高频实验报告最终版

高频实验报告最终版
高频实验报告最终版

实验报告

实验课程:通信电子线路实验

学生姓名:刘晓东

学号: 6100212207 专业班级:电子123班

指导教师:雷向东卢金平

目录

实验一仪器的操作使用 (1)

实验二高频小信号调谐放大器实验 (3)

实验三丙类功率放大器设计 (8)

实验四三点式正弦波振荡器 (10)

实验五晶体振荡器设计 (12)

实验六集成模拟乘法器混频 (14)

实验七二极管的双平衡混频器 (18)

实验八集电极调幅实验 (20)

实验九基极调幅实验 (24)

实验十模拟乘法器调幅(AM、DSB、SSB) (26)

南昌大学电子信息工程123班刘晓东

实验一仪器的操作使用

一、实验目的

掌握使用高频实验室的示波器、高频信号发生器的目的、方法及注意事项。

示波器是用来观察和测量信号的,主要是用来观察周期信号的波形,比如正弦波、三角波、方波、调幅波,等等。信号发生器,即信号源。

注意事项:在仪器之间、仪器与电路之间,信号的传输都是通过信号线来完成的。用示波器测量信号发生器产生的信号,就要将示波器的信号输入线(表笔)与信号发生器的信号输出线连接在一起。注意,仪器的信号线都有一个金属的连接头,也被称作“Q头”,用来与仪器连接在一起,这里要特别强调:在将信号线接上和取下时,一定要捏住信号线的其他部位,否则,信号线中的芯线就会被拧断。再就是不能用蛮力,。这是高频实验仪器操作的基本常识和基本要求,必须遵守,不得违背。

二、实验内容

(1)高频正弦波信号的产生和测试

①首先简单介绍一下信号发生器的基本操作使用方法。它是数字智能型的信号发生器,打开电源开关,液晶显示屏显示信号的参数。信号参数,由功能键结合数字按键设置,比如,我们要产生频率为12.5MHz、有效值150mV的信号,那么,我们就要先按一下功能键“频率”,再按数字键12.5,然后按右边的单元键“MHz”,这时,屏幕上显示“频率12.5MHz”;接着再按一下功能键“幅度”,再按数字键150,然后按右边的单元键“mV”,这时,屏幕上显示“幅度150mV”。这时用示波器可以观测到这个12.5MHz的等幅正弦波信号。

②被测试的信号,通过示波器的信号输入线(也叫测试表笔)加入到示波器,按一下AUTO SET按键,示波器就会自动检测、显示出信号波形,再按一下Measure按键,示波器屏幕的右边就会显示信号的频率、幅度等参数。

示波器的表笔上,有“×1”和“×10”两个档位(通常要求使用“×10”档),示波器信号通道的设置,必须与表笔保持一致:按一下“CH1”或“CH2”按键,再按“F4”,可以调整屏幕上的显示的“档位”。

③有关信号发生器输出信号幅度问题的说明:

实验一仪器的操作使用

该信号发生器的内阻为50Ω,假设设置的信号幅度为NmV,在测试时给信号发生器串接上50Ω的负载电阻,这时测到的信号幅度有效值即为NmV,转换为峰峰值就是2.828N(mV)这时不串接上50Ω的负载电阻,用示波器直接测量信号发生器的输出信号,这时测到的信号幅度就应该是5.656N(mV),参见原理示意图:

④、实验测试。设置高频正弦波信号的频率为10.8MHz,再按照下列表格的数值分别设置信号的幅度(有效值),测出对应的输出信号的峰峰值。要求示波器的表笔在“×1”和“×10”档时,各测得一组表格数据,并计算测量误差。

三、实验结果

南昌大学电子信息工程123班刘晓东

实验二高频小信号调谐放大器实验

一、实验目的

1、掌握小信号调谐放大器的基本工作原理;

2、掌握谐振放大器电压增益、通频带及选择性的定义、测试及计算;

3、了解高频小信号放大器动态范围的测试方法;

二、实验内容

1、测量单调谐小信号放大器的静态工作点电压

2、测量单调谐小信号放大器的增益

3、测量单调谐小信号放大器的通频带

三、实验仪器

1、高频信号发生器1台

2、双踪示波器1台

3、万用表1块

4、扫频仪(可选)1台

四、实验原理

小信号谐振放大器是通信机接收端的前端电路,主要用于高频小信号或微弱信号的线性放大。其实验单元电路如图1-1所示。该电路由晶体管Q1、选频回路T1二部分组成。它不仅对高频小信号进行放大,而且还有一定的选频作用。本实验中输入信号的频率f S=10.7MHz。基极偏置电阻W3、R22、R4和射极电阻R5决定晶体管的静态工作点。调节可变电阻W3改变基极偏置电阻将改变晶体管的静态工作点,从而可以改变放大器的增益。

表征高频小信号调谐放大器的主要性能指标有谐振频率f0,谐振电压放大倍数A v0,放大器的通频带BW及选择性(通常用矩形系数K r0.1来表示)等。

实验二 高频小信号调谐放大器实验

图1-1 单调谐小信号放大电路

放大器各项性能指标及测量方法如下:

1、谐振频率

放大器的调谐回路谐振时所对应的频率f 0称为放大器的谐振频率,对于图1-1所示电路(也是以下各项指标所对应电路),f 0的表达式为

=LC f π210 式中,L 为调谐回路电感线圈的电感量;∑C 为调谐回路的总电容,∑C 的表达式为

ie oe C P C P C C 2221++=∑

式中, C oe 为晶体管的输出电容;C ie 为晶体管的输入电容;P 1为初级线圈抽头系数;P 2为次级线圈抽头系数。

谐振频率f 0的测量方法是:

用扫频仪作为测量仪器,测出电路的幅频特性曲线,调变压器T 的磁芯,使电压谐振曲线的峰值出现在规定的谐振频率点f 0。

2、电压放大倍数

放大器的谐振回路谐振时,所对应的电压放大倍数A V0称为调谐放大器的电压放大倍数。A V0的表达式为

南昌大学电子信息工程123班刘晓东

G

g p g p y p p g y p p v v A ie oe fe fe i V ++-=-=-=∑2221212100 式中,∑g 为谐振回路谐振时的总电导。要注意的是y fe 本身也是一个复数,所以谐振时输

出电压V 0与输入电压V i 相位差不是180o 而是为180o+Φfe 。

A V0的测量方法是:在谐振回路已处于谐振状态时,用高频电压表测量图1-1中输出信号V 0及输入信号V i 的大小,则电压放大倍数A V0由下式计算:

A V0 = V 0 / V i 或 A V0 = 20 lg (V 0 /V i ) dB

3、通频带

由于谐振回路的选频作用,当工作频率偏离谐振频率时,放大器的电压放大倍数下降,习惯上称电压放大倍数A V 下降到谐振电压放大倍数A V0的0.707倍时所对应的频率偏移称为放大器的通频带BW ,其表达式为

BW = 2△f 0.7 = f 0/Q L

式中,Q L 为谐振回路的有载品质因数。

分析表明,放大器的谐振电压放大倍数A V0与通频带BW 的关系为

∑=?C y BW A fe

V π20

上式说明,当晶体管选定即y fe 确定,且回路总电容∑C 为定值时,谐振电压放大倍数A V0与通频带BW 的乘积为一常数。这与低频放大器中的增益带宽积为一常数的概念是相同的。

通频带BW 的测量方法:是通过测量放大器的谐振曲线来求通频带。测量方法可以是扫频法,也可以是逐点法。逐点法的测量步骤是:先调谐放大器的谐振回路使其谐振,记下此时的谐振频率f 0及电压放大倍数A V0然后改变高频信号发生器的频率(保持其输出电压V S 不变),并测出对应的电压放大倍数A V0。由于回路失谐后电压放大倍数下降,所以放大器的谐振曲线如图1-2所示。

实验二 高频小信号调谐放大器实验

可得: 7.02f f f BW L H ?=-=

通频带越宽放大器的电压放大倍数越小。要

想得到一定宽度的通频宽,同时又能提高放大器

的电压增益,除了选用y fe 较大的晶体管外,还应

尽量减小调谐回路的总电容量C Σ。如果放大器只

用来放大来自接收天线的某一固定频率的微弱信

号,则可减小通频带,尽量提高放大器的增益。

4、选择性——矩形系数

调谐放大器的选择性可用谐振曲线的矩形系数K v0.1时来表示,如图1-2所示的谐振曲线,矩形系数K v0.1为电压放大倍数下降到0.1 A V0时对应的频率偏移与电压放大倍数下降到0.707 A V0时对应的频率偏移之比,即 K v0.1 = 2△f 0.1/ 2△f 0.7 = 2△f 0.1/BW

上式表明,矩形系数K v0.1越小,谐振曲线的形状越接近矩形,选择性越好,反之亦然。一般单级调谐放大器的选择性较差(矩形系数K v0.1远大于1),为提高放大器的选择性,通常采用多级单调谐回路的谐振放大器。可以通过测量调谐放大器的谐振曲线来求矩形系数K v0.1。 五、实验步骤

1、根据电路原理图熟悉实验板电路,并在电路板上找出与原理图相对应的的各测试点及可调器件(具体指出)。

2、打开小信号调谐放大器的电源开关,并观察工作指示灯是否点亮,红灯为+12V 电源指示灯,绿灯为-12V 电源指示灯。(以后实验步骤中不再强调打开实验模块电源开关步骤)

3、调整晶体管的静态工作点:

在不加输入信号时用万用表(直流电压测量档)测量电阻R4两端的电压(即VBQ )和R5两端的电压(即VEQ ),调整可调电阻W3,使VEQ =4.8V ,记下此时的VBQ ,并计算出此时的IEQ =VEQ /R5(R5=470Ω),也即VBQ=5.2V .

4、关闭电源,将高频信号发生器的RF 输出端连接TH1。

5、按下信号源、2号板的电源开关,此时开关下方的工作指示灯点亮。

6、调节信号源“RF 幅度”和“频率调节”旋钮,使输出端口“RF1”和“RF2”输出频

0.7 BW 0.1 2△f 0.1

南昌大学电子信息工程123班刘晓东

率为10.7 MHz的高频信号。

7、将示波器探头连接在调谐放大器的输出端即TH2上,调节示波器直到能观察到输出信号的波形,再调节中周磁芯使示波器上的信号幅度最大,此时放大器即被调谐到输入信号的频率点上。

8、测量电压增益A v0

在调谐放大器对输入信号已经谐振的情况下,用示波器探头在TH1和TH2分别观测输入和输出信号的幅度大小,则A v0即为输出信号与输入信号幅度之比。

六、实验结果

实验三 丙类功率放大器设计

实验三 丙类功率放大器设计

一、实验目的

1.了解丙类功率放大器的基本工作原理,掌握丙类放大器的调谐特性以及负载改变时的动态特性。

2.了解高频功率放大器丙类工作的物理过程以及当激励信号变化对功率放大器工作状态的影响。

3.比较甲类功率放大器与丙类功率放大器的特点

4.掌握丙类放大器的计算与设计方法。

二、实验内容

1.观察高频功率放大器丙类工作状态的现象,并分析其特点

2.测试丙类功放的调谐特性

3.测试丙类功放的负载特性

4.观察激励信号变化、负载变化对工作状态的影响

三、实验原理

放大器按照电流导通角θ的范围可分为甲类、乙类、丙类及丁类等不同类型。功率放大器电流导通角θ越小,放大器的效率η越高。

甲类功率放大器的o

180=θ,效率η最高只能达到50%,适用于小信号低功率放大,一般作为中间级或输出功率较小的末级功率放大器。

非线性丙类功率放大器的电流导通角o 90<θ,效率可达到80%,通常作为发射机末级功

放以获得较大的输出功率和较高的效率。特点:非线性丙类功率放大器通常用来放大窄带高

频信号(信号的通带宽度只有其中心频率的1%或更小),基极偏置为负值,电流导通角o 90<θ,

为了不失真地放大信号,它的负载必须是LC 谐振回路。

南昌大学电子信息工程123班刘晓东

四、实验仿真原理图

图3—1

五、实验仿真结果

图3—2

结果说明:

CH1波形为输入波形,CH2波形为经1M选频网络之后的波形。

实验四三点式正弦波振荡器

实验四三点式正弦波振荡器

一、实验目的

1、掌握三点式正弦波振荡器电路的基本原理,起振条件,振荡电路设计及电路参数计

算。

2、通过实验掌握晶体管静态工作点、反馈系数大小、负载变化对起振和振荡幅度的影

响。

二、实验内容

1、熟悉振荡器模块各元件及其作用。

2、进行LC振荡器波段工作研究。

3、研究LC振荡器中静态工作点、反馈系数以及负载对振荡器的影响。

三、实验仪器

1、模块3 1块

2、双踪示波器1台

3、万用表1块

四、原理电路图

图4—1 正弦波振荡器(4.5MHz)

南昌大学电子信息工程123班刘晓东

五、实验步骤

1、根据图5-1在实验板上找到振荡器各零件的位置并熟悉各元件的作用。

2、将开关S2的1拨上,2拔上,S2全部拨下,构成LC振荡器。

3、测量振荡器输出频率范围

4、改变电路板上的CC1电容,用示波器从TH1观察波形,并观察输出频率的变化,记

录最高频率和最低频率。

六、实验结果

1、实验数据记录

f/MHz Vp-p

2、实验结果图:

图4—2 图4—3

实验五晶体振荡器设计

实验五晶体振荡器设计

一、实验目的

1.掌握晶体振荡器与压控振荡器的基本工作原理。

2.比较LC振荡器和晶体振荡器的频率稳定度。

二、实验内容

1.熟悉振荡器模块各元件及其作用。

2.分析与比较LC振荡器与晶体振荡器的频率稳定度。

3.改变变容二极管的偏置电压,观察振荡器输出频率的变化。

三、基本原理

晶体振荡器,简称晶振。在电气上它可以等效成一个电容和一个电阻并联再串联一个电容的二端网络,电工学上这个网络有两个谐振点,以频率的高低分其中较低的频率是串联谐振,较高的频率是并联谐振。由于晶体自身的特性致使这两个频率的距离相当的接近,在这个极窄的频率范围内,晶振等效为一个电感,所以只要晶振的两端并联上合适的电容它就会组成并联谐振电路。这个并联谐振电路加到一个负反馈电路中就可以构成正弦波振荡电路,由于晶振等效为电感的频率范围很窄,所以即使其他元件的参数变化很大,这个振荡器的频率也不会有很大的变化。晶振有一个重要的参数,那就是负载电容值,选择与负载电容值相等的并联电容,就可以得到晶振标称的谐振频率。

四、实验仿真电路

图5—1

南昌大学电子信息工程123班刘晓东

五、实验结果分析

图5—2 示波器显示截图

由图可知,采用15M的晶振,所得到的波形频率为14.3MHz,基本实现晶体振荡器功能。

图5—3 频谱仪结果分析图

实验六集成模拟乘法器混频

实验六集成模拟乘法器混频

一、实验目的

1、了解集成混频器的工作原理

2、了解混频器中的寄生干扰

二、实验内容

1、研究平衡混频器的频率变换过程

2、研究平衡混频器输出中频电压V i与输入本振电压的关系

3、研究平衡混频器输出中频电压V i与输入信号电压的关系

三、实验仪器

1、信号源模块1块

2、高频信号发生器1台

3、模块7 1 块

4、模块3 1 块

5、双踪示波器1台

四、实验原理及实验电路说明

在高频电子电路中,常常需要将信号自某一频率变成另一个频率。这样不仅能满足各种无线电设备的需要,而且有利于提高设备的性能。对信号进行变频,是将信号的各分量移至新的频域,各分量的频率间隔和相对幅度保持不变。进行这种频率变换时,新频率等于信号原来的频率与某一参考频率之和或差。该参考频率通常称为本机振荡频率。本机振荡频率可以是由单独的信号源供给,也可以由频率变换电路内部产生。当本机振荡由单独的信号源供给时,这样的频率变换电路称为混频器。

混频器常用的非线性器件有二极管、三极管、场效应管和乘法器。本振用于产生一个等幅的高频信号V L,并与输入信号V S经混频器后所产生的差频信号经带通滤波器滤出。

本实验采用集成模拟相乘器作混频电路实验。

因为模拟相乘器的输出频率包含有两个输入频率之差或和,故模拟相乘器加滤波器,滤

南昌大学电子信息工程123班刘晓东

波器滤除不需要的分量,取和频或者差频二者之一,即构成混频器。

图4-1所示为相乘混频器的方框图。设滤波器滤除和频,则输出差频信号。图4-2为信号经混频前后的频谱图。我们设信号是:载波频率为S f 的普通调幅波。本机振荡频率为L f 。

设输入信号为t V v S S S ωcos =,本机振荡信号为t V v L L L ωcos =

由相乘混频的框图可得输出电压

t

V t V V K K v S L S L S L M F )cos()cos(2

100ωωωω-=-= 式中 S L M F V V K K v 2

10=

实验六 集成模拟乘法器混频

定义混频增益M A 为中频电压幅度0V 与高频电压S V 之比,就有

L M F S M V K K V V A 2

10== 图6-3为模拟乘法器混频电路,该电路由集成模拟乘法器MC1496完成。

图6-3 MC1496构成的混频电路

MC1496可以采用单电源供电,也可采用双电源供电。本实验电路中采用+12V ,-8V 供电。R 12(820Ω)、R 13(820Ω)组成平衡电路,F 2为4.5MHz 选频回路。本实验中输入信号频率为S f =4.2MHz(由三号板晶体振荡输出),本振频率L f =8.7MHz 。

为了实现混频功能,混频器件必须工作在非线性状态,而作用在混频器上的除了输入信号电压V S 和本振电压V L 外,不可避免地还存在干扰和噪声。它们之间任意两者都有可能产生组合频率,这些组合信号频率如果等于或接近中频,将与输入信号一起通过中频放大器、解调器,对输出级产生干涉,影响输入信号的接收。

干扰是由于混频器不满足线性时变工作条件而形成的,因此不可避免地会产生干扰,其中影响最大的是中频干扰和镜象干扰。

五、实验步骤

1、 打开本实验单元的电源开关,观察对应的发光二极管是否点亮,熟悉电路各部分元

件的作用。

2、 用实验箱的信号源做本振信号,将频率L f =8.7MHz (幅度V LP-P =600mV 左右)的

本振信号从J8处输入(本振输入处),用示波器在TH7处观测。将频率S f =4.2MHz

南昌大学电子信息工程123班刘晓东

(幅度V SP-P=300mV左右)的高频信号(由模块3晶体振荡提供)从相乘混频器的

输入端J7输入,用示波器在TH8处观测,用示波器观察J9处中频信号的波形。

3、用示波器对比观察TH8和TH9处波形。

4、保持本振电压不变,改变射频电压幅度,示波器观测,记录输出中频电压V i的幅值。

V SP-P /(mV)10 20 30 40 50

V iP-P(mV)

表6-1

5、改变本振信号电压幅度,示波器观测,记录输出中频电压V i的幅值。

V Lp/(mV)200 300 400 500 600 700

V ip-p(mV)

六、部分实验结果图

由于数据太多,仅取一组数据的结果图证明,其中信号2是本振信号波形,信号1是中频输出波形。

实验七二极管的双平衡混频器

实验七二极管的双平衡混频器

一、实验目的

1、掌握二极管的双平衡混频器频率变换的物理过程。

2、掌握晶体管混频器频率变换的物理过程和本振电压V0和工作电流I e对中频转出电

压大小的影响。

3、掌握集成模拟乘法器实现的平衡混频器频率变换的物理过程。

4、比较上述三种混频器对输入信号幅度与本振电压幅度的要求。

二、实验内容

1、研究二极管双平衡混频器频率变换过程和此种混频器的优缺点。

2、研究这种混频器输出频谱与本振电压大小的关系。

三、实验仿真电路

1、二极管双平衡混频原理

图7-1 二极管双平衡混频器

二极管双平衡混频器的电路图示见图7-1。图中左边电源为输入信号电压,右边电源为本机振荡电压。在负载R1或R4上产生差频和合频,还夹杂有一些其它频率的无用产物,再接

单管共射放大电路的仿真实验报告

单管共射放大电路的仿真 姓名: 学号: 班级:

仿真电路图介绍及简单理论分析 电路图: 电路图介绍及分析: 上图为电阻分压式共射极单管放大器实验电路图。它的偏置电路采用RB1和RB2组成的分压电路,并在发射极中接有电阻RE,以稳定放大器的静态工作点。当在放大器的输入端加入输入信号ui后,在放大器的输出端便可得到一个与ui相位相反,幅值被放大了的输出信号uo,从而实现了电大的放大。 元件的取值如图所示。 静态工作点分析(bias point): 显示节点: 仿真结果:

静态工作点分析: VCEQ=1.6V, ICQ≈1.01mA,I BQ= ICQ/ ? 电路的主要性能指标: 理论分析: 设?=80,VBQ =2.8v VEQ=VBQ-VBEQ=2.1v rbe≈2.2kΩ Ri=1.12kΩ,Ro≈8.3 kΩ Au=-βRL’/rbe=56.7 仿真分析: 输入电阻:输出电阻:

Ri=0.86kΩRo≈9.56 kΩ输入电压:输出电压:

则A u=51.2 在测量电压放大倍数时,A u=-βR L’/r be,根据此公式计算出来的理论值与实际值存在一定的误差。引起误差的原因之一是实际器件的β和r be与理想值80和200Ω有出入。在测量输入输出阻抗时,输出阻抗的误差较小,而输入阻抗的误差有些大,根据公式R i=R B// r be,理论值与实际值相差较大应该与β和r be实际值有很大关系。 失真现象: 1.当Rb1,Rb2,Rc不变时,Re小于等于1.9 kΩ时,会出现饱和失真

当Re大于等于25 kΩ时,会出现较为明显的截止失真 2.当Rb1,Rb2, Re不变时,Rc大于8.6 kΩ时,会出现饱和失真 3.当Rb1, Rc, Re不变时,Rb2大于10.4 kΩ时,会出现饱和失真

三点式正弦波振荡器(高频电子线路实验报告)

三点式正弦波振荡器 一、实验目的 1、 掌握三点式正弦波振荡器电路的基本原理,起振条件,振荡电路设计及电路参数计 算。 2、 通过实验掌握晶体管静态工作点、反馈系数大小、负载变化对起振和振荡幅度的影 响。 3、 研究外界条件(温度、电源电压、负载变化)对振荡器频率稳定度的影响。 二、实验内容 1、 熟悉振荡器模块各元件及其作用。 2、 进行LC 振荡器波段工作研究。 3、 研究LC 振荡器中静态工作点、反馈系数以及负载对振荡器的影响。 4、 测试LC 振荡器的频率稳定度。 三、实验仪器 1、模块 3 1块 2、频率计模块 1块 3、双踪示波器 1台 4、万用表 1块 四、基本原理 实验原理图见下页图1。 将开关S 1的1拨下2拨上, S2全部断开,由晶体管N1和C 3、C 10、C 11、C4、CC1、L1构成电容反馈三点式振荡器的改进型振荡器——西勒振荡器,电容CCI 可用来改变振荡频率。 ) 14(121 0CC C L f += π 振荡器的频率约为4.5MHz (计算振荡频率可调范围) 振荡电路反馈系数 F= 32.0470 220220 3311≈+=+C C C 振荡器输出通过耦合电容C 5(10P )加到由N2组成的射极跟随器的输入端,因C 5容量很小,再加上射随器的输入阻抗很高,可以减小负载对振荡器的影响。射随器输出信号经

N3调谐放大,再经变压器耦合从P1输出。 图1 正弦波振荡器(4.5MHz ) 五、实验步骤 1、根据图1在实验板上找到振荡器各零件的位置并熟悉各元件的作用。 2、研究振荡器静态工作点对振荡幅度的影响。 (1)将开关S1拨为“01”,S2拨为“00”,构成LC 振荡器。 (2)改变上偏置电位器W1,记下N1发射极电流I eo (=11 R V e ,R11=1K)(将万用表红 表笔接TP2,黑表笔接地测量V e ),并用示波测量对应点TP4的振荡幅度V P-P ,填于表1中,分析输出振荡电压和振荡管静态工作点的关系,测量值记于表2中。 3、测量振荡器输出频率范围 将频率计接于P1处,改变CC1,用示波器从TP8观察波形及输出频率的变化情况,记录最高频率和最低频率填于表3中。 六、实验结果 1、步骤2振荡幅度V P-P 见表1.

高频小信号放大器实验报告

基于Multisim的通信电路仿真实验 实验一高频小信号放大器 1.1 实验目的 1、掌握高频小信号谐振电压放大器的电路组成与基本工作原理。 2、熟悉谐振回路的调谐方法及测试方法。 3、掌握高频谐振放大器处于谐振时各项主要技术指标意义及测试技能。 1.2 实验内容 1.2.1 单调谐高频小信号放大器仿真 图1.1 单调谐高频小信号放大器 1、根据电路中选频网络参数值,计算该电路的谐振频率ωp。 ωp=1/(L1*C3)^2=2936KHz fp=ωp/(2*pi)=467KHz 2、通过仿真,观察示波器中的输入输出波形,计算电压增益Av0。

下图中绿色为输入波形,蓝色为输出波形 Avo=Vo/Vi=1.06/0.252=4.206 3、利用软件中的波特图仪观察通频带,并计算矩形系数。 通频带BW=2Δf0.7=7.121MHz-28.631KHz=7.092MHz 矩形系数Kr0.1=(2Δf0.1)/( 2Δf0.7)= (14.278GHz-9.359KHz)/7.092MHz=2013.254 4、改变信号源的频率(信号源幅值不变),通过示波器或着万用表测量输出

电压的有效值,计算出输出电压的振幅值,完成下列表,并汇出f~Av 相应的图,根据图粗略计算出通频带。 Fo(KHz ) 65 75 165 265 365 465 1065 1665 2265 2865 3465 4065 Uo(mV ) 0.66 9 0.76 5 1 1.05 1.06 1.06 0.97 7 0.81 6 0.74 9 0.65 3 0.574 0.511 Av 2.65 5 3.03 6 3.96 8 4.16 7 4.20 6 4.20 6 3.87 7 3.23 8 2.97 2 2.59 1 2.278 2.028 5、在电路的输入端加入谐振频率的2、4、6次谐波,通过示波器观察图形,体会该电路的选频作用。 2次谐波 4次谐波

中北大学高频电子线路实验报告

中北大学 高频电子线路实验报告 班级: 姓名: 学号: 时间: 实验一低电平振幅调制器(利用乘法器)

一、实验目的 1.掌握用集成模拟乘法器实现全载波调幅和抑制载波双边带调幅的方法与 过程,并研究已调波与二输入信号的关系。 2.掌握测量调幅系数的方法。 3.通过实验中波形的变换,学会分析实验现象。 二、预习要求 1.预习幅度调制器有关知识。 2.认真阅读实验指导书,了解实验原理及内容,分析实验电路中用1496乘 法器调制的工作原理,并分析计算各引出脚的直流电压。 3.分析全载波调幅及抑制载波调幅信号特点,并画出其频谱图。 三、实验仪器设备 1.双踪示波器。 2.SP1461型高频信号发生器。 3.万用表。 4.TPE-GP4高频综合实验箱(实 验区域:乘法器调幅电路) 四、实验电路说明 图 幅度调制就是载波的振幅受 调制信号的控制作周期性的变化。 变化的周期与调制信号周期相同。 即振幅变化与调制信 号的振幅成正比。通常称高频信号为载波5-1 1496芯片内部电路图 信号,低频信号为调制信号,调幅器即为 产生调幅信号的装置。 本实验采用集成模拟乘法器1496来构成调幅器,图5-1为1496芯片内部电路图,它是一个四象限模拟乘法器的基本电路,电路采用了两组差动对由V1-V4组成,以反极性方式相连接,而且两组差分对的恒流源又组成一对差分电路,即V5与V6,因此恒流源的控制电压可正可负,以此实现了四象限工作。D、V7、V8为差动放大器V5、V6的恒流源。进行调幅时,载波信号加在V1-V4的输入端,即引脚的⑧、⑩之间;调制信号加在差动放大器V5、V6的输入端,即引脚的①、④之间,②、③脚外接 1KΩ电阻,以扩大调制信号动态范围,已调制信号取自双差动放大器的两集

仿真实验报告

大学物理仿真实验报告一一塞曼效应 一、实验简介 塞曼效应是物理学史上一个著名的实验。荷兰物理学家塞曼(Zeeman)在1896年发现把产生光谱的光源置于足够强的磁场中,磁场作用于发光体,使光谱发生变化,一条谱线即会分裂成几条偏振化的谱线,这种现象称为塞曼效应。 塞曼效应是法拉第磁致旋光效应之后发现的又一个磁光效应。这个现象的发现是对光的 电磁理论的有力支持,证实了原子具有磁矩和空间取向量子化,使人们对物质光谱、原子、分子有更多了解。 塞曼效应另一引人注目的发现是由谱线的变化来确定离子的荷质比的大小、符号。根据 洛仑兹(H.A?Lorentz)的电子论,测得光谱的波长,谱线的增宽及外加磁场强度,即可称得离子的荷质比。由塞曼效应和洛仑兹的电子论计算得到的这个结果极为重要,因为它发表在J、 J汤姆逊(J、J ThomSOn)宣布电子发现之前几个月,J、J汤姆逊正是借助于塞曼效应由洛仑 兹的理论算得的荷质比,与他自己所测得的阴极射线的荷质比进行比较具有相同的数量级,从而得到确实的证据,证明电子的存在。 塞曼效应被誉为继X射线之后物理学最重要的发现之一。 1902年,塞曼与洛仑兹因这一发现共同获得了诺贝尔物理学奖(以表彰他们研究磁场对光的效应所作的特殊贡献)。至今,塞曼效应依然是研究原子内部能级结构的重要方法。 本实验通过观察并拍摄Hg(546.1 nm)谱线在磁场中的分裂情况,研究塞曼分裂谱的特征,学习应用塞曼效应测量电子的荷质比和研究原子能级结构的方法。 二、实验目的 1?学习观察塞曼效应的方法观察汞灯发出谱线的塞曼分裂; 2?观察分裂谱线的偏振情况以及裂距与磁场强度的关系; 3?利用塞曼分裂的裂距,计算电子的荷质比 e m e数值。 三、实验原理 1、谱线在磁场中的能级分裂 设原子在无外磁场时的某个能级的能量为E0,相应的总角动量量子数、轨道量子数、 自旋量子数分别为J、L、S。当原子处于磁感应强度为B的外磁场中时,这一原子能级将 分裂为2J 1层。各层能量为 E = E o MgJ B B(1) 其中M为磁量子数,它的取值为J , J -1 ,…,-J共2J 1个;g为朗德因子;J B为 hc 玻尔磁矩(A B= );B为磁感应强度。 4兀m 对于L-S耦合

高频实验:小信号调谐放大器实验报告要点

实验一 小信号调谐放大器实验报告 一 实验目的 1.进一步掌握高频小信号调谐放大器的工作原理和基本电路结构。 2.掌握高频小信号调谐放大器的调试方法。 3.掌握高频小信号调谐放大器各项技术参数(电压放大倍数,通频带,矩形系数)的测试。 二、实验使用仪器 1.小信号调谐放大器实验板 2.200MH 泰克双踪示波器 3. FLUKE 万用表 4. 模拟扫频仪(安泰信) 5. 高频信号源 三、实验基本原理与电路 1、 小信号调谐放大器的基本原理 所谓“小信号”,通常指输入信号电压一般在微伏 毫伏数量级附近,放大这种信号的放大器工作在线性范围内。所谓“调谐”,主要是指放大器的集电极负载为调谐回路(如LC 调谐回路)。这种放大器对谐振频率0f 及附近频率的信号具有最强的放大作用,而对其它远离0f 的频率信号,放大作用很差,如图1-1所示。 图1.1 高频小信号调谐放大器的频率选择特性曲线 小信号调谐放大器技术参数如下: 1 0.707

1.增益:表示高频小信号调谐放大器放大微弱信号的能力 2.通频带和选择性:通常规定放大器的电压增益下降到最大值的0.707倍时,所对应的频率范围为高频放大器的通频带,用B0.7表示。衡量放大器的频率选择性,通常引入参数——矩形系数K0.1。 2.实验电路 原理图分析: In1是高频信号输入端,当信号从In1输入时,需要将跳线TP1的上部连接起来。In2是从天线接收空间中的高频信号输入,电感L1和电容C1,C2组成选频网络,此时,需要将跳线TP1的下部连接起来。电容C3是隔直电容,滑动变阻器RW2和电阻R2,R3是晶体管基极的直流偏置电阻,用来决定晶体管基极的直流电压,电阻R1是射极直流负反馈电阻,决定了晶体管射极的直流电流Ie。晶体管需要设置一个合适的直流工作点,才能保证小信号谐振放大器正常工作,有一定的电压增益。 通常,适当的增加晶体管射极的直流电流Ie可以提高晶体管的交流放大倍数 ,增大小信号谐振放大器的放大倍数。但Ie过大,输出波形容易失真。一般控制Ie在1-4mA之间。 电容C3是射极旁路电路,集电极回路由电容和电感组成,是一个并联的LC 谐振回路,起到选频的作用,其中有一个可变电容可以改变回路总的电容值。电

通信仿真实验报告(高频)

实验一 高频小信号放大器的MULTISIM 仿真 实验目的: 1、了解MULTISIM 的基本功能、窗口界面、元器件库及工具栏等; 2、掌握MULTISIM 的基本仿真分析方法、常用仿真测试仪表等; 3、掌握高频小信号放大器MULTISIM 仿真的建模过程。 实验内容及步骤: (一)单频正弦波小信号放大器的MULTISIM 仿真。 1)根据图一所示高频小信号放大器电路,创建仿真电路原理图。要求输入信号的幅度在2mV---1V 之间、频率在1MHz---20MHz 之间; 2)根据实际情况设置好电路图选项,接入虚拟仪器并设置合适的参数。打开仿真开关,运行所设计好的电路,给出输入输出信号的波形图和频谱图。根据初步仿真结果改变电路元器件的型号和参数,使输出信号波形无失真、幅度放大10倍以上; 1、实验原理图 C3 100nF C1100nF C230pF C4 100uF Q1 2N1711 C5 1nF R2 5.1kΩR3470Ω T1 TS_AUDIO_10_TO_1 R4100Ω 12V VCC V1 2mVpk 10MHz 0° 50% 100kΩKey=A R1 A B T G XSC1 R540kΩ T IN XSA1 2、由示波器观测到的输出波形:

3、此时的输出信号的频谱分析 通过改变输入信号的频率观察到电路谐振频率保持不变. 4、改变输入信号的幅度,用示波器观察输出电压波形,测量出输出波形不失真情 况下输入信号幅度的变化范围为1mV到21mV。 5、改变输入信号的频率,用示波器观察输出电压幅度的变化情况 输入信号Vi(mv) 7.5 0.9 1 2 3 4 5 6 7 8 9 输入信号fs (MHz)

实验一高频小信号调谐放大器实验报告

高频小信号调谐放大器 一、实验目的 1.进一步掌握高频小信号调谐放大器的工作原理和基本电路结构。 2.掌握高频小信号调谐放大器的调试方法。 3.掌握高频小信号调谐放大器各项技术参数(电压放大倍数,通频带,矩形系数)的测试方法。 4.熟练掌握multisim软件的使用方法,并能够通过仿真而了解到电路的一些特性以及各电路原件的作用 二、实验仿真 利用实验室计算机或者自己计算机上安装的Multisim9(10)软件,参照实验电路图,进行仿真 仿真电路图如下:

六、数据处理 () f MHz 7 8 9 9.7 9.8 9.9 10 10.1 10. 2 10. 3 () i u mV15 15 15 15 15 15 15 15 15 15 () o u mV19 28 55 120 128 138 143 150 140 130 (/) u o i A u u 1.2 7 1.8 7 3.6 7 8.0 8.5 3 9.2 9.5 3 10.0 9.3 3 8.6 7 () f MHz10. 4 10. 5 10. 6 10. 7 11 12 13 14 15 16 () i u mV15 15 15 15 15 15 15 15 15 15 () o u mV120 100 90 80 64 39 28 24 20 18 (/) u o i A u u8.0 0 6.6 7 6.0 5.3 3 4.2 7 2.6 1.8 7 1.6 1.3 3 1.2

7 8910111213141516 25 50 75 100 125 150 uo(mV) f(MHz) 二、实验仿真 利用实验室计算机或者自己计算机上安装的Multisim9(10)软件,参照实验电路图,进行仿真 仿真电路图如下: 使得晶体满足: 1.发射极正偏:b e V V >,且0.6be V V >

通信电路实验报告

实验十一包络检波及同步检波实验 一、实验目的 1、进一步了解调幅波的原理,掌握调幅波的解调方法。 2、掌握二极管峰值包络检波的原理。 3、掌握包络检波器的主要质量指标,检波效率及各种波形失真的现 象,分析产生的原因并思考克服的方法。 4、掌握用集成电路实现同步检波的方法。 二、实验内容 1、完成普通调幅波的解调。 2、观察抑制载波的双边带调幅波的解调。 3、观察普通调幅波解调中的对角切割失真,底部切割失真以及检波 器不加高频滤波时的现象。 三、实验仪器 1、信号源模块 1 块 2、频率计模块 1 块 3、4 号板 1 块 4、双踪示波器 1 台 5、万用表 1 块 三、实验原理 检波过程是一个解调过程,它与调制过程正好相反。检波器的作用是从振幅受调制的高频信号中还原出原调制的信号。还原所得的

信号,与高频调幅信号的包络变化规律一致,故又称为包络检波器。假如输入信号是高频等幅信号,则输出就是直流电压。这是检波器的一种特殊情况,在测量仪器中应用比较多。例如某些高频伏特计的探头,就是采用这种检波原理。 若输入信号是调幅波,则输出就是原调制信号。这种情况应用最广泛,如各种连续波工作的调幅接收机的检波器即属此类。从频谱来看,检波就是将调幅信号频谱由高频搬移到低频。检波过程也是应用非线性器件进行频率变换,首先产生许多新频率,然后通过滤波器,滤除无用频率分量,取出所需要的原调制信号。 常用的检波方法有包络检波和同步检波两种。全载波振幅调制信号的包络直接反映了调制信号的变化规律,可以用二极管包络检波的方法进行解调。而抑制载波的双边带或单边带振幅调制信号的包络不能直接反映调制信号的变化规律,无法用包络检波进行解调,所以采用同步检波方法。 1、二极管包络检波的工作原理 当输入信号较大(大于0.5伏)时,利用二极管单向导电特性对振幅调制信号的解调,称为大信号检波。检波的物理过程如下:在高频信号电压的正半周时,二极管正向导通并对电容器 C 充电,由于二极管的正向导通电阻很小,所以充电电流iD 很大,使电容器上的电压VC 很快就接近高频电压的峰值。 这个电压建立后通过信号源电路,又反向地加到二极管 D 的两端。这时二极管导通与否,由电容器C 上的电压VC和输入信号电

Multisim仿真实训报告概要

EDA 工 具 训 练 实 训 报 告 学院:电气与控制工程学院 班级:自动化1201 姓名: 学号:

实验1:三相电路仿真 一.电路设计及功能介绍 三相电路是一种特殊的交流电路,由三相电源、三相负载和三相输电线路组成。世界上电力系统电能生产供电方式大都采用三相制。三相电路由三相交流电源供电,三相交流电源指能够提供3个频率相同而相位不同的电压或电流的电源,三相发电机的各相电压的相位互差120°。三相电路有电源和负载Y连接和△连接等连接方式,本次仿真采用Y--Y连接。 二.三相电路电路分析 1.三相对称负载Y--Y连接。图1-1为其电路仿真。 图1-1.三相电路对称负载仿真 线电流(相电流)/A 相电压/v 负载电压/v 中性线电流/uA 2.2 381.077 220.015 8.277 表1-1 三相电路对称负载仿真各项数据 2.去掉中性线后三相对称负载电路仿真,如图1-2.

图1-2去掉中性线后.三相电路对称负载仿真 线电流(相电流)/A 相电压/v 负载电压/v 2.2 381.077 220.015 表1-2去掉中性线后三相电路对称负载仿真各项数据 3.改变三相对称负载的大小,如图1-3. 图1-3改变三相对称负载后三相电路对称负载仿真各项数据 线电流(相电流)/A 相电压/v 线电压/v 4.4 381.077 220.015 表1-3 改变三相对称负载后三相电路对称负载仿真各项数据 4.三相负载三角形联结的电路仿真

图1-4.三相电路△负载仿真 线电压(相电压)/v 线电流/A相电流/A 381.069 6.6 3.811 表1-4.三相电路△负载仿真各项数据 本实验包括四个部分,一是三相对称负载Y--Y接法,二是去掉一中的中性线,通过一和二的对比可以得出三相电路中中性线的作用,三改变了对称负载的大小,可以得出负载大小对各项数值的影响,四十三相对称负载Y--△接法,通过四与一二三的对比,可以发现△负载与Y负载的不同。 通过对比以上各组实验及数据,可以得到: 1.在Y--Y三相对称负载电路中,中性线上电流几乎为零,中性线不起作用。 2.三相对称负载变化会引起线电流变化,其他不变。 3.负载Y接法中,线电流等于相电流,负载对称,线电压是相电压的1.73倍。 4.负载△接法中,线电压等于相电压,负载对称,线电流是相电流的1.73倍。 三.总结与展望 世界上电力系统电能生产供电方式大都采用三相制。说明三相电路在实际生产生活中具有重要意义。对于我们电类专业的学生,将来如果从事与专业相关的工作,供电是基础,所以我们要研究三相电路,研究它各方面特点,熟练掌握Y 接法和△接法。通过本次试仿真实验,加深了我们对三相电路的了解,为将来研究和运用三相电路打下了基础。 实验二:RLC串联谐振 一.电路设计及功能介绍: 电路原理:当ωL-1/ωC=0时,电路中的电流与激励电压同相,电路处于谐

高频实验报告

大连理工大学本科实验报告

2017年11月20日

实验项目列表

大连理工大学实验预习报告 学院(系): 电子信息与电气工程学部 专业: 电子信息工程 班级: 电子 1502 ______ 姓 名: 凌浩洋 ________________ 学号: ______ 201583130 ______ 组: ______ __^_ 实验时间: 2017.10.10 实验室: 创新园大厦C224 _________ 实验台: _________ 指导教师签字: ________________________________________ 成绩: ___________ 实验名称调频接收机模块设计实验 一总体要求: 1设计任务: (1) 根据实验室提供的电子元器件材料、工装焊接工具、测量调试仪器等,在考虑联 调和可联调的基础上,独立设计、搭建、调测高频小信号放大器、晶体振荡器(本地振 荡器)、晶体管混频器、中频信号放大器和正交鉴频器(包括低频放大和滤波)五个功 能模块,使之满足各自的指标要求。 (2) 将五个模块连接起来组成一个调频接收机,完成整机性能调测,达到预定的指标 要求。 (3) 调频接收机安装在测试架上,连接测试架上的辅助资源(基带处理单元、电源管 理单元),接受实验室自制发射台发射的各种调频信号,进一步检测整机和分模块性能< 调频接收机机框图及鉴频前的前端系统的增益分配如图 1所示 25dR 图1调频接收机组成框图 2设计要求 (1) 电源电压 VCC=12V VEE=-8V (2) 接收频率 1 6MHz 左右。 (3) 本振频率九肯14MHz 左右(为了与相邻试验台频率错开,以避免互相之间的干 扰,可考虑采用14MHZ 付近的多个频点中的一个频率值)。 16.455MHz 1,|ir H 2MHz 左右 鉴频 1 .VOLT

收音机实验报告

《高频电子线路》课程设计报告 题目SD-105 七管半导体收音机 学院(部)信息学院 专业通信工程 班级2011240401 学生姓名张静 学号33 指导教师宋蓓蓓,利骏

目录 一、概括……………………………………页码 二、收音机工作原理……………………………………页码 三、各部分设计及原理分析……………………页码 四、实验仿真及结果……………………………页码 五、结论…………………………………………页码 六、心得体会……………………………………页码 七、参考文献……………………………………页码

调幅半导体收音机原理及其调试 一概述:收音机的发明人类自从发现能利用电波传递信息以来,就不断研究出不同的方法来增加通信的可靠性、通信的距离、设备的微形化、省电化、轻巧化等。接收信息所用的接收机,俗称为收音机。目前的无线电接收机不单只能收音,且还有可以接收影像的电视机、数字信息的电报机等。 随着广播技术的发展,收音机也在不断更新换代。自1920年开发了无线电广播的半个多世纪中,收音机经历了电子管收音机、晶体管收音机、集成电路收音机的三代变化,功能日趋增多,质量日益提高。20世纪80年代开始,收音机又朝着电路集成化、显示数字化、声音立体化、功能电脑化、结构小型化等方向发展。 1947年、美国贝尔实验室发明了世界上第一个晶体管,从此以后.开始了收音机的晶体管时代.并且逐步结束了以矿石收音机、电子管收音机为代表的收音机的初级阶段。 调幅收音机:由输入回路、本振回路、混频电路、检波电路、自动增益控制电路(AGC)及音频功率放大电路组成输入回路由天线线圈和可变电容构成,本振回路由本振线圈和可变电容构成,本振信号经内部混频器,与输入信号相混合。混频信号经中周和455kHz陶瓷滤波器构成的中频选择回路得到中频信号。至此,电台的信号就变成了以

OFDM系统仿真实验报告

无线通信——OFDM系统仿真

一、实验目的 1、了解OFDM 技术的实现原理 2、利用MATLAB 软件对OFDM 的传输性能进行仿真并对结论进行分析。 二、实验原理与方法 1 OFDM 调制基本原理 正交频分复用(OFDM)是多载波调制(MCM)技术的一种。MCM 的基本思想是把数据流串并变换为N 路速率较低的子数据流,用它们分别去调制N 路子载波后再并行传输。因子数据流的速率是原来的1/N ,即符号周期扩大为原来的N 倍,远大于信道的最大延迟扩展,这样MCM 就把一个宽带频率选择性信道划分成N 个窄带平坦衰落信道,从而“先天”具有很强的抗多径衰落和抗脉冲干扰的能力,特别适合于高速无线数据传输。OFDM 是一种子载波相互混叠的MCM ,因此它除了具有上述毗M 的优势外,还具有更高的频谱利用率。OFDM 选择时域相互正交的子载波,创门虽然在频域相互混叠,却仍能在接收端被分离出来。 2 OFDM 系统的实现模型 利用离散反傅里叶变换( IDFT) 或快速反傅里叶变换( IFFT) 实现的OFDM 系统如图1 所示。输入已经过调制(符号匹配) 的复信号经过串P 并变换后,进行IDFT 或IFFT 和并/串变换,然后插入保护间隔,再经过数/模变换后形成OFDM 调制后的信号s (t ) 。该信号经过信道后,接收到的信号r ( t ) 经过模P 数变换,去掉保护间隔以恢复子载波之间的正交性,再经过串/并变换和DFT 或FFT 后,恢复出OFDM 的调制信号,再经过并P 串变换后还原出输入的符号。 图1 OFDM 系统的实现框图 从OFDM 系统的基本结构可看出, 一对离散傅里叶变换是它的核心,它使各子载波相互正交。设OFDM 信号发射周期为[0,T],在这个周期内并行传输的N 个符号为001010(,...,)N C C C -,,其中ni C 为一般复数, 并对应调制星座图中的某一矢量。比如00(0)(0),(0)(0)C a j b a b =+?和分别为所要传输的并行信号, 若将

实验一 调谐放大器 实验报告

实验一调谐放大器实验报告 一、实验目的 1.熟悉电子元器件和高频电路实验箱。 2.练习使用示波器、信号发生器和万用表。 3.熟悉谐振电路的幅频特性分析——通频带与选择性。 4.熟悉信号源内阻及负载对谐振电路的影响,从而了解频带扩展。 5.熟悉和了解放大器的动态范围及其测试方法。 二、实验仪器 1.双踪示波器 2.高频信号发生器 3.万用表 4.实验板G1 三、实验内容及步骤 单调谐回路谐振放大器 1.实验电路见图1-1 L1 图1-1 单调谐回路谐振放大器原理图 (1)按图1-1所示连接电路,使用接线要尽可能短(注意接线前先测量+12V电源电压,无误后,关断电源再接线,注意接地)

(2)接线后仔细检查,确认无误后接通电源。 2.静态测量 实验电路中选Re=1K, 测量各静态工作点,并计算完成表1-1 表1-1 *Vb,Ve是三极管的基极和发射极对地电压。 3.动态研究 (1)测量放大器的动态范围Vi ~ V o(在谐振点上) a.选R=10K ,Re=1K 。把高频信号发生器接到电路输入端,电路输出端接示波器。选择正常放大区的输入电压Vi,调节频率f使其为10.7MHz,调节Ct,使回路“谐振”,此时调节Vi由0.02V变到0.8V,逐点记录V o电压,完成表1-2的第二行。(Vi的各点测量值也可根据情况自己选定) b.当Re分别为500Ω,2KΩ时,重复上述过程,完成表1-2的第 三、四行。在同一坐标纸上画出Ic不同时的动态范围曲线Vo—Vi,并进行比较与分析。

*Vi , V o可视为峰峰值 (2)测量放大器的频率特性 a.当回路电阻R=10k时,选择正常放大区的输入电压V i,将高频信 号发生器的输出端接至电路的输入端,调节频率f,使其为 10.7MHz,调节Ct使回路谐振,使输出电压幅度为最大,此时的 回路谐振频率f0=10.7MHz为中心频率,然后保持输入电压V i不变,改变频率f由中心频率向两边逐点偏离(在谐振频率附近注意测量V o变化快的点),测得在不同频率f时对应的输出电压V o,完成表1-3的第一行(频率偏离范围自定,可以参照3dB带宽来确定,即信号的幅值为信号最大幅值的0.707倍的两个频率之差为放大器的3dB带宽)。 b.改变回路电阻R=2K 、470Ω,重复上述操作,完成表1-3 的第 三、四行。画出不同谐振回路电阻对应的幅频特性曲线,比较通 频带。

通信系统仿真实验报告(DOC)

通信系统实验报告——基于SystemView的仿真实验 班级: 学号: 姓名: 时间:

目录 实验一、模拟调制系统设计分析 -------------------------3 一、实验内容-------------------------------------------3 二、实验要求-------------------------------------------3 三、实验原理-------------------------------------------3 四、实验步骤与结果-------------------------------------4 五、实验心得------------------------------------------10 实验二、模拟信号的数字传输系统设计分析------------11 一、实验内容------------------------------------------11 二、实验要求------------------------------------------11 三、实验原理------------------------------------------11 四、实验步骤与结果------------------------------------12 五、实验心得------------------------------------------16 实验三、数字载波通信系统设计分析------------------17 一、实验内容------------------------------------------17 二、实验要求------------------------------------------17 三、实验原理------------------------------------------17 四、实验步骤与结果------------------------------------18 五、实验心得------------------------------------------27

高频实验报告(带仿真)

实验课程名称:_ 高频电子线路

(a)1496内部电路 (b)1496引脚图

图2 MC1496的内部电路及电路模块引脚图 DSB电路的设计与仿真( 调幅就是用低频调制信号去控制高频振荡(载波)的幅度,使高频振荡的振幅按调制信号的规律变化。把调制信号和载波同时加到一个非线性元件上(例如晶体二极管或晶体三体管经过非线性变换电路,就可以产生新的频率成分,再利用一定带宽的谐振回路选出所需的频率成分就可实现调幅。幅度调制信号按其不同频谱结构分为普通调幅(AM)信号,抑制载波的双)信号,抑制载波和一个边带的单边带(SSB)信号。 利用模拟乘法器相乘原理实现调幅是很方便的,工作原理如下:在乘法器的一个输入端输入载波信号另一输入端输入调制信号 若要输出普通调幅信号,只要调节外部电路的平衡电位器,使输出信号中有载波即可。输出信号表达式为: 普通振幅调制电路的原理框图与抑制载波双边带振幅调制电路的原理框图如图 图3

图4 1496构成的振幅调制电路电原理图 图中载波信号经高频耦合电容C1输入到Uc ⑩端,C3为高频旁路电容,使⑧交流接地。调制信号经高频耦合电容C2输入到U Ω④端,C5为高频旁路电容,使①交流接地。调制信号从⑿脚单端输出。电路采用双电源供电,所以⑤脚接Rb 到地。因此,改变R 5也可以调节大小,即: Ω +--= ≈5007.0550R V u I I EE Ω--= 5007 .05 5I V R EE

图6 21) 抑制载波振幅调制(DSB) (1) 令UΩ=0,调WR1,使模拟乘法器①④脚间电压为按设计要求加入信号,载波信号 时实现DSB调制。信号的时域和频域波形如图

模电仿真实验报告。

模拟电路仿真实验报告 张斌杰生物医学工程141班学号6103414032 Multisim软件使用 一、实验目的 1、掌握Multisim软件的基本操作和分析方法。 二、实验内容 1、场效应管放大电路设计与仿真 2、仪器放大器设计与仿真 3、逻辑电平信号检测电路设计与仿真 4、三极管Beta值分选电路设计与仿真 5、宽带放大电路设计与仿真 三、Multisim软件介绍 Multisim是美国国家仪器(NI)有限公司推出的以Windows为基础的仿真工具,适用于板级的模拟/数字电路板的设计工作。它包含了电路原理图的图形输入、电路硬件描述语言输入方式,具有丰富的仿真分析能力。工程师们可以使用Multisim交互式地搭建电路原理图,并对电路进行仿真。Multisim提炼了SPICE仿真的复杂内容,这样工程师无需懂得深入的SPICE技术就可以很快地进行捕获、仿真和分析新的设计,这也使其更适合电子学教育。通过Multisim和虚拟仪器技术,PCB设计工程师和电子学教育工作者可以完成从理论到原理图捕获与仿真再到原型设计和测试这样一个完整的综合设计流程。 一、实验名称: 仪器放大器设计与仿真 二、实验目的 1、掌握仪器放大器的设计方法 2、理解仪器放大器对共模信号的抑制能力 3、熟悉仪器放大器的调试功能 4、掌握虚拟仪器库中关于测试模拟电路仪器的使用方法,如示波器,毫伏表信 号发生器等虚拟仪器的使用 三、设计实验电路图:

四、测量实验结果: 差模分别输入信号1mv第二条线与第三条线:第一条线输出为差模放大为399mv。 共模输入2mv的的电压,输出为2mv的电压。 五、实验心得: 应用Multisim首先要准备好器件的pspice模型,这是最重要的,没有这个东西免谈,当然Spice高手除外。下面就可以利用Multisim的元件向导功能制作自己的仿真元件模型了。将刚刚做好的元件保存,你可能注意到了,保存的路径里面没有出现Master Database,即主数据库,这就是Multisim做的较好的其中一方面,你无论是新建元件还是修改主数据库里面的元件,都不会影响主数据库里面的元件,选好路径以后点击Finish即可,一个新元件就被创建了。在应用电子仿真软件 Multisim进行虚拟仿真时,有许多传感器或新器件,只要知道了它们的电特性或在电路中的作用,完全可以灵活采用变通的办法代替进行仿真,本来软件就是进行虚拟实验的,并不一定非要用真实元件不可,这样可以大大地拓宽电子仿真软件 Multisim的应用范围。再说用软件仿真时不存在损坏和烧毁元件、仪器的问题,只要设计好了电路都可以试一试,仿真成功了就可以进行实际电路的组装和调试,不

机电设备实验报告

实验一振动检测故障诊断 一、实验内容与目的 1、了解振动信号采集、分析与处理的整个过程及注意事项; 2、了解并掌握测试仪器的连接、信号的敏感参数选取、测点布置及各注意事项; 3、掌握信号的时域分析、频域分析理论与特点。 二、实验设备 ⑴振动实验台,电机及数据线等; ⑵振动加速度传感器YD36(2只):电荷灵敏度SC=7.99 PC/m.s-2; ⑶DLF2通道四合一放大滤波器; ⑷INV306DF 16通道智能信号采集仪; ⑸Coinv Dasp2003专业版信号采集分析与处理系统。 信号采集与分析系统基本框图如图1-1所示。 图1 信号采集与分析系统框图 另外,简易诊断设备有BZ-8701A便携式测振仪。 三、实验原理

1、振动测量敏感参数的选取 常用的振动测量参数有加速度a(t)、速度v(t)和位移x(t)。假定振动位移信号x(t)为: x(t) Asin(t) (1) 则振动速度信号为:v(t) Acos(t) (2) 振动加速度信号为:a(t) A sin(t) (3) 由上式可知,当传感器拾取的信号很微弱时,位移信号x(t)和速度信号v(t)幅值很小,由于频率的放大作用,加速度的信号的幅值相比相应的位移和速度分量的幅值要大得多,加速度参数在高频范围更加敏感,所以选择加速度振动信号。实用上,参数的选定可参考以下频率范围进行: 低频范围(10~100Hz)―位移参数; 中频范围(10~1000Hz)―速度或称振动烈度(Vrms); 高频范围(>1000Hz)―加速度参数。 2、振动信号分析与处理(傅里叶级数) 对于一个复杂的周期振动信号可以用傅里叶级数展开,即可将这个信号分解成许多不同的频率的正弦和余弦的线性叠加。 四、实验步骤 1、根据选取的敏感参数选择振动传感器;

通信仿真实验报告材料

通信系统仿真实验 实验报告要求: 1.所有实验均要手画仿真模型框图,或对仿真原理解释说明; 2.必须清楚的标题仿真系统中所设置的参数; 3.仿真程序一般不要放在正文部,而是改在每个实验报告的最后,作为附件。 但正文部分可以解释说明所用到的重要的仿真技巧,库数等等。 4.所有仿真程序产生的结果都要有手写分析,即要判决仿真结果是否正确,说 明了什么问题,能够得出什么结论,要如何改进等等。

实验一 随机信号的计算机仿真 实验目的:仿真实现各种分布的随机数发生器 实验容: 1、均匀分布随机数的产生 用线性同余法,编写Matlab 程序,产生均匀分布的随机数。 ()())5000mod(]1323241[1+=+n x n x 初始种子x(0)自己选择。 线性同余算法是使用最为广泛的伪随机数产生器,该算法含有4个参数:模数m(m>0),乘数a(0≤a< m),增量c(0≤c-=ααα x u x x p X ,)(x u 为单位阶跃函数。

先自行设置取样点数,取a=5;产生均匀分布随机变量,转化为单边指数分布,理论与仿真符合 设计题: 3、用Matlab编程分别产生标准正态分布、指定均值方差正态分布、瑞利分布、 赖斯分布、中心与非中心χ2分布的随机数,并画出相应的pdf。

高频谐振功率放大器仿真实训报告书

高频功率放大器仿真实训作业 班级 姓名 教师 时间

一、实验目的 1、Multisim常用菜单的使用; 2、熟悉仿真电路的绘制及各种测量仪器设备的连接方法; 3、学会利用仿真仪器测量高频功率放大器的电路参数、性能指标; 4、熟悉谐振功率放大器的三种工作状态及调整方法。 二、实验内容及步骤 1、利用Multisim软件绘制高频谐振功率放大器如附图1所示的实验电路。 附图1 高频谐振功率放大器实验电路 2、谐振功率放大器的调谐与负载特性调整 (1)调节信号发生器,使输入信号f i=465KHz 、U im=290mV,用示波器观察集电极和R1上的电压波形,调节负载回路中的可变电容C1,得到波形如下: 此时,功率放大器工作在状态。

(2)维持输入信号的频率不变,逐步减小R2,使R1上的电压波形为最大的尖顶余弦脉冲,得到波形如下: 此时,功率放大器工作在状态。 3、集电极调制特性 输入信号维持不变、V1、R2均维持不变,将VCC由小变大: (1)将VCC设置为9V,按下仿真电源开关,双击示波器,即可得到波形如下: (2)将VCC设置为12V,按下仿真电源开关,双击示波器,即可得到波形如下: (3)将VCC设置为18V,按下仿真电源开关,双击示波器,即可得到波形如下: 总结:

4、基极调制特性 (1)输入信号维持不变、VCC、R2均维持不变,将V1由小变大: 1)将V1设置为350mV,按下仿真电源开关,双击示波器,即可得到如下波形: 2)将V1设置为400mV,按下仿真电源开关,双击示波器,即可得到如下波形: 3)将V1设置为415mV,按下仿真电源开关,双击示波器,即可得到如下波形: 总结: (2)V1、VCC、R2均维持不变,将输入信号由小变大: 1)将输入信号设置为280mv,按下仿真电源开关,双击示波器,即可得到如下波形: 2)将输入信号设置为290mV,按下仿真电源开关,双击示波器,即可得到如下波形: 3)将输入信号设置为300mV,按下仿真电源开关,双击示波器,即可得到如下波形:

华南理工大学高频开关电源实验报告

四、 实验记录及处理 1、设定输出电流,当负载变化时,测量输出的电压、电流如表1所示 1 2 3 4 5 6 7 8 50A U/V 10.01 17.30 26.00 36.04 50.30 51.10 51.60 52.10 I/A 49.60 49.60 49.70 49.60 49.00 39.50 34.00 29.80 100A U/V 15.80 27.08 41.00 48.10 50.00 51.00 51.50 51.80 I/A 99.70 99.60 99.80 77.80 50.40 39.50 34.70 34.70 150A U/V 18.50 34.60 45.10 47.70 49.80 51.00 51.50 52.00 I/A 149.90 150.00 121.30 84.80 53.30 42.40 36.80 32.40 200A U/V 22.80 41.40 45.50 47.70 50.00 51.00 51.50 51.90 I/A 200.00 193.70 127.60 86.20 54.80 43.10 35.80 31.90 250A U/V 26.20 41.10 45.10 47.70 50.00 50.80 51.40 51.80 I/A 246.70 194.30 126.10 84.00 53.10 41.20 36.20 31.70 300A U/V 29.80 41.20 45.10 47.80 50.10 51.00 51.60 52.60 I/A 295.70 196.00 120.00 84.10 53.30 41.50 36.10 31.60 外特性曲线图如下:

相关文档
最新文档