北师大版七年级下册第三章 三角形单元复习题(二)
北师大七级下第四章三角形单元测试题(一)含答案

北师大版七年级下册三角形单元测试题(一)一、选择题1.一个三角形的两边长为2和6,第三边为偶数.则这个三角形的周长为( )A.10B.12C.14D.162.满足下列条件的△ABC中,不是直角三角形的是()A、∠B+∠A=∠CB、∠A:∠B:∠C=2:3:5C、∠A=2∠B=3∠CD、一个外角等于和它相邻的一个内角3.一个三角形的三个内角中,锐角的个数最少为 ( )A.0B.1C.2 D.34.三角形的一个外角是锐角,则此三角形的形状是()A、锐角三角形B、钝角三角形C、直角三角形D、无法确定5.能将一个三角形分成面积相等的两个三角形的一条线段是 ( )A.中线B.角平分线C.高线D.三角形的角平分线6.如图5—12,已知∠ACB=90°,CD⊥AB,垂足是D,则图中与∠A相等的角是 ( )A.∠1B.∠2C.∠B D.∠1、∠2和∠B7.下列命题中的真命题是()A、锐角大于它的余角B、锐角大于它的补角C、钝角大于它的补角D、锐角与钝角之和等于平角8.已知:a、b、c是△ABC三边长,且M=(a+b+c)(a+b-c)(a-b-c),那么( )A.M>0 B. M=0C.M<0 D.不能确定9.锐角三角形中,最大角α的取值范围是()A、00<α<900ºB、600<α<900ºC、600<α<1800D、600º≤α<900º10.各边长均为整数且三边各不相等的三角形的周长小于13,这样的三角形个数共有( )A.5个B.4个C.3个D.2个二、填空题1.直角三角形中两个锐角的差为20º,则两个锐角的度数分别为.2.在△ABC 中,AB =6,AC =10,那么BC 边的取值范围是________,周长的取值范围是___________.3.把下列命题“对顶角相等”改写成:如果 ,那么 .4.一个等腰三角形两边的长分别是15cm 和7cm 则它的周长是__________. 5.在△ABC 中,三边长分别为正整数a 、b 、c ,且c≥b≥a>0,如果b =4,则这样的三角形共有_________个.6.直角三角形中,两个锐角的差为40°,则这两个锐角的度数分别为_________. 7.如下图左,DH ∥GE ∥BC ,AC ∥EF ,那么与∠HDC 相等的角有 .8.如图5—13,在△ABC 中,AD⊥BC,GC⊥BC,CF⊥AB,BE⊥AC,垂足分别为D 、C 、F 、E ,则_______是△ABC 中BC 边上的高,_________是△ABC 中AB 边上的高,_________是△ABC 中AC 边上的高,CF 是△ABC 的高,也是△_______、△_______、△_______、△_________的高.9.如图5—14,△ABC 的两个外角的平分线相交于点D ,如果∠A=50°,那么∠D=_____.10.如图5—15,△ABC 中,∠A=60°,∠ABC、∠ACB 的平分线BD 、CD 交于点D ,则∠BDC=_____.MHGFED CBA11.如图5—16,该五角星中,∠A+∠B+∠C+∠D+∠E=________度.12.等腰三角形的周长为24cm,腰长为xcm,则x的取值范围是________.三、解答题1.如图5—17,点B、C、D、E共线,试问图中A、B、C、D、E五点可确定多少个三角形?说明理由.2.如图5—18,∠BAD=∠CAD,则AD是△ABC的角平分线,对吗?说明理由.3.一个飞机零件的形状如图5—19所示,按规定∠A应等于90°,∠B,∠D应分别是20°和30°,康师傅量得∠BCD=143°,就能断定这个零件不合格,你能说出其中的道理吗?4.如图:(1) 画△ABC 的外角∠BCD ,再画∠BCD 的平分线CE. (2) 若∠A=∠B ,请完成下面的证明:已知:△ABC 中,∠A=∠B ,CE 是外角∠BCD 的平分线 求证:CE ∥AB5.如图5—21,△ABC 中,∠B=34°,∠ACB=104°,AD 是BC 边上的高,AE 是∠BAC 的平分线,求∠DAE 的度数.6.如图5—22,在△ABC 中,∠ACB=90°,CD 是AB 边上的高,AB =13cm ,BC =12cm ,AC =5cm ,求:(1)△ABC 的面积;(2)CD 的长.7.看图填空:(1) 如下图左,∠A +∠D =180º(已知)∴∥( )CBA∴∠1= ( ) ∵∠1=65º(已知)∴∠C =65º( )(2) 如上图右,已知,∠ADC =∠ABC ,BE 、DF 分别平分∠ABC 、∠ADC ,且∠1=∠2,求证:∠A=∠C.证明:∵BE 、DF 分别平分∠ABC 、∠ADC (已知)∴ ∠1=21∠ABC ,∠3=21∠ADC ( ) ∵∠ABC =∠ADC (已知) ∴21∠ABC =21∠ADC ( ) ∴∠1=∠3( ) ∵∠1=∠2(已知)∴∠2=∠3( )∴( )∥( )( ) ∴∠A +∠=180º ,∠C +∠=180º( ) ∴∠A =∠C ( )8.已知:如图5—24,P 是△ABC 内任一点,求证:AB +AC >BP +PC .1DCB A答案:一、1.C 2.B 3.C 4.C 5.A 6.B 7.A 8.C 9.A 10.C二、1.3; 2.; 3.锐角(等腰锐角); 4.;5.10; 6.和; 7.; 8.;9.; 10.; 11.; 12.. 三、1.可以确定6个三角形.理由:经过两点可以确定一条线段,而不在同一条直线上的三条线段首尾顺次相接可组成一个三角形,所以图中可以确定6个三角形.2.错误.因为AD 虽然是线段,但不符合三角形角平分线定义,这里射线AD 是的平分线.3.假设此零件合格,连接BD ,则;可知.这与上面的结果不一致,从而知这个零件不合格.4.∵ AD 是BC 边上的中线, ∴ D 为BC 的中点,. ∵的周长-的周长=5cm . ∴. 又∵, ∴.5.由三角形内角和定理,得32周长20,164<<<<BC cm 37︒65︒25︒100GAC FAC FGC BFC BE CF AD ∆∆∆∆,,,,,,︒65︒120︒180126<<x BAC ∠︒=︒-︒=∠+∠37143180CBD CDB ()︒=︒+︒-︒=∠+∠40203090CBD CDB BD CD =ADC ∆ABD ∆cm AB AC 5=-cm AB AC 11=+cm AC 8=. ∴. 又∵ AE 平分∠BAC . ∴. ∴. 又∵,∴.6.(1)∵在△ABC 中,,,,(2)∵ CD 是AB 边上的高, ∴. 即. ∴. 7.如图,延长BP 交AC 于D , ∵, ∴. 8.∵, ∴, ∴. 又∵,∴. ∴,∵, ∴.︒=∠+∠+∠180BAC ACB B ︒=︒-︒-︒=∠4210434180BAC ︒=︒⨯=∠=∠21422121BAC BAE ︒=︒+︒=∠+∠=∠552134BAE B AED ︒=∠+∠90DAE AED ︒=︒-︒=∠-︒=∠35559090AED DAE ︒=∠90ACB cm AC 5=cm BC 12=().3012521212cm BC AC S ABC =⨯⨯=⋅=∴∆CD AB S ABC ⋅=∆21CD ⨯⨯=132130()cm CD 1360=A PDC PDC BPC ∠>∠∠>∠,A BPC ∠>∠A C ∠=∠74C A ∠=∠74C B C ∠<∠<∠74︒=∠+∠+∠180C B A ︒=∠+∠+∠18074C B C C B ∠-︒=∠711180C C C ∠<∠-︒<∠71118074︒<∠<︒8470C又∵为整数, ∴∠C 的度数为7的倍数. ∴,∴. 9.如图,延长BP 交AC 于点D .在△BAD 中,, 即:. 在△PDC 中,. ①+②得, 即.C A ∠=∠74︒=∠77C ︒=∠=∠4474C A BD AD AB >+PD BP AD AB +>+PC DC PD >+PC PD BP DC PD AD AB ++>+++PC BP AC AB +>+。
新北师大版七年级数学下册第三章《变量之间的关系》单元复习题含答案解析 (25)

一、选择题(共10题)1.随着时代的进步,人们对PM2.5(空气中直径小于或等于2.5微米的颗粒)的关注日益密切.某市一天中PM2.5的值y1(ug/m3)随时间t(h)的变化如图所示,设y2表示0时到t时PM2.5的值的极差(即0时到t时PM2.5的最大值与最小值的差),则y2与t的函数关系大致是( )A.B.C.D.2.下列关系中,y不是x的函数的是( )A.y=∣x∣B.y=x C.y=−x D.y=±x3.王强从家门口骑摩托车去单位上班,先走平路到达点A,再走上坡路到点B,最后走下坡路到达单位,所用的时间与路程的关系如图所示,下班后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上班时一致,那么他从单位到家门口需要的时间是( )A.8分钟B.10分钟C.12分钟D.18分钟4.甲、乙两人约好步行沿同一路线同一方向在某景点集合,已知甲乙二人相距660米,二人同时出发,走了24分钟时,由于乙距离景点近,先到达等候甲,甲共走了30分钟也到达了景点与乙相遇.在整个行走过程中,甲、乙两人均保持各自的速度匀速行走,甲、乙两人相距的路程y (米)与甲出发的时间x(分钟)之间的关系如图所示,下列说法错误的是( )A.甲的速度是70米/分B.乙的速度是60米/分C.甲距离景点2100米D.乙距离景点420米5.已知菱形的面积为10,对角线的长分别为x和y,则y关于x的函数图象是( )A.B.C.D.6.某兴趣小组做试验,如图,将一个装满水的啤酒瓶倒置,并设法使瓶里的水从瓶中匀速流出,那么该倒置的啤酒瓶内水面高度ℎ与水流出的时间t之间的函数图象大致是( )A.B.C.D.7.嘉嘉买了6支笔花了9元钱,琪琪买了同样售价的x支笔,还买了单价为5元的三角尺两幅,用y(元)表示琪琪花的总钱数,那么y与x之间的关系式应该是( )A.y=1.5x+10B.y=5x+10C.y=1.5x+5D.y=5x+58.如图,三个大小相同的正方形拼成六边形ABCDEF,一动点P从点A出发沿着A→B→C→D→E方向匀速运动,最后到达点E.运动过程中△PEF的面积(S)随时间(t)变化的图象大致是( )A.B.C.D.9.小明家、公交车站、学校在一条笔直的公路旁(小明家、学校到这条公路的距离忽略不计).一天,小明从家出发去上学,沿这条公路步行到公交车站恰好乘上一辆公交车,公交车沿这条公路匀速行驶,小明下车时发现还有4min上课,于是他沿这条公路跑步赶到学校(上、下车时间忽略不计),小明与家的距离s(单位:m)与他所用时间t(单位:min)之间的函数关系如图所示,已知小明从家出发7min时与家的距离为1200m,从上公交车到他到达学校共用10min,下列说法:①小明从家出发5min时乘上公交车;②公交车的速度为400m/min;③小明下公交车后跑向学校的速度为100m/min;④小明上课没有迟到.其中正确的个数是( )A.1B.2C.3D.410.2020年初以来,红星消毒液公司生产的消毒液在库存量为m吨的情况下,日销售量与产量持平,自1月底抗击“新冠病毒”以来,消毒液需求量猛增,该厂在生产能力不变的情况下,消毒液一度脱销.下面表示2020年初至脱销期间,该厂库存量y(吨)与时间t(天)之间函数关系的大致图象是( )A.B.C.D.二、填空题(共7题)11.已知甲、乙两地相距20千米,汽车从甲地匀速行驶到乙地,则汽车行驶时间t(单位:小时)关于行驶速度v(单位:千米/小时)的函数关系式是.12.某长途汽车站对旅客携带行李收费的收费方式作了如下说明:行李重量40千克以内(含40千克),不收费;超过40千克时,每超过1千克,收费2元.行李费y(元)与行李重量x(千克)之间的函数关系式为.13.学校与图书馆在同一条笔直道路上,甲从学校去图书馆,乙从图书馆回学校,甲、乙两人都匀速步行且同时出发,乙先到达目的地.两人之间的距离y(米)与时间t(分钟)之间的函数关系如图所示.乙回到学校用了分钟.14.实验室里有一个水平放置的长方体容器,从内部量得它的高是15cm,底面的长是30cm,宽是20cm,容器内的水深为x cm.现往容器内放入如图的长方体实心铁块(铁块一面平放在容器底面),过顶点A的三条棱的长分别是10cm,10cm,y cm(y≤15),当铁块的顶部高出水面2cm时,x,y满足的关系式是.15.甲、乙两人在直线跑道上同起点、同终点,同方向匀速跑步500m,先到终点的人原地休息,已知甲先出发2s,在跑步过程中,甲、乙两人的距离y(m)与乙出发的时间t(s)之间的关系如图,给出以下结论;① a=8;② b=92;③ c=123.其中正确的是.16.圆周长C与圆的半径r之间的关系为C=2πr,其中变量是,常量是.17.周末小明匀速步行从家赶往学校参加植树活动,出发30分钟后,发现忘带植树工具,于是马上掉头往回走,速度比之前每小时提高了1千米(仍保持匀速步行),同时小明打电话给爸爸,请爸爸帮他把植树工具送过来,从小明开始打电话到爸爸出门一共用了4分钟,爸爸的速度与小明提速后的速度相同.两人相遇后,小明接过工具立即赶往学校,爸爸则转身回家,两人速度均保持不变,爸爸在回家途中用了10分钟吃早餐,当爸爸到家时小明刚好到达学校,两人相距的路程y(千米)与小明从家出发的时间x(分钟)之间的函数关系如图所示,则小明从家到学校途中步行的总路程是千米.三、解答题(共8题)18.如图,矩形ABCD的边AB=6cm,BC=8cm,在BC上取一点P,在CD边上取一点Q,使∠APQ成直线,设PB=x cm,CQ=y cm,试以x为自变量,写出y关于x的函数关系式.19.一农民带上若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售,售出的土豆千克数与他手中持有的钱数(含备用零钱)的关系如图所示,结合图象回答下列问题.(1) 农民自带的零钱是多少?(2) 若降价前y,x满足y=kx+b,试求y与x之间的关系式.(3) 由表达式你能看出降价前每千克的土豆价格是多少吗?20.如图是甲、乙两人同一地点出发后,路程随时间变化的图象.(1) 此变化过程中,是自变量,是因变量.(2) 甲的速度是千米/时,乙的速度是千米/时.(3) 路程为150千米,甲行驶了小时,乙行驶了小时.(4) 分别写出甲乙两人行驶的路程S(千米)与行驶的时间t(小时)的关系式(不要求写出自变量的取值范围)S甲=S乙=.21.如图是某型号新能源纯电动汽车充满电后,蓄电池剩余电量y(千瓦时)关于已行驶路程x(千米)的函数图象.(1) 根据图象,直接写出蓄电池剩余电量为35千瓦时汽车已行驶的路程.当0≤x≤150时,求1千瓦时的电量汽车能行驶的路程.(2) 当150≤x≤200时,求y关于x的函数表达式,并计算当汽车已行驶180千米时,蓄电池的剩余电量.22.如图,Q是AB⏜与弦AB所围成图形的外部的一定点,P是弦AB上的一动点,连接PQ交AB⏜于点C.已知AB=6cm,设P,A两点间的距离为x cm,P,C两点间的距离为y1cm,Q,C两点间的距离为y2cm.小石根据学习函数的经验,分别对函数y1,y2随自变量x的变化而变化的规律进行了探究,下面是小石的探究过程,请补充完整:(1) 按照下表中自变量x的值进行取点、画图、测量,分别得到了y1,y2与x的几组对应值:x/cm012345 5.406y1/cm 4.63 3.89 2.61 2.15 1.79 1.630.95y2/cm 1.20 1.11 1.040.99 1.02 1.21 1.40 2.21(2) 在同一平面直角坐标系xOy中,描出补全后的表中各组数值所对应的点(x,y1),(x,y2),并画出函数y1,y2的图象;(3) 结合函数图象,解决问题:当C为PQ的中点时,PA的长度约为cm.23.如图1,四边形ABCD为矩形,曲线L经过点D.点Q是四边形ABCD内一定点,点P是线段AB上一动点,作PM⊥AB交曲线L于点M,连接QM.小东同学发现:在点P由A运动到B的过程中,对于x1=AP的每一个确定的值,θ=∠QMP都有唯一确定的值与其对应,x1与θ的对应关系如下表所示:x1=AP012345θ=∠QMPα85∘130∘180∘145∘130∘小芸同学在读书时,发现了另外一个函数:对于自变量x2在−2≤x2≤2范围内的每一个值,都有唯一确定的角度θ与之对应,x2与θ的对应关系如图2所示:根据以上材料,回答问题:(1) 表格中α的值为.(2) 如果令表格中x1所对应的θ的值与图2中x2所对应的θ的值相等,可以在两个变量x1与x2之间建立函数关系.①在这个函数关系中,自变量是,因变量是;(分别填入x1和x2)②请在网格中建立平面直角坐标系,并画出这个函数的图象;③根据画出的函数图象,当AP=3.5时,x2的值约为.24.如图,在△ABC中,AB=8cm,点D是AC边的中点,点P是边AB上的一个动点,过点P作射线BC的垂线,垂足为点E,连接DE.设PA=x cm,ED=y cm.小石根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小石的探究过程,请补充完整:(1) 通过取点、画图、测量,得到了x与y的几组值,如表:x/cm012345678y/cm 3.0 2.4 1.9 1.8 2.1 3.4 4.2 5.0(说明:补全表格时相关数据保留一位小数)(2) 建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(3) 结合画出的函数图象,解决问题:点E是BC边的中点时,PA的长度约为cm.25.从甲城向乙城打长途电话,通话时间不超过3分钟收费2.4元,超过3分钟后每分钟加收1元,写出通话费用y(元)关于通话时间x(分)的函数关系式,如果通话10.5分钟,需要多少话费?(本题中x取整数,不足1分钟按1分钟计算)答案一、选择题(共10题)1. 【答案】B【解析】当t=0时,极差y2=85−85=0;当0<t≤10时,极差y2随t的增大而增大,最大值为85−42=43;当10<t≤20时,极差y2随t的增大保持不变,为43;当20<t≤24时,极差y2随t的增大而增大,最大值为140−42=98.【知识点】用函数图象表示实际问题中的函数关系2. 【答案】D【知识点】函数的概念3. 【答案】B【解析】从家到学校:平路是2千米,用3分钟,则从单位到家门口走平路仍用3分钟;从A到B是上坡,路程是1千米,时间是5−3=2分钟,则速度是:12千米/分钟从B到单位的一段是下坡,路程是6−3=3千米,时间是3分钟,则下坡的速度是1千米/分钟,则从单位到家门口需要的时间是:3 1 2+11+3=10(分钟).【知识点】用函数图象表示实际问题中的函数关系4. 【答案】D【解析】开始甲,乙两人相距660米,由图可知,前24分钟甲,乙两人相相距的路程在逐渐缩小.24分钟时,乙到达景点,此时甲、乙两人相距420米之后甲又走了6分钟与乙相遇,∴甲的速度=4206−70(米/分)甲总共走了30分钟,∴甲距景点30×70=2100米,由前24分钟甲、乙两人相距660来缩小到420米,得(甲的速度−乙的速度)×24=660−420,得乙的速度=60米/分,乙总共走了24分钟,∴乙距景点60×24=1440米.【知识点】用函数图象表示实际问题中的函数关系5. 【答案】Dxy,【解析】由题可知:10=12(x>0).所以y=20x故选D.【知识点】用函数图象表示实际问题中的函数关系6. 【答案】A【解析】该倒置的啤酒瓶内水面高度ℎ变化的过程分为两段,其变化规律为先慢后快,因为水匀速流出,所以表现在图象上为两条首尾相接的线段.【知识点】用函数图象表示实际问题中的函数关系7. 【答案】A【解析】依题意得:笔单价为9÷6=1.5元,琪琪花的总钱数为x支笔和两幅三角板的总价和,∴y=1.5x+10.【知识点】解析式法8. 【答案】B【解析】动点P从点A出发沿着A→B→C→D→E方向匀速运动,∴可知三角形PEF的面积可分为四个步骤进行图象的描绘,分别为AB,BC,CD,DE,∴答案为B.【知识点】图像法9. 【答案】D【解析】公交车的速度为(3200−1200)÷(12−7)=400(m/min),故②正确;小明从家出发乘上公交车的时间为7−(1200−400)÷400=5(min),故①正确;坐公交车的时间为12−5=7min,跑向学校的时间为10−7=3min,因为3<4,所以小明上课没有迟到,故④正确.小明下公交车后跑向学校的速度为(3500−3200)÷3=100(m/min)时,故③正确.【知识点】用函数图象表示实际问题中的函数关系10. 【答案】D【知识点】用函数图象表示实际问题中的函数关系二、填空题(共7题)11. 【答案】t=20v【知识点】解析式法12. 【答案】y ={0,0≤x ≤40,2x −80,x >40.【知识点】解析式法13. 【答案】 40【解析】由图象可得,甲的速度为:2400÷60=40(米/分钟), 乙的速度为:2400÷24−40=60(米/分钟), 则乙回到学校用了:2400÷60=40(分钟). 【知识点】用函数图象表示实际问题中的函数关系14. 【答案】 y =6x+105(0<x ≤656) 或 y =120−15x2(6≤x <8)【知识点】解析式法15. 【答案】①②③【解析】甲的速度为:8÷2=4(m/s );乙的速度为:500÷100=5(m/s );b =5×100−4×(100+2)=92(m );5a −4×(a +2)=0, 解得 a =8,c =100+92÷4=123(s ), ∴ 正确的有①②③.【知识点】用函数图象表示实际问题中的函数关系16. 【答案】C ,r ;2π【知识点】函数的概念17. 【答案】296【解析】小明从家出发时速度为 20.5=4 千米/小时,小明返回速度为 (4+1)=5 千米/小时 小明返回 4 分钟,即115小时,小明爸爸才出门且速度与小明返回速度一样 5 千米/小时,设小明与爸爸相遇用时 t (爸爸出门到相遇), 2−5×115=(5+5)t , t =16 小时,相遇后爸爸吃早餐用时 10 分钟,即 16 小时,爸爸返回家中用时 5t 5=16 小时,小明刚好到达学校,则小明返回拿工具再去学校过程中用时为:1 15+16+16+16=1730,总路程S=2+1730×5=2+176=296千米.故小明从家到学校途中步行总路程为296干米.【知识点】用函数图象表示实际问题中的函数关系三、解答题(共8题)18. 【答案】因为在Rt△ABP中,∠APB+∠BAP=90∘且∠APQ=90∘,所以∠APB+∠CPQ=90∘,所以∠BAP=∠CPQ,又∠B=∠C=90∘,所以△ABP∽△PCQ,所以PB:CQ=AB:PC,则xy =68−x,所以y=−16x2+43x(0<x<8).【知识点】性质与判定综合(D)、解析式法19. 【答案】(1) 5元.(2) y=0.5x+5.(3) 0.5元.【知识点】解析式法、用函数图象表示实际问题中的函数关系20. 【答案】(1) 时间t;路程S(2) 503;50(3) 9;3(4) 503t;50t−200【解析】(2) 甲的速度=1006=503km/h,乙的速度=50km/h.(3) 路程150千米/时,150÷503=9(小时),150÷50=3(小时),即甲行驶了 9 小时,乙行驶了 3 小时. (4) S =503t ,S =50t −200.【知识点】用函数图象表示实际问题中的函数关系、自变量与函数值、解析式法21. 【答案】(1) 由图象可知,蓄电池剩余电量为 35 千瓦时汽车已行驶了 150 千米. 1 千瓦时的电量汽车能行驶的路程为:15060−35=6 千米.(2) 设 y =kx +b (k ≠0),把点 (150,35),(200,10) 代入, 得 {150k +b =35,200k +b =10.∴{k =−0.5,b =110.∴y =−0.5x +110,当 x =180 时,y =−0.5×180+110=20,答:当 150≤x ≤200 时,函数表达式为 y =−0.5x +110,当汽车已行驶 180 千米时,蓄电池的剩余电量为 20 千瓦时.【知识点】用函数图象表示实际问题中的函数关系、行程问题22. 【答案】(1) 3.20 (2) (3) 5.58 【知识点】图像法23. 【答案】(1) 50∘ (2) ①x 1;x 2;②③−1.87.【知识点】列表法、函数的概念、图像法24. 【答案】(1) 2.7(2)(3) 6.8【知识点】图像法、列表法25. 【答案】当0<x≤3时,y=2.4;当x>3时,y=2.4+(x−3)=x−0.6,把x=11代入y=x−0.6得:y=11−0.6=10.4.答:如果通话10.5分钟,需要10.4元话费.【知识点】解析式法、分段函数。
北师大版七年级下册数学第三章三角形单元测试(附答案)

北师大版七年级下册数学第三章三角形单元测试(附答案)学校:___________姓名:___________班级:___________考号:___________一、选择题1.如图,在△ABC中,△ADE的周长为8,DH为AB的中垂线,EF垂直平分AC,则BC的长为()A、4B、6C、8D、162.下列几组数不能作为直角三角形三边长的是().A.8、15、17 B.7、24、25C.30、40、50 D.32、60、803.下列条件中,不能判定△ABC≌△A′B′C′的是()A.∠A=∠A′,∠C=∠C′,AC=A′C′B.∠A=∠A′, BC=B′C′,AB=A′B′C.∠A=∠A′=80O,∠B=60O,∠C=40O,AB=A′B′D.∠C=∠C′=90O, BC=B′C′,AB=A′B′4.到三角形各顶点距离相等的点是三角形三条()A、中线的交点B、角平分线的交点C、高线的交点D、三边垂直平分线的交点5.到△ABC的三个顶点距离相等的点是 ( )A.三条中线的交点B.三条角平分线的交点C.三条高线的交点D.三条边的垂直平分线的交点6.已知一个等腰三角形两内角的度数之比为1:4,则这个等腰三角形顶角的度数为()A.20o B.120o C.20o或120o D.36o7.如图,两个高度相等的圆柱形水杯,甲杯装满液体,乙杯是空杯.若把甲杯中的液体全部倒入乙杯,则乙杯中的液面与图中点P的距离是()A.2cm B.43cm C.6cm D.8cm8.下列说法正确的是( )A 、全等三角形是指周长和面积都一样的三角形;B 、全等三角形的周长和面积都一样 ;C 、全等三角形是指形状相同的两个三角形;D 、全等三角形的边都相等9.高为3,底边长为8的等腰三角形腰长为 ( ).(A )3 (B )4 (C )5 (D )610.如图,△ABC 中,∠ACB=90°,BA 的垂直平分线交CB 边于D ,若AB=10,AC=5,则图中等于60°的角的个数为( )A 、2B 、3C 、4D 、5二、填空题11.如图:∠B=∠C=90°,E 是BC 的中点,DE 平分∠ADC,∠CED=35°,则∠EAB =12.如图所示的正方形网格中,网格线的交点称为格点.已知A 、B 是两格点,如果C 也是图中的格点,且使得ABC 为等腰三角形.....,则点C 的个数是 .13.三角形三条中位线围成的三角形的周长为19,则原三角形的周长为 。
七年级下册数学第三单元三角形复习题及答案(一)

北师大版七年级下册第三章 《三角形》单元复习题(一)1.一定在△ABC 内部的线段是( )A .锐角三角形的三条高、三条角平分线、三条中线B .钝角三角形的三条高、三条中线、一条角平分线C .任意三角形的一条中线、二条角平分线、三条高D .直角三角形的三条高、三条角平分线、三条中线2.下列说法中,正确的是( )A .一个钝角三角形一定不是等腰三角形,也不是等边三角形B .一个等腰三角形一定是锐角三角形,或直角三角形C .一个直角三角形一定不是等腰三角形,也不是等边三角形D .一个等边三角形一定不是钝角三角形,也不是直角三角形3.如图,在△ABC 中,D 、E 分别为BC 上两点,且BD =DE =EC ,则图中面积相等的三角形有( ) A .4对 B .5对 C .6对 D .7对(注意考虑完全,不要漏掉某些情况)4.如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是( )A .锐角三角形B .钝角三角形C .直角三角形D .无法确定5.若等腰三角形的一边是7,另一边是4,则此等腰三角形的周长是( )A .18B .15C .18或15D .无法确定6.两根木棒分别为5cm 和7cm ,要选择第三根木棒,将它们钉成一个三角形,如果第三根木棒长为偶数,那么第三根木棒的取值情况有( )种A .3B .4C .5D .6A .180°B .360°C .720°D .540°7.如图:(1)AD ⊥BC ,垂足为D ,则AD 是________的高,∠________=∠________=90°;(2)AE 平分∠BAC ,交BC 于点E ,则AE 叫________,∠________=∠________=21∠________,AH 叫________; (3)若AF =FC ,则△ABC 的中线是________;(4)若BG =GH =HF ,则AG 是________的中线,AH 是________的中线.8.在等腰△ABC中,如果两边长分别为6cm、10cm,则这个等腰三角形的周长为________.9.如图,△ABC中,∠ABC、∠ACB的平分线相交于点I.(1)若∠ABC=70°,∠ACB=50°,则∠BIC=________;(2)若∠ABC+∠ACB=120°,则∠BIC=________;(3)若∠A=60°,则∠BIC=________;(4)若∠A=100°,则∠BIC=________;(5)若∠A=n°,则∠BIC=________.10.如图,在△ABC中,∠BAC是钝角.画出:(1)∠ABC的平分线;(2)边AC上的中线;(3)边AC上的高.11.如图,AB∥CD,BC⊥AB,若AB=4cm,2S,求△ABD中AB边上的高.12cm=∆ABC12.学校有一块菜地,如下图.现计划从点D表示的位置(BD∶DC=2∶1)开始挖一条小水沟,希望小水沟两边的菜地面积相等.有人说:如果D是BC的中点的话,由此点D笔直地挖至点A就可以了.现在D不是BC的中点,问题就无法解决了.但有人认为如果认真研究的话一定能办到.你认为上面两种意见哪一种正确,为什么?13.一块三角形优良品种试验田,现引进四个良种进行对比实验,需将这块土地分成面积相等的四块.请你制订出两种以上的划分方案.14.一个三角形的周长为36cm,三边之比为a∶b∶c=2∶3∶4,求a、b、c.15.如图,AB ∥CD ,∠BMN 与∠DNM 的平分线相交于点G ,(1)完成下面的证明:∵ MG 平分∠BMN ( ),∴ ∠GMN =21∠BMN ( ),同理∠GNM =21∠DNM .∵ AB ∥CD ( ),∴ ∠BMN +∠DNM =________( ).∴ ∠GMN +∠GNM =________.∵ ∠GMN +∠GNM +∠G =________( ),∴ ∠G = ________.∴ MG 与NG 的位置关系是________.(2)把上面的题设和结论,用文字语言概括为一个命题:_______________________________________________________________.16.已知,如图D 是△ABC 中BC 边延长线上一点,DF ⊥AB 交AB 于F ,交AC 于E , ∠A =46°,∠D =50°.求∠ACB 的度数.17.已知,如图△ABC 中,三条高AD 、BE 、CF 相交于点O .若∠BAC =60°, 求∠BOC 的度数.18.已知,如图△ABC 中,∠B =65°,∠C =45°,AD 是BC 边上的高,AE 是∠BAC 的平分线.求∠DAE 的度数.北师大版七年级下册第三章 《三角形》单元复习题(一)参考答案:1.A ; 2.D ; 3.A ; 4.C ; 5.C ; 6.B ;7.(1)BC 边上,ADB ,ADC ;(2)∠BAC 的角平分线,BAE ,CAE ,BAC ,∠BAF 的角平分线;(3)BF ;(4)△ABH ,△AGF ;8.22cm 或26cm ;9.(1)120°; (2)120°; (3)120°; (4)140°; (5)290︒+︒n ; 10.略;11.212cm =∆ABC S ,∴ 21AB ·BC =12,AB =4,∴ BC =6,∵ AB ∥CD ,∴ △ABD 中AB 边上的高=BC =6cm .12.后一种意见正确.13.不作垂线,一个直角三角形,即:1=2×0+1,作一条垂线,三个直角三角形,即:3=2×1+1,同理,5=2×2+1,找出相应的规律,当作出k k D D 1-时,图中共有2×k +1,即2k +1个直角三角形.14.设三边长a =2k ,b =3k ,c =4k ,∵ 三角形周长为36,∴ 2k +3k +4k =36,k =4,∴ a =8cm ,b =12cm ,c =16cm .15.(1)已知,角平分线定义,已知,180°,两直线平行同旁内角互补,90°,180°,三角形内角和定理,90°,互相垂直.(2)两平行直线被第三条直线所截,它们的同旁内角的角平分线互相垂直.16.94°;17.120°;18.10°;。
北师大版七年级下册数学第三章第1---3节同步复习题含答案

3.1用表格表示的变量间关系一、选择题1.如图,表格列出了一项实验的统计数据中变量y与x之间的关系:则下面能表示这种关系的式子是()A. y=x2B. y=2xC. y=x+15D. y=x2 2.下表是摄氏温度和华氏温度之间的对应表,则字母a的值是()A. 45B. 50C. 53D. 683.下表反映的是某地区电的使用量x(千瓦时)与应交电费y(元)之间的关系:下列说法不正确的是()A. x与y都是变量,且x是自变量,y是因变量B. 用电量每增加1千瓦时,电费增加0.55元C. 若用电量为8千瓦时,则应交电费4.4元D. 若所交电费为2.75元,则用电量为6千瓦时4.某烤鹅店在确定烤鹅的烤制时,主要依据的是下表中的数据:估计当鹅的质量为6.2kg时,烤制时间是()A. 130minB. 134minC. 144minD. 173min5.某日广东省遭受台风袭击,大部分地区发生强降雨.某条河流因受到暴雨影响,水位急剧上升,下表为这一天的水位记录,观察表中数据,水位上升最快的时间段是()A. 8时到12时B. 12时到16时C. 16时到20时D. 20时到24时6.弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂的物体的质量x(kg)之间有下面的关系,下列说法不正确的是()A. 弹簧不挂重物时的长度为0cmB. x与y都是变量,且x是自变量,y是因变量C. 物体质量每增加1 kg,弹簧长度y增加0.5cmD. 所挂物体质量为7 kg时,弹簧长度为23.5cm7.将温度计从热茶的杯子中取出之后,立即被放入一杯凉水中.每隔5s后读一次温度计上显示的度数,将记录下的数据制成下表.下述说法不正确的是()A. 自变量是时间,因变量是温度计的读数B. 当t=10s时,温度计上的读数是31.0℃C. 温度计的读数随着时间推移逐渐减小,最后保持不变D. 依据表格中反映出的规律,t=35s时,温度计上的读数是13.0℃8.心理学家发现,学生对概念的接受能力y与提出概念所用的时间x(单位:分)之间有如下关系(其中x介于0∼20之间):下列说法错误的是()A. 在这个变化中,自变量是提出概念所用的时间,因变量是对概念的接受能力B. 学生对概念的接受能力是59.8时,提出概念所用的时间是12分钟C. 根据表格中的数据,提出概念所用的时间是13分钟时,学生对概念的接受能力最强D. 根据表格中数据可知:当x介于2∼13之间时,y值逐渐增大,学生对概念的接受能力逐步增强9.某种蔬菜的价格随季节变化如表:根据表中信息,下列结论错误的是()A. x是自变量,y是因变量B. 2月份这种蔬菜价格最高,为5.50元/千克C. 2~8月份这种蔬菜价格一直在下降D. 8~12月份这种蔬菜价格一直在上升10.一种手持烟花,这种烟花每隔1.4秒发射一发花弹,每一发花弹的飞行路径,爆炸时的高度均相同.皮皮小朋友发射出的第一发花弹的飞行高度h(米)随飞行时间t(秒)变化的规律如下表所示:下列关于这一变化过程的说法正确的是()A. 飞行时间t每增加0.5秒,飞行高度h就增加5.5米B. 飞行时间t每增加0.5秒,飞行高度h就减少5.5米C. 估计飞行时间t为5秒时,飞行高度h为11.8米D. 只要飞行时间t超过1.5秒后该花弹爆炸,就视为合格二、填空题11.一支原长为20cm的蜡烛,点燃后,其剩余长度与燃烧时间之间的关系可从下表看出:则剩余长度y/cm与燃烧时间x/分的关系式为______,你能估计这支蜡烛最多可燃烧______分钟.12.米店买米,数量x(千克)与售价y(元)之间的关系如下表:则售价y与数量x之间的关系式是____13.某人购进−批苹果到集贸市场零售,已知卖出苹果数量x与售价的关系如下表:则售价y与数量x之间的关系式是______.14.地表以下岩层的温度y(℃)随着所处深度x(km)的变化而变化,在某个地点y与x之间有如下关系:根据表格,估计地表以下岩层的温度为230℃时,岩层所处的深度为______km.15.下面的表格列出了一个实验室的部分统计数据,表示将皮球从高处落下时,弹跳高度x与下降高度y的关系,能表示这种关系的式子是______.16.弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂的物体的质量x(kg)之间有下面的关系:下列说法正确的是______.①x与y都是变量;②弹簧不挂重物时的长度为0cm;③物体质量每增加1kg,弹簧长度增加0.5cm;④所挂物体质量为7kg时,弹簧长度为13.5cm.17.一辆汽车以60千米/时的速度匀速行驶,行驶里程为s千米,行驶时间为t小时.(1)请根据题意填写下表:(2)用含t的式子表示s为________;(3)这一变化过程中,________是常量,________是变量.18.某校组织学生到距离学校6km的某科技馆参观,准备乘出租车去科技馆,出租车的收费标准如下表:里程数收费/元3km以下(含3km) 6.003km以上,每增加1km 1.80则收费y(元)与出租车行驶里程数x(km)(x≥3)之间的关系式为______19.收音机刻度盘的波长和频率分别是用米(m)和千赫兹(kHz)为单位标刻,下面是它们的一些对应的数值:根据表中波长(m)和频率(kHz)的对应关系,当波长为800m时,频率为_______kHz.20.声音在空气中传播的速度y(米/秒)(简称音速)与气温x(℃)之间的关系如下.一辆汽车停在路边,其正前方有一座山崖,驾驶员按响喇叭,4s后听到回声,若当时的气温为25℃,则由此可知,汽车距山崖______米.气温x(℃)0510152025音速y(米/秒)331334337340343346三、解答题21.表格是暑假旅游期间萌萌往家打长途电话的几次收费记录:通话时间/1234567分电话费/元0.6 1.2 1.8 2.4 3.0 3.6 4.2(1)表格反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)用x表示通话时间,用y表示电话费,请写出y与x的关系式,随着x的变化,y的变化趋势是什么?22.某剧院的观众席的座位为扇形,且按下列分式设置:(1)按照上表所示的规律,当x每增加1时,y如何变化?(2)写出座位数y与排数x之间的关系式;(3)按照上表所示的规律,某一排可能有90个座位吗?说说你的理由.【答案】1. D2. B3. D4. C5. D6. A7. D8. B9. D 10. C11. y=20−x2001012. y=2.6x+0.113. y=2.1x14. 615. y=2x16. ①③④17. 解:(1)填表如下:(2)s=60t;(3)t;s.18. y=1.8x+0.619. 37520. 69221. (1)上表反映了时间与电话费之间的关系;时间是自变量,电话费是因变量;(2)y=0.6x,y随着x的增大而增大.22. 解:(1)由图表中数据可得:当x每增加1时,y增加3;(2)由题意可得:y=50+3(x−1)=3x+47;(3)某一排不可能有90个座位,理由:由题意可得:y=3x+47=90,.解得:x=433故x不是整数,则某一排不可能有90个座位.3.2用关式表示的变量关系一、选择题1.y=中自变量x的取值范围是()A.x≠﹣4 B.x≠4 C.x≤﹣4 D.x≤42.当x=2时,y=的值是()A.3 B.2 C.1 D.03.根据如图所示程序计算函数值,若输入的x的值为,则输出的函数值为()A.B.C.D.4.一个正方形的边长为3cm,它的各边边长减少xcm后,得到的新正方形的周长为ycm,y与x间的关系式是()A.y=12﹣4x B.y=4x﹣12 C.y=12﹣x D.以上都不对5.一个直角三角形的两条直角边长的和为20cm,其中一直角边长为xcm,面积为ycm2,则y与x的的关系式是()A.y=10x﹣x2B.y=10x C.y=﹣x D.y=x(10﹣x)6.一定质量的干木,当它的体积V=4m3时,它的密度ρ=0.25×103kg/m3,则ρ与V的关系式是()A.ρ=1000V B.ρ=V+1 000 C.ρ=D.ρ=7.汽车离开甲站10千米后,以60千米/时的速度匀速前进了t小时,则汽车离开甲站所走的路程s(千米)与时间t(小时)之间的关系式是()A.s=10+60t B.s=60t C.s=60t﹣10 D.s=10﹣60t 8.小张为自己已经用光话费的手机充值100元,他购买的服务是:20元/月包接听,主叫0.2元/分钟.这个月内,他手机所剩话费y(元)与主叫时间t(分钟)之间的关系是()A.y=100﹣0.2t B.y=80﹣0.2t C.y=100+0.2t D.y=80+0.2t 二、填空题9.某商店进了一批货,每件3元,出售时每件加价0.5元,如售出x件应收入货款y 元,那么y(元)与x(件)的关系式是.10.某工厂有一种产品现在的年产量是20万件,计划今后两年增加产量,如果每年都比上一年的产量增加x倍,那么两年后这种产品的产量y将随计划所定的x的值而确定,那么y与x之间的关系应表示为.11.某公司制作毕业纪念册的收费如下:设计费与加工费共1000元,另外每册收取材料费4元,则总收费y与制作纪念册的册数x的关系式为.12.在一个边长为2的正方形中挖去一个边长为x(0<x<2)的小正方形,如果设剩余部分的面积为y,那么y关于x的解析式是.13.如图是温度计的示意图,左边的刻度表示摄氏温度,右边的刻度表示华氏温度,华氏温度y(℉)与摄氏温度x(℃)之间的关系式为.三、解答题14.弹簧挂上适当的重物后会按一定的规律伸长,已知一弹簧的长度y(cm)与所挂物体的质量x(kg)之间的关系如表所挂物体的质量x(kg)0 1 2 3 4 5 6弹簧的长度y(cm)15 15.6 16.2 16.8 17.4 18 18.6(1)如表反映了哪两个变量之间的关系?哪个是自变量?(2)写出x与y之间的关系式;(3)当物体的质量逐渐增加时,弹簧的长度怎样变化?(4)当所挂物体的质量为11.5kg时,求弹簧的长度.15.在一次实验中,小明把一根弹簧的上端固定,在其下端悬挂物体,下表是测得的弹簧的长度y与所挂物体的质量x的几组对应值.x/kg0 1 2 3 4 5 …y/cm18 20 22 24 26 28 …(1)表中反映了两个变量之间的关系,是自变量,是因变量.(2)当所挂砝码质量为3g时,弹簧的长度是cm,不挂重物时弹簧长是cm.(3)弹簧长度y与所挂物体质量x之间的关系可以用式子表示为:.(在弹簧所承受的范围内)16.一支原长为20cm的蜡烛,点燃后,其剩余长度y(cm)与燃烧时间x(min)之前的关系如表:10 20 30 40 50 …燃烧时间x(min)19 18 17 16 15 …剩余长度y(cm)(1)表中反映的自变量是什么?因变量是什么?(2)求出剩余长度y(cm)与燃烧时间x(min)之间的关系式;(3)估计这支蜡烛最多可燃烧多少分钟?3.3用图像表示的变量间关系一、选择题23.小明从A地前往B地,到达后立刻返回,他与A地的距离y(千米)和所用时间x(小时)之间的关系如图所示,则小明出发4小时后距A地()A. 100千米B. 120千米C. 180千米D. 200千米24.甲、乙两人进行慢跑练习,慢跑路程y(米)与所用时间t(分钟)之间的关系如图所示,下列说法错误的是()A. 前2分钟,乙的平均速度比甲快B. 5分钟时两人都跑了500米C. 甲跑完800米的平均速度为100米/分D. 甲乙两人8分钟各跑了800米25.一个有进水管和出水管的容器,从某时刻开始4min内只进水不出水,在随后的8min内即进水又出水,每分钟的进水量和出水量是两个常数,容器内的水量y(L)与时间x(min)之间的关系如图所示,则每分钟的出水量为()A. 5LB. 3.75LC. 2.5LD. 1.25L26.水池中原有3升水,现每分钟向池内注1升,则水池内水量Q(升)与注水时间t(分)之间关系的图象大致为()A. B.C. D.27.如图,y1,y2分别表示燃油汽车和纯电动汽车行驶路程S(单位:千米)与所需费用y(单位:元)的关系,已知纯电动汽车每千米所需的费用比燃油汽车每千米所需费用少0.54元,设纯电动汽车每千米所需费用为x元,可列方程为()A. 36x =9x−0.54B. 36x−0.54=9xC. 36x+0.54=9xD. 36x=9x+0.5428.放学后,小刚和同学边聊边往家走,突然想起今天是妈妈的生日,赶紧加快速度,跑步回家.小刚离家的距离s(单位m)和放学后的时间t(单位min)之间的关系如图所示,那么下列说法错误的是()A. 小刚边走边聊阶段的行走速度是125m/minB. 小刚家离学校的距离是1000mC. 小刚回到家时已放学10minD. 小刚从学校回到家的平均速度是100m/min29.二十四节气是中国古代劳动人民长期经验积累的结晶,它与白昼时长密切相关.当春分、秋分时,昼夜时长大致相等;当夏至时,白昼时长最长,根据图象,下列选项中白昼时长低于11小时的节气是()A. 惊蛰B. 小满C. 立秋D. 大寒30.某厂前5个月生产的总产量y(件)与时间x(月)的关系如图所示,则下列说法正确的是A. 1−3月的月产量逐月增加,4、5两月产量逐月减少B. 1−3月的月产量逐月增加,4、5两月产量与3月持平C. 1−3月的月产量逐月增加,4、5两月停产D. 1−3月的月产量逐月持平,4、5两月停产31.火车匀速通过隧道时,火车在隧道内的长度y(米)与火车行驶时间x(秒)之间的关系用图象描述如图所示,有下列结论:①火车的长度为120米;②火车的速度为30米/秒;③火车整体都在隧道内的时间为25秒;④隧道长度为750米.其中正确的结论是A. ①②B. ③④C. ②③D. ①④32.甲、乙两车从A城出发前往B城.在整个行程中,汽车离开A城的距离y与时刻t的对应关系如图所示,则下列结论错误的是()A. A城和B城相距300kmB. 甲先出发,乙先到达C. 甲车的速度为60km/h,乙车的速度为100km/hD. 6:00~7:30乙在甲前,7:30甲追上乙,7:30~9:00甲在乙前二、填空题(本大题共10小题,共30.0分)33.甲、乙两人在一条笔直的道路上相向而行,甲骑自行车从A地到B地,乙驾车从B地到A地,他们分别以不同的速度匀速行驶,已知甲先出发6分钟后,乙才出发,在整个过程中,甲、乙两人的距离y(千米)与甲出发的时间x(分)之间的关系如图所示,当乙到达终点A时,甲还需______分钟到达终点B.34.某日小明步行,小颖骑车,他们同时从小颖家出发,以各自的速度匀速到公园去,小颖先到并停留了8分钟,发现相机忘在了家里,于是沿原路以同样的速度回家去取,已知小明的步行速度为180米/分钟,他们各自距离出发点的路程y与出发时间x之间的关系图象如图所示,则当小明到达公园的时候小颖离家______米.35.如图,△ABC的边BC长12cm,乐乐观察到当顶点A沿着BC边上的高AD所线向上运动时,三角形的面积发生变化.在这个变化过程中,如果三角形的高为x(cm),那么△ABC 的面积y(cm2)与x(cm)的关系式是______.36.图所示的是一根蜡烛燃烧时剩余的长度h(cm)与燃烧时间t(h)之间的关系图象,则蜡烛点燃后每小时燃烧__________cm.37.小亮早晨从家骑车到学校先上坡后下坡,所行路程y(m)与时间x(min)的关系如图所示,若返回时上坡、下坡的速度仍与去时上坡,下坡的速度分别相同,则小亮从学校骑车回家用的时间是______min.38.如图所示,一边靠校园院墙,另外三边用50m长的篱笆,围起一个长方形场地,设垂直墙的边长为x(m),则长方形场地面积y(m2)与x的关系式为______.39.如图所示,为一个沙漏在计时过程中所剩沙子质量(克)与时间(小时)之间关系的图象,则从开始计时到沙子漏光所需的时间为______小时.40.如图表示“龟兔赛跑”中路程与时间的关系,已知龟、兔同时从同一地点出发,由图中给出的信息,可知乌龟经过_________h追上兔子.41.如图二,A、B两点分别位于一个池塘的两端,点C是AD的中点,也是BE的中点,图一表示的是小明从D点走到E点路程与时间的关系,已知小明从D点到E点走了3分钟,则AB=______米.42.如图,某电信公司提供了A,B两种方案的移动通讯费用y(元)与通话时间x(元)之间的关系,下列结论:①若通话时间少于120分,则A方案比B方案便宜20元;②若通话时间超过200分,则B方案比A方案便宜12元;③若通讯费用为60元,则B方案比A方案的通话时间多;④若两种方案通讯费用相差10元,则通话时间是145分或185分.其中正确结论的序号是______.三、解答题43.重庆出租车计费的方法如图所示,x(km)表示行驶里程,y(元)表示车费,请根据图象解答下列问题:(1)该地出租车起步价是______元;(2)当x>2时,求y与x之间的关系式;(3)若某乘客一次乘出租车的里程为18km,则这位乘客需付出租车车费多少元?22.李大爷按每千克2.1元批发了一批黄瓜到镇上出售,为了方便,他带了一些零钱备用.他先按市场售出一些后,又降低出售.售出黄瓜千克数x与他手中持有的钱数y元(含备用零钱)的关系如图所示,结合图象回答下列问题.(1)李大爷自带的零钱是多少?(2)降价前他每千克黄瓜出售的价格是多少?(3)卖了几天,黄瓜卖相不好了,随后他按每千克下降1.6元将剩余的黄瓜售完,这时他手中的钱(含备用的钱)是530元,问他一共批发了多少千克的黄瓜?(4)请问李大爷亏了还是赚了?若亏(赚)了,亏(赚)多少钱?【答案】1. C2. D3. B4. B5. C6. A7. D8. D9. C 10. D11. 7812. 135013. y=6x14. 515. 37.216. y=−2x2+50x17. 12318. 1019. 45020. ①②③21. 解:(1)10;(2)当x>2时,每公里的单价为(14−10)÷(4−2)=2,∴当x>2时,y=10+2(x−2)=2x+6;(3)当x=18时,y=2×18+6=42元,答:这位乘客需付出租车车费42元.22. 解:(1)由图可得农民自带的零钱为50元.(2)(410−50)÷100=360÷100=3.6(元/千克).答:降价前他每千克黄瓜出售的价格是3.6元;(3)(530−410)÷(3.6−1.6)=120÷2=60(千克),100+60=160(千克).答:他一共批发了160千克的黄瓜;(4)530−160×2.1−50=144(元).答:李大爷一共赚了144元钱.44.。
专题4.6 认识三角形-三角形的三条重要线段(专项练习)七年级数学下册基础知识专项讲练(北师大版)

专题4.6 认识三角形-三角形的三条重要线段(专项练习)一、单选题1.(2021·黑龙江哈尔滨市·八年级期末)如图,在下列图形中,最具有稳定性的是()A.B.C.D.的高是()2.(2021·宁夏固原市·八年级期末)下列图形中,线段BE是ABCA.B.C.D.3.(2020·湖北孝感市·八年级月考)如图,在ABC中,AB边上的高为()A.CG B.BF C.BE D.AD 4.(2020·黑龙江牡丹江市·八年级期中)如图,王师傅用六根木条钉成一个六边形木框,要使它不变形,至少还要再钉上________根木条()A.2B.3C.4D.5 5.(2020·安岳县石羊镇初级中学七年级期中)如果一个三角形的三条高所在直线的交点在三角形外部,那么这个三角形是()A .锐角三角形B .直角三角形C .钝角三角形D .等边三角形 6.(2020·辽宁抚顺市·)如图,CE 是ABC 的外角ACD ∠的平分线,若30B ∠=︒,50ACE ∠=︒,则A ∠=( )A .40︒B .50︒C .60︒D .70︒7.(2021·上海崇明区·九年级一模)已知点G 是ABC 的重心,如果连接AG ,并延长AG 交边BC 于点D ,那么下列说法中错误的是( )A .BD CD =B .AG GD =C .2AG GD = D .2BC BD = 8.(2020·安徽阜阳市·八年级月考)如图,在ABC 中,D 、E 、F 分别是BC 、AC 、AD 的中点,若ABC 的面积是40,则四边形BDEF 的面积是( )A .10B .12.5C .15D .209.(2019·山东临沂市·八年级期中)如图,在△ABC 中,点D ,E ,F 分别是BC ,AD ,CE 的中点,若S △ABC =16,则S △BEF 的值为( )A .1B .4C .6D .810.(2020·内蒙古赤峰市·八年级期中)如图所示,在ABC 中,AD BC ⊥于D ,E 是BC 边上的一点,连结AE ,则线段AD 是( )个三角形的高A.3B.4C.5D.6 11.(2020·广西八年级月考)如图,盖房子时,在窗框没有安装之前,木工师傅常常先在窗框上斜钉一根木条,使其不变形,这种做法的根据是()A.两点之间线段最短B.长方形的对称性C.长方形四个角都是直角D.三角形的稳定性的边AC上的高是()12.(2021·北京丰台区·八年级期末)如图所示,ABCA.线段AE B.线段BA C.线段BD D.线段DA 13.(2021·湖南娄底市·八年级期末)如图,在△ABC中,AD是BC边上的中线,BE是△ABD 中AD边上的中线,若△ABC的面积是40,则△ABE的面积是( )A.25B.20C.15D.10 14.(2020·浙江省开化县第三初级中学八年级期中)如图,工人师傅砌门时,常用一根木条EF来固定长方形门框ABCD,使其不变形,这样做的根据是()A .两点之间线段最短B .长方形的四个角都是直角C .长方形是轴对称图形D .三角形具有稳定性15.(2020·四川绵阳市·东辰国际学校八年级月考)如图,在△ABC 中,已知点D 、E 、F 分别为边BC 、AD 、CE 的中点,且23S cm =阴影,则△ABC 的面积为( )平方厘米A .9B .12C .15D .18二、填空题 16.(2020·广西柳州市·八年级期中)如图,BE 、CF 是ABC 的角平分线,80,60ABC ACB ︒︒∠=∠=,BE 、CF 相交于D ,则CDE ∠的度数是_____________.17.(2020·安徽合肥市五十中学西校八年级期中)如图所示,AD 、CE 、BF 是△ABC 的三条高,AB =6,BC =5,AD =4,则CE =_____.18.(2020·湖北孝感市·八年级月考)如图所示,则α=__________.19.(2021·全国九年级专题练习)如图,△ABC中,AD是BC边上的中线,BE是△ABD中AD边上的中线,若△ABC的面积是24,则△ABE的面积________.20.(2020·甘州中学七年级月考)OB是△AOC内部的一条射线,把三角形的角的顶点放在点O处,转动三角尺,当三角尺的边OD平分△AOB,三角尺的另一边OE也正好平分△BOC,则△AOC的度数为________21.(2019·广东广州市白云区六中珠江学校八年级期中)如图,在ABC中,AD、AE分AE=,ABC的面积为25,则CD的长为________.别是边BC上的中线与高,522.(2021·肥东县第四中学七年级期末)如图,已知AD 是ABC 的中线,CE 是ADC 的中线,ABC 的面积为8,则CDE △的面积为______.23.(2020·吉林吉林市·八年级期末)大桥钢架、索道支架等为了坚固,都采用三角形结构.这样做的根据是__________________.24.(2021·河南商丘市·八年级期末)如图,在△ABC 中,△ABC 和△ACB 的角平分线交于点O ,延长BO 与△ACB 的外角平分线交于点D ,若△BOC =130°,则△D =_____25.(2021·上海九年级专题练习)已知点G 是ABC ∆的重心,连接BG 、GC ,那么BGC ABCS S ∆∆=_________. 26.(2021·全国九年级专题练习)如图,、、A B C 分别是线段1A B 、1B C 、1C A 的中点,若ABC 的面积是1,那么111A B C △的面积为____.27.(2020·东营市实验中学七年级月考)如图,若//AB CD ,BF 平分ABE ∠,DF 平分CDE ∠,90BED ∠=,则BFD ∠=______.28.(2020·宁津县育新中学八年级期中)如图,在△ABC 中,△A=64°,△ABC 与△ACD 的平分线交于点A 1,△A 1BC 与△A 1CD 的平分线相交于点A 2,得△A 2;…;△A n -1BC 与△A n -1CD 的平分线相交于点A n ,要使△A n 的度数为整数,则n 的值最大为______.29.(2020·天津市河西区新华圣功学校八年级月考)如图,已知AE 是ABC 的边BC 上的中线,若8AB cm =,ACE △的周长比AEB △的周长多2cm ,则AC =______cm .30.(2020·宜春市宜阳学校八年级月考)如图,在ABC 中,点D 、E 、F 分别是边BC 、AD 、CE 上的中点,则6ABC S =,则BEF S =△______.31.(2021·全国八年级)如图,在ABC 中,点,,D E F 分别在三边上,点E 是AC 的中点,,,AD BE CF 交于一点,283BGD AGE G BD DC S S ===,,,则ABC 的面积是________.32.(2021·全国八年级)如图,ABC 的三边的中线AD ,BE ,CF 的公共点为G ,且21AG GD =::.若12ABC S =△,则图中阴影部分的面积是________.33.(2020·上海宝山区·九年级月考)如图,△ABC 的两条中线AD 、BE 相交于点G ,如果S △ABG =2,那么S △ABC =_____.34.(2021·菏泽市定陶区第一实验中学八年级月考)如图,在△ABC 中,△A =θ,△ABC 和△ACD 的平分线交于点A 1,得△A 1,△A 1BC 和△A 1CD 的平分线交于点A 2,得△A 2;…;△A 2020BC 和△A 2020CD 的平分线交于点A 2021,则△A 2021=________.(用θ表示)35.(2021·庆云县第二中学八年级期末)如图,ACD ∠是ABC 的外角,ABC ∠的平分线与ACD ∠的平分线交于点1A ,1A BC ∠的平分线与1A CD ∠的平分线交于点2A ,…,1n A BC -∠的平分线与1n A CD -∠的平分线交于点n A ,设=A θ∠,则2=A ∠___________,=n A ∠___________.36.(2020·黑龙江牡丹江市·八年级期中)如图,点D,E,F分别是边BC,AD,AC上的中点,若图中阴影部分的面积为3,则ABC的面积是________.37.(2020·龙湾区永中中学九年级月考)如图1,ABC纸片面积为24,G为ABC纸片)连结CG,DG,并将纸片剪去GDC,的重心,D为BC边上的一个四等分点(BD CD则剩下纸片(如图2)的面积为__________.38.(2021·四川绵阳市·八年级期末)如图,在△ABC中E是BC上的一点,BC=3BE,点D 是AC的中点,设△ABC,△ADF,△BEF的面积分别为S△ABC,S△ADF,S△BEF,且S△ABC=12,则S△ADF﹣S△BEF=____.三、解答题39.(2020·贵州省施秉县第二中学八年级期末)如图,在△ABC中,BE△AC,BC=5cm,AC=8cm,BE=3cm.(1)求△ABC的面积;(2)画出△ABC中BC边上的高AD,并求出AD的长.40.(2021·福建三明市·八年级期末)如图,在△ABC中,△A=30°,△ACB=80°,△ABC 的外角△CBD的平分线BE交AC的延长线于点E.(1)求△CBE的度数;DF BE,交AC的延长线于点F,求△F的度数.(2)过点D作//41.(2021·全国八年级)如图,在△ABC中,CD是AB边上的高,BE是AC边上的中线,且BD=CE.(1)求证:点D在BE的垂直平分线上;(2)若△ABE=20°,请求出△BEC的度数.42.(2021·山东济南市·八年级期末)△ABC中,AD是△BAC的角平分线,AE是△ABC的高.(1)如图1,若△B=40°,△C=60°,求△DAE的度数;(2)如图2,△B<△C,则DAE、△B,△C之间的数量关系为___________;(3)如图3,延长AC到点F,△CAE和△BCF的角平分线交于点G,求△G的度数.43.(2021·四川绵阳市·东辰国际学校七年级期末)如图,两个形状、大小完全相同的含有30°、60°的直角三角板如图△放置,PA、PB与直线MN重合,且三角板PAC、三角板PBD 均可绕点P逆时针旋转(1)试说明△DPC=90°;(2)如图△,若三角板PBD保持不动,三角板PAC绕点P逆时针旋转旋转一定角度,PF 平分△APD,PE平分△CPD,求△EPF;(3)如图△.在图△基础上,若三角板PAC开始绕点P逆时针旋转,转速为5°/秒,同时三角板PBD绕点P逆时针旋转,转速为1°/秒,(当PA转到与PM重合时,两三角板都停止转动),在旋转过程中,PC、PB、PD三条射线中,当其中一条射线平分另两条射线的夹角时,请求出旋转的时间.参考答案1.D【分析】根据三角形的稳定性进行解答即可.【详解】解:根据三角形具有稳定性可得选项D具有稳定性,其余的都具有不稳定性,故选:D.【点拨】此题主要考查了三角形的稳定性,关键是掌握当三角形三边的长度确定后,三角形的形状和大小就能唯一确定下来,故三角形具有稳定性.2.D【分析】根据三角形高的定义可得结论【详解】在三角形中,从一个顶点向它的对边所在的直线画垂线,顶点到垂足之间的线段叫做三角形的高.故选:D【点拨】熟记三角形高的定义是解决本题的关键.3.A【分析】在ABC中,过C点向AB所在的直线作垂线,顶点与垂足之间的线段是AB上的高,由此可得答案.【详解】CG解:ABC中,AB边上的高为:.故选:.A【点拨】本题考查的是三角形的高的含义,掌握钝角三角形的高是解题的关键.4.B【分析】根据三角形的稳定性,要使它不变形,只需每一条边都分别在一个三角形之中即可【详解】解:要使六边形木框不变形,则需每一条边都分别在一个三角形之中,观察图形可得,至少还需要再钉上3根木条故选:B【点拨】本题考查了三角形的稳定性,观察图形如何使每一条边都分别在一个三角形之中是解决本题的关键5.C【分析】直接根据钝角三角形的三条高线交于三角形的外部解答即可.【详解】解:钝角三角形的三条高线交于三角形的外部,故选:C .【点拨】本题考查了三角形的三条高线交点的位置与三角形的形状的关系,即:锐角三角形的三条高线交于三角形的内部,直角三角形的三条高线交于三角形的直角的顶点,钝角三角形的三条高线交于三角形的外部.6.D【分析】根据角平分线的定义以及三角形外角的性质,即可求解.【详解】△CE 是ABC 的外角ACD ∠的平分线,50ACE ∠=︒,△△ACD =2△ACE=100°,△△A=△ACD -△B=100°-30°=70°,故选D【点拨】本题主要考查角平分线的定义以及三角形外角的性质,熟练掌握“三角形的外角等于不相邻的两个内角之和”是解题的关键.7.B【分析】根据三角形重心的定义和性质解答即可.【详解】解:△点G 是ABC 的重心,△BD CD =,2AG GD =,2BC BD =,△A 、C 、D 正确,B 错误,故选B .【点拨】本题考查的是三角形的重心的概念和性质,三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的2倍.8.C【分析】要求四边形面积,可以转化为两个三角形面积之和,把三角形面积计算中的底与高转化为大三角形ABC 的底与高即可求解.【详解】△ABC 的面积是40, △1402BC h ⨯⨯=, △D 、E 、F 分别是BC 、AC 、AD 的中点,△EF 平行且等于12CD ,CD BD =, 以BD 为底,设BDF 的高为h ',以EF 为底,DEF 的高为h '', △//BC EF ,△h h '''=, 11=22BDF DEF BDEF S S S BD h EF h ''+=⨯⨯+⨯⨯四边形, △F 是AD 的中点,△12h h '=, △111111=10515222422BDEF S BC h BC h ⨯⨯⨯+⨯⨯⨯=+=四边形, 故选:C .【点拨】本题主要考查的是三角形中线的性质求面积问题,熟练掌握三角形中线求面积的性质是解答本题的关键.9.B【分析】根据三角形中线把三角形分成面积相等的两部分可以得解.【详解】解:由题意可得:BEC BED DEC SS S =+=()12ABD ACD S S + =12ABC S =8, △142BEF BEC S S ==, 故选:B .【点拨】本题考查三角形中线的应用,熟练掌握三角形中线把三角形分成面积相等的两部分的性质是解题关键 .10.D【分析】由AD BC ⊥,结合线段BC (包括端点)共有4个已知点,从而可得线段AD 是三角形以,,,,,BE BD BC ED EC DC 为边上的高,于是可得答案.【详解】解:,AD BE ⊥AD ∴是ABE △的高,,AD BD ⊥AD ∴是ABD △的高,AD BC ⊥,AD ∴是ABC 的高,AD DE ⊥,AD ∴是ADE 的高,,AD CE ⊥AD ∴是ACE △的高,,AD CD ⊥AD ∴是ACD △的高,∴ 线段AD 是6个三角形的高故选:.D【点拨】本题考查的是三角形高的含义,分类讨论的数学思想,掌握以上要点是解题的关键. 11.D【分析】在窗框未安装之前,木工师傅常常先在窗框上斜钉一根木条,则分成了两个三角形,据此即可判断是利用了三角形的稳定性.【详解】在窗框未安装之前,木工师傅常常先在窗框上斜钉一根木条,则分成了两个三角形,利用了三角形的稳定性,D 正确.故答案选D .【点拨】本题比较简单主要考查三角形稳定性的实际应用,通常要使一些图形具有稳定的结构,往往是将其转化为三角形而获得.12.C【分析】根据三角形的高解答即可,三角形的一个顶点到它的对边所在直线的垂线段叫做这个三角形的高.A.线段AE是△ABC的边BC上的高,故不符合题意;B.线段BA不是任何边上的高,故不符合题意;C.线段BD是△ABC的边AC边上的高,故符合题意;D.线段DA是△ABD的边BD上的高,故不符合题意;故选C.【点拨】本题考查了三角形的高线,熟练掌握三角形高线的定义是解答本题的关键.13.D【分析】根据三角形的中线把三角形分成面积相等的两部分,求出面积比,即可解答.【详解】解:△AD是BC上的中线,△12ABD ACD ABCS S S==△△△,△BE是△ABD中AD边上的中线,△12ABE BED ABDS S S==△△△,△14ABE ABCS S=△△,△△ABC的面积是40,△144010ABES,故选:D.【点拨】本题主要考查了三角形面积的求法,掌握三角形的中线将三角形分成面积相等的两部分,是解答本题的关键.14.D【分析】根据三角形具有稳定性解答.用木条EF 固定长方形门框ABCD ,使其不变形,这样做的根据是三角形具有稳定性, 故选:D .【点拨】此题考查三角形的稳定性,正确理解题意即可解决实际问题.15.B【分析】由点D 为BC 的中点,可得△ABD 、△ACD 与△ABC 的面积之比,继而由点E 为AD 的中点,可得△ABC 与△BCE 的面积之比,同理可得△BCE 和△EFB 的面积之比,据此可解答.【详解】解:如图,△D 为BC 的中点,△S △ABD = S △ACD = 12S △ABC , △E 为AD 的中点, △S △BDE =12 S △ABD ,S △CDE = 12S △ACD , △S △BDE + S △CDE = 12S △ABD + 12 S △ACD = 12 S △ABC , △S △BEC = 12 S △ABC , △F 为EC 的中点,△S △BEF = 12 S △BEC = 14S △ABC , △S △BEF =3,△S △ABC =12.故选:B .【点拨】本题主要考查了三角形面积及三角形面积的等积变换,三角形的中线将三角形分成面积相等的两部分.16.70【分析】利用角平分线的定义求得CBE FCB ∠∠、的度数,然后利用三角形外角的性质求解【详解】解:△BE 、CF 是ABC 的角平分线,80,60ABCACB ∠=∠=, △1140,3022CBE ABC FCB ACB ∠=∠=∠=∠=, △70CDE CBE FCB ∠=∠+∠=. 故答案为:70.【点拨】本题考查三角形外角的性质,掌握三角形外角等于不相邻的两个内角和是解题关键. 17.103【分析】 利用三角形面积公式得到12×AB ×CE =12×BC ×AD ,然后将已知条件代入求解即可. 【详解】解:△S △ABC =12×AB ×CE =12×BC ×AD , △CE =BC AD AB⨯=546⨯=103. 故答案为103. 【点拨】本题主要考查了三角形面积公式,利用三角形的面积公式列出方程是解答本题的关键. 18.114︒【分析】根据三角形外角性质解答即可.【详解】如图所示:由三角形外角性质可得:1245882︒︒∠=+︒=1328232114α︒︒︒︒=∠+=+=故答案为: 114︒.【点拨】此题考查三角形外角性质,关键是根据三角形外角性质解答.19.6【分析】根据三角形的中线把三角形分成面积相等的两部分,即可解答.【详解】解:△AD是BC上的中线,△ABC的面积是24,△S△ABD=S△ACD=12S△ABC=12,△BE是△ABD中AD边上的中线,△S△ABE=S△BED=12S△ABD=6,故答案为:6.【点拨】本题主要考查了三角形面积的求法,掌握三角形的中线将三角形分成面积相等的两部分,是解答本题的关键.20.120°【分析】根据角平分线是定义得到△BOD=12△AOB,△BOE=12△COB,则△DOE=12△AOB+12△COB=12△AOC,然后把△DOE=60°代入计算即可.【详解】△OD平分△AOB,OE平分△COB,△△BOD1=2△AOB,△BOE=12△COB,△△DOE=12△AOB+12△COB=12△AOC,△△DOE=60°,△△AOC=260=120⨯.故答案为:120°【点拨】本题主要考查了角之间的和差关系及角平分线的定义.正确理解角的和差倍分关系是解题的关键.21.5.【分析】由三角形的面积为:25,求解,BC 再利用三角形的中线的概念求解CD 即可得到答案. 【详解】 解: AD 、AE 分别是边BC 上的中线与高,1,,2BD CD BC AE BC ∴==⊥ 1252BC AE ∴=, 5AE =,550BC ∴=,10BC ∴=,152CD BC ∴==, 故答案为:5.【点拨】本题考查的是三角形的中线,高的含义,三角形的面积,掌握以上知识是解题的关键. 22.2【分析】根据三角形的中线把三角形的面积分成相等的两部分直接进行求解即可.【详解】 解:AD 是ABC 的中线,ABC 的面积为8, ∴142ADC ABC S S ==△△, CE 是ADC 的中线, ∴122CDE ADC S S △△;故答案为:2.【点拨】本题主要考查三角形的中线,熟练掌握三角形的中线把三角形的面积分成相等的两部分是解题的关键.23.三角形具有稳定性【分析】三角形的形状是固定的,三角形的这个性质叫三角形的稳定性,利用三角形的稳定性即可解释.【详解】△三角形具有稳定性,△大桥钢架、索道支架等为了坚固,都采用三角形结构.这样做的根据是三角形的稳定性.故答案为:三角形的稳定性.【点拨】本题考查三角形的稳定性,掌握三角形是固定不变的,不会变形,即三角形的稳定性,生活中需要稳定的东西一般都制成三角形的形状.24.40°【分析】根据角平分线的定义结合三角形外角的性质即可得到结论.【详解】解:△△ABC和△ACB的角平分线交于点O,△△ACO=12△ACB,△CD平分△ACE,△△ACD=12△ACE,△△ACB+△ACE=180°,△△OCD=△ACO+△ACD=12(△ACB+△ACE)=12×180°=90°,△△BOC=130°,△△D=△BOC-△OCD=130°-90°=40°,故答案为:40°.【点拨】本题考查了三角形的外角性质,角平分线的定义,熟练掌握相关性质和概念正确推理计算是解题的关键.25.13【分析】直接根据三角形重心的性质进行解答即可.【详解】解:连接AG 并延长交BC 于D△点G 为△ABC 的重心,△AG=2DG ,△△DGC 的面积等于△ADC 面积的13, △DGB 的面积等于△ADB 面积的13, △△DGC 的面积+△DGB 的面积=13(△ADC 的面积+△ADB 的面积) △△BCG 的面积=13△ABC 的面积 △13∆∆=BGC ABC S S 故答案为:13【点拨】本题考查的是三角形的重心,熟知三角形的重心是三角形三边中线的交点是解答此题的关键.26.7【分析】连接111,,AB BC CA ,根据等底等高的三角形的面积相等求出1ABB △,11A AB △的面积,从而求出11A BB 的面积,同理可求11B CC 的面积,11A AC △的面积,然后相加即可得解.【详解】解:如下图,连接111,,AC B A C B ,△B 是线段1B C 的中点,△1B B BC =, ABC 和1AB B 等底同高,△根据等底同高的两个三角形面积相等可得11B AB ABC S S ==△△;同理可得:1111A B A AB B S S ==△△;△11111112A B B A B A AB B S S S =+=+=;同理可得112C CB S =△,112C AA S =△,△11111111122217A B C A BB C CB C AA ABC S S S S S =+++=+++=.故答案为:7.【点拨】本题考查了与三角形中线有关的面积计算,主要利用了等底等高的三角形的面积相等,作辅助线把三角形进行分割是解题的关键.27.45°【分析】如图,作射线BF 与射线BE ,根据平行线的性质和三角形的外角性质可得△ABE +△EDC =90°,然后根据角平分线的定义和三角形的外角性质即可求出答案.【详解】解:如图,作射线BF 与射线BE ,△AB △CD ,△△ABE =△4,△1=△2,△△BED=90°,△BED=△4+△EDC,△△ABE+△EDC=90°,△BF平分△ABE,DF平分△CDE,△△1+△3=12△ABE+12△EDC=45°,△△5=△2+△3,△△5=△1+△3=45°,即△BFD=45°,故答案为:45°.【点拨】本题考查了平行线的性质、角平分线的定义和三角形的外角性质,属于常考题型,熟练掌握上述知识是解题的关键.28.6【分析】根据三角形的一个外角等于与它不相邻的两个内角的和得到△A=2△A1,同理可得△A1=2△A2,即△A=22△A2,因此找出规律.【详解】由三角形的外角性质得,△ACD=△A+△ABC,△A1CD=△A1+△A1BC,△△ABC的平分线与△ACD的平分线交于点A1,△△A1BC=12△ABC,△A1CD=12△ACD,△△A1+△A1BC=12(△A+△ABC)=12△A+△A1BC,△A1B、A1C分别平分△ABC和△ACD,△△ACD=2△A1CD,△ABC=2△A1BC,而△A1CD=△A1+△A1BC,△ACD=△ABC+△A,△△A=2△A1,△△A1=12△A,同理可得△A1=2△A2,△△A2=14△A,△△A=2n△A n,△△A n=(12)n△A=642n,△△A n的度数为整数,△n=6.故答案为:6.【点拨】本题考查了三角形的内角和定理,三角形的一个外角等于与它不相邻的两个内角的和的性质,角平分线的定义,熟记性质并准确识图然后求出后一个角是前一个角的12是解题的关键.29.10【分析】依据AE是△ABC的边BC上的中线,可得CE=BE,再根据AE=AE,△ACE的周长比△AEB 的周长多2cm,即可得到AC的长.【详解】解:△AE是△ABC的边BC上的中线,△CE=BE,又△AE=AE,△ACE的周长比△AEB的周长多2cm,△AC-AB=2cm,即AC-8=2cm,△AC=10cm,故答案为:10;【点拨】本题考查了三角形的角平分线、中线和高,求出两个三角形的周长的差等于两边的差是解题的关键.30.3 2【分析】利用三角形的中线把三角形分成面积相等的两部分解决问题即可.【详解】解:△BD=DC ,△S △ABD =S △ADC =12×6=3(cm 2), △AE=DE ,△S △AEB =S △AEC =12×3=32(cm 2), △S △BEC =6-3=3(cm 2),△EF=FC ,△S △BEF =12×3=32(cm 2), 故答案为32. 【点拨】本题考查三角形的面积,三角形的中线等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.31.30【分析】根据部分三角形的高相等,由这些三角形面积与底边的比例关系可求三角形ABC 的面积.【详解】解:在BDG 和GDC 中,△2BD DC =,△2BDG GDC SS =,8BGD S =△, △4GDC S =,△点E 是AC 的中点,3AGE S = △ 3.GEC AGE SS == △84315BEC BDG GDC GEC SS S S =++=++=, △230.ABC BEC S S ==故答案为:30.【点拨】本题中由于部分三角形的高相等,可根据这些三角形面积的比等于底边的比例关系来求三角形ABC的面积是解题关键.32.4【分析】根据三角形的中线把三角形的面积分成相等的两部分,知△ABC的面积即为阴影部分的面积的3倍.【详解】解:△△ABC的三条中线AD、BE,CF交于点G,AG:GD=2:1,△AE=CE,△S△CGE=S△AGE=13S△ACF,S△BGF=S△BGD=13S△BCF,△S△ACF=S△BCF=12S△ABC=12×12=6,△S△CGE=13S△ACF=13×6=2,S△BGF=13S△BCF=13×6=2,△S阴影=S△CGE+S△BGF=4.故阴影部分的面积为4.故答案为:4.【点拨】本题考查了三角形的面积,三角形中线的性质,正确的识别图形是解题的关键.33.6【分析】根据D,E分别是三角形的中点,得出G是三角形的重心,再利用重心的概念可得:2GD =AG进而得到S△ABG:S△ABD=2:3,再根据AD是△ABC的中线可得S△ABC=2S△ABD进而得到答案.【详解】解:△△ABC的两条中线AD、BE相交于点G,△2GD=AG,△S△ABG=2,△S△ABD=3,△AD是△ABC的中线,△S△ABC=2S△ABD=6.故答案为:6.此题主要考查了重心的概念和性质:三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的两倍.34.20212θ【分析】根据三角形的一个外角等于与它不相邻的两个内角的和,可得ACD A ABC ∠=∠+∠,111ACD A A BC ∠=∠+∠,根据角平分线的定义可得112A BC ABC ∠=∠,112ACD ACD ∠=∠,然后整理得到112A A ∠=∠,同理可得2112A A ∠=∠,⋯从而判断出后一个角是前一个角的一半,然后表示出n A ∠即可.【详解】解:1A B 平分ABC ∠,1A C 平分ACD ∠,112A BC ABC ∴∠=∠,112ACA ACD ∠=∠, 111ACD A A BC ∠=∠+∠, ∴11122ACD A ABC ∠=∠+∠, 11()2A ACD ABC ∴∠=∠-∠, A ABC ACD ∠+∠=∠,A ACD ABC ∴∠=∠-∠,112A A ∴∠=∠, 1221122A A A ∠=∠=∠,⋯, 以此类推,12n n A A ∠=∠, 202120212021122A A θ∴∠=∠=. 故答案为:20202θ.本题考查了三角形的内角和定理,三角形的一个外角等于与它不相邻的两个内角的和的性质,角平分线的定义,熟记性质并准确识图然后求出后一个角是前一个角的一半是解题的关键.35.4θ 2n θ 【分析】根据三角形的外角性质可得△ACD=△A+△ABC ,△A 1CD=△A 1+△A 1BC ,根据角平分线的定义可得△A 1BC=12△ABC ,△A 1CD=12△ACD ,整理得到△A 1=12△A ,同理可得△A 2=12△A 1,从而判断出后一个角是前一个角的12,然后表示出△A n 即可得答案. 【详解】△ACD ∠是ABC 的外角,△A 1CD 是△A 1BC 的外角,△△ACD=△A+△ABC ,△A 1CD=△A 1+△A 1BC ,△ABC ∠的平分线与ACD ∠的平分线交于点1A ,△△A 1BC=12△ABC ,△A 1CD=12△ACD , △△A 1=12△A , 同理可得△A 2=12△A 1=14△A , △△A=θ,△△A 2=4θ, 同理:△A 3=12△A 2=382θθ=, △A 4=12△A 3=4162θθ= ……△△A n =2n θ. 故答案为:4θ,2nθ 【点拨】 本题考查了三角形的外角性质及角平分线的定义,三角形的一个外角等于与它不相邻的两个内角的和;熟记性质并准确识图,求出后一个角是前一个角的12是解题的关键.36.8【分析】利用三角形的中线将三角形分成面积相等的两部分,S△ABD=S△ACD=12S△ABC,S△BDE=12S△ABD,S△ADF=12S△ADC,再得到S△BDE=14S△ABC,S△DEF=18S△ABC,所以S△ABC=83S阴影部分.【详解】解:△D为BC的中点,△12ABD ACD ABCS S S==△△△,△E,F分别是边,AD AC上的中点,△111,,222 BDE ABD ADF ADC DEF ADFS S S S S S===,△111,448 BDE ABC DEF ADC ABCS S S S S===,△113488BDE DEF ABC ABC ABCS S S S S S=+=+=阴影部分,△888333ABCS S⨯===阴影部分,故答案为:8.【点拨】本题考查了三角形的面积:三角形的面积等于底边长与高线乘积的一半,即S△=12×底×高.三角形的中线将三角形分成面积相等的两部分.37.18【分析】连接BG,根据重心的性质得到△BGC的面积,再根据D点是BC的四等分点得到△GDC的面积,故可求解.【详解】连接BG,△G为ABC纸片的重心,△S△BGC=13S△ABC=8△D为BC边上的一个四等分点(BD CD)△S△DGC=34S△BGC=6△剪去GDC,则剩下纸片的面积为24-6=18故答案为:18.【点拨】此题主要考查重心的性质,解题的关键是熟知重心的性质及面积的换算关系.38.2【分析】S△ADF-S△BEF=S△ABD-S△ABE,所以求出三角形ABD的面积和三角形ABE的面积即可,因为BC=3BE,点D是AC的中点,且S△ABC=12,就可以求出三角形ABD的面积和三角形ABE 的面积.【详解】解:△点D是AC的中点,△AD=12 AC,△S△ABC=12,△S△ABD=12S△ABC=12×12=6.△BC=3BE,△S△ABE=13S△ABC=13×12=4,△S△ABD-S△ABE=(S△ADF+S△ABF)-(S△ABF+S△BEF)=S△ADF-S△BEF,即S△ADF-S△BEF=S△ABD-S△ABE=6-4=2,故答案为:2.【点拨】本题考查三角形的面积,解题的关键是要能根据已知条件求出三角形的面积并对要求的两个三角形的面积之差进行变化.39.(1)212cm ;(2)作图见解析,245cm 【分析】(1)结合题意,根据三角形面积计算公式分析,即可得到答案;(2)过点A 作AD BC ⊥交BC 于点D ,结合三角形面积公式计算,即可得到答案.【详解】(1)△BE△AC , AC =8cm ,BE =3cm △211=831222ABC S AC BE cm ⨯=⨯⨯=△ (2)如图,过点A 作AD BC ⊥交BC 于点D△211=1222ABC S AC BE BC AD cm ⨯=⨯=△ △22122455ABC S AD BC ⨯===△cm . 【点拨】本题考查了三角形的知识;解题的关键是熟练掌握三角形高的性质,从而完成求解. 40.(1)55CBE ∠=︒;(2)25.F ∠=︒【分析】(1)由30,80,A ACB ∠=︒∠=︒ 利用三角形的外角的性质求解,CBD ∠ 再利用角平分线的含义求解CBE ∠即可得到答案;(2)先由三角形的外角的性质求解,CEB ∠ 再利用平行线的性质求解F ∠即可得到答案.【详解】解:(1)30,80,A ACB ∠=︒∠=︒3080110,CBD A ACB ∴∠=∠+∠=︒+︒=︒ BE 平分,CBD ∠1111055.22CBE CBD ∴∠=∠=⨯︒=︒ (2)80,55,ACB CBE ∠=︒∠=︒805525,CEB ACB CBE ∴∠=∠-∠=︒-︒=︒//,BE DF25.F CEB ∴∠=∠=︒【点拨】本题考查的是三角形的外角的性质,平行线的性质,掌握以上知识是解题的关键.41.(1)见解析;(2)60°.【分析】(1)连接DE ,根据垂直定义得到△ADC =△BDC =90°,根据直角三角形的性质可得DE =CE ,根据线段垂直平分线的性质可得结论;(2)根据等边对等角的性质和三角形外角的性质及角的和差倍数关系即可求证结论.【详解】(1)证明:连接DE ,△CD 是AB 边上的高,△△ADC =△BDC =90°,△BE 是AC 边上的中线,△AE =CE ,△DE =CE ,△BD =CE ,△BD =DE ,△点D 在BE 的垂直平分线上;(2)解:△DE =AE ,△△A =△ADE ,△△ADE =△DBE+△DEB ,△BD =DE ,△△DBE =△DEB ,△△A =△ADE =2△ABE ,△△BEC =△A+△ABE ,△△BEC=3△ABE,△△ABE=20°,△△BEC=60°.【点拨】本题考查线段垂直平分线的性质、直角三角形斜边中线定理、等边对等角的性质、三角形外角和性质,解题的关键是熟练掌握上述所学知识.42.(1)10°;(2)△DAE=12(△C−△B);(3)45°.【分析】(1)根据三角形的内角和定理可求得△BAC=80°,由角平分线的定义可得△CAD 的度数,利用三角形的高线可求△CAE得度数,进而求解即可得出结论;(2)根据(1)的推理方法可求解△DAE、△B、△C的数量关系;(3)设△ACB=α,根据角平分线的定义得△CAG=12△EAC=12(90°−α)=45°−12α,△FCG=12△BCF=12(180°−α)=90°−12α,再利用三角形外角的性质即可求得结果.【详解】解:(1)△△B=40°,△C=60°,△BAC+△B+△C=180°,△△BAC=80°,△AD平分△BAC,△△CAD=△BAD=12△BAC=40°,△AE是△ABC的高,△△AEC=90°,△△C=60°,△△CAE=90°−60°=30°,△△DAE=△CAD−△CAE=10°;(2)△△BAC+△B+△C=180°,△△BAC=180°−△B−△C,△AD平分△BAC,。
最新北师大版七年级下册三角形全等(SSS)的证明试题以及答案(共41道证明题)
最新七年级下册三角形全等的证明试题1、如图,AB=DE,AC=EF,BE=CF,证明∠A=∠D。
2、如图,AB=CD,BE=DF,AF=EC,证明AB∥CD。
3、如图,AC=DF,EF=BC,AD=BE,证明∠F=∠C。
4、如图,AB=AC,AD=AE,BE=DC,证明∠ABD=∠AEC。
5、如图,AB=AD,AE=AC,BC=ED,证明∠ABE=∠ACD。
6、如图,AD=AB,DC=BC,证明∠B=∠D。
7、如图,AB=AC,BD=DC,证明∠1=∠2.8、如图,∠C=90°,AD=BD,DE=DC,AE=BC,说明AB和DE的关系。
9、如图,AB=DE,BC=EF,AF=CD,证明AB∥DE。
10、如图,AB=AC,D是BC的中点,证明AD⊥BC。
11、如图,AE=DF,AB=CD,CE=BF,证明AE∥DF。
12、如图,AB=AD,AE=AC,BC=DE,证明∠E=∠C。
13、如图,BC=BE,DE=DC,∠C=90°,证明(1)DE⊥AB(2)BD是∠ABC的角平分线。
14、如图,AB=EF,AD=CF,DE=BC,证明∠B=∠E。
15、如图,OA=OB,AC=BD,AD=BC,证明∠ACB=∠ADB。
16、如图,AD=BC,A0=OB,OC=OD,证明∠BAD=∠ABC。
17、如图,AD=BD,BE=AC,AD+DE=BC,AD⊥BC,证明BE⊥AC。
18、如图,AD=BC,AF=EC,DE=BF,证明DE∥BF,AD∥BC。
19、如图,AB=DC,AC=BD,AO=OD,证明∠B=∠C。
20、如图,AB=AD,AE=AC,BC=DE,证明∠1=∠2.21、如图,AC⊥CE,AC=CE,AB=CD,且AB+DE=BD,AB∥DE。
22、如图,AE=AB,AC=AF,EC=BF,证明∠BAE=∠CAF。
23、如图,AD=BC,AC=BD,证明∠ADO=∠BCO。
24、如图,AB=AC,BD=CE,AD=AE,证明∠ABC=∠ADE。
新北师大版七年级数学下册第三章《变量之间的关系》单元复习题含答案解析 (32)
一、选择题(共10题)1.星期六,小亮从家里骑自行车到同学家去玩,然后返回如图是他离家的路程y(km)与时间x(min)的图象,根据图象信息,下列说法不一定正确的是( )A.小亮到同学家的路程是3kmB.小亮在同学家逗留的时间是1hC.小亮去时走上坡路,回家时走下坡路D.小亮回家时用的时间比去时用的时间少2.如图,在△ABC中,∠B=90∘,AB=3cm,BC=6cm,动点P从点A开始沿AB向点B以1cm/s的速度移动,动点Q从点B开始沿BC向点C以2cm/s的速度移动.若P,Q 两点分别从A,B两点同时出发,P点到达B点运动停止,则△PBQ的面积S随出发时间t 的函数关系图象大致是( )A.B.C.D.3.如图,在Rt△ABC中,∠ACB=90∘,AC=BC=2√2,CD⊥AB于点D.点P从点A出发,沿A→D→C的路径运动,运动到点C停止,过点P作PE⊥AC于点E,作PF⊥BC于点F.设点P运动的路程为x,四边形CEPF的面积为y,则能反映y与x之间函数关系的图象是( )A.B.C.D.4.如图,正方形ABCD的边长为4,点E是AB的中点,点P从点E出发做匀速运动,沿E→A→D→C移动至终点C.设P点经过的路径长为x,△CPE的面积为y,则下列图象能大致反映y与x的函数关系的是( )A.B.C.D.5.甲、乙两队参加了“端午情,龙舟韵”赛龙舟比赛,两队在比赛时的路程s(米)与时间t(秒)之间的函数图象如图所示,请你根据图象判断,下列说法正确的是( )A.乙队率先到达终点B.甲队比乙队多走了126米C.在47.8秒时,两队所走路程相等D.从出发到13.7秒的时间段内,乙队的速度慢6.甲、乙两人分别从A,B两地同时出发,相向而行,匀速前往B地、A地,两人相遇时停留了4min,又各自按原速前往目的地,甲、乙两人之间的距离y(m)与甲所用时间x(min)之间的函数关系如图所示.有下列说法:①A,B之间的距离为1200m;②乙行走的速度是甲的1.5倍;③ b=960;④ a=34.以上结论正确的有( )A.①②B.①②③C.①③④D.①②④7.如图a,甲、乙两人沿湟水河滨水绿道同向而行,甲步行的速度为100米/分,乙骑公共自行车的速度为v米/分,起初甲在乙前a米处,两人同时出发,当乙追上甲时,两人停止前行.设x 分钟后甲、乙两人相距y米,y与x的函数关系如图b所示,有以下结论:①图a中a为1000;②图a中EF表示1000−200x;③乙的速度为200米/分;④若两人在相距a米处同时相向而行,10分钟后相遇.其中正确的结论是( )3A.①②B.③④C.①②③D.①③④8.已知小强家、体育馆、文具店在同一直线上如图中的图象反映的过程是:小强从家跑步去体育馆,在那里锻炼了一阵后又走到文具店去买笔,然后散步回家.下列信息中正确的是( )A.小强在体育馆花了20分钟锻炼B.小强从家跑步去体育场的速度是10km/hC.体育馆与文具店的距离是3kmD.小强从文具店散步回家用了90分钟9.某校在对某宿舍进行消毒的过程中,先经过5min的集中药物喷洒,再封闭宿舍10min,然后打开门窗进行通风,室内每立方米空气中含药量y(mg/m3)与药物在空气中的持续时间x(min)之间的函数关系,在打开门窗通风前分别满足两个一次函数,在通风后又成反比例,如图所示.下面四个选项中错误的是( )A.经过5min集中喷洒药物,室内空气中的含药量最高达到10 mg/m3B.室内空气中的含药量不低于8 mg/m3的持续时间达到了11minC.当室内空气中的含药量不低于5 mg/m3且持续时间不低于35分钟,才能有效杀灭某种传染病毒.此次消毒完全有效D.当室内空气中的含药量低于2 mg/m3时,对人体才是安全的,所以从室内空气中的含药量达到2 mg/m3开始,需经过59min后,学生才能进入室内10.如图是甲、乙两车在某时段速度随时间变化的图象,下列结论错误的是( )A.乙前4秒行驶的路程为48米B.在0到8秒内甲的速度每秒增加4米/秒C.两车到第3秒时行驶的路程相等D.在4至8秒内甲的速度都大于乙的速度二、填空题(共7题)11.A,B两地相距240km,甲货车从A地以40km/h的速度匀速前往B地,到达B地后停止,在甲出发的同时,乙货车从B地沿同一公路匀速前往A地,到达A地后停止,两车之间的路程y(km)与甲货车出发时间x(h)之间的函数关系如图中的折线CD−DE−EF所示.其中点C 的坐标是(0,240),点D的坐标是(2.4,0),则点E的坐标是.12.甲、乙两地相距300km,一辆货车和一辆轿车先后从甲地出发驶向乙地,如图所示,线段OA和折线BCDE,分别表示货车和轿车离开甲地的距离y(km)与货车离开甲地的时间x(h)之间的函数关系.小明根据图象,得到下列结论:①轿车在途中停留了半小时;②货车从甲地到乙地的平均速度是60km/h;③轿车从甲地到乙地用的时间是4.5小时;④轿车出发后3小时追上货车.则小明得到的结论中正确的是(只填序号).13.一辆慢车与一辆快车分别从甲、乙两地同时出发,匀速相向而行,两车在途中相遇后分别按原速同时驶往甲地,两车之间的距离s(km)与慢车行驶时间t(h)之间的函数图象如图所示,则慢车从甲地出发又回到甲地,一共行驶了km.14.甲,乙两车分别从A,B两地同时出发,匀速相向而行,两车相遇后甲车停下来休息了2小时,然后以原速继续向B行驶,到达后立即掉头向A行驶,乙车没有休息,以原速继续向A行驶,到达后立即掉头向B行驶,假设掉头时间忽略不计,掉头后速度保持不变,两车到第一次相遇地点的路程之和S(千米)与甲车出发的时间t(小时)的部分函数图象如图所示,则当乙车到达A地时,甲车与B地相距千米.15.星期一升旗仪式前,李雷和韩梅梅两位数学课代表因为清查作业耽搁了时间,打算匀速从教室跑到600米外的中心广场参加升旗仪式,出发时李雷发现鞋带松了,停下来系鞋带,韩梅梅继续跑往中心广场,李雷系好鞋带后立即沿同一路线开始追赶韩梅梅,李雷在途中追上韩梅梅后,担心迟到继续以原速度往前跑,李雷到达操场时升旗仪式还没有开始,于是李雷站在广场等待,韩梅梅继续跑往中心广场.设李雷和韩梅梅两人相距s(米),韩梅梅跑步的时间为t(秒),s关于t 的函数图象如图所示,则在整个运动过程中,李雷和韩梅梅第一次相距80米后,再过秒钟两人再次相距80米.16.甲乙两人在直线跑道上同起点、同终点、同方向匀速跑步500米,先到终点的人原地休息,已知甲先出发2秒,在跑步过程中,甲乙两人间的距离y(米)与乙出发的时间t(秒)之间的关系如图所示,请求出甲乙两人相距8米时,甲出发秒.17.甲、乙两人在同一直线道路上同起点、同方向、同时出发,分别以不同的速度匀速跑步1800米,当甲第一次超出乙300米时,甲停下来等候乙.甲、乙会合后,两人分别以原来的速度继续跑向终点,先到终点的人在终点休息,在整个跑步的过程中,甲、乙两人之间的距离y(米)与乙出发的时间x(s)之间的关系如图所示,则当甲到达终点时,乙跑了米.三、解答题(共8题)18. 如图,在平面直角坐标系 xOy 中,直线 y =x +3 与函数 y =kx(x >0)的图象交于点A (1,m ),与 x 轴交于点B .(1) 求 m ,k 的值;(2) 过动点 P (0,n )(n >0)作平行于 x 轴的直线,交函数 y =kx (x >0)的图象于点 C ,交直线 y =x +3 于点 D .①当 n =2 时,求线段 CD 的长;②若 CD ≥OB ,结合函数的图象,直接写出 n 的取值范围.19. 如图所示是由若干个点组成的形如三角形的图案,每条边(包括两个顶点)有 n (n ≥2,n 为整数)个点,每个图案中点的总数是 S .(1) 请按上述规律推断出 S 与 n 的关系式,S 可以看成 n 的函数吗? (2) 当 n =15 时,S 的值是多少?20. 上网费包括网络使用费(每月 38 元)和上网通信费(每小时 2 元).某电信局对拔号上网的用户实行分时段优惠,具体政策如下表(包括最大值,不包括最小值):每月上网总时间优惠标准0∼30 h 无优惠30∼50 h 通信费优惠30%50∼100 h 通信费优惠40%100 h 以上通信费优惠60%例如:某户某月上网总时间为 42 h ,则他应缴上网费为:38+2×30+(42−30)×(1−30%)×2=114.8 元.你能根据上面提供的例子完成下表吗?每月上网总时间应缴上网费20 h 40 h 60 h 21. 已知 A ,B 两地之间有一条 270 千米的公路,甲、乙两车同时出发,甲车以 60 千米/时的速度沿此公路从 A 地匀速开往 B 地,乙车从 B 地沿此公路匀速开往 A 地,两车分别到达目的地后停止.甲、乙两车相距的路程 y (千米)与甲车的行驶时间 x (时)的函数关系如图所示.(1) 乙车的速度为 千米/时,a = ,b = ; (2) 求甲、乙两车相遇后,y 与 x 之间的函数关系式;(3) 当甲车到达距 B 地 70 千米处时,求甲、乙两车之间的路程.22. 问题:探究函数的图象与性质.小华根据学习函数的经验,对函数的图象与性质进行了探究.下面是小华的探究过程,请补充完整:在函数 y =∣x ∣−2 中,自变量 x 可以是任意实数.(1) 下表是 y 与 x 的几组对应值.x ⋯−3−2−10123⋯y ⋯10−1−2−10m⋯① m = ; ②若 A (n,8),B (10,8) 为该函数图象上不同的两点,则 n = ;(2) 如下图,在平面直角坐标系 xOy 中,描出以上表中各对对应值为坐标的点.并根据描出的点,画出该函数的图象;根据函数图象可得: ①该函数的最小值为 ;②已知直线 y 1=12x −12 与函数 y =∣x ∣−2 的图象交于 C ,D 两点,当 y 1>y 时 x 的取值范围是 .23.如图,点C是以点O为圆心,AB为直径的半圆上的动点(不与点A,B重合),AB=6cm,过点C作CD⊥AB于点D,E是CD的中点,连接AE并延长交AB⏜于点F,连接FD.小腾根据学习函数的经验,对线段AC,CD,FD的长度之间的关系进行了探究.下面是小腾的探究过程,请补充完整.(1) 对于点C在AB⏜上的不同位置,画图、测量,得到了线段AC,CD,FD的长度的几组值,如下表:位置1位置2位置3位置4位置5位置6位置7位置8AC/cm0.10.5 1.0 1.9 2.6 3.2 4.2 4.9CD/cm0.10.5 1.0 1.8 2.2 2.5 2.3 1.0FD/cm0.2 1.0 1.8 2.8 3.0 2.7 1.80.5在AC,CD,FD的长度这三个量中,确定的长度是自变量,的长度和的长度都是这个自变量的函数;(2) 在同一平面直角坐标系xOy中,画出(1)中所确定的函数的图象;(3) 结合函数图象,解答问题:当CD>DF时,AC的长度的取值范围是.24.如图,半圆O的直径AB=6cm,点M在线段AB上,且BM=1cm,点P是AB⏜上的动点,过点A作AN⊥直线PM,垂足为点N.小东根据学习函数的经验,对线段AN,MN,PM的长度之间的关系进行了探究.下面是小东的探究过程,请补充完整:(1) 对于点P在AB⏜上的不同位置,画图、测量、得到了线段AN,MN,PM的长度的几何值,如表:位置1位置2位置3位置4位置5位置6位置7AN/cm0.00 3.53 4.58 5.00 4.58 4.000.00MN/cm 5.00 3.53 2.000.00 2.00 3.00 5.00PM/cm 1.00 1.23 1.57 2.24 3.18 3.74 5.00在AN,MN,PM的长度这三个量中,确定的长度是自变量,和的长度都是这个自变量的函数;(2) 在同一直角坐标系xOy中,画出(1)中所确定的函数的图象.(3) 结合函数图象,解决问题:当AN=MN时,PM的长度约为cm.25.甲,乙两辆汽车先后从A地出发到B地,甲车出发1小时后,乙车才出发,如图所示的l1和l2表示甲,乙两车相对于出发地的距离y(km)与追赶时间x(h)之间的关系:(1) 哪条线表示乙车离出发地的距离y与追赶时间x之间的关系?(2) 甲,乙两车的速度分别是多少?(3) 试分别确定甲,乙两车相对于出发地的距离y(km)与追赶时间x(h)之间的关系式.(4) 乙车能在1.5小时内追上甲车吗?若能,说明理由.若不能,求乙车出发几小时才能追上甲?答案一、选择题(共10题)1. 【答案】C【知识点】用函数图象表示实际问题中的函数关系2. 【答案】C【解析】根据题意表示出△PBQ的面积S与t的关系式.【知识点】图像法、解析式法3. 【答案】A【知识点】用函数图象表示实际问题中的函数关系4. 【答案】C【解析】通过已知条件可知,当点P与点E重合时,△CPE的面积为0;当点P在EA上运动时,△CPE的EP边上的高BC不变,则其面积是x的一次函数,面积随x的增大而增大,当x=2时,有最大面积为4;当点P在AD边上运动时,△CPE的底边EC不变,其上的高越来越大,则其面积是x的一次函数,且面积随x的增大而增大,当x=6时,有最大面积为8;当点P在DC边上运动时,△CPE的CP边上的高(点E到CD的距离,即BC的长)不变,底边CP越来越小,则其面积是x的一次函数,面积随x的增大而减小,当x=10时,有最小面积为0.【知识点】用函数图象表示实际问题中的函数关系5. 【答案】C【解析】A选项,由函数图象可知,甲队走完全程需要82.3秒,乙队走完全程需要90.2秒,甲队率先到达终点,本选项错误;B选项,由函数图象可知,甲、乙两队都走了300米,路程相同,本选项错误;C选项,由函数图象可知,在47.8秒时,两队所走路程相等,均为174米,本选项正确;D选项,由函数图象可知,从出发到13.7秒的时间段内,甲队的速度慢,本选项错误.【知识点】用函数图象表示实际问题中的函数关系6. 【答案】D【解析】①当x=0时,y=1200,∴A,B之间的距离为1200m,结论①正确;②乙的速度为1200÷(24−4)=60(m/min),甲的速度为1200÷12−60=40(m/min),60÷40=1.5,∴乙行走的速度是甲的1.5倍,结论②正确;③ b=(60+40)×(24−4−12)=800,结论③错误;④ a=1200÷40+4=34,结论④正确.【知识点】用函数图象表示实际问题中的函数关系7. 【答案】A【解析】由题图可知,a=100,故①正确;=300(米/分),故③错误;乙的速度为1000+100×3−4003题图中EF表示1000+100x−300x=1000−200x,故②正确;令1000=300x+100x,得x=2.5,即两人在相距a米处同时相向而行,2.5分钟后相遇,故④错误.故选A.【知识点】用函数图象表示实际问题中的函数关系8. 【答案】B【解析】A.小强在体育馆花了60−30=30分钟锻炼,错误;=10km/h,正确;B.小强从家跑步去体育场的速度是50.5C.体育馆与文具店的距离是5−3=2km,错误;D.小强从文具店散步回家用了200−130=70分钟,错误.【知识点】用函数图象表示实际问题中的函数关系9. 【答案】C【知识点】用函数图象表示实际问题中的函数关系10. 【答案】C【解析】A.根据图象可得,乙前4秒的速度不变,为12米/秒,则行驶的路程为12×4=48米,故A正确;B.根据图象得:在0到8秒内甲的速度是一条过原点的直线,即甲的速度从0均匀增加到32=4米/秒,故B正确;米/秒,则每秒增加328C.由于甲的图象是过原点的直线,斜率为4,所以可得v=4t(v,t分别表示速度、时间),将v=12m/s代入v=4t得t=3s,则t=3s前,甲的速度小于乙的速度,所以两车到第3秒时行驶的路程不相等,故C错误;D.在4至8秒内甲的速度图象一直在乙的上方,所以甲的速度都大于乙的速度,故D正确;由于该题选择错误的,故选:C.【知识点】用函数图象表示实际问题中的函数关系二、填空题(共7题)11. 【答案】(4,160)【知识点】用函数图象表示实际问题中的函数关系12. 【答案】①②【解析】由图象可得,轿车在途中停留了2.5−2=0.5(小时),故①正确;货车从甲地到乙地的平均速度是:300÷5=60(km/h),故②正确;轿车从甲地到乙地用的时间是4.5−1=3.5小时,故③错误;在DE段,轿车的速度为(300−80)÷(4.5−2.5)=110(km/h),令60t=80+110(t−2.5),解得,t=3.9,即轿车出发后3.9−1=2.9小时追上货车,故④错误.【知识点】用函数图象表示实际问题中的函数关系13. 【答案】390【知识点】用函数图象表示实际问题中的函数关系14. 【答案】40【解析】将图中各段标上字母a,b,c,d,e,f,如图所示:根据题意:t=0时S=120,则A,B两地相距120千米,t=127时,S=0,则甲、乙两相遇,故甲乙两车的速度和为120127=70千米/小时,bc段S均匀增大,则该段只有乙车在运动向A地,cd段S增大比bc段大,则乙车向A地运动,甲车向B地运动,d点时乙车到达A地,并开始折回向B地,de段S增大速度放缓,则甲车向B地运动,乙车向B地运动,且甲车速度大于乙车,ef段S减小,则甲向A地运动,乙车向B地运动,则e点时即t=5时,甲到达B地,∵甲在t=127时,停下来休息2小时,∴甲由A地到B地需用5−2=3小时,∴甲的速度为1203=40千米/小时,∴乙的速度为70−40=30千米/小时,∴乙从两车第一次相遇到达A地所用的时间为12030−127=167小时,∴甲车此时共走了40×127+40×(167−2)=80千米,此时甲车与B地相距120−80=40千米.【知识点】用函数图象表示实际问题中的函数关系15. 【答案】60【解析】根据题意,前10秒李雷没跑,韩梅梅跑了40米,∴韩梅梅的速度为40÷10=4米/秒.10秒至30秒,20秒中,李雷在追韩梅梅,设李雷的速度为x米/秒,则(x−4)⋅20=40,解得x=6.李雷和韩梅梅相遇后,距离越来越远,当距离为80米时,需要时间为80÷(6−4)=40秒.此时韩梅梅跑步的时间为40+30=70秒.李雷在韩梅梅出发后110秒到达目的地之后李雷到达,韩梅梅继续前进,当她距目的地80米时,就是距离李雷80米,此时距离她出发(600−80)÷4=120秒.∴李雷和韩梅梅第一次相距80米后,再过120−70=60秒钟两人再次相距80米.【知识点】用函数图象表示实际问题中的函数关系16. 【答案】2,16,123【解析】由图象,得甲的速度为:8÷2=4米/秒,乙的速度为:500÷100=5米/秒,乙走完全程时甲乙相距的路程为:b=500−4(100+2)=92米,乙追上甲的时间为:a=8÷(5−4)=8秒,乙出发后甲走完全程所用的时间为:c=500÷4−2=123秒.当甲出发2秒时;甲在乙前面8米;在跑步途中,乙在甲前面8米,5t−4t=2×4+8,解得t=16,即甲出发16秒时,乙在甲前面8米;当乙到达终点,甲还在跑时,(500−8)÷4=123秒,即甲出发123秒时,甲乙相距8米.综上所述,甲乙两人相距8米,甲出发2秒、16秒或123秒.【知识点】用函数图象表示实际问题中的函数关系17. 【答案】1380【解析】乙的速度18001200=1.5m/s,甲的速度1.5+300300=2.5m/s,甲、乙相遇时甲跑2.5×300=750m,离终点1050=1800−750,=420s,甲到终点还需10502.5乙跑420s跑了420×1.5=630m,∴甲到终点,乙一共跑了750+630=1380m.【知识点】用函数图象表示实际问题中的函数关系三、解答题(共8题)18. 【答案】(1) ∵直线y=x+3经过点A(1,m),∴m=4.的图象经过点A(1,4),又∵函数y=kx∴k=4.(2) ①当n=2时,点P的坐标为(0,2),∴点C的坐标为(2,2),点D的坐标为(−1,2).∴CD=3.② 0<n≤2或n≥3+√13.【知识点】反比例函数与方程、不等式、反比例函数的解析式19. 【答案】;(1) 当n=2时,S=3=2×32当n=3时,S=6=3×4;2当n=4时,S=10=4×5;⋯.2所以S=n(n+1)(n≥2,n为整数).2S可以看成n的函数.=120.(2) 当n=15时,S=15×(15+1)2【知识点】解析式法20. 【答案】78元;112元;138元.【解析】20h时:38+2×20=78元;40h时:38+2×30+(40−30)×(1−30%)×2=112元;60h时:38+2×30+20×(1−30%)×2+10×(1−40%)×2=138元.【知识点】列表法21. 【答案】(1) 75;3.6;4.5(2) 如图,根据(1)可得 A (2,0),B (3.6,216),C (4.5,270).设当 2<x ≤3.6 时,线段 AB 的解析式为 y =k 1x +b 1(k 1≠0),将 A (2,0),B (3.6,216) 分别代入 y =k 1x +b 1,得{2k 1+b 1=0,3.6k 1+b 1=216, 解得 {k 1=135,b 1=−270, ∴ 当 2<x ≤3.6 时,y =135x −270.设当 3.6<x ≤4.5 时,线段 BC 的解析式为 y =k 2x +b 2,将 B (3.6,216),C (4.5,270) 分别代入 y =k 2x +b 2,得{3.6k 2+b 2=216,4.5k 2+b 2=270, 解得 {k 2=60,b 2=0, ∴ 当 2<x ≤3.6 时,y =60x . ∴y ={135x −270,2<x ≤3.660x, 3.6<x ≤4.5.(3) ∵ 甲车的速度为 60 千米/时,∴ 当甲车到达距 B 地 70 千米时行驶的时间为 270−7060=103时,由(2)知当 2<x ≤3.6 时,y =135x −270, ∴ 将 x =103代入 y =135x −270,得 y =135×103−270,∴y =180.答:当甲车到达距 B 地 70 千米处时,甲、乙两车之间的路程为 180 千米. 【解析】(1) 设乙车的速度为 v 千米/时,根据题图中的图象可知甲、乙两车在行驶 2 小时后相遇,可得 2×60+2v =270,解得 v =75, ∴ 乙车的速度为 75 千米/时, ∴a =27075=3.6,b =27060=4.5.【知识点】用函数图象表示实际问题中的函数关系、行程问题22. 【答案】(1) 1;−10 (2) 如图. −2;−1≤x ≤3 【解析】(2) 解方程组 {y 1=12x −12,y =−x −2, 得 {x =−1,y =−1.解方程组 {y 1=12x −12,y =x −2,得 {x =3,y =1,所以 C (−1,−1),D (3,1). 【知识点】图像法、解析式法23. 【答案】(1) AC;CD;FD(2) 如图所示.(3) 3.5cm<x<5cm【知识点】列表法、图像法24. 【答案】(1) PM;AN;MN(2) 如图所示:(3) 1.23或4.06【知识点】常量、变量、图像法25. 【答案】(1) 由函数图象,得l2表示乙车离出发地的距离y与追赶时间x之间的关系.(2) 甲车的速度为180−602=60km/h,乙车的速度为901=90km/h.(3) 甲车的函数的关系式为:y1=60x+60.乙车的函数关系式为:y2=90x.(4) 设乙车行驶a小时可以追上甲车,由题意,得90a=60+60a,解得:a=2.∵1.5<2,∴乙车不能在1.5小时内追上甲车.乙车追上甲车时,乙车行驶了2小时.【知识点】用函数图象表示实际问题中的函数关系。
新北师大版七年级数学下册第三章《变量之间的关系》单元复习题含答案解析 (30)
一、选择题(共10题)1.甲、乙两人以相同路线前往距离单位10千米的培训中心参加学习.图中l甲,l乙分别表示甲、乙两人前往目的地所走的路程S(千米)随时间t(分)变化的函数图象.以下说法:①乙比甲提前12分钟到达;②甲的平均速度为15千米/小时;③乙走了6千米后遇到甲;④乙出发6分钟后追上甲.其中正确的有( )A.1个B.2个C.3个D.4个2.如图是汽车行驶速度(千米/时)和时间(分)的关系图,下列说法中正确的个数为( )(1)汽车行驶时间为40分钟;(2)AB表示汽车匀速行驶;(3)在第30分钟时,汽车的速度是80千米/时;(4)第40分钟时,汽车停下来了.A.1个B.2个C.3个D.4个3.一根蜡烛长30cm,点燃后每小时燃烧5cm,燃烧时蜡烛剩余的长度ℎ(cm)和燃烧时间t(小时)之间的函数关系用图象可以表示为图中的( )A.B.C.D.4.已知菱形的面积为10,对角线的长分别为x和y,则y关于x的函数图象是( )A.B.C.D.5.甲、乙两车在某时间段内速度随时间变化的图象如图所示,下列结论:①乙车前4秒行驶的总路程为48米;②第3秒时,两车行驶的速度相同;③甲在8秒内行驶了256米;④乙车第8秒时的速度为2米/秒.其中正确的是( )A.①②③B.①②C.①③④D.①②③④6.小明从家出发沿笔直的公路去图书馆,在图书馆阅读书报后按原路回到家,如图,反映了小明离家的距离y(单位:km)与时间t(单位:h)之间的对应关系,下列描述错误的是( )A.小明家距图书馆3kmB.小明在图书馆阅读时间为2hC.小明在图书馆阅读书报和往返总时间不足4hD.小明去图书馆的速度比回家时的速度快7.三名快递员某天的工作情况如图所示,其中点A1,A2,A3的横、纵坐标分别表示甲、乙丙三名快递员上午派送快递所用的时间和件数;点B1,B2,B3的横、纵坐标分别表示甲、乙、丙三名快递员下午派送快递所用的时间和件数.有如下三个结论:①上午派送快递所用时间最短的是甲;②下午派送快递件数最多的是丙;③在这一天中派送快递总件数最多的是乙.上述结论中,所有正确结论的序号是( )A.①②B.①③C.②D.②③8.速度分别为100km/h和a km/h(0<a<100)的两车分别从相距s千米的两地同时出发,沿同一方向匀速前行.行驶一段时间后,其中一车按原速度原路返回,直到与另一车相遇时两车停止.在此过程中,两车之间的距离y(km)与行驶时间t(h)之间的函数关系如图所示.下列说法:① a=60;② b=2;③ c=b+52;④若s=60,则b=32.其中说法正确的是( )A.①②③B.②③④C.①②④D.①③④9.某市组织全民健身活动,有100名男选手参加由跑、跳、投等10个田径项目组成的“十项全能”比赛,其中25名选手的一百米跑成绩排名,跳远成绩排名与10项总成绩排名情况如图所示.甲、乙、丙表示三名男选手,下面有3个推断:①甲的一百米跑成绩排名比10项总成绩排名靠前;②乙的一百米跑成绩排名比10项总成绩排名靠后;③丙的一百米跑成绩排名比跳远成绩排名靠前.其中合理的是( )A.①B.②C.①②D.①③10.如图①,某矩形游泳池ABCD,BC长为25m,小林和小明分别在游泳池的AB,CD两边,同时沿各自的泳道朝另一边游泳,设他们游泳的时间为t(s),离AB边的距离为y(m),图②中的实线和虚线分别是小明和小林在游泳过程中y与t的函数图象(0≤t≤180).下面的四个结论:①小明游泳的平均速度小于小林游泳的平均速度;②小明游泳的路程大于小林游泳的路程;③小明游75m时,小林游了90m;④小明与小林共相遇5次.其中所有正确结论的序号是( )A.①②B.①③C.②④D.③④二、填空题(共7题)11.火车匀速通过隧道时,火车在隧道内的长度y(米)与火车行驶时间x(秒)之间的关系用图象描述如图所示,有下列结论:①火车的长度为120米;②火车的速度为30米/秒;③火车整体都在隧道内的时间为25秒;④隧道长度为750米.其中正确的结论是.(把你认为正确结论的序号都填上)12.如图是一辆慢车与一辆快车沿相同路线从A地到B地所行的路程与时间之间的函数图象,已知慢车比快车早出发2小时,则A,B两地的距离为km.13.为了做到合理用药,使药物在人体内发挥疗效作用,该药物的血药浓度应介于最低有效浓度与最低中毒浓度之间.某成人患者在单次口服1单位某药后,体内血药浓度及相关信息如下:根据图中提供的信息,下列关于成人患者使用该药物的说法中,①首次服用该药物1单位约10分钟后,药物发挥疗效作用;②每间隔4小时服用该药物1单位,可以使药物持续发挥治疗作用;③每次服用该药物1单位,两次服药间隔小于2.5小时,不会发生药物中毒.所有正确的说法是.14.由于持续高温和连日无雨,某水库的蓄水量随着时间的增加而减少.水库的蓄水量V(万立方米)与干旱持续时间t(天)之间的函数关系如图所示.根据图象回答下列问题:(1)干旱持续10天时,蓄水量为万立方米.(2)如果蓄水量小于400万立方米时,将发出严重干旱警报,那么干旱天后将发出严重干旱警报.15.如图,是用图象反映储油罐内的油量V与输油管开启时间t的函数关系.观察这个图象,以下结论正确的有.①随着输油管开启时间的增加,储油罐内的油量在减少;②输油管开启10分钟时,储油罐内的油量是80立方米;③如果储油罐内至少存油40立方米,那么输油管最多可以开启36分钟;④输油管开启30分钟后,储油罐内的油量只有原油量的一半.16.周末秋高气爽,阳光明媚,小赵带爷爷到滨江路去散步.祖孙俩在长度为600米的AB路段上往返行走.他们从A地出发,小赵陪爷爷走了两圈一同回到A地后,就开始匀速跑步,爷爷继续匀速散步.如图反映了他们分别与A地的距离S(米)与小赵跑步的时间t(分钟)的关系图(他们各自到达A地或B地后立即调头,调头转身时间忽略不计).下列说法:①爷爷的速度为30米每分钟;②小赵跑步过程中在第8分钟第一次与爷爷相遇;③小赵跑步的速度为100米每分钟;④小赵跑步过程中,在第20分钟第三次与爷爷相遇;⑤小赵跑步过程中祖孙俩第四次与第五次相遇地点间距为75米.其中说法正确的是.(只填序号)17.如图1,四边形ABCD中,AB∥CD,∠B=90∘,AC=AD.动点P从点B出发沿折线B−A−D−C方向以1单位/秒的速度匀速运动,在整个运动过程中,△BCP的面积S与运动时间t(秒)的函数图象如图2所示,写出① AB=.② CD=(提示:过A作CD的垂线).③ BC=.三、解答题(共8题)18.科学家研究发现,声音在空气中传播的速度y(米/秒)与气温x(∘C)之间有关,它们之间的关系如表所示:气温/∘C⋯05101520⋯速度/(米/秒)⋯331334337340343⋯(1) 上表中,自变量是,因变量是;(2) 气温每上升5∘C,声音在空气中的速度就增加米/秒;(3) 直接写出y与x的关系式:;(4) 当声音在空气中传播的速度为403米秒/时,气温x=∘C.19.为了贯彻落实“精准扶贫”精神,某单位决定运送一批物资到某贫困村,货车自早上8时出发,行驶一段路程后发现未带货物清单,便立即以50km/h的速度回返,与此同时单位派车去送清单途中相遇拿到清单后,货车又立即掉头并开到目的地,整个过程中,货车距离出发地的路程s(km)与行驶时间t(h)的函数图象如图示.(1) 两地相距千米,当货车司机拿到清单时,距出发地千米.(2) 试求出途中BC段的函数表达式,并计算出中午12点时,货车离贫困村还有多少千米?20.如图,在菱形ABCD中,对角线AC,BD相交于点O,AC=4cm,BD=2cm.E,F分别是AB,BC的中点,点P是对角线AC上的一个动点,设AP=x cm,PE=y1cm,PF=y2cm.小明根据学习函数的经验,分别对这两种函数随自变量的变化而变化的情况进行了探究,下面是小明探究过程,请补充完整:(1) 画函数y1的图象.①按照如表自变量的值进行取点、画图、测量、得到了y1与x的几组对应值:x/cm00.51 1.52 2.53 3.54y1/cm 1.120.50.71 1.12 1.58 2.06 2.55 3.04②在所给坐标系中描出补全后的表中的各对应值为坐标的点,画出函数y1的图象:(2) 画函数y2的图象.在同一坐标系中,画出函数y2的图象.(3) 根据画出的函数y1的图象、函数y2的图象,解决问题.①函数y1的最小值是.②函数y1的图象与函数y2的图象的交点表示的含义是.③若PE=PC,AP的长约为cm.21.甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发驶向乙地,如图,线段OA表示货车离甲地距离y(千米)与时间x(小时)之间的函数关系;折线OBCDA表示轿车离甲地距离y(千米)与时间x(小时)之间的函数关系.请根据图象解答下列问题:(1) 当轿车刚到乙地时,此时货车距离乙地千米;(2) 当轿车与货车相遇时,求此时x的值;(3) 在两车行驶过程中,当轿车与货车相距20千米时,求x的值.22.已知动点P以每秒2cm的速度沿图甲的边框按从B⇒C⇒D⇒E⇒F⇒A的路径移动,相应的△ABP的面积S与时间t之间的关系如图乙中的图象表示.若AB=6cm,试回答下列问题:(1) 图甲中的BC长是多少?(2) 图乙中的a是多少?(3) 图甲中的图形面积的多少?(4) 图乙中的b是多少?23.如图,P是线段AB上的一点,AB=6cm,O是AB外一定点.连接OP,将OP绕点O顺时针旋转120∘得OQ,连接PQ,AQ.小明根据学习函数的经验,对线段AP,PQ,AQ的长度之间的关系进行了探究.下面是小明的探究过程,请补充完整.(1) 对于点P在AB上的不同位置,画图、测量,得到了线段AP,PQ,AQ的长度(单位:cm)的几组值,如下表:位置1位置2位置3位置4位置5位置6位置7 AP0.00 1.00 2.00 3.00 4.00 5.00 6.00 PQ 4.00 2.310.84 1.43 3.07 4.77 6.49 AQ 4.00 3.08 2.23 1.57 1.40 1.85 2.63在AP,PQ,AQ的长度这三个量中,确定的长度是自变量,的长度和的长度都是这个自变量的函数;(2) 在同一平面直角坐标系xOy中,画出(1)中所确定的函数的图象;(3) 结合函数图象,解决问题:当AQ=PQ时,线段AP的长度约为cm.24.“龟兔赛跑”的故事同学们非常熟悉,图中的线段OD和折线OABC表示“龟兔赛跑”时路程与时间的关系.请你根据图中给出的信息,解决下列问题.(1) 折线OABC表示赛跑过程中(填“兔子”或“乌龟”)的路程与时间的关系,赛跑的全程是米.(2) 兔子在起初每分钟跑多少米?乌龟每分钟爬多少米?(3) 乌龟用了多少分钟追上了正在睡觉的兔子?(4) 兔子醒来,以400米/分的速度跑向终点,结果还是比乌龟晚到了0.5分钟,请你算算兔子中间停下睡觉用了多少分钟?.点P 25.如图①,在平面直角坐标系中,点A,C分别在y轴和x轴上,AB∥x轴,cosB=45从点B出发,以1cm/s的速度沿BA边匀速运动,点Q从点A出发,沿线段AO→OC→CB匀速运动.点P与点Q同时出发,其中一点到达终点,另一点也随之停止运动.设点P运动的时间为t(s),△BPQ的面积为S(cm2),已知S与t之间的函数关系如图②中的曲线段OE、线段EF与曲线段FG.(1) 点Q的运动速度为cm/s,点B的坐标为;(2) 求曲线段FG的函数解析式;(3) 当t为何值时,△BPQ的面积是四边形OABC的面积的1.9答案一、选择题(共10题)1. 【答案】D【解析】①乙在28分时到达,甲在40分时到达,∴乙比甲提前了12分钟到达;故①正确;②根据甲到达目的地时的路程和时间知:甲的平均速度=10÷4060=15(千米/时);故②正确;④设乙出发x分钟后追上甲,则有:1028−18×x=104×(18+x),解得x=6,故④正确;③由④知:乙第一次遇到甲时,所走的距离为:6×1028−18=6(km),故③正确;∴正确的结论有4个:①②③④.【知识点】用函数图象表示实际问题中的函数关系2. 【答案】D【解析】读图可得,在时间为40分时,速度为0千米/时,故(1)(4)正确;AB段,速度的值相等,故速度不变,故(2)正确;时间为30分时,速度为80千米/时,即在第30分钟时,汽车的速度是80千米/时,故(3)正确;综上可得(1)(2)(3)(4)正确,共4个.【知识点】用函数图象表示实际问题中的函数关系3. 【答案】B【解析】由题意,得y=30−5t,∵y≥0,t≥0,∴30−5t≥0,∴t≤6,∴0≤t≤6,∴y=30−5t是降函数且图象是一条线段.故选:B.【知识点】用函数图象表示实际问题中的函数关系4. 【答案】D【解析】由题可知:10=12xy,所以y=20x(x>0).故选D.【知识点】用函数图象表示实际问题中的函数关系5. 【答案】B【知识点】用函数图象表示实际问题中的函数关系6. 【答案】D【解析】由图象知:A.小明家距图书馆3km,正确;B.小明在图书馆阅读时间为3−1=2小时,正确;C.小明在图书馆阅读书报和往返总时间不足4h,正确;D.因为小明去图书馆需要1小时,回来不足1小时,所以小明去图书馆的速度比回家时的速度快,错误,符合题意.故选:D.【知识点】用函数图象表示实际问题中的函数关系7. 【答案】B【解析】横坐标表示的是时间,通过观察点A1,A2,A3的横坐标可知上午派送快递所用时间最短的是甲,①正确;纵坐标表示的是派送件数,通过观察点B1,B2,B3的纵坐标可知下午派送件数最多的是乙,②错误;每个人的派送总件数是上、下午派送件数之和,甲约为65件,乙约为75件,丙约为50件,乙最多,③正确,故选B.【知识点】用函数图象表示实际问题中的函数关系8. 【答案】D【解析】①两车的速度之差为80÷(b+2−b)=40(km/h),∴a=100−40=60,结论①正确;②两车第一次相遇所需时间s100−60=s40(h),∵s的值不确定,∴b值不确定,结论②不正确;③两车第二次相遇时间为b+2+80100+60=b+52(h),∴c=b+52,结论③正确;④ ∵b=s40,s=60,∴b=32,结论④正确.故选:D.【知识点】用函数图象表示实际问题中的函数关系9. 【答案】D【解析】由折线统计图可知:①甲的一百米跑成绩排名比10项总成绩排名靠前,结论正确;②乙的一百米跑成绩排名比10项总成绩排名靠前,故原说法错误;③由图2中10项总成绩的位置可知丙的一百米跑成绩排名比跳远成绩排名靠前,结论正确.所以合理的是①③.【知识点】用函数图象表示实际问题中的函数关系10. 【答案】C【解析】①错误.小明游泳的平均速度大于小林游泳的平均速度;②正确.小明游泳的距离大于小林游泳的距离;③错误,小明游75米时小林游了50米;④正确.小明与小林共相遇5次.【知识点】用函数图象表示实际问题中的函数关系二、填空题(共7题)11. 【答案】②③【解析】火车的长度是150米,故①错误;如图,在BC段,所用的时间是5秒,路程是150米,则速度是150÷5=30米/秒,故②正确;火车整体都在隧道内的时间是35−5−5=25秒,故③正确;隧道长是35×30−150=900米,故④错误.故正确的是②③.【知识点】用函数图象表示实际问题中的函数关系12. 【答案】828【解析】根据函数图象可知:s=(14−2)v快=18v慢,∴v快=32v慢,设两车相遇的时间为t,根据函数图象可知:t⋅v慢=(t−2)⋅v快=276,解得t=6,v慢=46,∴s=18v慢=18×46=828.【知识点】用函数图象表示实际问题中的函数关系13. 【答案】①②【知识点】用函数图象表示实际问题中的函数关系14. 【答案】1000;40【知识点】用函数图象表示实际问题中的函数关系15. 【答案】①③④【解析】由函数图象知,随着输油管开启时间的增加,储油罐内的油量减少,故①说法正确;由函数图象知,输油管开启10分钟时,储油罐内的油量大于80立方米,故②说法错误;由函数图象知,如果储油罐内至少存油40m3,那么输油管最多可以开启36分钟,故③说法正确;由函数图象知,输油管开启30分钟后,储油罐内的油量只有原油量的一半,故④说法正确.∴结论正确的有①③④.【知识点】用函数图象表示实际问题中的函数关系16. 【答案】①②【知识点】用函数图象表示实际问题中的函数关系17. 【答案】3;6;5【解析】当t=3时,点P到达A处,即AB=3,过点A作AE⊥CD交CD于点E,则四边形ABCE为矩形,∵AC=AD,∴DE=CE=12CD,∴CD=2AB=6,当S=15时,点P到达点D处,则S=12CD⋅BC=12⋅(2AB)⋅BC=3⋅BC =15,则 BC =5.【知识点】用函数图象表示实际问题中的函数关系三、解答题(共8题) 18. 【答案】(1) x ;y (2) 3(3) y =331+35x (4) 120 【解析】(3) ∵ 气温每上升 1 ∘C ,声音在空气中的速度就增加 35 米/秒,∴y 与 x 的关系式:y =331+35x .(4) 当声音在空气中传播的速度为 403 米/秒时, 403=331+35x ,解得 x =120.【知识点】解析式法、常量、变量、列表法19. 【答案】(1) 172;40(2) 设直线 BC 的解析式为 y =kx +b , ∵ B (2.8,40),C (5,172), ∴ {2.8k +b =40,5k +b =172,解得{k=60,b=−128.∴直线BC的解析式为y=60x−128.(172−40)÷(5−2.8)=60千米/小时.【解析】(1) 当t=5时,y=172km所以两地相距172km.80−50×(2.8−2)=80−40=40km,所以货车司机拿到清单时,距出发地40千米.故答案为:172;40.【知识点】用函数图象表示实际问题中的函数关系、行程问题20. 【答案】(1) ① 0.69②如图所示.(2) 由y1,y2关系可知,y1,y2的图象关于x=2对称,故在同一坐标系内,y2的图象如图所示.(3) ① 0.5②代入x=2时,PE与PF的长相等③ 2.49【解析】(1) ①画出1:1等大的图形,令x=0.5,通过测量得出PE=y1=0.69.(3) ①由图象可知,时,y1图象的最低点为0.5;也可理解为当PE⊥AC时,PE最小,最小值为0.5.②代入x=2时,PE与PF的长相等.③根据题意,PC长的函数解析式为y3=4−x,在图中的坐标系内当PE=PC时,即y1=y3时,根据图象可知,AP的长约为2.49.【知识点】图像法21. 【答案】(1) 30(2) 设 CD 段函数解析式为 y =kx +b (k ≠0)(2.5≤x ≤4.5). ∵C (2.5,80),D (4.5,300) 在其图象上, {2.5k +b =80,4.5k +b =300, 解得 {k =110,b =−195,∴CD 段函数解析式:y =110x −195(2.5≤x ≤4.5); 易得 OA:y =60x ,{y =110x −195,y =60x,解得 {x =3.9,y =234,∴ 当 x =3.9 时,轿车与货车相遇;(3) 当 x =2.5 时,y 货=150,两车相距 =150−80=70>20, 由题意 60x −(110x −195)=20 或 110x −195−60x =20,解得 x =3.5或4.3 小时.答:在两车行驶过程中,当轿车与货车相距 20 千米时,x 的值为 3.5 或 4.3 小时. 【解析】(1) 根据图象信息:货车的速度 v 货=3005=60,∵ 轿车到达乙地的时间为货车出发后 4.5 小时,∴ 轿车到达乙地时,货车行驶的路程为:4.5×60=270(千米), 此时,货车距乙地的路程为:300−270=30(千米). ∴ 轿车到达乙地后,货车距乙地 30 千米.【知识点】用函数图象表示实际问题中的函数关系、行程问题22. 【答案】(1) 动点P在BC上运动时,对应的时间为0到4秒,易得:BC=2cm/秒×4秒=8cm;故图甲中的BC长是8cm.(2) 由(1)可得,BC=8cm,则:a=12×BC×AB=24cm2;图乙中的a是24cm2(3) 由图可得:CD=2×2=4cm,DE=2×3=6cm,则AF=BC+DE=14cm,又由AB=6cm,则甲图的面积为AB×AF−CD×DE=60cm2,图甲中的图形面积的60cm2.(4) 根据题意,动点P共运动了BC+CD+DE+EF+FA=8+4+6+2+14=34cm,其速度是2cm/秒,则b=34÷2=17秒,图乙中的b是17秒.【知识点】用函数图象表示实际问题中的函数关系23. 【答案】(1) AP;PQ;AQ(2) 如图所示.(3) 3.07【知识点】图像法、函数的概念、列表法24. 【答案】(1) 兔子;1500(2) 结合图象得出:兔子在起初每分钟跑700米.1500÷30=50(米)兔子在起初每分钟跑700米,乌龟每分钟爬50米.(3) 700÷50=14(分钟)乌龟用了14分钟追上了正在睡觉的兔子.(4) 30+0.5−1−(1500−700)÷400=27.5(分钟),所以兔子中间停下睡觉用了27.5分钟.【知识点】用函数图象表示实际问题中的函数关系25. 【答案】(1) 3;(18,9)(2) 如图:PB=t,BQ=30−3t,过点Q作QM⊥AB于点M,则QM=35(30−3t)=18−95t,所以S△PBQ=12t(18−95t)=−910t2+9t(5≤t≤10),即曲线FG段的函数解析式为:S=−910t2+9t.(3) 因为S梯形OABC =12(6+18)×9=108,所以S=19×108=12,当0<t<3时,S=32t2,S=12时,t=2√2或−2√2(舍弃),当5<t<10时,12=−910t2+9t;解得t=15+√1053或15−√1053(舍弃),综上所述:t=2√2或t=15+√1053,△BPQ的面积是四边形OABC的面积的19.【解析】(1) 由题意可得出:当3秒时,△BPQ的面积的函数关系式改变,则Q在AO上运动3秒,当3秒时,BP=3,此时△BPQ的面积为13.5cm2,所以AO为9cm,所以点Q的运动速度为:9÷3=3(cm/s),当运动到5秒时,函数关系式改变,则CO=6cm,因为cosB=45,所以可求出AB=6+12=18(cm),所以B(18,9).【知识点】图像法、余弦、其他实际问题、解析式法。
北师大版2020七年级数学下册第三章变量之间的关系单元综合测考试试题(附答案)
北师大版2020七年级数学下册第三章变量之间的关系单元综合测考试试题(附答案)北师大版2020七年级数学下册第三章变量之间的关系单元综合测试题(附答案)1.教师运动会中,甲,乙两组教师参加“两人背夹球”往返跑比赛,即:每组两名教师用背部夹着球跑完规定的路程,若途中球掉下时须捡起并回到掉球处继续赛跑,用时少者胜.若距起点的距离用y(米)表示,时间用x(秒)表示.下图表示两组教师比赛过程中y与x的函数关系的图象.根据图象,有以下四个推断:①乙组教师获胜②乙组教师往返用时相差2秒③甲组教师去时速度为0.5米/秒④返回时甲组教师与乙组教师的速度比是2:3其中合理的是()A.①② B.①③ C.②④ D.①④2.下列变量之间的关系中,是函数关系的是( )A.人的体重与年龄B.正方形的周长与边长C.长方形的面积与长D.y=±x中,y与x3.函数11yx=+中自变量x的取值范围是( )A.x≥-1 B.x≤-1 C.x≠-1 D.x=-14.下列图象不可能是函数图象的是()A.B.C.D.5.如图,正方形ABCD的边长为2cm,动点P从点A出发,在正方形的边上沿A→B→C 的方向运动到点C停止,设点P的运动路程为x(cm),在下列图象中,能表示△ADP 的面积y(cm2)关于x(cm)的函数关系的图象是()A.B.C.D.2A.4个B.3个C.2个D.1个7.如图,OA,BA分别表示甲、乙两学生运动的路程S随时间t的变化图象,根据图象判断快者的速度比慢者的速度每秒快()A.1米B.1.5米C.2米D.2.5米8.在利用太阳能热水器来加热水的过程中,热水器里的水温随所晒时间的长短而变化,这个问题中因变量是()A.太阳光强弱B.水的温度C.所晒时间D.热水器9.如图,某工厂有甲、乙两个大小相同的蓄水池,且中间有管道连通,现要向甲池中注水,若单位时间内的注水量不变,那么从注水开始,乙水池水面上升的高度h与注水时间t之间的函数关系图象可能是()A.B.C.D.10.如图,向高为H的圆柱形空水杯中注水,表示注水量y与水深x的关系的图象是下面哪一个?()A.B.C.D.11.甲、乙两人在一条笔直的道路上相向而行,甲骑自行车从A地到B地,乙驾车从B 地到A地,他们分别以不同的速度匀速行驶,已知甲先出发6分钟后,乙才出发,在整个过程中,甲、乙两人的距离y(千米)与甲出发的时间x(分)之间的关系如图所示,当乙到达终点A时,甲还需________分钟到达终点B.北师大版2020七年级数学下册第三章变量之间的关系单元综合测考试试题(附答案)12.某水果店卖出的香蕉数量(千克)与售价(元)之间的关系如下表:如果卖出的香蕉数量用x(千克)表示,售价用y(元)表示,则y与x的关系式为_________;13.使函数1xy+=有意义的x的取值范围是_____.14.一辆汽车出发时邮箱内有油48升,出发后每行驶1 km耗油0.6升,如果设剩油量为y(升),行驶路程为x(km).则y与x的关系式为_________________;这辆汽车行驶35 km时,汽车剩油____升;当汽车剩油12升时,行驶了_______千米.15.函数121=-yx的自变量的取值范围是__________16.下岗职工购进一批苹果,到集贸市场零售,已知卖出的苹果数量x(千克)与售价y(元)的关系如下表:则y与x之间的关系式为__________________.17.如图所示中的折线ABC为甲地向乙地打长途电话需付的电话费y(元)与通话时间t(分钟)之间的函数关系,则通话8分钟应付电话费________元.+3x19.如图,是小明从学校到家里行进的路程s(米)与时间t(分)的函数图象.观察图象,从中得到如下信息:①学校离小明家1000米;②小明用了20分钟到家;③小明前10分钟走了路程的一半;④小明后10分钟比前10分钟走得快,其中正确的有_____(填序号).20.图为小强在早晨8时从城市出发到郊外所走的路程与时间的变化图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图1
A 北师大版七年级下册第三章 《三角形》单元
复习题(二)
一、细心选一选
1、下列各组长度的线段为边,能构成三角形
的是( ) A 、7cm 、5cm 、12cm B 、6cm 、8 cm 、15cm C 、8cm 、
4 cm 、3cm D 、4cm 、6 cm 、5cm
2、如图1,⊿AOB ≌⊿COD ,A 和C ,B 和D 是对应顶点,若BO=8,
AO=10,AB=5,则CD 的长为( )
A 、10
B 、8
C 、5
D 、不能确定
3、如图2,已知∠1=∠2,要说明⊿ABD ≌⊿ACD ,还需从下列条
件中选一个,错误的选法是( )
A 、∠ADB=∠ADC
B 、∠B=∠
C C 、DB=DC
D 、AB=AC
4、生活中,我们经常会看到如图3所示的情况,在电线杆上拉
两条钢筋,来加固电线杆,这是利用了三角形的( )
A 、稳定性
B 、全等性
C 、灵活性
D 、对称性
5、如图4所示,已知AB ∥CD ,AD ∥BC ,那么图中共有全等三角
形( )
A 、8对
B 、4对
C 、2对
D 、1对
6、下列语句:①面积相等的两个三角形全等;②两个等边三角形一定是全等图形;③如果两个三角形全等,它们的形状和大小一定都相同;④边数相同的图形一定能互相重合。
其中错误的说法有()
A、4个
B、3个
C、2个
D、1个
7、如果一个三角形三边上的高的交点在三角形的外部,那么这个三角形是()
A、锐角三角形
B、直角三角形
C、钝角三角形
D、任意三角形
8、根据下列条件作三角形,不能唯一确定三角形的是()
A、已知三个角
B、已知三条边
C、已知两角和夹边
D、已知两边和夹角
二、仔细补一补
9、在△ABC中,若∠A:∠B:∠C=1:3:5,这个三角形为三角形。
(按角的分类)
10、一木工师傅有两根长分别为5cm、8cm的木条,他要找第三根木条,将它们钉成一个三角形框架,现有
3cm、10cm、20cm四根木条,他可以选择长为 cm 的木条。
图8
11、如图7,△ABC≌△AED,∠C=400,∠EAC=300,∠B=300,则∠D= ,∠EAD= ;
12、如图8,已知∠1=∠2,请你添加一个条件使△ABC≌△BAD,
你的添加条件是是(填一个即可)。
13、若一个等腰三角形的两边长分别是3 cm和5 cm,则它的周长是 ____ _ cm。
三、解答题
15、如图6,在△ABC中, BAC是钝角,完成下列画图,并用适当的符号在图中表示;
(1)AC边上的高;(2) BC边上的高.(在上图中直接画)
图6 C
B
A
A B C D
16、如图,在△ABC 中,∠B=440,∠C=720
,AD 是△ABC 的角平分线,
(1)求∠BAC 的度数;(2)求∠ADC 的度数;
17、如图,有一湖的湖岸在A、B之间呈一段圆弧状,A、B间
的距离不能直接测得,其余都是空地,你能用已学过的知识或方
法设计测量方案,求出A、B间的距离吗?
18、已知:如图,AE=CF,AD∥BC,AD=CB。
问:△ADF与
△CBE全等吗?请说明理由。
A
D
19、 已知:如图,21∠=∠,
43∠=∠。
求证:
AD AC =。
F E
B C
20、如图,在△ABC 中,AB =AC ,点E 在高AD 上,找出图中所有全等的三角形,并说明它们为什么全等?
A
B
21、如图:已知AB=AE,BC=ED,∠B=∠E,AF⊥CD,F为垂足, 求证: ① AC=AD;②CF=DF。