向量法解立体几何习题

向量法解立体几何习题
向量法解立体几何习题

向量法解立体几何

1、四川19.(本小题共l2分)如图,在直三棱柱ABC -A 1B 1C 1中,∠BAC =90°,AB =AC =AA 1=1,延长A 1C 1至点P ,使C 1P =A 1C 1,连接AP 交棱CC 1于D .

(Ⅰ)求证:PB 1∥平面BDA 1;

(Ⅱ)求二面角A -A 1D -B 的平面角的余弦值;

2. (全国大纲文)如图,四棱锥S ABCD -中,AB ∥CD,BC CD ⊥,侧面SAB 为等边三角形,

2,1AB BC CD SD ====.

(I )证明:SD ⊥平面SAB ; (II )求AB 与平面SBC 所成的角的大小。 3、重庆文.(本小题满分12分,(Ⅰ)小问6分,(Ⅱ)小问6分) 如题(20)图,在四面体ABCD 中,平面ABC ⊥平面ACD ,

,2,1AB BC AC AD BC CD ⊥==== (Ⅰ)求四面体ABCD 的体积;

(Ⅱ)求二面角C-AB-D 的平面角的正切值。

4、

. (湖北文)如图,已知正三棱柱A B C -111A B C 的底面边长为2,侧棱长为3,

点E 在侧棱1A A 上,点F 在侧棱

1B B 上,且A E =,BF =

(I ) 求证:1C F C E ⊥;(II ) 求二面角1E C F C --的大小。

5、、(2006年高考题)如图1,1l 、2l 是互相垂直的异面直线,M N 是它们的公垂线,点A 、B 在1

l 上,C 在2l 上,MN MB AM ==。证明:NB AC ⊥。

6、如图,直三棱柱A 1B 1C 1—ABC 中,D 、E 分别是BC 、A 1B 1的中点.

(1)证明:BE//平面A 1DC 1;

(2)若AB=BC=AA 1=1,∠ABC=90°求二面角B 1—BC 1—E 的正切值. 7、、如图,四棱锥ABCD P -的侧面PAD

垂直于底面ABCD ,090=∠=∠BCD ADC ,22====BC AD PD PA ,3=CD ,

M 在棱PC 上,N 是AD 的中点,二面角C BN M --为030。

(1)求

MC

PM

的值;(2)求直线PB 与平面BMN 所成角的大小。 8、如图,在四棱锥S ABCD -中,底面

ABCD 为平行四边形,

SA ⊥平面ABCD ,2,1,AB AD ==SB =,120,BAD E ∠=在棱SD 上,且3SE ED =.

(I )求证:SD ⊥平面;AEC (II )求直线AD 与平面SCD 所成角的大小

9、如图所示,三棱柱'''C B A ABC -中,四边形''B BCC 为菱形,o BCC 60'=∠,ABC ?为等边三角形,面

⊥ABC 面''B BCC ,F E 、分别为棱'CC AB 、的中点; (Ⅰ)求证://EF 面BC A '';(Ⅱ)求二面角B AA C --'的大小。

1四川19如图,以A 1为原点,A 1B 1,A 1C 1,A 1A 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系

A 1-

B 1

C 1A ,则1(0,0,0)A ,

1(1,0,0)B ,1(0,1,0)C ,(1,0,1)B ,(0,2,0)P .

(Ⅰ)在△P AA 1中有111

2C D AA =,即1(0,1,)2

D . ∴1(1,0,1)A B =,1(0,1,)A D x =,1(1,2,0)B P =-. 设平面BA 1D 的一个法向量为1(,,)a b c =n ,

则1111

0,

10.2

A B a c A D b c ??=+=?

??=+=??n n 令1c =-,则1

1(1,,1)2=-n . ∵1111(1)2(1)002

B P ?=?-+?+-?=n ,

∴PB 1∥平面BA 1D ,

(Ⅱ)由(Ⅰ)知,平面BA 1D 的一个法向量

11

(1,,1)2

=-n .

又2(1,0,0)=n 为平面AA 1D 的一个法向量.∴12121212

cos ,3||||3

12

?<>=

==??n n n n n n .

故二面角A -A 1D -B 的平面角的余弦值为2

3

. 2. (全国大纲文)20以C 为坐标原点,射线CD 为x 轴正半轴,建立如图所示的空间直角坐标系C —xyz 。

设D (1,0,0),则A (2,2,0)、B (0,2,0)。 又设(,,),0,0,0.S x y z x y z >>>则

(I )(2,2,),(,2,)AS x y z BS x y z =--=-,

(1,,)DS x y z =-,

由||||AS BS =得

=

故x=1。

由22||11,DS y z =+=得

又由222||2(2)4,BS x y z =+-+=得

即2

2

1410,,2y z y y z +-+===故

…………3分

是133(,222

S A S =--

, 13(0,,),0,0.2DS DS AS DS BS =?=?= 故,,,DS AD DS BS AS BS S ⊥⊥=又

所以SD ⊥平面SAB 。

(II )设平面SBC 的法向量(,,)a m n p =,

则,,0,0.a BS a CB a BS a CB ⊥⊥?=?=

又33

(1,,),

(0,2,0),2BS CB =-=

故30,220.m n p n ?

-=???=?

(9)

取p=2得((2,0,0)a

AB ==-又。

cos ,||||

AB a AB a AB a ?

=

=? 故AB 与平面SBC 所成的角为 3(重庆文)2011解法二:(I )如答(20)图2,设

O 是AC 的中点,过O 作OH ⊥AC ,交AB 于H ,过O 作OM ⊥AC ,交AD 于M ,由平面ABC ⊥平面ACD ,知OH ⊥OM 。因此以O 为原点,以射线OH ,OC ,OM 分别为x 轴,y 轴,z 轴的正半轴,可建立空间坐标系O —xyz.已知AC=2,故点A ,C 的坐标分别为A (0,—1,0),C (0,1,0)。 设点B 的坐标为

11(,,0),,||1B x y

AB BC BC ⊥=由

,有

22

11221111111,(1)1,

22().11,22

x y x y x x y y ?+=??+-=????==-??????

??==?

???解得舍去 即点B 的坐标为1

,0).2

B 又

D 的坐标为

22(0,,),||1,||2,D y

z CD AD ==

由有 22

2222222222(1)1,(1)4,

33,,44().44

y z y z y y z z ?-+=??++=????==????

??

??==-????解得舍去

即点D

的坐标为3(0,,44

D 从而△ACD 边

AC

上的高为2||h z ==

又2231

||()(1)3,|| 1.AB BC =++=

=

ABCD

11||||328

V AB BC h =???=

(II )由(I )知33

7(

,,0),(0,,).2

4A B A D ==

设非零向量

(,,)n l m n =是平面ABD 的法向量,

则由n AB ⊥有

3

0.22

m +=

(1) 由n AD ⊥,有

70.44

m n +=

(2)

1m =-,由

(1),(2),可得

l n n ==

=-即

显然向量(0,0,1)k =是平面

ABC 的法向量,从

cos ,tan ,n k n

k <>==<>=

=故

即二面角C —AB —D

的平面角的正切值为

7

4. (湖北文解法2:

建立如图所示的空间直角坐标系,

则由已知可得

1(0,0,0),,0),(0,2,0),2),

A B C C E F

(Ⅰ)1(0,2,2),(3,1C E CF =--=- 10220C

E C

F ?=+-=

1.CF C E ∴⊥

(Ⅱ)(0,CE =-,设平面CEF 的一个法

向量为(,,)m x y z =

由0,

,,0,

m CE m

CE m CF m CF

??=?

⊥⊥??=

??得

即20,

y m y ?-+=?=-+=可取

设侧面BC 1的一个法向量为

1,,,(3,1,0)n n BC n CC CB ⊥⊥=-由及 )0,3,1(),23,0,0(1==n CC 可取

设二面角E —

CF —C 1的大小为θ,于是由θ为

锐角可得

||cos ||||2m n m n θ?=

==

?,所以45θ=?

即所求二面角E —CF —C 1的大小为45?。

5(2006年高考题)证明:建立如图1所示空

间直角坐标系xyz M -,令1=MN ,则有

()()()0,1,0,0,0,1,0,0,1N B A -。 ∵MN 是1l 与2l 的公垂线,21l l ⊥, ∴2l ⊥平面ABN , ∴2l ∥z 轴。 故可设 ()m C ,1,0,

于是()()0,1,1,,1,1-==m

()11-+=?图1

∴NB AC ⊥。 6【解析】(I )证明:取A 1C 1的中点F ,连结EF ,DF …

E 中A 1B 1的中点 11112

1//C B EF C B EF =∴且

又 四边形BCC 1B 1是矩形, D 是BC 的中点, BD EF BD EF =∴且,// ∴四边形EFDB 是平行四边形, DF BE //∴ 4分

11,

11DC A BE DC A 平面?

l 1y

11//DC A BE 面∴ 6分

(2)以B 为坐标原点建立空间直角坐标系

1,1===-AA BC AB xyz B

可得)1,2

1

,0(),1,0,1(1E C 7分

则)1,0,1(),1,2

1

,0(1==BC 8分

设平面BEC 1的法向量为),,(1111z y x n = 由?????=?=?0

111BC n n 可得???-=-=11112z x z y 令)1,2,1(,111--==n z 则

又由⊥AB 平面B 1BC 1,

则平面11BC B 的法向量)0,1,0(2==BA n

36

6

2||||,cos 212121-=

-=?>=

<∴n n n n n n (注:公式、结果各一分) 由图可知二面角B 1—BC 1—E 小于90°所以二面

角E BC B --11的大小为3

6arccos . 10分

∴二面角E BC B --11的正切值为22

7(Ⅰ)建立如图所示的坐标系N —xyz ,其中

N (0,0,0),A (1,0,0),B (0,3,0),C (-1,3,0),D (-1,0,0),P (0,0,3). 设PM →=λMC →(λ>0),则M (-λ1+λ,3λ

1+λ,

3

1+λ

),于是 NB →=(0,3,0),NM →=(-λ1+λ,3λ1+λ,3

1+λ

),………………………………3分 设n =(x ,y ,z )为面MBN 的法向量,则NB →·n =0,NM →·n =0,

∴3y =0,-λx +3λy +3z =0,取n =

(3,0,λ),

又m =(0,0,1)为面BNC 的法向量,由二面

角M -BN -C 为30?,得 |cos ?m ,n ?|=

|m ·n ||m ||n |=λ

3+λ

2

=cos 30?=3

2

,解得λ=3, 故

PM MC

3.……………………………………………………………………………6分

(Ⅱ)由(Ⅰ),n =(3,0,3)为面MBN 的法向量,……………………………8分

设直线PB 与平面MBN 所成的角为θ,由PB →=(0,3,-3),得

sin θ=|PB →·n |________|PB →

||n |=336×23=64

, 所以直线PB 与平面MBN 所成的角为arcsin 64.………………………………12分 8:依题意易知CA AD ⊥,

SA ⊥ 平面ACD .以A 为坐标原点, SA ⊥ A C 、AD 、SA 分别 SA ⊥ 为,,x y z 轴建立

SA ⊥ 空

间直角坐标系,

SA ⊥ 则易得

(

))()(0,0,0,,0,1,0,A C

D S ,

由:3SE ED =有

30,4E ? ??

,…………………3分 易得00S D A C S D

A E ??=???=??,从而

SD ⊥平面

ACE .……………………6分

(Ⅱ)设平面SCD 的法向量为(),,x y

z =n 则

30,0.

DC x y SD y ??=-=

???=-=??n n ,令1

z =,

(

)

=n ,…………9分

0cos ,||||

AD AD AD ?++

?

?<>=

=

=n

n

n ,……………11分

所以AD 与平面S C D 所成角大小为

.………………12分

9、取BC 中点O ,连接',OC AO ,

由题可得BC AO ⊥,又因为面⊥ABC 面''B BCC , 所以⊥AO 面''B BCC ,又因为菱形''B BCC 中

o BCC 60'=∠,

所以BC O C ⊥'.

可以建立如图所示的空间直角坐标系┅┅┅┅2分 不

2

=BC ,可得)0,0,1(C ,

)0,3,0('C )3,0,0(A ,)0,0,1(-B ,)3,3,1('-A )0,3,2('-B 所以)0,23

,

21(),23,0,21(F E -所以)3,3,0('),0,3,1('),2

3

,23,

1(==-=BA BC EF ,┅┅┅┅┅┅┅4分

设面BC A '的一个法向量为),,(c b a n =

,则

??

?=+=+0

330

3c b b a ,不妨取3=a ,则)1,1,3(),,(-=c b a ,所以0=?n EF

,又因为?

EF 面BC A '',所以//EF 面BC A ''. ┅┅┅7分

(Ⅱ)由(Ⅰ)可得)0,3,1(),3,0,1(-=--=,

设面B AA '的一个法向量为),,(1111z y x n =

,则

??

?=+-=--030

311

11y x z x ,不妨取31=x ,则)1,1,3(),,(111-=z y x .┅┅┅┅┅┅┅8分

又)0,3,1('),3,0,1(-=-=AA AC ,设面C AA '的一

个法向量为),,(2222z y x n =

,则???=+-=-0

3032222y x z x ,

不妨取32=x ,则)1,1,3(),,(222=z y x .┅┅┅┅┅┅┅10分

所以5

3

||||,c o s 212121=??>=

B AA

C --'为锐角,所以二面角B AA C --'的大小为

5

3

arccos ┅┅┅┅┅┅┅12分

用向量方法解立体几何题(老师用)

用向量方法求空间角和距离 在高考的立体几何试题中,求角与距离是常考查的问题,其传统的“三步曲”解法:“作图、证明、解三角形”,作辅助线多、技巧性强,是教学和学习的难点.向量进入高中教材,为立体几何增添了活力,新思想、新方法与时俱进,本专题将运用向量方法简捷地解决这些问题. 1 求空间角问题 空间的角主要有:异面直线所成的角;直线和平面所成的角;二面角. (1)求异面直线所成的角 设a 、b 分别为异面直线a 、b 的方向向量, 则两异面直线所成的角α=arccos |||||| a b a b (2)求线面角 设l 是斜线 l 的方向向量,n 是平面α的法向量, 则斜线l 与平面α所成的角α=arcsin |||||| l n l n (3)求二面角 法一、在α内a l ⊥,在β内b l ⊥,其方向如图,则二面角l αβ--的平面角α=arccos |||| a b a b

法二、设12,,n n 是二面角l αβ --的两个半平面的法向量, 其方向一个指向内侧,另一个指向外侧,则二面角l α β --的平面角α=12 12arccos |||| n n n n 2 求空间距离问题 构成空间的点、线、面之间有七种距离,这里着重介绍点面距离的求法,象异面直线间的距离、线面距离;面面距离都可化为点面距离来求. (1)求点面距离 法一、设n 是平面α的法向量,在α内取一点B, 则 A 到α的距离|| |||cos ||| AB n d AB n θ== 法二、设A O α ⊥于O,利用A O α ⊥和点O 在α内 的向量表示,可确定点O 的位置,从而求出||A O . (2)求异面直线的距离 法一、找平面β使b β?且a β ,则异面直线a 、b 的距离就转化为直线a 到平面β的距离,又转化为点A 到平面β的距离. 法二、在a 上取一点A, 在b 上取一点B, 设a 、b 分别 为异面直线a 、b 的方向向量,求n (n a ⊥ ,n b ⊥ ),则 异面直线a 、b 的距离|| |||cos ||| AB n d AB n θ== (此方法移植 于点面距离的求法).

立体几何中的向量方法(一)——证明平行与垂直

立体几何中的向量方法(一)——证明平行与垂直 1.直线的方向向量与平面的法向量的确定 (1)直线的方向向量:在直线上任取一非零向量作为它的方向向量. (2)平面的法向量可利用方程组求出:设a ,b 是平面α两不共线向量,n 为平面α的法向量,则求法向量的方程组为???? ? n ·a =0,n ·b =0. 2.用向量证明空间中的平行关系 (1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1∥l 2(或l 1与l 2重合)?v 1∥v 2. (2)设直线l 的方向向量为v ,与平面α共面的两个不共线向量v 1和v 2,则l ∥α或l ?α?存在两个实数x ,y ,使v =x v 1+y v 2. (3)设直线l 的方向向量为v ,平面α的法向量为u ,则l ∥α或l ?α?v ⊥u . (4)设平面α和β的法向量分别为u 1,u 2,则α∥β?u 1 ∥u 2. 3.用向量证明空间中的垂直关系 (1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1⊥l 2?v 1⊥v 2?v 1·v 2=0. (2)设直线l 的方向向量为v ,平面α的法向量为u ,则l ⊥α?v ∥u . (3)设平面α和β的法向量分别为u 1和u 2,则α⊥β?u 1⊥u 2?u 1·u 2=0. 【思考辨析】 判断下面结论是否正确(请在括号中打“√”或“×”) (1)直线的方向向量是唯一确定的.( ) (2)平面的单位法向量是唯一确定的.( ) (3)若两平面的法向量平行,则两平面平行.( ) (4)若两直线的方向向量不平行,则两直线不平行.( ) (5)若a ∥b ,则a 所在直线与b 所在直线平行.( ) (6)若空间向量a 平行于平面α,则a 所在直线与平面α平行.( ) 1.下列各组向量中不平行的是( )

利用法向量解立体几何题

利用法向量解立体几何题 一、运用法向量求空间角 向量法求空间两条异面直线a, b 所成角θ,只要在两条异面直线a, b 上各任取一个向量 ''AA BB 和,则角<','AA BB >=θ或π-θ,因为θ是锐角,所以cos θ= '''' AA BB AA BB ??, 不需 要用法向量。 1、运用法向量求直线和平面所成角 设平面α的法向量为n =(x, y, 1),则直线AB 和平面α所成的角θ的正弦值为 sin θ= cos( 2 π -θ) = |cos| = AB AB n n ?? 2、运用法向量求二面角 设二面角的两个面的法向量为12,n n ,则<12,n n >或π-<12,n n >是所求角。这时要借助图形来判断所求角为锐角还是钝角,来决定<12,n n >是所求,还是π-<12,n n >是所求角。 二、运用法向量求空间距离 1、求两条异面直线间的距离 设异面直线a 、b 的公共法向量为(,,)n x y z =,在a 、b 上任取一点A 、B ,则异面直线a 、b 的距离 d =AB ·cos ∠BAA ' = || || AB n n ? 略证:如图,EF 为a 、b 的公垂线段,a '为过F 与a 平行的直线, 在a 、b 上任取一点A 、B ,过A 作AA '// EF ,交a '于A ' , A

则?ˉ //AA n ,所以∠BAA ' =<,BA n >(或其补角) ∴异面直线a 、b 的距离d =AB ·cos ∠BAA ' = || || AB n n ? * 其中,n 的坐标可利用a 、b 上的任一向量,a b (或图中的,AE BF ),及n 的定义得 0n a n a n b n b ??⊥?=?????⊥?=??? ? ① 解方程组可得n 。 2、求点到面的距离 求A 点到平面α的距离,设平面α的法向量法为(,,1)n x y =,在α内任取一点B ,则A 点到平面α的距离为 d = || || AB n n ?,n 的坐标由n 与平面α内的两个不共线向量的垂直关系,得到方程组(类似于前面所述, 若方程组无解,则法向量与XOY 平面平行,此时可改设 (1,,0)n y =,下同)。 3、求直线到与直线平行的平面的距离 求直线a 到平面α的距离,设平面α的法向量法为(,,1)n x y =,在直线a 上任取一点A , 在平面α内任取一点B ,则直线a 到平面α的距离 d = || || AB n n ? 4、求两平行平面的距离 设两个平行设平面α、β的公共法向量法为(,,1)n x y =,在平面α、β内各任取一点A 、 B ,则平面α到平面β的距离 d = || || AB n n ? 三、证明线面、面面的平行、垂直关系 设平面外的直线a 和平面α、β,两个面α、β的法向量为12,n n ,则 1a//a n α?⊥ 1a a//n α⊥? 12////n n αβ? 12n n αβ⊥?⊥

用向量方法解立体几何题

用向量方法求空间角和距离 前言: 在高考的立体几何试题中,求角与距离是常考查的问题,其传统的“三步曲”解法:“作图、证明、解三角形”,作辅助线多、技巧性强,是教学和学习的难点.向量进入高中教材,为立体几何增添了活力,新思想、新方法与时俱进,本专题将运用向量方法简捷地解决这些问题. 1.求空间角问题 空间的角主要有:异面直线所成的角;直线和平面所成的角;(平面和平面所成的角)二面角. (1)求异面直线所成的角 设a r 、b r 分别为异面直线a 、b 的方向向量, 则两异面直线所成的角α=arccos ||||||a b a b r r g r r (2)求线面角 设l r 是斜线l 的方向向量,n r 是平面α的法向量, 与平面α所成的角α=arcsin |||||| l n l n r r g r r 则斜线l (3)求二面角

方法一:在α内a r l ⊥,在β内b r l ⊥,其方向如图,则二面角l αβ--的平面角 α=arccos |||| a b a b r r g r r 方法二:设12,,n n u r u u r 是二面角l αβ--的两个半平面的法向量,其方向一个指向内侧,另一个指向外侧,则二面角l αβ--的平面角 α=1212arccos |||| n n n n u r u u r g u r u u r 2.求空间距离问题 构成空间的点、线、面之间有七种距离,这里着重介绍点面距离的求法,像异面直线间的 距离、线面距离、面面距离都可化为点面距离来求. (1)求点面距离 方法一:设n r 是平面α的法向量,在α内取一点B, 则 A 到 α的距离|| |||cos ||| AB n d AB n θ==u u u r r u u u r g r 方法二:设AO α⊥于O,利用AO α⊥和点O 在α内 的向量表示,可确定点O 的位置,从而求出||AO uuu r . (2)求异面直线的距离 方法一:找平面β使b β?且a βP ,则异面直线a 、b 的距离就转化为直线a 到平面β的距离,又转化为点A 到平面β的距离. a r 、 b r 分别为异面直线a 、b 的方向 法二:在a 上取一点A, 在b 上取一点B, 设

三角法与向量法解平面几何题(正)

第27讲 三角法与向量法解平面几何题 相关知识 在ABC ?中,R 为外接圆半径,r 为内切圆半径,2 a b c p ++=,则 1,正弦定理: 2sin sin sin a b c R A B C ===, 2,余弦定理:2 2 2 2cos a b c bc A =+-,2 2 2 2cos b a c ac B =+-,2 2 2 2cos c a b ab C =+-. 3,射影定理:cos cos a b C c B =+,cos cos b a C c A =+,cos cos c a B b A =+. 4,面积:211sin 2sin sin sin 224a abc S ah ab C rp R A B C R = ==== = (sin sin sin )rR A B C ++ 2 221(cot cot cot )4 a A b B c C = ++. A 类例题 例1.在ΔABC 中,已知b =asinC ,c =asin (900 -B ),试判断ΔABC 的形状。 分析 条件中有边、角关系, 应利用正、余弦定理, 把条件统一转化为边或者是角的关系, 从而判定三角形的形状。 解 由条件c = asin (900 - B ) = acosB = c b c a ac b c a a 222 22222-+=-+ 2 2222c b c a =-+? 是直角A b c a ?+=?2 22 1sin sin sin =?=A A C c A a 是直角?? ?C a c C c a sin sin =?=?. Q C a b sin =?=? c b ΔABC 是等腰直角三角形。 例2.(1)在△ABC 中,已知cosA =13 5,sinB =53 ,则cosC 的值为( ) A .6516 B .6556 C .65566516或 D . 65 16- 解 ∵C = π - (A + B ),∴cosC = - cos (A + B ),又∵A ∈(0, π),∴sinA = 13 12,而sinB =53 显然sinA > sinB ,∴A > B , ∵A 为锐角, ∴B 必为锐角, ∴ cosB = 5 4 ∴cosC = - cos (A + B ) = sinAsinB - cosAcosB =65 1654135531312=?-?.选A . 说明 △ABC 中,sinA > sinB ?A > B . 根据这一充要条件可判定B 必为锐角。 (2)在Rt △ABC 中,C =90°,A =θ,外接圆半径为R ,内切圆半径为r ,

用向量方法解立体几何题

用向量方法求空间角和距离前言: 在高考的立体几何试题中,求角与距离是常考查的问题,其传统的“三步曲”解法:“作图、证明、解三角形”,作辅助线多、技巧性强,是教学和学习的难点.向量进入高中教材,为立体几何增添了活力,新思想、新方法与时俱进,本专题将运用向量方法简捷地解决这些问题. 1.求空间角问题 空间的角主要有:异面直线所成的角;直线和平面所成的角;(平面和平面所成的角)二面角. (1)求异面直线所成的角 设a 、b 分别为异面直线a 、b 的方向向量, 则两异面直线所成的角α=arccos | |||||a b a b (2)求线面角 设l 是斜线l 的方 向向量,n 是平面α的法向量, α所成的角α=arcsin ||||||l n l n 则斜线l 与平面 (3)求二面角 方法一:在α内a l ⊥,在β内b l ⊥,其方向如图,则二面角l αβ --的平面角α=arccos |||| a b a b 12,,n n 是二面角l αβ--的两个半平面的方法二:设 法向量,其方向 一个指向内侧,另一个指向外侧,则二的平面角α=1212arccos |||| n n n n 面角l αβ--2.求空间距离问题 构成空间的点、线、面之间有七种距离,这里着重介绍点面距离的求法,像异面直线间的距离、线面距离、面面距离都可化为点面距离来求. (1)求点面距离 方法一:设n 是平面α的法向量,在α内取一点B, 则 A 到

α的距离|||||cos ||| AB n d AB n θ== 方法二:设AO α⊥于O,利用AO α⊥和点O 在α内 的向量表示, 可确定点O 的位置,从而求出||AO . (2)求异面直线的距离 方法一:找平面β使b β?且a β,则异面直线a 、b 的距离就 转化为直线a 到平面β的距离,又转化为点A 到平面β的距离. 方法二:在a 上取一点A, 在b 上 取一点B, 设a 、b 分别为异面直 线a 、b 的方向向量,求n (n a ⊥,n b ⊥),则异面直线a 、b 的距离|||||cos |||AB n d AB n θ==(此方法移植于点面距离的求法). 例1.如图,在棱长为2的正方体1111ABCD A B C D -中,E 、F 分别是 棱1111,A D A B 的中点. (Ⅰ)求异面直线1DE FC 与所成的角; (II )求1BC 和面EFBD 所成的角; (III )求1B 到面EFBD 的距离 解:(Ⅰ)记异面直线1DE FC 与所成的角为α, 则α等于向量1DE FC 与的夹角或其补角, 图建立空间坐标系D xyz -, (II )如1 1||||111111cos ||()()|||||| 222||,arccos DE FC DE FC DD D E FB B C DE FC αα∴=++=-==∴=

高中数学向量法解立体几何总结

向量法解立体几何 1、直线的方向向量和平面的法向量 ⑴.直线的方向向量:若A 、B 是直线l 上的任意两点,则AB 为直线l 的一个方向向量;与AB 平行的任意非零向量也是直线l 的方向向量. ⑵.平面的法向量:若向量n 所在直线垂直于平面α,则称这个向量垂直于平面α,记作 n α⊥,如果n α⊥,那么向量n 叫做平面α的法向量. ⑶.平面的法向量的求法(待定系数法): ①建立适当的坐标系. ②设平面α的法向量为(,,)n x y z =. ③求出平面内两个不共线向量的坐标123123(,,),(,,)a a a a b b b b ==. ④根据法向量定义建立方程组0 n a n b ??=???=??. ⑤解方程组,取其中一组解,即得平面α的法向量. 2、用向量方法判定空间中的平行关系 ⑴线线平行。设直线12,l l 的方向向量分别是a b 、 ,则要证明1l ∥2l ,只需证明a ∥b ,即()a kb k R =∈.⑵线面平行。设直线l 的方向向量是a ,平面α的法向量是u ,则要证明l ∥ α,只需证明a u ⊥,即0a u ?=. ⑶面面平行。若平面α的法向量为u ,平面β的法向量为v ,要证α∥β,只需证u ∥v ,即证u v λ=. 3、用向量方法判定空间的垂直关系⑴线线垂直。设直线12,l l 的方向向量分别是a b 、 ,则要证明12l l ⊥,只需证明a b ⊥,即0a b ?=.⑵线面垂直 ①(法一)设直线l 的方向向量是a ,平面α的法向量是u ,则要证明l α⊥,只需证明a ∥u ,即a u λ=. ②(法二)设直线l 的方向向量是a ,平面α内的两个相交向量分别为m n 、 ,若

专题:运用向量法证明立体几何问题

专题:运用向量法证明立体几何问题 一、知识点: 1、若向量m 与直线l 平行,则向量叫做直线l 的方向向量。 2、若⊥α,则叫做平面α的法向量。 (1)要证m 为平面α的法向量,只须让m 与平面α内的两条相交直线垂直。 (2)若χ轴与平面的法向量,可设为=(1,0,0) (3)若 y 轴为平面的法向量,可设为=(0,1,0) (4)若Z 轴为平面的法向量,可设为m =(0,0,1) 3、证明线面平行与线面垂直 若为平面α的法向量,n 为直线l 的方向向量,则 (1)l ⊥α?m ∥n ?m =λn (2)l ∥α ?m ⊥n ?m ·n =0 4、运用向量求角 (1)若两条异面直线l 1,l 2所成的角为 θ,为l 1 的方向向量, n 为l 2 的方向向量,则 cos (090)m n m n θθ=<≤ , (2)若两个平面12αα,所成的二面角的平面角为 θ,为1α的法向

量,为2α的法向量,则 cos (090)m n m n θθ=<≤ , 当二面角为锐时为θ;当二面角为钝角时为 π-θ。 (3)直线l 与平面α所成的角为θ,n 为直线l 的方向向量,m 为平面α 的法向量,则 sin (090)m n m n θθ=<≤ , 5、点P 到平面α的距离为d,若为平面α的法向量,A 为平面α内任 一点,则PA m d m = 例1.如图在四棱锥P-ABCD 中,底面AB 、CD 是正方形且边长为1,侧棱PD ⊥底面ABCD ,PD=DC ,点E 是PC 的中点,且F 的坐标是(31,31,3 2 )。 (1)求证:PA ∥平面EDB (2)求证:PB ⊥平面EFD 解:如图建立空间直角坐标系D xyz -。 设底面正方形的边长为1,则PD=1 D (0,0,0),P (0,0,1),A (1,0,0), B (1,1,0), C (0,1,0),E (0,21,2 1 ) (1)设(x,y,z)m = 为平面EDB 的法向量 则00m DB m DE ?=??=?? , 而(1,1,0)11(0,,)22 DB DE ?=??=?? ∴011022 x y y z +=?? ?+=?? , 即 x y z y =-??=-? 故m =(1,-1,1)(取Y=-1)

法向量解立体几何专题训练

法向量解立体几何专题训练 一、运用法向量求空间角 1、向量法求空间两条异面直线a, b 所成角θ,只要在两条异面直线a, b 上各任取一个向量''AA BB 和,则角<','AA BB >=θ或π-θ,因为θ是锐角,所以cos θ= '''' AA BB AA BB ??, 不 需要用法向量。 2、设平面α的法向量为n =(x, y, 1),则直线AB 和平面α所成的角θ的正弦值为sin θ= cos( 2π -θ) = |cos| = AB AB n n ?? 3、 设二面角的两个面的法向量为12,n n ,则<12,n n >或π-<12,n n >是所求角。这时要借助图形来判断所求角为锐角还是钝角,来决定<12,n n >是所求,还是π-<12,n n >是所求角。 二、运用法向量求空间距离 1、求两条异面直线间的距离 设异面直线a 、b 的公共法向量为(,,)n x y z =,在a 、b 上任取一点 A 、B ,则异面直线a 、b 的距离d =AB ·cos ∠BAA '=|| || AB n n ? 2、求点到面的距离 求A 点到平面α的距离,设平面α的法向量法为(,,1)n x y =,在α内任取一点B ,则A 点到平面α的距离为d = || || AB n n ?,n 的坐标由n 与平面α内的两个不共线向量的垂直关系,得到方程组(类似于前面所述, 若方程组无解,则法向量与XOY 平面平行,此时可改设(1,,0)n y = 三、证明线面、面面的平行、垂直关系 设平面外的直线a 和平面α、β,两个面α、β的法向量为12,n n ,则

1a//a n α?⊥ 1a a//n α⊥? 12////n n αβ? 12n n αβ⊥?⊥ 四、应用举例: 例1:如右下图,在长方体ABCD —A 1B 1C 1D 1中,已知AB= 4, AD =3, AA 1= 2. E 、F 分别是线段AB 、BC 上的点,且EB= FB=1. (1) 求二面角C —DE —C 1的正切值; (2) 求直线EC 1与FD 1所成的余弦值. 解:(I )以A 为原点,1,,AB AD AA 分别为x 轴,y 轴,z 轴的正向建立空间直角坐标系, 则D(0,3,0)、D 1(0,3,2)、E(3,0,0)、F(4,1,0)、C 1(4,3,2) 于是,11(3,3,0),(1,3,2),(4,2,2)DE EC FD =-==- 设法向量(,,2)n x y =与平面C 1DE 垂直,则有 1330 1320n DE x y x y x y z n EC ⊥-=? ?==-++=⊥?? ???? ?? 11111(1,1,2), (0,0,2), cos 3 ||||1tan 2n AA CDE n AA C DE C n AA n AA θθθ∴=--=∴--?== = ?∴= 向量与平面垂直与所成的角为二面角的平面角 (II )设EC 1与FD 1所成角为β,则 1111cos 14 |||| 1EC FD EC FD β?= = = ? 例2:(高考辽宁卷17)如图,已知四棱锥P-ABCD ,底面ABCD 是菱形,∠DAB=600,PD ⊥平面ABCD ,PD=AD ,点E 为AB 中点,点F 为PD 中点。 (1)证明平面PED ⊥平面PAB ; (2)求二面角P-AB-F 的平面角的余弦值 证明:(1)∵面ABCD 是菱形,∠DAB=600, ∴△ABD 是等边三角形,又E 是AB 中点,连结BD ∴∠EDB=300,∠BDC=600,∴∠EDC=900,

向量法解立体几何

中山二中2011届空间向量解立体几何 一、空间直角坐标系的建立及点的坐标表示 (1)若空间的一个基底的三个基向量互相垂直,且长为1,这个基底 叫单位正交基底,用{,,}i j k 表示; (2)在空间选定一点O 和一个单位正交基底 {,,}i j k ,以点O 为原点,分别以,,i j k 的方向为正 方向建立三条数轴:x 轴、y 轴、z 轴,它们都叫坐标轴.我们称建立了一个空间直角坐标系O xyz -, 点O 叫原点,向量,,i j k 都叫坐标向量.通过每两个坐标轴的平面叫坐标平面,分别称为 xOy 平面,yOz 平面,zOx 平面。 (3)作空间直角坐标系O xyz -时,一般使135xOy ∠=(或45),90yOz ∠=; (4)在空间直角坐标系中,让右手拇指指向x 轴的正方向,食指指向y 轴的正方向,如果中指指向z 轴的正方向,称这个坐标系为右手直角坐标系规 定立几中建立的坐标系为右手直角坐标系 (5)空间直角坐标系中的坐标:如图给定空间直角坐 标系和向量 a ,设,,i j k 123(,,)a a a ,使123a a i a j a k =++,有序实数组123(,,)a a a 作向量a 在空间直角坐标系O xyz -123(,,)a a a a =.在空间直角坐标系O xyz -中,对空间任 一点A ,存在唯一的有序实数组(,,)x y z ,使 OA xi yj zk =++,有序实数组(,,)x y z 叫作向量A 在空间直角坐标系O xyz -中的 坐标,记作(,,)A x y z ,x 叫横坐标,y 叫纵坐标,z 叫竖坐标. 二、空间向量的直角坐标运算律 (1)若123(,,)a a a a =,123(,,)b b b b =, 则112233(,,)a b a b a b a b +=+++, 112233(,,) a b a b a b a b -=---, 123(,,)()a a a a R λλλλλ=∈, 112233//,,()a b a b a b a b R λλλλ?===∈, (2)若111(,,)A x y z ,222(,,)B x y z ,则212121(,,)AB x x y y z z =---. 一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标。 (3)//a b b a λ?=11 223 3()b a b a R b a λλλλ=?? ?=∈??=? 三、空间向量直角坐标的数量积 1、设,是空间两个非零向量,我们把数量><,cos |||| 规定:零向量与任一向量的数量积为0。 2、模长公式 2| |a a a x =?=+3、两点间的距离公式:若111(,,)A x y z ,222(,,)B x y z , 则2 ||(AB AB = =, 或,A B d = 4、夹角:cos |||| a b a b a b ??= ?. 注:①0(,a b a b a b ⊥??=是两个非零向量); ②2 2||a a a a =?=。 5、 空间向量数量积的性质: ①||cos ,a e a a e ?=<>.②0a b a b ⊥??=.③2||a a a =?.

用空间向量解立体几何问题方法归纳

用空间向量解立体几何题型与方法 平行垂直问题基础知识 直线l 的方向向量为a =(a 1,b 1,c 1).平面α,β的法向量u =(a 3,b 3,c 3),v =(a 4,b 4,c 4) (1)线面平行:l ∥α?a ⊥u ?a ·u =0?a 1a 3+b 1b 3+c 1c 3=0 (2)线面垂直:l ⊥α?a ∥u ?a =k u ?a 1=ka 3,b 1=kb 3,c 1=kc 3 (3)面面平行:α∥β?u ∥v ?u =k v ?a 3=ka 4,b 3=kb 4,c 3=kc 4 (4)面面垂直:α⊥β?u ⊥v ?u ·v =0?a 3a 4+b 3b 4+c 3c 4=0 例1、如图所示,在底面是矩形的四棱锥P -ABCD 中,P A ⊥底面ABCD ,E ,F 分别是PC ,PD 的中点,P A =AB =1,BC =2. (1)求证:EF ∥平面P AB ; (2)求证:平面P AD ⊥平面PDC . [证明] 以A 为原点,AB ,AD ,AP 所在直线分别为x 轴,y 轴,z 轴,建立空 间直角坐标系如图所示,则A (0,0,0),B (1,0,0),C (1,2,0),D (0,2,0),P (0,0,1),所以E ? ????1 2,1,12, F ? ????0,1,12,EF =? ?? ?? -12,0,0,PB =(1,0,-1),PD =(0,2,-1),AP =(0,0,1),AD =(0,2,0),DC =(1,0,0),AB =(1,0,0). (1)因为EF =-1 2AB ,所以EF ∥AB ,即EF ∥AB . 又AB ?平面P AB ,EF ?平面P AB ,所以EF ∥平面P AB . (2)因为AP ·DC =(0,0,1)·(1,0,0)=0,AD ·DC =(0,2,0)·(1,0,0)=0, 所以AP ⊥DC ,AD ⊥DC ,即AP ⊥DC ,AD ⊥DC . 又AP ∩AD =A ,AP ?平面P AD ,AD ?平面P AD ,所以DC ⊥平面P AD .因为DC ?平面PDC , 所以平面P AD ⊥平面PDC . 使用空间向量方法证明线面平行时,既可以证明直线的方向向量和平面内一条直线的方向向量平行,然后根据线面平行的判定定理得到线面平行,也可以证明直线的方向向量与平面的法向量垂直;证明面面垂直既可以证明线线垂直,然后使用判定定理进行判定,也可以证明两个平面的法向量垂直. 例2、在直三棱柱ABC -A 1B 1C 1中,∠ABC =90°,BC =2,CC 1=4,点E 在线段BB 1上, 且EB 1=1,D ,F ,G 分别为CC 1,C 1B 1,C 1A 1的中点. 求证:(1)B 1D ⊥平面ABD ; (2)平面EGF ∥平面ABD .

立体几何中的向量方法—证明平行和垂直

1、依据学习目标。课前认真预习,完成自主学习内容; 2、课上思考,积极讨论,大胆展示,充分发挥小组合作优势,解决疑难问题; 3、当堂完成课堂检测题目; 4、★的多少代表题目的难以程度。★越多说明试题越难。不同层次学生选择相应题目完成 【学习目标】1.理解空间向量的概念;掌握空间向量的加法、减法和数乘; 2.了解空间向量的基本定理; 3.掌握空间向量的数量积的定义及其性质;理解空间向量的夹角的概念;掌握空间向量的数量积 的概念、性质和运算律;了解空间向量的数量积的几何意义;能用向量的数量积判断向量的共线与 垂直。 【教学重点】理解空间向量的概念;掌握空间向量的运算方法 【教学难点】理解空间向量的概念;掌握空间向量的运算方法 在四棱锥 设直线,则 v

的正方体 I 2. 如图,在棱长为a (1) 试证:A1、G、C三点共线; (2) 试证:A1C⊥平面 3.【改编自高考题】如图所示,四棱柱 的正方形,侧棱A (1)证明:AC⊥A1B; (2)是否在棱A1A上存在一点P,使得C1【学后反思】 本节课我学会了 掌握了那些? 还有哪些疑问? 2017届高二数学导学案编写邓兴明审核邓兴明审批

1、依据学习目标。课前认真预习,完成自主学习内容; 2、课上思考,积极讨论,大胆展示,充分发挥小组合作优势,解决疑难问题; 3、当堂完成课堂检测题目; 4、★的多少代表题目的难以程度。★越多说明试题越难。不同层次学生选择相应题目完成 【学习目标】1.掌握各种空间角的定义,弄清它们各自的取值范围.2.掌握异面直线所成的角,二面角的平面角,直线与平面所成的角的联系和区别.3.体会求空间角中的转化思想、数形结合思想,熟练掌握平移方法、射影方法等.4.灵活地运用各种方法求空间角. 【教学重点】灵活地运用各种方法求空间角 【教学难点】灵活地运用各种方法求空间角 —l—β的两个面α,β的法向量,则向量 的大小就是二面角的平面角的大小(如图②③). 【课堂合作探究】 利用向量法求异面直线所成的角 B1C1,∠ACB=90°,CA=CB=CC1,D 的正方体ABCD—A1B1C1D1中,求异面直线

立体几何(向量法)建系难

立体几何(向量法)—建系难 例1 (2013年普通高等学校招生统一考试重庆数学(理)试题(含答案))如图,四棱锥P ABCD -中,PA ABCD ⊥底面,2,4,3 BC CD AC ACB ACD π ===∠=∠=,F 为PC 的中 点,AF PB ⊥. (1)求PA 的长; (2)求二面角B AF D --的正弦值. 【答案】 解:(1)如图,联结BD 交AC 于O ,因为BC =CD ,即△BCD 为等腰三角形,又AC 平分∠BCD ,故AC ⊥BD .以O 为坐标原点,OB →,OC →,AP → 的方向分别为x 轴,y 轴,z 轴的正方向,建立空间直角坐标系O -xyz ,则OC =CD cos π3=1,而AC =4,得AO =AC -OC =3.又OD =CD sin π 3=3,故A (0,-3,0),B (3,0,0),C (0,1,0),D (-3,0,0). 因P A ⊥底面ABCD ,可设P (0,-3,z ),由F 为PC 边中点,得F ????0,-1,z 2,又AF → =????0,2,z 2,PB →=(3,3,-z ),因AF ⊥PB ,故AF →·PB →=0,即6-z 2 2 =0,z =2 3(舍去-2 3),所以|P A → |=2 3. (2)由(1)知AD →=(-3,3,0),AB →=(3,3,0),AF → =(0,2,3).设平面F AD 的法

向量为1=(x 1,y 1,z 1),平面F AB 的法向量为2=(x 2,y 2,z 2). 由1·AD →=0,1·AF →=0,得 ?? ?-3x 1+3y 1=0, 2y 1+3z 1=0, 因此可取1=(3,3,-2). 由2·AB →=0,2·AF →=0,得 ?? ?3x 2+3y 2=0, 2y 2+3z 2=0, 故可取2=(3,-3,2). 从而向量1,2的夹角的余弦值为 cos 〈1,2〉=n 1·n 2|n 1|·|n 2|=1 8 . 故二面角B -AF -D 的正弦值为3 7 8 . 例2(2013年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))如图,四 棱锥P ABCD -中,902,ABC BAD BC AD PAB ∠=∠==?o ,与PAD ?都是等边三角形. (I)证明:;PB CD ⊥ (II)求二面角A PD C --的大小. 【答案】解:(1)取BC 的中点E ,联结DE ,则四边形ABED 为正方形. 过P 作PO ⊥平面ABCD ,垂足为O . 联结OA ,OB ,OD ,OE . 由△P AB 和△P AD 都是等边三角形知P A =PB =PD , 所以OA =OB =OD ,即点O 为正方形ABED 对角线的交点, 故OE ⊥BD ,从而PB ⊥OE . 因为O 是BD 的中点,E 是BC 的中点,所以OE ∥CD .因此PB ⊥CD .

经典超级实用的解题方法之平面向量与解析几何

第18讲 平面向量与解析几何 在高中数学新课程教材中,学生学习平面向量在前,学习解析几何在后,而且教材中二者知识整合的不多,很多学生在学习中就“平面向量”解平面向量题,不会应用平面向量去解决解析几何问题。用向量法解决解析几何问题思路清晰,过程简洁,有意想不到的神奇效果。著名教育家布鲁纳说过:学习的最好刺激是对所学材料的兴趣,简单的重复将会引起学生大脑疲劳,学习兴趣衰退。这充分揭示方法求变的重要性,如果我们能重视向量的教学,必然能引导学生拓展思路,减轻负担。 一、知识整合 平面向量是高中数学的新增内容,也是新高考的一个亮点。 向量知识、向量观点在数学、物理等学科的很多分支有着广泛的应用,它具有代数形式和几何形式的“双重身份”,能融数形与一体,能与中学数学教学内容的的许多主干知识综合,形成知识交汇点。而在高中数学体系中,解析几何占有着很重要的地位,有些问题用常规方法去解决往往运算比较繁杂,不妨运用向量作形与数的转化,则会大大简化过程。 二、例题解析 例1、(2000年全国高考题)椭圆14 92 2=+y x 的焦点为F ,1F 2,点P 为其上的动点,当∠F 1P F 2为钝角时,点P 横坐标的取值范围是___。 解:F 1(-5,0)F 2(5,0),设P (3cos θ,2sin θ) 21PF F ∠Θ为钝角 ∴ 123cos ,2sin )3cos ,2sin )PF PF θθθθ?= -?-u u u r u u u u r ( =9cos 2θ-5+4sin 2θ=5 cos 2θ-1<0 解得:55cos 55<<-θ ∴点P 横坐标的取值范围是(5 53,553-) 点评:解决与角有关的一类问题,总可以从数量积入手。本题中把条件中的角为钝角转化为向量的数量积为负值,通过坐标运算列出不等式,简洁明了。 例2、已知定点A(-1,0)和B(1,0),P 是圆(x-3)2+(y-4)2=4上的一动点,求22 PA PB +的最大值和最小值。 分析:因为O 为AB 的中点,所以2,PA PB PO +=u u u r u u u r u u u u r 故可利用向量把问题转化为求向量OP u u u r 的最值。 解:设已知圆的圆心为C ,由已知可得:{1,0},{1,0}OA OB =-=u u u r u u u r

立体几何中的向量方法

立体几何中的向量方法 适用学科高中数学适用年级高中二年级 适用区域通用课时时长(分钟)90 知识点用空间向量处理平行垂直问题;用空间向量处理夹角问题. 教学目标 1. 理解直线的方向向量与平面的法向量; 2. 能用向量语言表述线线、线面、面面的垂直、平行关系; 3. 能用向量方法证明有关线、面位置关系的一些定理(包括三垂线定理). 4. 能用向量方法解决线线、线面、面面的夹角的计算问题,体会向量方法的作用.教学重点用向量方法解决立体几何中的有关问题 教学难点用向量方法解决线线、线面、面面的夹角的计算问题

教学过程 一、课堂导入 空间平行垂直问题 1.两条直线平行与垂直; 2.直线与平面平行与垂直; 3.两个平面平行与垂直;空间夹角问题 1.两直线所成角; 2.直线和平面所成角; 3.二面角的概念; 空间距离问题

二、复习预习 (1)空间向量的直角坐标运算律:设231(,,)a a a a =,231(,,)b b b b =,则 112233(,,)a b a b a b a b +=+++,112233(,,)a b a b a b a b -=---,123(,,)()a a a a R λλλλλ=∈, 112233a b a b a b a b ?=++, 112233//,,()a b a b a b a b R λλλλ?===∈, 1122330a b a b a b a b ⊥?++=. (2)若111(,,)A x y z ,222(,,)B x y z ,则212121(,,)AB x x y y z z =---. 一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标. (3)模长公式:若231(,,)a a a a =, 则 222 123 ||a a a a a a =?=++. (4)夹角公式: 112233 2 2 2 22 2 123 123 cos |||| a b a b a b a b a b a b a a a b b b ++??= = ?++++. (5)两点间的距离公式:若111(,,)A x y z ,222(,,)B x y z ,则 2212212212 )()()(z z y y x x AB AB -+-+-== .

用基底建模向量法解决立体几何问题

用基底建模向量法解决立体几何问题 空间向量是高中数学新教材中一项基本内容,它的引入有利于处理立体几何问题,有利于学生克服空间想象力的障碍和空间作图的困难,有利于丰富学生的思维结构,利用空间向量的坐标运算解立体几何问题,可把抽 象的几何问题转化为代数计算问题,并具有很强的规律性和可操作性,而利 用空间向量的坐标运算需先建立空间直角坐标系,但建立空间直角坐标系有时要受到图形的制约,在立体几何问题中很难普遍使用,其实向量的坐标形式只是选取了特殊的基底,一般情况下,我们可以根据题意在立体几何图形中选定一个基底,然后将所需的向量用此基底表示出来,再利用向量的运算进行求解或证明,这就是基底建模法.它是利用向量的非坐标形式解立体几何问题的一种有效方法。 基向量法在解决立体几何的证明、求解问题中有着很特殊的妙用。 空间向量基本定理及应用 空间向量基本定理:如果三个向量a、b、c不共面,那么对空间任一 向量p存在惟一的有序实数组x、y、乙使p=x a+ y b+ z c. 1、已知空间四边形OAB(中, Z AOB Z BOC / AOC且OA=OB=OCM N分别是OA BC的中点,G是MN的中点. 求证:OGL BC 【解前点津】要证OGL BC只须证明OG?BC 0即可. 而要证OG?BC 0,必须把0G、BC用一组已知的空间基向量来表示 .又已知条件为Z AOB Z BOC Z AOC且OA=O母OC因此可选OA,OB,OC为已知的基向量.

【规范解答】连ON由线段中点公式得:

又 BC OC OB , 【解后归纳】 本题考查应用平面向量、空间向量和平面几何知识证线线垂直的能力 【例2】 在棱长为a 的正方体ABC —ABCD 中,求:异面直线 BA 与AC 所成的角. ■ 1 ■ 2 1 ■ 2 BB 1 ? BC 0,BA?AB =-a .所以 BA ^ ? AC =- a . OG OM ON) 彳 ] 彳 El I : 丄 OA 丄(OB OC) 2 2 O B O C ), 所以 O G ? O B 1(O A 4 OB OC)?(OC OB) 丄(OA ?O C 4 OB?OC OC 2 OA?OB OB 2 OC?OB ) 1 = 4(O A? OC OA ?OB 2 2 OC 2 OB 2 ). 因为O A ?O C OA ? OC ? cos AOC OA?OB OA ? OB ? cos AOB 且 OC OB OA ,/ AOB Z AOC 所以 OG ? BC =0,即 OGL BC 【解前点津】 利用BA 1?AC BA 1 ? AC cos B AH , A C ,求出向量BA 1与AC 的夹角〈BA 1 , AC >, 再根据异面直线 BA , AC 所成角的范围确定异面直线所成角 【规范解答】 因为 BA 1 BA BB 1, AC AB 所以BA ] ?AC (BA BB 1)?(AB BC)= BA? AB 因为ABL BC BB L AB BB L BC 又 BA ] ? AC BA 1 ? AC ?cos BA ,AC , cos BA, AC a 2 所以〈B A],A C > =120° . 所以异面直线BA 与AC 所成的角为60°. 【解后归纳】 求异面直线所成角的关键是求异面直 积,必须会把所求向量用空间的一组基向量来表示 线上两向量的数量积, 而要求两向量的数量 例 3:如图,在底面是菱形的四棱锥 P-ABCD 中, / ABC=6(o,PA L 面 ABCD , PA=AC=a,PB=PD= 2a , 点E 在PD 上,且PE:PD=2:1.在棱PC 上是否存在一点 F ,使BF //平面AEC ?证明你的结论. uuu uuir uuu 解析:我们可选取AB,AD,AP 作为一组空间基底 D L C L BC , BA?BC BB 1 ?AB BB 1 ?BC 所以BA?BC 0,BB<| ?AB =0, D

用向量方法解立体几何题

用向量方法求空间角和距离 前言: 在高考的立体几何试题中,求角与距离是常考查的问题,其传统的“三步曲”解法:“作图、 证明、解三角形”,作辅助线多、技巧性强,是教学和学习的难点?向量进入高中教材,为立体 几何增添了活力,新思想、新方法与时俱进,本专题将运用向量方法简捷地解决这些问题. 1. 求空间角问题 空间的角主要有:异面直线所成的角; 直线和平面所成的角;(平面和平面所成的角)二面 角. (1)求异面直线所成的角 设a 、b 分别为异面直线a 、b 的方向向量, r r 则两异面直线所成的角 =arccos| $啤| |a||b| =arccos 1?唏 |n i ||n 21 ,n 是平面的法向量, =arcsin | r 1 那 | 在内b l ,其方向如图,则二 agb =arccos |a||b 的两个半平面的法向量,其方向 ,则二面角 l 的平面角 平面角 a l ,

2. 求空间距离问题 构成空间的点、线、面之间有七种距离,这里着重介绍点面距离的求法,像异面直线间的 距离、线面距离、面面距离都可化为点面距离来求. (1)求点面距离 (II )求BC i 和面EFBD 所成的角; (III )求B 到面EFBD 的距离 解:(I)记异面直线DE 与F?所成的角为 , uuu uuur 则等于向量DE 与FC 1的夹角或其补角, 方法一:设n 是平面 uur 的距离d |AB||cos 的法向量,在 uuu r | 冲| |n| 内取一点B,则A 到 和点0在 内 uuu 的向量表示,可确定点 0的位置,从而求出|A0| . 方法二:设AO 于O,利用AO 方法一:找平面 使b 且a P ,则异面直线a 、b 的距离就 转化为直线a 到平面 的距离,又转化为点A 到平面 的距离. 方法二:在a 上取一点A,在b 上 uuu r d | AB || cos | ft n a 取一点B,设a 、b 分别为异面直 n b ),则异面直线a 、b 的距离 例1.如图,在棱长为2的正方体 棱AD i ,AB ,的中点. 移植于点面距离的求法). (I)求异面直线DE 与FC i 所成的角; a 线a 、b 的方向向量,求n (n a , B ABCD A 1B 1C 1D 1 中,E 、F 分别是 D . C 二 B

相关文档
最新文档