输入-输出数据进行数据处理和分析,从中提取系统的特征,建立经验模型。

常见的经验模型辨识方法包括:自回归移动平均模型(ARMA)、自回归滑动平均模型(ARIMA)和动态线性模型(DLM)等。

这些方法都是通过对系统的输入-输出数据进行统计分析和数据建模,从中获得系统的经验模型参数。

人脸识别

人脸识别

人脸识别一、人脸识别的定义人脸识别是基于计算机图像处理技术和生物特征识别技术,提取图像或视频中的人像特征信息,并将其与已知人脸进行比对,从而识别每个人的身份。

它集成了人工智能、机器学习、模型理论、视频图像处理等多样专业技术。

广义的人脸识别实际包括构建人脸识别系统的一系列相关技术,包括人脸图像采集、人脸定位、人脸识别预处理、身份确认以及身份查找等;而狭义的人脸识别特指通过人脸进行身份确认或者身份查找的技术或系统。

随着智能手机的快速普及,可以通过手机镜头在手机上做基于人脸识别的身份注册、认证、登录等,使身份认证进程更安全、方便。

由于人脸比指纹等视觉辨识度更高,所以刷脸的应用前景更广阔。

二、人脸图像的应用1.企业、住宅安全和管理。

如人脸识别门禁考勤系统,人脸识别防盗门等。

2.电子护照及身份证。

这或许是未来规模最大的应用。

人脸识别技术是首推识别模式,该规定已经成为国际标准。

美国已经要求和它有出入免签证协议的国家必须使用结合了人脸指纹等生物特征的电子护照系统。

美国运输安全署计划在全美推广一项基于生物特征的国内通旅行证件。

欧洲很多国家也在计划或者正在实施类似的计划,用包含生物特征的证件对旅客进行识别和管理。

中国的电子护照计划公安部一所正在加紧规划和实施。

3.公安、司法和刑侦。

如利用人脸识别系统和网络,在全国范围内搜捕逃犯。

4.自助服务。

如银行的自动提款机,如果同时应用人脸识别就会避免被他人盗取现金现象的发生。

5.信息安全。

如计算机登录、电子政务、电子商务及银行交易。

在电子商务中交易全部在网上完成,电子政务中的很多审批流程也都搬到了网上。

而当前,交易或者审批的授权都是靠密码来实现。

如果密码被盗,就无法保证安全。

如果使用生物特征,就可以做到当事人在网上的数字身份和真实身份统一。

从而大大增加电子商务和电子政务系统的可靠性。

三、人脸图像的预处理预处理是人脸识别过程中的一个重要环节。

输入图像由于采集环境的不同,可能收到光照,遮挡的影响得到的样图是有缺陷的。

非线性系统辨识方法综述

非线性系统辨识方法综述

非线性系统辨识方法综述系统辨识属于现代控制工程范畴,是以研究建立一个系统的数学模型的技术方法。

分析法和实验法是主要的数学模型建立方法。

系统辨是一种实验建立数学模型的方法,可实时建模,满足不同模型建立的需求。

L.A.Zadeh于1962年提出系统辨识的定义:在输入、输出的基础上,确定一个在一定条件下与所观测系统相等的系统。

系统辨识技术主要由系统的结构辨识和系统的参数估计两部分组成。

系统的数学表达式的形式称之为系统的结构。

对SISO系统而言,系统的阶次为系统的机构;对多变量线性系统而言,模型结构就是系统的能控性结构指数或能观性结构指数。

但实际应用中难以找到与现有系统等价的模型。

因此,系统辨识从实际的角度看是选择一个最好的能拟合实际系统输入输出特性的模型。

本文介绍一些新型的系统辨识方法,体现新型方法的优势,最后得出结论。

二、基于神经网络的非线性系统辨识方法近年来,人工神经网络得到了广泛的应用,尤其是在模式识别、机器学习、智能计算和数据挖掘方面。

人工神经网络具有较好的非线性计算能力、并行计算处理能力和自适应能力,这为非线性系统的辨识提供了新的解决方法。

结合神经网络的系统辨识法被用于各领域的研究,并不断提出改进型方法,取得了较好的进展。

如刘通等人使用了径向基函数神经网络对伺服电机进行了辨识,使用了梯度下降方法进行训练,确定系统参数;张济民等人对摆式列车倾摆控制系统进行了改进,使用BP神经对倾摆控制系统进行辨识;崔文峰等人将最小二乘法与传统人工神经网络结合,改善了移动机器人CyCab的运行系统。

与传统的系统识别方法相比较,人工神经网络具有较多优点:(一)使用神经元之间相连接的权值使得系统的输出可以逐渐进行调整;(二)可以辨识非线性系统,这种辨识方法是络自身来进行,无需编程;(三)无需对系统建行数模,因为神经网络的参数已都反映在内部;(四)神经网络的独立性强,它采用的学习算法是它收敛速度的唯一影响因素;(五)神经网络也适用于在线计算机控制。

《人工神经网络原理与应用》试题

《人工神经网络原理与应用》试题

《人工神经网络原理与应用》试题1、试论述神经网络的典型结构,常用的作用函数以及各类神经网络的基本作用,举例说明拟定结论。

2、试论述BP 算法的基本思想,讨论BP 基本算法的优缺点,以及改进算法的思路和方法。

以BP 网络求解XOR 问题为例,说明BP 网络隐含层单元个数与收敛速度,计算时间之间的关系。

要求给出计算结果的比较表格,以及相应的计算程序(.m 或者.c )3、试论述神经网络系统建模的几种基本方法。

利用BP 网络对以下非线性系统进行辨识。

非线性系统 )(5.1)1()(1)1()()1(22k u k y k y k y k y k y +-++-=+ 1)首先利用[-1,1]区间的随机信号u(k),样本点500,输入到上述系统,产生y(k), 用于训练BP 网络;2)网络测试,利用u(k)=sin(2*pi*k/10)+1/5*sin(2*pi*k/100),测试点300~500,输入到上述系统,产生y(k),检验BP 网络建模效果要求给出程序流程,matlab 程序否则c 程序,训练样本输入输出图形,检验结果的输入输出曲线。

4、试列举神经网络PID 控制器的几种基本形式,给出相应的原理框图。

5、试论述连续Hopfield 网络的工作原理,讨论网络状态变化稳定的条件。

6、谈谈学习神经网络课程后的心得体会,你准备如何在你的硕士(博士)课题中应用神经网络理论和知识解决问题(给出一到两个例)。

《人工神经网络原理与应用》试题1、试论述神经网络的典型结构,常用的作用函数以及各类神经网络的基本作用,举例说明拟定结论。

2、试论述BP 算法的基本思想,讨论BP 基本算法的优缺点,以及改进算法的思路和方法。

以BP 网络求解XOR 问题为例,说明BP 网络隐含层单元个数与收敛速度,计算时间之间的关系。

要求给出计算结果的比较表格,以及相应的计算程序(.m 或者.c )3、试论述神经网络系统建模的几种基本方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档