全等三角形的基本模型复习(正式经典)PPT课件

合集下载

全等三角形的复习PPT教学课件

全等三角形的复习PPT教学课件

(角平分线的定义)
∠1 = ∠2∴∠DBC = ∠ECB
D
E
在△DBC和△ECB中
BD = CE(已知)
1
2
∠DBC = ∠ECB
B
C
BC = CB(公共边)
∴ △DBC≌△ECB(SAS) ∴BE = CD(全等三角形的对应边相等)
a2
aaLeabharlann 解:(1)原式=a2 4 1 a2
=
a2 4 a2
4 a2
= a2 8
a2
➢ 典型例题解析
(2)原式=
1
x3
x 1 ( x 1)( x 1)
• ( x 1)2 ( x 1)( x 3)
1 x1
x1 x1
= x 1 ( x 1)2 = ( x 1)2 ( x 1)2
➢ 典型例题解析
【例5】
化简: 1
1a
+1
1 a
+
2 1 a2
+
4 1 a4
.
解:原式=
(1 a) (1 a) (1 a)(1 a)
2 1 a2
4 1 a4
2(1 a2 )2(1 a2 ) 4
=
1 a4
1 a4
=
4 1 a4
1
4 a
4
8
= 1 a8
1.当分式的值为零时,必须同时满足两个条件: ①分子的值为零; ②分母的值不为零.
2。如图,∠B=∠E,AB=EF,
BD=EC,那么△ABC与
F
△FED全等吗?为什么? C
解:全等。
B
D
E
∵BD=EC(已知)
A
∴BD-CD=EC-CD。即BC=ED

全等三角形ppt课件

全等三角形ppt课件

三、概念剖析
为了方便书写,我们可以用符号表示两个三角形的全等.
例如△ABC与△DEF是全等的,
A
D
可以记作:“△ABC ≌△DEF”,
读作:“△ABC 全等于△DEF”. B
CE
F
注意:记两个三角形全等时,通常把表示对应顶点的字母写在对应位置上.
例如,△ABC与△DEF全等,点A 与点D、点B 与点E、点C 与点F为对应
三、概念剖析
猜想:全等三角形对应边和对应角有什么关系呢? 全等三角形的性质:全等三角形的对应边相等,对应角相等.
应用格式 ∵△ABC≌△DEF,
A
D
∴AB=DE,BC=EF,AC=DF
∠A=∠D,∠B=∠E,∠C=∠F B
CE
F
四、典型例题
例1.如图△OCA≌△OBD,点C和点B,点A和点D是对应点.
在我们的周围,经常可以看到形状、大小完全相同的图形, 这样的图形叫做全等形.研究全等形的性质和判定两个图形全等 的方法,是几何学的一个重要内容,本章将以三角形为例,对这 些问题进行研究.
同一种剪纸
风扇的叶片
上一章我们通过推理论证得到了三角形内角和定理等重要结 论.本章中,推理论证将发挥更大的作用.我们将通过证明三角 形全等来证明线段或角相等,利用全等三角形证明角的平分线的 性质.通过本章学习,你对三角形的认识会更加深入,推理论证 能力会进一步提高.
新知一览
全等三角形
“边边边”


三角形全等
“边角边”

的判定
“角边角”“角角边”

“斜边、直角边”
形 角平分线的性质
角平分线的性质
角平分线的判定
第十二章 全等三角形

全等三角形的基本模型复习正式经典ppt课件

全等三角形的基本模型复习正式经典ppt课件

“雪亮工程"是以区(县)、乡(镇) 、村( 社区) 三级综 治中心 为指挥 平台、 以综治 信息化 为支撑 、以网 格化管 理为基 础、以 公共安 全视频 监控联 网应用 为重点 的“群 众性治 安防控 工程” 。
模型三 旋转型 模型解读:将三角形绕着公共顶点旋转一定角度后,两个三角形能够完全 重合,则称这两个三角形为旋转型三角形.识别旋转型三角形时,如图①, 涉及对顶角相等;如图②,涉及等角加(减)公共角的条件.
“雪亮工程"是以区(县)、乡(镇) 、村( 社区) 三级综 治中心 为指挥 平台、 以综治 信息化 为支撑 、以网 格化管 理为基 础、以 公共安 全视频 监控联 网应用 为重点 的“群 众性治 安防控 工程” 。
解:∵AB⊥CD,∴∠EBC=∠DBA=90°.在 Rt△CEB 与 Rt△ADB 中 CBEE= =ABDD,,∴Rt△CEB≌Rt△ADB(HL),∴∠C=∠A,又∵∠C+∠CEB= 90°,∠CEB=∠AEF,∴∠A+∠AEF=90°,∴CF⊥AD
“雪亮工程"是以区(县)、乡(镇) 、村( 社区) 三级综 治中心 为指挥 平台、 以综治 信息化 为支撑 、以网 格化管 理为基 础、以 公共安 全视频 监控联 网应用 为重点 的“群 众性治 安防控 工程” 。
解:∵AD⊥AB,BE⊥AB,CD⊥CE,∴∠DAC=∠CBE=∠DCE=90 °,又∵∠DCB=∠D+∠DAC=∠DCE+∠ECB,∴∠D=∠ECB.在△ACD
“雪亮工程"是以区(县)、乡(镇) 、村( 社区) 三级综 治中心 为指挥 平台、 以综治 信息化 为支撑 、以网 格化管 理为基 础、以 公共安 全视频 监控联 网应用 为重点 的“群 众性治 安防控 工程” 。

完整版-全等三角形总复习PPT教学课件

完整版-全等三角形总复习PPT教学课件

AC=BC
∠BCE=∠DCA
DC=EC
∴ △ACD≌△BCE (SAS)
∴ BE=AD
2024/3/9
29
6. 如图A、B、C在一直线上,△ABD,△BCE都是等边 三角形,AE交BD于F,DC交BE于G,求证:BF=BG。
AB

DB
∠ABE = ∠ DBC
BE=BC ∴△ABE≌△DBC(SAS)
D
C
2
1
A
B
思路3: 已知一边一角(边与角相邻):
找夹这个角的另一边
AD=CB (SAS)
找夹这条边的另一角
∠ACD=∠CAB(ASA)
找边的对角
∠D=∠(B AAS)
15
如图,已知∠B= ∠E,要识别△ABC≌ △AED,需 要添加的一个条件是--------------
A
D
C
E
思路4:
找夹边
AB=AE (ASA)
∴ △ADC ≌ △EDB
D
C
∴ AC = EB
在△ABE中,AE < AB+BE=AB+AC
E
即 2AD < AB+AC
∴ AD 1 (AB AC) 2
2024/3/9
35
12.如图,已知AC∥BD,EA、EB分别平分∠CAB和∠DBA, CD过点E,则AB与AC+BD相等吗?请说明理由。
C A
∵ QD⊥OA,QE⊥OB,QD=QE(已知). ∴点Q在∠AOB的平分线上.(到角的两边的距
离相等的点在角的平分线上)
2024/3/9
10
2.如图, △ABC的角平分线BM,CN相交于点P, 求证:点P到三边AB、BC、CA的距离相等

全等三角形常用模型ppt课件

全等三角形常用模型ppt课件

因为 A∠OA=ODOB=,∠OBC, OD=BC,
所以△AOD≌△OBC(SAS).
(2)若∠ADO=35°,求∠DOC的度数.
解:因为△AOD≌△OBC, 所以∠ADO=∠OCB=35°. 因为OD∥BC, 所以∠DOC=∠OCB=35°.
2.【教材改编题】已知:如图,AD与BE相交于点F,BD
所以AF⊥CD.
4.某产品的商标如图所示,O是线段AC,DB的交点,且A C=BD,AB=DC,小华认为图中的两个三角形全等, 他的思考过程如下: ∵AC=DB,∠AOB=∠DOC,AB=DC, ∴△ABO≌△DCO.
小华的思考过程正确吗?若正确,写出他所用的判定三 角形全等的依据;若不正确,写出你的思考过程.
袁隆平和杂交水稻
• 袁隆平的新型杂交水稻为我们人类 社会带来了什么好处?
• 我们应该学习袁隆平在科学探索中 的什么精神?
生物学在人类生活中的应用
转基因技术
通过生物技术,将某个
基因从一种生物当中分离
出来,然后植入另一种生
物的体内。
世界人口危机
∴BC=DF.
9.【2020·广西河池】(1)如图①,已知CE与AB交于
点E,AC=BC,∠1=∠2.求证:△ACE≌△BCE.
证明:在△ACE和△BCE中, AC=BC,
∵∠1=∠2, CE=CE,
∴△ACE≌△BCE(SAS).
(2)如图②,已知CD的延长线与AB交于点E,AD=BC, ∠3=∠4.探究AE与BE的数量关系,并说明理由. 解:AE=BE. 理由如下:如图,在CE上截取 CF=DE,连接FB.
8.【2019·山西】已知:如图,点B,D在线段AE上,AD= BE,AC∥EF,∠C=∠F.求证:BC=DF. 证明:∵AD=BE, ∴AD-BD=BE-BD. ∴AB=ED. ∵AC∥EF, ∴∠A=∠E. 在△ABC和△EDF中,

三角形的全等的复习课件

三角形的全等的复习课件

综合练习题
总结词
综合运用知识
示例题目
在两个直角三角形中,一个直角边和一个斜边分别对应相 等,请证明这两个三角形全等。
详细描述
综合练习题要求学生能够综合运用三角形全等的知识解决 一些实际问题或涉及多个知识点的复杂问题,以提高学生 的综合运用能力和解题技巧。
答案
根据直角三角形全等的判定定理——斜边直角边(HL) 定理,如果两个直角三角形的斜边和一直角边对应相等, 则这两个直角三角形全等。
示例题目
已知两个三角形ABC和DEF中,AB=DE, BC=EF, ∠A=∠D,请证明这两个三角形全等。
详细描述
提高练习题要求学生能够运用三角形全等的判定 定理解决一些较为复杂的问题,如证明两个三角 形全等或寻找全等的条件。
答案
根据角边角(ASA)定理,如果两个三角形的两 角和一边相等,则这两个三角形全等。因为 ∠A=∠D和AB=DE是两边,且∠B=∠E是一角,所 以根据ASA定理,三角形ABC和DEF全等。
02
在实际生活中,三角形全等可以 用来解决一些实际问题,如测量 、建筑设计和机械制造等领域。
02
三角形全等的判定方法
边边边相等(SSS)
01
02
03
04
总结词
三边对应相等的两个三角形全 等。
详细描述
如果两个三角形的三组对应边 分别相等,则这两个三角形全
等。
证明方法
通过构造两个三角形,并证明 它们的三组对应角分别相等。
计算面积
全等三角形具有相同的面积。因此,通过比较两个三角形的 面积,可以解决一些面积计算问题。
在证明问题中的应用
证明角度相等
如果两个三角形在某些角度或边 长上相等,则可以通过三角形全 等证明其他角度或边长也相等。

三角形全等专题复习ppt课件


B
C
已知:
AB=DC,AC=BD. 求证: △ABC≌△DCB
图中隐藏条件二 ------ 公共角
A
B
C
E
D
已知: AB=AC,∠D=∠E.
求证: △ABD≌△ACE
图中隐藏条件三 --- 对顶角
C
OB A
已知:
D
AO=BO,CO=DO.
求证:△AOC≌△BOD
转化条件一 ------ 部分公共边
知识点回顾:
1、三角形全等有哪些判定方法?
2、如何从题目中找到三角形全等的条件?
直接条件
图中隐藏条件
转化条件
图中隐藏条件 一 ---- 公共边
B
A
A
D
A
C
D
已知: AB=AD,∠BAC=∠DAC. 求证:△ABC≌△ADC
BC D
已知:在RT△ACB和 RT△ACD中 AB=AD. 求证:△ABC≌△ADC
A
B
D
E
C
如图,∠B=∠E,AB=EF,BD=EC,那么 AC=FD吗?AC∥FD吗?为什么?
F
B
C 42 13 D
E
A
点拨: 证明两条线段相等或两个角相等的思路通常是证明它所在的两个三角形全等。
谈谈本节课有何收获?
A
A
BE CF
A D
F
B
C
E
已知:
D
AB=DF,∠B=∠F,
BE=CF.
求证:
△ABC≌△DFEBE源自CF已知:
AB=DE,AC=DF,BE=CF.
求证:△ABC≌△DEF
D
已知:
AB=DE,AC=DF,BF=CE. 求证:△ABC≌△DEF

全等三角形PPT课件

计算机科学领域
在计算机图形学中,全等三角形被用于三维模型的构建和渲染。通过组合和变换全等三角形, 可以创建出复杂的三维物体和场景。
05
全等三角形拓展知识
相似三角形概念及性质
相似三角形定义
两个三角形如果它们的对应角相等, 则称这两个三角形相似。
相似比
相似三角形的对应边之间的比例称 为相似比。
相似三角形概念及性质
全等三角形PPT课件
目录
• 全等三角形基本概念 • 全等三角形证明方法 • 全等三角形在几何中的应用 • 全等三角形在生活中的应用 • 全等三角形拓展知识 • 课程总结与回顾
01
全等三角形基本概念
定义与性质
01
定义
能够完全重合的两个三角形叫 做全等三角形。
全等三角形的对应边相等,对应 角相等。
06
课程总结与回顾
关键知识点总结
全等三角形的定义与 性质
掌握全等三角形的基 本性质,如对应边相 等、对应角相等。
能够准确描述全等三 角形的定义。
关键知识点总结
全等三角形的判定方法 掌握SSS、SAS、ASA、AAS及HL等全等三角形的判定方法。
能够灵活运用判定方法解决相关问题。
关键知识点总结
段的中点、角的平分线等。
结合其他几何知识(如中心对称、 旋转对称等)来进一步探讨图形
的对称性质。
04
全等三角形在生活中的应 用
建筑设计中的应用
01
建筑设计中的对称美
全等三角形在建筑设计中常被用来创造对称美,如古希腊神庙的立面设
计,通过全等三角形的排列组合,形成和谐而富有节奏感的视觉效果。
02 03
地形测量
在工程测量中,全等三角形原理 被用于地形测量。通过观测两个 已知点和一个未知点构成的全等 三角形,可以计算出未知点的坐

全等三角形单元复习(一线三等角模型)课件 (共18张PPT)2023-2024学年人教版八年级上学期

CF⊥AP于点F.
(1)求证:CF=BE+EF;
(2)连接BF,BE=3,CF=9,
求∆BFE的面积.
感谢聆听

S∆BMC:S∆ABO.


D



图2
C

课堂小结
分层作业
必做题:1、如图,在△ABC中,∠B=∠C,点D、E、
F分别在AB、BC、AC边上,BE=CF,且∠B=∠DEF,
求证:DB=EC.
选做题:2.如图,在∆ABC中,AB=AC,∠BAC=90°,
P在BC靠近B处,连接AP,线段BE⊥AP于点E,线段
当AB=BC时,求证:∆ABD≌∆BCE .
A
C
D
B
E
第3关
第2关
第1关
第二关
变式1.如图,D、A、E三点都在直线m上,若
∠1=∠2=∠3,且BA=CA,求证:DE=BD+CE.
第二关
变式2.如图,在∆ABC中,∠B=∠C,BE=CF,
且∠AEF=∠B,求证:AC=EC.
第3关
第2关
第1关
第三关
全等三角形 AAS定理
一线三等角模型
学习目标
1.经历观察、分析、归纳的学习过程,归纳整理出
“一线三等角”图形的基本特征;
2.能在不同背景中提取基本模型,并运用其解决问题;
3.在学习过程中感受几何直观图形对几何学习的
重要性.
创设情境,探究1.如图,AD⊥DE,CE⊥ED,∠ABC=90°,
探究2.如图,CA⊥BP,DB⊥BP,
∠DPC=90°,且CP=DP,AC=4,
BD=3,求AB的长.
明晰概念,归纳模型
应用模型,解决问题

《全等三角形》ppt课件

《全等三角形》ppt课件•全等三角形基本概念与性质•判定全等三角形方法探讨•辅助线在证明全等过程中作用•相似三角形与全等三角形关系探讨目录•生活中全等三角形应用举例•总结回顾与拓展延伸全等三角形基本概念与性质全等三角形定义及判定方法定义SSS(边边边)SAS(边角边)HL(斜边、直角边)ASA(角边角)AAS(角角边)对应边相等对应角相等对应关系确定030201对应边、对应角关系全等三角形性质总结判定全等三角形方法探讨SSS判定法定义应用举例注意事项应用举例SAS判定法定义在证明两个三角形全等时,若已知两边及夹角相等,则可直接应用SAS判定法。

注意事项ASA判定法定义AAS判定法定义比较分析案例分析01020304ASA和AAS判定法比较与案例分析辅助线在证明全等过程中作用构造辅助线策略与技巧分享观察图形特征在证明全等三角形时,首先要仔细观察图形,分析已知条件和目标结论,从而确定需要构造的辅助线类型。

利用基本图形熟悉并掌握一些基本图形(如角平分线、中线、高线等)的性质,可以帮助我们更快地构造出合适的辅助线。

构造平行线或垂直线根据题目条件,有时需要构造平行线或垂直线来利用相关性质进行证明。

典型辅助线构造方法剖析角平分线法01中线法02高线法03复杂图形中辅助线应用实例在复杂图形中,有时需要综合运用多种辅助线构造方法才能解决问题。

例如,可以先构造角平分线,再利用中线或高线的性质进行证明。

在一些特殊情况下,可能需要构造多条辅助线才能找到解决问题的突破口。

这时需要仔细分析图形特点,灵活运用所学知识进行构造和证明。

通过学习和掌握典型辅助线的构造方法和应用实例,可以提高学生的几何思维能力和解决问题的能力,为后续的数学学习打下坚实的基础。

相似三角形与全等三角形关系探讨性质面积比等于相似比的平方。

定义:两个三角形如果它们的对应角相等,则称这两个三角形相似。

周长比等于相似比;010203040506相似三角形定义及性质回顾相似三角形判定方法简介预备定理判定定理1判定定理2判定定理3相似三角形与全等三角形联系和区别联系区别全等三角形的性质在相似三角形中同全等三角形的性质更为严格和具体,而相似三角形的性质相对较为宽松和生活中全等三角形应用举例建筑设计中全等三角形应用稳定性美学效果美术创作中全等三角形构图技巧平衡感动态感其他领域(如工程、测量)中全等三角形应用工程测量机械设计地图制作总结回顾与拓展延伸全等三角形的判定方法熟练掌握SSS、SAS、ASA、AAS及HL等全等三角形的判定方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

-
4
解:∵BE=CF,∴BE+EC=CF+EC,即 BC=EF, ∵AB∥DE,AC∥DF,∴∠B=∠DEF,∠ACB=∠F, 在△ABC 与△DEF 中 ∠B=∠DEF, BC=EF, ∠ACB=∠F, ∴△ABC≌△DEF(ASA) ∴AB=DE
-
5
模型二 翻折型 模型解读:将原图形沿着某一条直线折叠后,直线两边的部分能够完全重 合,这两个三角形称之为翻折型全等三角形.此类图形中要注意其隐含条件, 即公共边或公共角相等.
-
11
4.如图,AD⊥AB于A,BE⊥AB于B,点C在AB上,且CD⊥CE,CD=CE. 求证:AB=AD+BE.
-
12
解:∵AD⊥AB,BE⊥AB,CD⊥CE,∴∠DAC=∠CBE=∠DCE=90 °,又∵∠DCB=∠D+∠DAC=∠DCE+∠ECB,∴∠D=∠ECB.在△ACD
与△BEC 中,∠∠AD==∠∠BEC,B,∴△ACD≌△BEC(AAS),∴AC=BE,CB= DC=CE,
-
7
模型三 旋转型 模型解读:将三角形绕着公共顶点旋转一定角度后,两个三角形能够完全 重图①, 涉及对顶角相等;如图②,涉及等角加(减)公共角的条件.
-
8
3.如图,AB⊥CD于B,CF交AB于E,CE=AD,BE=BD.求证:CF⊥AD.
八年级上册人教版数学 第十二章 全等三角形
专题(二) 全等三角形的基本模型
-
1
模型一 平移型
模型二 翻折型
模型三 旋转型
模型四 一线三垂直型
-
2
模型一 平移型 模型解读:把△ABC沿着某一条直线l平行移动,所得到△DEF与△ABC称为 平移型全等三角形.图①,图②是常见的平移型全等三角形.
-
3
1.如图,AB∥DE,AC∥DF,BE=CF,求证:AB=DE.
-
9
解:∵AB⊥CD,∴∠EBC=∠DBA=90°.在 Rt△CEB 与 Rt△ADB 中 CBEE= =ABDD,,∴Rt△CEB≌Rt△ADB(HL),∴∠C=∠A,又∵∠C+∠CEB= 90°,∠CEB=∠AEF,∴∠A+∠AEF=90°,∴CF⊥AD
-
10
模型四 一线三垂直型 模型解读:基本图形如下:此类图形 通常告诉 BD⊥DE,AB⊥AC, CE⊥DE,那么一定有∠B=∠CAE.(常用到同(等)角的余角相等)
-
6
2.如图,AB=AC,BE⊥AC于E,CD⊥AB于D,BE,CD交于点O.求证: OB=OC.
解:∵BE⊥AC,CD⊥AB,∴∠ADC=∠AEB=∠BDO=∠CEO=90°, 在△ABE与△ACD中,∠BEA=∠CDA,∠A=∠A,AB=AC,
∴△ABE≌△ACD(AAS),∴AD=AE,∴BD=EC,∠B=∠C, 在△BDO与△CEO中,∠BDO=∠CEO, DB=EC,∠B=∠C, ∴△BDO≌△CEO(ASA),∴OB=OC
AD,∴AB=AC+CB=AD+BE
-
13
相关文档
最新文档