高考冲刺数学 浙江专用 教师版--第3节 基本不等式:ab≤a+b2

合集下载

基本不等式 高考数学满分秘诀

基本不等式 高考数学满分秘诀

高考数学秘诀-基本不等式【知识梳理】12a b +≤(1)基本不等式成立的条件:0,0a b ≥≥.(2)等号成立的条件:当且仅当a b =时取等号.(3)其中2a b+称为正数a ,b a ,b 的几何平均数.2、几个重要的不等式(1)222222a b a b ab ab ++≥⇒≤,当且仅当a =b 时取等号.(2)2()2a b a b ab ++≥≤,当且仅当a =b 时取等号.(3)222()22a b a b ++≤.(4)熟悉一个重要的不等式链:211a b+2a b+≤≤≤222b a +总结:基本不等式重点就是体现一个“定”的思想,所以在学习过程中要感悟配凑技巧。

拓展:若+∈R c b a ,,,3a b c ++≥c b a ==时等号成立;【技巧大全】技巧1:直接法技巧2:“添项”配凑法技巧3:“系数”配凑法技巧4:常数代换法技巧5:待定系数法技巧6:涉及a b +和ab 的处理方法技巧7:一次、二次问题处理方法技巧8:齐次化法技巧9:化为单变量法技巧10:整体配凑法【典例分析】--部分摘录技巧1:直接法例1、已知,x y R +∈,且满足134x y+=,则xy 的最大值为________。

【答案】3【解析】因为x >0,y>0,所以34x y +≥(当且仅当34x y =,即x=6,y=8时取等号),于1≤, 3.xy ∴≤,故xy 的最大值3.例2、已知+∈R y x ,若16=xy ,求11x y+的最小值.并求y x 、的值【答案】12【解析】1112x y +≥=,当且仅当4==y x 时等号成立例3、若实数,a b 满足221ab+=,则a b +的最大值是.【答案】-2当1a b ==-时取等号。

例4、若实数a ,b满足12a b+=,则ab 的最小值为__________.【答案】由题意可知可以利用基本不等式,12a b =+≥=,当且仅当122b a a b =⇒=时取等号,化简后可得:ab =145422a b ⎧=⎪⎨⎪=⎩技巧2:“添项”配凑法例1、已知函数1(0)y x x x=+>,求y 的最小值.【答案】2例2、已知函数3(2)2y x x x =+>-,求y 的最小值.【答案】2+例3、已知54x <,求函数14245y x x =-+-的最大值。

2024年高考数学----基本不等式及不等式的应用

2024年高考数学----基本不等式及不等式的应用

成立仅用来验证最值是否能取到,不能用来求值.
3.一个重要的不等式链条:
1
2
1

ab ≤ a b ≤
2
a2 b2
(a>0,b>0)
2
ab
上述链条中的任意两个中有将“和式”转化为“积式”或将“积式”
转化为“和式”的放缩功能,并且有很多不同的变形,如:a2+b2≥2ab, a b
2

a2
2
b2
2)a+b≥2 ab (a>0,b>0),当且仅当a=b时取等号.
3)ab≤
a
2
b
2
(a,b∈R),当且仅当a=b时取等号.
4)a+ 1 ≥2(a>0),当且仅当a=1时取等号;a+ 1 ≤-2(a<0),当且仅当a=-1时取
a
a
等号.
注意:运用基本不等式及其变形时,一定要验证等号是否成立.另外,等号
4
注意:1.求最值时要注意三点:“一正”“二定”“三相等”.所谓“一 正”是指两数均为正数,“二定”是指应用基本不等式求最值时,和或积 为定值,“三相等”是指必须满足等号成立的条件. 2.连续使用基本不等式时,等号要同时成立.
综合篇
考法 不等式的恒成立、能成立、恰成立等问题的解题策略 1.恒成立问题:若f(x)在区间D上存在最小值,则不等式f(x)>A在区间D上恒 成立⇔f(x)min>A(x∈D); 若f(x)在区间D上存在最大值,则不等式f(x)<B在区间D上恒成立⇔f(x)max< B(x∈D). 2.能成立问题:若f(x)在区间D上存在最大值,则在区间D上存在实数x使不 等式f(x)>A成立⇔f(x)max>A(x∈D); 若f(x)在区间D上存在最小值,则在区间D上存在实数x使不等式f(x)<B成 立⇔f(x)min<B(x∈D). 3.恰成立问题:不等式f(x)>A恰在区间D上成立⇔f(x)>A的解集为D;不等式 f(x)<B恰在区间D上成立⇔f(x)<B的解集为D.

基本不等式:ab≤a+b2

基本不等式:ab≤a+b2

3.4 基本不等式:ab ≤a +b2学习目标:1.了解基本不等式的证明过程.2.能利用基本不等式证明简单的不等式及比较代数式的大小(重点、难点).3.熟练掌握利用基本不等式求函数的最值问题(重点).[自 主 预 习·探 新 知]1.重要不等式如果a ,b ∈R ,那么a 2+b 2≥2ab (当且仅当a =b 时取“=”).思考:如果a >0,b >0,用a ,b 分别代替不等式a 2+b 2≥2ab 中的a ,b ,可得到怎样的不等式?[提示] a +b ≥2ab . 2.基本不等式:ab ≤a +b2(1)基本不等式成立的条件:a ,b 均为正实数; (2)等号成立的条件:当且仅当a =b 时取等号. 思考:不等式a 2+b 2≥2ab 与ab ≤a +b2成立的条件相同吗?如果不同各是什么?[提示] 不同,a 2+b 2≥2ab 成立的条件是a ,b ∈R ;ab ≤a +b2成立的条件是a ,b 均为正实数.3.算术平均数与几何平均数(1)设a >0,b >0,则a ,b 的算术平均数为a +b2,几何平均数为(2)基本不等式可叙述为两个正数的算术平均数不小于它们的几何平均数.思考:a +b2≥ab 与⎝⎛⎭⎪⎫a +b 22≥ab 是等价的吗?[提示] 不等价,前者条件是a >0,b >0,后者是a ,b ∈R . 4.用基本不等式求最值的结论(1)设x ,y 为正实数,若x +y =s (和s 为定值),则当x =y =s2时,积xy 有最小值为2xy .(2)设x ,y 为正实数,若xy =p (积p 为定值),则当x =y =p 时,和x +y 有最大值为x +y24.5.基本不等式求最值的条件 (1)x ,y 必须是正数.(2)求积xy 的最大值时,应看和x +y 是否为定值;求和x +y 的最小值时,应看积xy 是否为定值.(3)等号成立的条件是否满足.思考:利用基本不等式求最值时应注意哪几个条件?若求和(积)的最值时,一般要确定哪个量为定值?[提示] 三个条件是:一正,二定,三相等.求和的最小值,要确定积为定值;求积的最大值,要确定和为定值.[基础自测]1.思考辨析(1)对任意a ,b ∈R ,a 2+b 2≥2ab ,a +b ≥2ab 均成立.( ) (2)对任意的a ,b ∈R ,若a 与b 的和为定值,则ab 有最大值.( ) (3)若xy =4,则x +y 的最小值为4.( ) (4)函数f (x )=x 2+2x 2+1的最小值为22-1.( ) [答案] (1)× (2)√ (3)× (4)√2.设x ,y 满足x +y =40,且x ,y 都是正数,则xy 的最大值为________.【导学号:91432346】400 [因为x ,y 都是正数,且x +y =40,所以xy ≤⎝⎛⎭⎪⎫x +y 22=400,当且仅当x =y =20时取等号.]3.把总长为16 m 的篱笆围成一个矩形场地,则矩形场地的最大面积是________ m 2. 16 [设一边长为x m ,则另一边长可表示为(8-x )m ,则面积S =x (8-x )≤⎝⎛⎭⎪⎫x +8-x 22=16,当且仅当x =4时取等号,故当矩形的长与宽相等,都为4 m 时面积取到最大值16 m 2.]4.给出下列说法: ①若x ∈(0,π),则sin x +1sin x≥2; ②若a ,b ∈(0,+∞),则lg a +lg b ≥2lg a ·lg b ;③若x ∈R 且x ≠0,则⎪⎪⎪⎪⎪⎪x +4x ≥4.其中正确说法的序号是________.【导学号:91432347】①③ [①因为x ∈(0,π),所以sin x ∈(0,1], 所以①成立;②只有在lg a >0,lg b >0, 即a >1,b >1时才成立;③⎪⎪⎪⎪⎪⎪x +4x =|x |+⎪⎪⎪⎪⎪⎪4x ≥2|x |·⎪⎪⎪⎪⎪⎪4x=4成立.][合 作 探 究·攻 重 难]利用基本不等式比较大小已知0<a <1,0<b <1,则a +b,2ab ,a 2+b 2,2ab 中哪一个最大? [解] 法一:因为a >0,b >0,所以a +b ≥2ab ,a 2+b 2≥2ab , 所以四个数中最大的数应为a +b 或a 2+b 2. 又因为0<a <1,0<b <1,所以a 2+b 2-(a +b )=a 2-a +b 2-b =a (a -1)+b (b -1)<0, 所以a 2+b 2<a +b , 所以a +b 最大. 法二:令a =b =12,则a +b =1,2ab =1,a 2+b 2=12,2ab =2×12×12=12,再令a =12,b =18,a +b =12+18=58,2ab =212×18=12, 所以a +b 最大.a ≥0,时,要注意不等式的双向性≤⎝ ⎛a +2;1.(1)已知m =a +1a -2(a >2),n =22-b 2(b ≠0),则m ,n 之间的大小关系是________. 【导学号:91432348】(2)若a >b >1,P =lg a ·lg b ,Q =12(lg a +lg b ),R =lg a +b2,则P ,Q ,R 的大小关系是________.(1)m >n (2)P <Q <R [(1)因为a >2,所以a -2>0,又因为m =a +1a -2=(a -2)+1a -2+2,所以m ≥2a -1a -2+2=4,由b ≠0,得b 2≠0, 所以2-b 2<2,n =22-b 2<4,综上可知m >n . (2)因为a >b >1,所以lg a >lg b >0, 所以Q =12(lg a +lg b )>lg a ·lg b =P ;Q =12(lg a +lg b )=lg a +lg b =lg ab <lg a +b 2=R . 所以P <Q <R .]利用基本不等式证明不等式已知a ,b ,c 为不全相等的正实数. 求证:a +b +c >ab +bc +ca .[解] ∵a >0,b >0,c >0, ∴a +b ≥2ab >0,b +c ≥2bc >0, c +a ≥2ca >0,∴2(a +b +c )≥2(ab +bc +ca ), 即a +b +c ≥ab +bc +ca .由于a ,b ,c 为不全相等的正实数,故等号不成立. ∴a +b +c >ab +bc +ca .2.已知a ,b ,c 为正实数,且a +b +c =1,求证:⎝ ⎛⎭⎪⎫1a-1⎝ ⎛⎭⎪⎫1b-1⎝ ⎛⎭⎪⎫1c-1≥8.【导学号:91432349】[证明] 因为a ,b ,c 为正实数, 且a +b +c =1,所以1a -1=1-a a =b +c a ≥2bca.同理,1b -1≥2ac b ,1c -1≥2ab c.上述三个不等式两边均为正,相乘得⎝ ⎛⎭⎪⎫1a -1⎝ ⎛⎭⎪⎫1b -1⎝ ⎛⎭⎪⎫1c -1≥2bc a ·2ac b ·2ab c =8,当且仅当a =b =c =13时,取等号.基本不等式的实际应用如图3­4­1,动物园要围成相同面积的长方形虎笼四间,一面可利用原有的墙,其他各面用钢筋网围成.图3­4­1(1)现有可围36 m 长网的材料,每间虎笼的长、宽各设计为多少时,可使每间虎笼面积最大? (2)要使每间虎笼面积为24 m 2,则每间虎笼的长、宽各设计为多少时,可使围成四间虎笼的钢筋网总长最小?思路探究:①已知a +b 为定值,如何求ab 的最大值?②已知ab 为定值,如何求a +b 的最小值?[解] 设每间虎笼长x m ,宽y m ,则由条件知:4x +6y =36,即2x +3y =18. 设每间虎笼面积为S ,则S =xy .法一:由于2x +3y ≥22x ·3y =26xy , ∴26xy ≤18,得xy ≤272,即S ≤272,当且仅当2x =3y 时,等号成立.由⎩⎪⎨⎪⎧2x +3y =18,2x =3y ,解得⎩⎪⎨⎪⎧x =4.5,y =3.故每间虎笼长4.5 m ,宽3 m 时,可使面积最大.法二:由2x +3y =18,得x =9-32y .∵x >0,∴9-32y >0,∴0<y <6,S =xy =⎝⎛⎭⎪⎫9-32y y =32(6-y )·y .∵0<y <6, ∴6-y >0,∴S ≤32·⎣⎢⎡⎦⎥⎤6-y +y 22=272. 当且仅当6-y =y ,即y =3时,等号成立,此时x =4.5.故每间虎笼长4.5 m ,宽3 m 时,可使面积最大.(2)由条件知S =xy =24.设钢筋网总长为l ,则l =4x +6y .法一:∵2x +3y ≥22x ·3y =26xy =24, ∴l =4x +6y =2(2x +3y )≥48. 当且仅当2x =3y 时,等号成立.由⎩⎪⎨⎪⎧2x =3yxy =24,解得⎩⎪⎨⎪⎧x =6,y =4.故每间虎笼长6 m ,宽4 m 时,可使钢筋网总长最小. 法二:由xy =24,得x =24y.∴l =4x +6y =96y+6y =6⎝ ⎛⎭⎪⎫16y +y ≥6×216y·y =48.当且仅当16y=y ,即y =4时,等号成立,此时x =6.故每间虎笼长6 m ,宽4 m 时,可使钢筋网总长最小.母题探究:某工厂拟建一座平面图为矩形且面积为400平方米的三级污水处理池,平面图如图3­4­2所示.池外圈建造单价为每米200元,中间两条隔墙建造单价为每米250元,池底建造单价为每平方米80元(池壁的厚度忽略不计,且池无盖).试设计污水池的长和宽,使总造价最低,并求出最低造价.[解] 设污水池的长为x 米,则宽为400x米,总造价y =(2x +2·400x)·200+2×250·400x +80×400=400⎝⎛⎭⎪⎫x +900x +32 000≥400×2x ·900x+32 000=56 000(元),当且仅当x =900x,即x =30时取等号. 故污水池的长为30米、宽为403米时,最低造价为56 000元.利用基本不等式求最值[探究问题]1.由x 2+y 2≥2xy 知xy ≤x 2+y 22,当且仅当x =y 时“=”成立,能说xy 的最大值是x 2+y 22吗?能说x 2+y 2的最小值为2xy 吗?提示:最值是一个定值(常数),而x 2+y 2或2xy 都随x ,y 的变化而变化,不是定值,故上述说法均错误.要利用基本不等式a +b2≥ab (a ,b ∈R +)求最值,必须保证一端是定值,方可使用.2.小明同学初学利用基本不等式求最值时,是这样进行的: “因为y =x +1x≥2x ·1x =2,当且仅当x =1x ,即x 2=1时“=”号成立,所以y =x +1x的最小值为2.”你认为他的求解正确吗?为什么?提示:不正确.因为利用基本不等式求最值,必须满足x 与1x都是正数,而本题x 可能为正,也可能为负.所以不能盲目“套用”基本不等式求解.正确解法应为:当x >0时,y =x +1x≥2x ×1x =2,当且仅当x =1x ,即x =1时取“=”,y =x +1x的最小值是2;当x <0时,y =-⎝ ⎛⎭⎪⎫-x -1x ≤-2-x⎝ ⎛⎭⎪⎫-1x =-2,当且仅当x =1x ,即x =-1时,取“=”,y =x +1x 的最大值是-2.3.已知x ≥3,求y =x 2+4x 的最小值,下列求解可以吗?为什么?“解:∵y =x 2+4x =x +4x≥2x ·4x=4,∴当x ≥3时,y =x 2+4x的最小值为4.”提示:不可以,因为在利用基本不等求解最值时,虽然将所求代数式进行变形,使其符合基本不等式的结构特征,但是必须符合“正”、“定”、“等”的条件,缺一不可.本解法忽略了等号成立的条件,即“=”号不成立.本问题可采用y =x +4x的单调性求解.(1)已知x <54,求y =4x -2+14x -5的最大值;(2)已知0<x <12,求y =12x (1-2x )的最大值;(3)已知x >0,求f (x )=2xx 2+1的最大值; (4)已知x >0,y >0,且1x +9y=1,求x +y 的最小值.【导学号:91432350】思路探究:变形所求代数式的结构形式,使用符合基本不等式的结构特征. (1)4x -2+14x -5=4x -5+14x -5+3. (2)12x (1-2x )=14·2x ·(1-2x ). (3)2x x 2+1=2x +1x. (4)x +y =(x +y )·1=(x +y )⎝ ⎛⎭⎪⎫1x +9y .[解] (1)∵x <54,∴5-4x >0,∴y =4x -2+14x -5=-⎝ ⎛⎭⎪⎫5-4x +15-4x +3≤-2+3=1, 当且仅当5-4x =15-4x ,即x =1时,上式等号成立,故当x =1时,y max =1. (2)∵0<x <12,∴1-2x >0,∴y =14×2x (1-2x )≤14×⎝ ⎛⎭⎪⎫2x +1-2x 22=14×14=116, ∴当且仅当2x =1-2x ⎝ ⎛⎭⎪⎫0<x <12,即x =14时,y max =116.(3)f (x )=2x x 2+1=2x +1x.∵x >0,∴x +1x≥2x ·1x=2, ∴f (x )≤22=1,当且仅当x =1x ,即x =1时等号成立.(4)∵x >0,y >0,1x +9y=1,∴x +y =⎝ ⎛⎭⎪⎫1x +9y(x +y )=y x +9x y+10≥6+10=16,当且仅当y x=9x y,又1x +9y=1,即x =4,y =12时,上式取等号. 故当x =4,y =12时,(x +y )min =16.母题探究:1.(变条件)在例题(1)中条件改为x >54,求函数f (x )=4x -2+14x -5的值域.[解] ∵x >54,∴4x -5>0,∴f (x )=4x -5+14x -5+3≥2+3=5.当且仅当4x -5=14x -5.即x =32时,等号成立.f (x )的值域为[5,+∞).2.(变条件)在例题(1)中去掉条件x <54,求f (x )=4x -2+14x -5的最值如何求解?[解] 由f (x )=4x -2+14x -5=4x -5+14x -5+3 ①当x >54时,4x -5>0∴f (x )=4x -5+14x -5+3≥2+3=5当且仅当4x -5=14x -5时等号成立即x =32时f (x )min =5.②当x <54时,4x -5<0.f (x )=4x -2+14x -5=-⎝ ⎛⎭⎪⎫5-4x +15-4x +3≤-2+3=1当且仅当5-4x =15-4x ,即x =1时等号成立.故当x =1时,f (x )max =1.1.若0<a <1,0<b <1,则log a b +log b a ≥________. 2 [因为0<a <1,0<b <1,所以log a b >0,log b a >0, 所以log a b +log b a =log a b +1log a b≥2log a b ·1log a b=2. 当且仅当log a b =log b a 即a =b 时取“=”.]2.已知a ,b ∈R ,若a 2+b 2=1,则ab 有最________值为________;若ab =1,则a 2+b 2有最________值为________.【导学号:91432351】大 12 小 2 [由a 2+b 2≥2ab 可知,当a 2+b 2=1时,ab ≤12,故ab 有最大值为12;当ab=1时,a 2+b 2≥2,a 2+b 2有最小值2.]3.若0<x <1,则x-2x的取值范围是________.⎝⎛⎦⎥⎤0,324 [由0<x <1知3-2x >0,故x-2x =12·2x-2x ≤12·2x +-2x2=324,当且仅当x =34时,上式等号成立.所以0<x-2x≤324.] 4.建造一个容积为8 m 3,深为2 m 的长方体无盖水池,如果池底和池壁的造价分别为120元/m 2,80元/m 2,那么水池的最低总造价为________元.【导学号:91432352】1 760 [设池底一边长为x m ,总造价为y 元.则y =4×120+2⎝ ⎛⎭⎪⎫2x +2×4x ×80=320⎝ ⎛⎭⎪⎫x +4x +480(x >0). 因为x +4x ≥2x ·4x =4, 当且仅当x =4x即x =2时取等号, 所以y min =480+320×4=1 760(元).]5.已知函数f (x )=x +1x. (1)已知x >0,求函数f (x )的最小值.(2)已知x <0,求函数f (x )的最大值.(3)已知x ∈[2,4],求f (x )的最值.[解] (1)∵x >0,∴f (x )=x +1x≥2.当且仅当x =1时等号成立. ∴f (x )的最小值为2.(2)∵x <0,∴f (x )=x +1x =-⎝⎛⎭⎪⎫-x +1-x ≤-2.当且仅当x =-1时等号成立.∴f (x )的最大值为-2.(3)设2≤x 1<x 2≤4,则f (x 1)-f (x 2)=x 1+1x 1-⎝⎛⎭⎪⎫x 2+1x 2 =x 1-x 2x 1x 2-x 1x 2. 因为2≤x 1<x 2≤4,所以x 1-x 2<0,x 1x 2-1>0,x 1x 2>0.所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2).所以f (x )在[2,4]上是单调增函数.在x =2时,f (x )有最小值52;当x =4时,f (x )有最大值174.。

2021年高考数学高分套路 基本不等式(解析版)

2021年高考数学高分套路  基本不等式(解析版)

mn
2
3.已知
a
1, b
0, a
b
2
,则
a
1 1
1 2b
的最小值为(

A. 3 2 2
B. 3 2 42
C. 3 2 2
D. 1 2 23
【答案】A
【解析】由题意知 a 1,b 0, a b 2 ,可得: (a 1) b 1, a 1 0 ,

a
1 1
1 2b
[(a
1)
b](
∴ + = [(x+2)+(y+1)] x+2 y+1 = y+1 x+2 ≥
x+2 y+1 4
4
4
x+2 4y+1
·
9
y+1 x+2 = ,
4
41
2

9
当且仅当 x=2y= 时, x+2 y+1 = min .
3
4
【套路总结】 在求解含有两个变量的代数式的最值问题时,通常采用“变量替换”或“常数 1”的替换,或构造不等式 求解.
2 的最大值为 .
4
2
1
(2)因为 x<5,所以 5-4x>0,则 f(x)=4x-2+
1
5-4x+
=-
5-4x +3
4
4x-5
1
1
≤-2 (5-4x)· +3=-2+3=1.当且仅当 5-4x= ,即 x=1 时,等号成立.
5-4x
5-4x
1 故 f(x)=4x-2+ 的最大值为 1.
4x-5 x2+2
1
1
【解析】 x(4-3x)= ·(3x)(4-3x)≤ ·
2
2=4,
3
3
3

备战2024年高考数学大一轮老教材人教A版理第七章基本不等式:ab≤a+b2

备战2024年高考数学大一轮老教材人教A版理第七章基本不等式:ab≤a+b2
例4 (1)若0<a<b,则下列不等式一定成立的是 a+b
A.b> 2 >a> ab a+b
B.b> ab> 2 >a
√ a+b
C.b> 2 > ab>a a+b
D.b>a> 2 > ab
∵0<a<b,∴2b>a+b,
∴b>a+2 b> ab.
∵b>a>0,∴ab>a2,∴ ab>a.

a+b b> 2 >
(2)设
0<x<32,则函数
9 y=4x(3-2x)的最大值为__2___.
∵0<x<32,∴3-2x>0, y=4x(3-2x)=2[2x(3-2x)]≤22x+23-2x2=92,
当且仅当 2x=3-2x,即 x=34时,等号成立. ∵34∈0,32, ∴函数 y=4x(3-2x)0<x<32的最大值为92.
设直角梯形的高为x cm,
∵宣传栏(图中阴影部分)的面积之和为1 440 cm2,
且海报上所有水平方向和竖直方向的留空宽度均
为2 cm, ∴海报宽 AD=x+4,海报长 DC=1 4x40+8,

S
矩形
ABCD=AD·DC=(x+4)1
4x40+8=8x+5
7x60+1
472
≥2
5 8x·
7x60+1
因为 x≥0,所以 x+1>0,x+1 1>0, 利用基本不等式得 y=x+x+1 1=x+1+x+1 1-1 ≥2 x+1·x+1 1-1=1, 当且仅当 x+1=x+1 1,即 x=0 时,等号成立. 所以函数 y=x+x+1 1(x≥0)的最小值为 1.

浙江专版高考数学第6章不等式及其证明第3节基本不等式教师用书

浙江专版高考数学第6章不等式及其证明第3节基本不等式教师用书

第三节 基本不等式1.基本不等式ab ≤a +b2(1)基本不等式成立的条件:a >0,b >0. (2)等号成立的条件:当且仅当a =b . 2.几个重要的不等式 (1)a 2+b 2≥2ab (a ,b ∈R ); (2)b a +a b≥2(a ,b 同号且不为零); (3)ab ≤⎝⎛⎭⎪⎫a +b 22(a ,b ∈R );(4)⎝ ⎛⎭⎪⎫a +b 22≤a 2+b 22(a ,b ∈R ). 3.算术平均数与几何平均数 设a >0,b >0,则a ,b 的算术平均数为a +b2,几何平均数为ab ,基本不等式可叙述为:两个正数的算术平均数不小于它们的几何平均数.4.利用基本不等式求最值问题 已知x >0,y >0,则(1)如果xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p (简记:积定和最小). (2)如果x +y 是定值q ,那么当且仅当x =y 时,xy 有最大值是q 24(简记:和定积最大).1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)函数y =x +1x的最小值是2.( )(2)函数f (x )=cos x +4cos x ,x ∈⎝ ⎛⎭⎪⎫0,π2的最小值等于4.( )(3)x >0,y >0是x y +yx≥2的充要条件.( )(4)若a >0,则a 3+1a2的最小值为2a .( )[答案] (1)× (2)× (3)× (4)×2.若a ,b ∈R ,且ab >0,则下列不等式中,恒成立的是( ) A .a 2+b 2>2ab B .a +b ≥2ab C.1a +1b>2abD.b a +a b≥2D [∵a 2+b 2-2ab =(a -b )2≥0,∴A 错误;对于B ,C ,当a <0,b <0时,明显错误. 对于D ,∵ab >0,∴b a +a b ≥2b a ·ab=2.] 3.(2016·绍兴二模)若a ,b 都是正数,则⎝⎛⎭⎪⎫1+b a ⎝⎛⎭⎪⎫1+4a b的最小值为( )A .7B .8C .9D .10C [∵a ,b 都是正数,∴⎝ ⎛⎭⎪⎫1+b a ⎝ ⎛⎭⎪⎫1+4a b=5+b a +4a b≥5+2b a ·4ab=9,当且仅当b =2a >0时取等号,故选C.]4.若函数f (x )=x +1x -2(x >2)在x =a 处取最小值,则a 等于( ) A .1+ 2 B .1+ 3 C .3D .4 C [当x >2时,x -2>0,f (x )=(x -2)+1x -2+2≥2 x -2 ×1x -2+2=4,当且仅当x -2=1x -2(x >2),即x =3时取等号,即当f (x )取得最小值时,x =3,即a =3,选C.] 5.(教材改编)若把总长为20 m 的篱笆围成一个矩形场地,则矩形场地的最大面积是__________m 2. 【导学号:51062190】25 [设矩形的一边为x m ,矩形场地的面积为y , 则另一边为12×(20-2x )=(10-x )m ,则y =x (10-x )≤⎣⎢⎡⎦⎥⎤x + 10-x 22=25,当且仅当x =10-x ,即x =5时,y max =25.](1)若实数a ,b 满足a +b=ab ,则ab 的最小值为( ) A. 2 B .2 C .2 2D .4(2)(2017·湖州二次质量预测)已知正数x ,y 满足x 2+2xy -3=0,则2x +y 的最小值是__________.(1)C (2)3 [(1)由1a +2b =ab 知a >0,b >0,所以ab =1a +2b ≥22ab,即ab ≥22,当且仅当⎩⎪⎨⎪⎧1a =2b ,1a +2b =ab ,即a =42,b =242时取“=”,所以ab 的最小值为2 2.(2)由x 2+2xy -3=0得y =3-x 22x =32x -12x ,则2x +y =2x +32x -12x =3x 2+32x≥23x 2·32x=3,当且仅当x =1时,等号成立,所以2x +y 的最小值为3.] [规律方法] 1.利用基本不等式求函数最值时,注意“一正、二定、三相等,和定积最大,积定和最小”.2.在求最值过程中若不能直接使用基本不等式,可以考虑利用拆项、配凑、常数代换、平方等技巧进行变形,使之能够使用基本不等式.[变式训练1] (1)(2017·金华十校4月联考)已知a >0,b >0,且2a +b =1,若不等式2a +1b≥m 恒成立,则m 的最大值等于( )A .10B .9C .8D .7(2)(2017·杭州学军中学一模)已知实数m ,n 满足m ·n >0,m +n =-1,则1m +1n的最大值为__________.(1)B (2)-4 [(1)∵2a +1b =2 2a +b a +2a +b b =4+2b a +2a b+1=5+2⎝ ⎛⎭⎪⎫b a +a b ≥5+2×2b a ×a b =9,当且仅当a =b =13时取等号.又2a +1b≥m ,∴m ≤9,即m 的最大值等于9,故选B.(2)∵m ·n >0,m +n =-1,∴m <0,n <0, ∴1m +1n=-(m +n )⎝ ⎛⎭⎪⎫1m +1n=-⎝⎛⎭⎪⎫2+n m +mn ≤-2-2n m ·mn=-4, 当且仅当m =n =-12时,1m +1n取得最大值-4.]已知a >0,b >0,a +b =1,求证: (1)1a +1b +1ab≥8;(2)⎝⎛⎭⎪⎫1+1a ⎝⎛⎭⎪⎫1+1b ≥9. [证明] (1)1a +1b +1ab=2⎝ ⎛⎭⎪⎫1a +1b ,∵a +b =1,a >0,b >0,∴1a +1b =a +b a +a +b b =2+a b +b a≥2+2=4,4分∴1a +1b +1ab ≥8(当且仅当a =b =12时等号成立).7分 (2)法一:∵a >0,b >0,a +b =1,∴1+1a =1+a +b a =2+b a ,同理1+1b =2+a b,∴⎝⎛⎭⎪⎫1+1a ⎝⎛⎭⎪⎫1+1b =⎝⎛⎭⎪⎫2+b a ⎝⎛⎭⎪⎫2+a b =5+2⎝ ⎛⎭⎪⎫b a +a b ≥5+4=9,12分∴⎝ ⎛⎭⎪⎫1+1a ⎝ ⎛⎭⎪⎫1+1b ≥9(当且仅当a =b =12时等号成立).14分法二:⎝ ⎛⎭⎪⎫1+1a ⎝ ⎛⎭⎪⎫1+1b =1+1a +1b +1ab,由(1)知,1a +1b +1ab ≥8,12分故⎝ ⎛⎭⎪⎫1+1a ⎝⎛⎭⎪⎫1+1b =1+1a +1b +1ab≥9.14分[规律方法] 1.“1”的代换是解决问题的关键,代换变形后能使用基本不等式是代换的前提,不能盲目变形.2.利用基本不等式证明不等式,关键是所证不等式必须是有“和”式或“积”式,通过将“和”式转化为“积”式或将“积”式转化为“和”式,达到放缩的效果,必要时,也需要运用“拆、拼、凑”的技巧,同时应注意多次运用基本不等式时等号能否取到.[变式训练2] 设a ,b 均为正实数,求证:1a 2+1b2+ab ≥2 2.[证明] 由于a ,b 均为正实数, 所以1a 2+1b 2≥21a2·1b 2=2ab,4分当且仅当1a 2=1b2,即a =b 时等号成立,又因为2ab +ab ≥22ab·ab =22,当且仅当2ab=ab 时等号成立,所以1a 2+1b 2+ab ≥2ab+ab ≥22,12分当且仅当⎩⎪⎨⎪⎧1a 2=1b 2,2ab =ab ,即a =b =42时取等号.14分50≤x ≤100(单位:千米/时).假设汽油的价格是每升2元,而汽车每小时耗油⎝ ⎛⎭⎪⎫2+x 2360升,司机的工资是每小时14元.(1)求这次行车总费用y 关于x 的表达式;(2)当x 为何值时,这次行车的总费用最低,并求出最低费用的值. [解] (1)设所用时间为t =130x(h),y =130x ×2×⎝ ⎛⎭⎪⎫2+x 2360+14×130x ,x ∈[50,100].4分所以这次行车总费用y 关于x 的表达式是y =130×18x +2×130360x ,x ∈[]50,100. (或y =2 340x +1318x ,x ∈[]50,100).6分(2)y =130×18x +2×130360x ≥26 10,当且仅当130×18x =2×130360x ,即x =1810,等号成立.12分故当x =1810千米/时,这次行车的总费用最低,最低费用的值为2610元.14分 [规律方法] 1.设变量时一般要把求最大值或最小值的变量定义为函数. 2.根据实际问题抽象出函数的解析式后,只需利用基本不等式求得函数的最值. 3.在求函数的最值时,一定要在定义域(使实际问题有意义的自变量的取值范围)内求解.[变式训练3] 某化工企业2016年年底投入100万元,购入一套污水处理设备.该设备每年的运转费用是0.5万元,此外每年都要花费一定的维护费,第一年的维护费为2万元,由于设备老化,以后每年的维护费都比上一年增加2万元.设该企业使用该设备x 年的年平均污水处理费用为y (单位:万元).(1)用x 表示y ;(2)当该企业的年平均污水处理费用最低时,企业需重新更换新的污水处理设备.则该企业几年后需要重新更换新的污水处理设备.[解] (1)由题意得,y =100+0.5x + 2+4+6+…+2xx,即y =x +100x+1.5(x ∈N *).6分(2)由基本不等式得:y =x +100x+1.5≥2x ·100x+1.5=21.5,12分当且仅当x =100x,即x =10时取等号.故该企业10年后需要重新更换新的污水处理设备.14分[思想与方法]1.基本不等式具有将“和式”转化为“积式”和将“积式”转化为“和式”的放缩功能,因此可以用在一些不等式的证明中,还可以用于求代数式的最值或取值范围.如果条件等式中,同时含有两个变量的和与积的形式,就可以直接利用基本不等式对两个正数的和与积进行转化,然后通过解不等式进行求解.2.基本不等式的两个变形: (1)a 2+b 22≥⎝⎛⎭⎪⎫a +b 22≥ab (a ,b ∈R ,当且仅当a =b 时取等号).(2)a 2+b 22≥a +b2≥ab ≥21a +1b(a >0,b >0,当且仅当a =b 时取等号). [易错与防范]1.使用基本不等式求最值,“一正”“二定”“三相等”三个条件缺一不可. 2.“当且仅当a =b 时等号成立”的含义是“a =b ”是等号成立的充要条件,这一点至关重要,忽视它往往会导致解题错误.3.连续使用基本不等式求最值要求每次等号成立的条件一致.课时分层训练(三十二) 基本不等式A 组 基础达标(建议用时:30分钟)一、选择题1.已知x >-1,则函数y =x +1x +1的最小值为( ) A .-1 B .0 C .1D .2C [由于x >-1,则x +1>0,所以y =x +1x +1=(x +1)+1x +1-1≥2 x +1 ·1x +1-1=1,当且仅当x +1=1x +1,由于x >-1,即当x =0时,上式取等号.] 2.设非零实数a ,b ,则“a 2+b 2≥2ab ”是“a b +b a≥2”成立的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件B [因为a ,b ∈R 时,都有a 2+b 2-2ab =(a -b )2≥0,即a 2+b 2≥2ab ,而a b +ba≥2⇔ab >0,所以“a 2+b 2≥2ab ”是“a b +b a≥2”的必要不充分条件.]3.(2017·金华十校联考)函数f (x )=ax -1-2(a >0,且a ≠1)的图象恒过定点A ,若点A在直线mx -ny -1=0上,其中m >0,n >0,则1m +2n的最小值为( )A .4B .5C .6D .3+2 2D [由题意知A (1,-1),因为点A 在直线mx -ny -1=0上,所以m +n =1,所以1m +2n=⎝ ⎛⎭⎪⎫1m +2n (m +n )=3+n m +2m n,因为m >0,n >0,所以1m +2n =3+n m +2mn≥3+2n m ·2m n=3+2 2. 当且仅当n m =2mn时,取等号,故选D.] 4.(2017·湖州二模)已知a >0,b >0,a +b =1a +1b,则1a +2b的最小值为( )【导学号:51062191】A .4B .2 2C .8D .16B [由a >0,b >0,a +b =1a +1b =a +bab,得ab =1, 则1a +2b≥21a ·2b =2 2.当且仅当1a =2b ,即a =22,b =2时等号成立.故选B.] 5.(2017·杭州二中月考)若a >b >1,P =lg a ·lg b ,Q =12(lg a +lg b ),R =lg ⎝ ⎛⎭⎪⎫a +b 2,则( )A .R <P <QB .Q <P <RC .P <Q <RD .P <R <QC [∵a >b >1,∴lg a >lg b >0, 12(lg a +lg b )>lg a ·lg b , 即Q >P .∵a +b2>ab ,∴lga +b2>lg ab =12(lg a +lg b )=Q ,即R >Q ,∴P <Q <R .] 二、填空题6.(2017·浙江金华3月联考)若2x +4y=4,则x +2y 的最大值是__________. 2 [因为4=2x+4y=2x+22y≥22x ×22y =22x +2y,所以2x +2y≤4=22,即x +2y ≤2,当且仅当2x=22y=2,即x =2y =1时,x +2y 取得最大值2.] 7.已知函数f (x )=x +px -1(p 为常数,且p >0),若f (x )在(1,+∞)上的最小值为4,则实数p 的值为__________.94 [由题意得x -1>0,f (x )=x -1+px -1+1≥2p +1,当且仅当x =p +1时取等号,所以2p +1=4,解得p =94.]8.某公司一年购买某种货物400吨,每次都购买x 吨,运费为4万元/次,一年的总存储费用为4x 万元,要使一年的总运费与总存储费用之和最小,则x =__________吨.20 [每次都购买x 吨,则需要购买400x次.∵运费为4万元/次,一年的总存储费用为4x 万元, ∴一年的总运费与总存储费用之和为4×400x+4x 万元.∵4×400x +4x ≥160,当且仅当4x =4×400x时取等号,∴x =20吨时,一年的总运费与总存储费用之和最小.] 三、解答题9.(1)当x <32时,求函数y =x +82x -3的最大值;(2)设0<x <2,求函数y =x 4-2x 的最大值. [解] (1)y =12(2x -3)+82x -3+32=-⎝⎛⎭⎪⎫3-2x 2+83-2x +32.2分当x <32时,有3-2x >0,∴3-2x 2+83-2x≥23-2x 2·83-2x=4,4分 当且仅当3-2x 2=83-2x ,即x =-12时取等号.于是y ≤-4+32=-52,故函数的最大值为-52.6分(2)∵0<x <2, ∴2-x >0,∴y =x 4-2x =2·x 2-x ≤2·x +2-x2=2,10分当且仅当x =2-x ,即x =1时取等号,∴当x =1时,函数y =x 4-2x 的最大值为 2.15分 10.已知x >0,y >0,且2x +8y -xy =0,求: (1)xy 的最小值;(2)x +y 的最小值. 【导学号:51062192】 [解] (1)由2x +8y -xy =0,得8x +2y=1,2分又x >0,y >0, 则1=8x +2y ≥28x ·2y=8xy,得xy ≥64,当且仅当x =16,y =4时,等号成立. 所以xy 的最小值为64.6分 (2)由2x +8y -xy =0,得8x +2y=1,则x +y =⎝ ⎛⎭⎪⎫8x +2y ·(x +y )=10+2x y +8y x ≥10+2 2x y ·8y x=18.10分 当且仅当x =12且y =6时等号成立,∴x +y 的最小值为18.15分B 组 能力提升(建议用时:15分钟)1.要制作一个容积为4 m 3 ,高为1 m 的无盖长方体容器.已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是( )A .80元B .120元C .160元D .240元 C [由题意知,体积V =4 m 3,高h =1 m ,所以底面积S =4 m 2,设底面矩形的一条边长是x m ,则另一条边长是4xm .又设总造价是y 元,则y =20×4+10×⎝⎛⎭⎪⎫2x +8x ≥80+202x ·8x =160. 当且仅当2x =8x ,即x =2时取得等号.]2.(2017·浙江名校(柯桥中学)交流卷三)设a >0,b >0,a +b -2a 2b 2-6=0,则1a +1b的最小值是________,此时ab 的值为________.43 3 [∵a >0,b >0,a +b =2a 2b 2+6,∴1a +1b =6+2 ab 2ab =6ab+2ab ≥43,当且仅当6ab =2ab ,即ab =3时,1a +1b取到最小值4 3.] 3.经市场调查,某旅游城市在过去的一个月内(以30天计),第t 天(1≤t ≤30,t ∈N *)的旅游人数f (t )(万人)近似地满足f (t )=4+1t,而人均消费g (t )(元)近似地满足g (t )=120-|t -20|.(1)求该城市的旅游日收益W (t )(万元)与时间t (1≤t ≤30,t ∈N *)的函数关系式;(2)求该城市旅游日收益的最小值. [解] (1)W (t )=f (t )g (t )=⎝ ⎛⎭⎪⎫4+1t (120-|t -20|)=⎩⎪⎨⎪⎧401+4t +100t ,1≤t ≤20,559+140t -4t ,20<t ≤30.6分 (2)当t ∈[1,20]时,401+4t +100t ≥401+24t ·100t=441(t =5时取最小值).9分 当t ∈(20,30]时,因为W (t )=559+140t-4t 递减, 所以t =30时,W (t )有最小值W (30)=44323,12分 所以t ∈[1,30]时,W (t )的最小值为441万元.15分。

高中数学人教A版三维设计浙江专版必修讲义第三章 基本不等式含答案


求实际问题中最值的解题 4 步骤
(1)先读懂题意,设出变量,理清思路,列出函数关系式.
(2)把实际问题抽象成函数的最大值或最小值问题.
(3)在定义域内,求函数的最大值或最小值时,一般先考虑基本不等式,当基本不等式
求最值的条件不具备时,再考虑函数的单调性.
(4)正确写出答案.
[活学活用]
某公司购买一批机器投入生产,据市场分析,每台机器生产的产品可获得的总利润
a+b 基本不等式: ab ≤
2
预习课本 P97~100,思考并完成以下问题
(1)基本不等式的形式是什么?需具备哪些条件?
(2)在利用基本不等式求最值时,应注意哪些方面?
(3)一般按照怎样的思路来求解实际问题中的最值问题?
1.重要不等式
[新知初探]
当 a,b 是任意实数时,有 a2+b2≥2ab,当且仅当 a=b 时,等号成立.
3
2 所以 a2+b2≥ (a+b),
2
2
2
同理 b2+c2≥ (b+c), c2+a2≥ (c+a),
2
2
2 所以 a2+b2+ b2+c2+ c2+a2≥ [(a+b)+(b+c)+(c+a)],
2
即 a2+b2+ b2+c2+ c2+a2≥ 2(a+b+c),当且仅当 a=b=c 时,等号成立.
b≥2 ab成立.
4
4
(2)错误.只有当 a>0 时,根据基本不等式,才有不等式 a+ ≥2 a· =4 成立.
a
a
( ) a+b
a+b
(3)正确.因为 ab≤ ,所以 ab≤
2.
2
2
答案:(1)× (2)× (3)√
2.若 a>b>0,则下列不等式成立的是( )

【浙江全A计划学业水平复习高中数学】考点3 基本不等式


若 a b 的 最大值为 3 , 则 λ =
( )
A. 3
B. 3
C. 2
D. 1
2
3
3
【 命题意图】 考查基本不等式及其变 形.
【 解题指南】 ∵ a + λ b = 2 ≥ 2 λ a b , ∴ λ a b ≤ 1 , ∴ a b ≤ 1 , ∴ 1 = 3 , ∴ λ = 1 . 故
ab
【 分 析】 ∵ a >0, b >0, a + b = 2 , ∴ y= 1 + 4 = 1 ( 1 + 4 )( a + b )= 1 ( 1 +4+ b + 4a )≥
ab2 ab
2
ab
1 ( 5+2 b ⋅4a )= 9, 当 且 仅当 b = 2 a 时等号成立, 故 答案为 9.
2−m
2−m
m− 2
最大值为- 2 .
考纲条目与考试要求 考纲解读与知识梳理 经典例题与变式训练 巩固练习 9

考 点 3 基本不等式

例1 例2 例3 例4 变 式 训 练 例5 例6
【 例 4 】 已 知 x, y∈ R + , 且 满 足 3 + 4 = 1 , 则 x+ y 的 最小值为 . xy
x
s inx
( C ) D. y= x2 + 1 + 2
x2 + 1
【 分 析】 正 确;D 项 ∵ x2 + 1 ≥ 1 , ∴ y= x2 + 1 + 2 ≥ 2 x2 + 1

考 点 3 基本不等式

例1 例2 例3 变 式 训 练 例4 例5 例6
【 变式训练】 已 知 < 2 , 则 4 + 的 最大值为 - 2 . −2

高考数学(浙江版,理)课件:6.4 基本不等式


6y= 2 (3x+4y),即x=5 2
52
-7,y=4- 2
时取等号,故3 x 1 4y
+ x 13y
的最小值
为 3 2 2 .
5
1-3 已知x,y>0,且x+y+ 1 + 1 =10,则x+y的最大值为
.
xy
答案 5+ 21
解析
由x+y+ 1 + 1 =10得x+y+ x y
.
答案
(-∞,-3]∪ 52 ,

解析 ∵正实数x,y满足x+2y+4=4xy,
即x+2y=4xy-4,
∴(4xy-4)a2+2a+2xy-34≥0恒成立,即2xy(2a2+1)≥4a2-2a+34恒成立,亦即
xy≥ 2a2 a 17 恒成立.
2a2 1
∵x>0,y>0,∴x+2y≥2 2xy ,∴4xy=x+2y+4≥4+2 2xy ,
4
2
22
1 +1=0,∴A错;当sin
2
x=-1时,sin
x+s i1ncx
=-2<2,∴B错;x2+1≥2|x|⇔(|x|-1)2≥
0,∴C正确;当x=0时, 1 =1,∴D错.
x2 1
5.若直角三角形的周长为 2 +1,则它的最大面积为
.
答案 1
4
解析 设两条直角边长分别为a、b,面积为S,则斜边长为 a2 b2 ,
x2 y2
x2 y2
的最小值是4.

高中数学第三章不等式 基本不等式:ab≤a+b2学案含解析新人教A版必修

3.4 基本不等式:ab≤a+b 2[目标] 1.了解基本不等式的代数式和几何背景;2.会用基本不等式进行代数式大小的比较及证明不等式;3.会用基本不等式求最值和解决简单的实际问题.[重点] 基本不等式的简单应用.[难点] 基本不等式的理解与应用.知识点一 两个不等式[填一填]1.重要不等式:对于任意实数a ,b ,有a 2+b 2≥2ab ,当且仅当a =b 时,等号成立. 2.基本不等式:如果a ,b ∈R +,那么ab ≤a +b 2,当且仅当a =b 时,等号成立.其中a +b2为a ,b 的算术平均数,ab a ,b 的几何平均数.所以两个正数的算术平均数不小于它们的几何平均数.[答一答]1.不等式a 2+b 2≥2ab 和基本不等式ab ≤a +b2成立的条件有什么不同?提示:不等式a 2+b 2≥2ab 对任意实数a ,b 都成立;ab ≤a +b2中要求a ,b 都是正实数.知识点二 基本不等式与最值[填一填]已知x ,y 都是正数,(1)若x +y =s (和为定值),则当x =y 时,积xy 取得最大值.(2)若xy =p (积为定值),则当x =y 时,和x +y 取得最小值.[答一答]2.利用基本不等式求最值时,我们应注意哪些问题?提示:(1)在利用基本不等式具体求最值时,必须满足三个条件:①各项均为正数;②含变数的各项的和(或积)必须是常数;③当含变数的各项均相等时取得最值.三个条件可简记为:一正、二定、三相等.这三个条件极易遗漏而导致解题失误,应引起足够的重视.(2)记忆口诀:和定积最大,积定和最小.3.在多次使用基本不等式求最值时,我们应注意什么问题?提示:在连续多次应用基本不等式时,我们要注意各次应用时不等式取等号的条件是否一致,若不能同时取等号,则需换用其他方法求出最值.4.两个正数的积为定值,它们的和一定有最小值吗?提示:不一定.应用基本不等式求最值时还要求等号能取到.如sin x 与4sin x ,x ∈(0,π2),两个都是正数,乘积为定值.但是由0<sin x <1,且sin x +4sin x 在(0,1)上为减函数,所以sin x +4sin x>1+41=5,等号不成立,取不到最小值.类型一 利用基本不等式证明不等式[例1] (1)已知a ,b ,c 为不全相等的正实数,求证:a +b +c >ab +bc +ca . (2)已知a ,b ,c 为正实数,且a +b +c =1, 求证:⎝⎛⎭⎫1a -1⎝⎛⎭⎫1b -1⎝⎛⎭⎫1c -1≥8.[分析] (1)左边是和式,右边是带根号的积式之和,所以用基本不等式,将和变积,并证得不等式.(2)不等式右边数字为8,使我们联想到左边因式分别使用基本不等式,可得三个“2”连乘,又1a -1=1-a a =b +c a ≥2bc a,可由此变形入手. [证明] (1)∵a >0,b >0,c >0,∴a +b ≥2ab >0,b +c ≥2bc >0,c +a ≥2ca >0. ∴2(a +b +c )≥2(ab +bc +ca ), 即a +b +c ≥ab +bc +ca .由于a ,b ,c 为不全相等的正实数,故等号不成立. ∴a +b +c >ab +bc +ca . (2)∵a ,b ,c 为正实数,且a +b +c =1, ∴1a -1=1-a a =b +c a ≥2bc a , 同理1b -1≥2ac b ,1c -1≥2ab c.由上述三个不等式两边均为正,分别相乘,得⎝⎛⎭⎫1a -1⎝⎛⎭⎫1b -1⎝⎛⎭⎫1c -1 ≥2bc a ·2ac b ·2ab c=8.当且仅当a =b =c =13时,等号成立.1.利用基本不等式证明不等式,关键是所证不等式中必须有“和”式或“积”式,通过将“和”式转化为“积”式或将“积”式转化为“和”式,从而达到放缩的效果.2.注意多次运用基本不等式时等号能否取到.3.解题时要注意技巧,当不能直接利用不等式时,可将原不等式进行组合、构造,以满足能使用基本不等式的形式.[变式训练1] 已知a >0,b >0,c >0,且a +b +c =1. 求证:1a +1b +1c≥9.证明:因为a >0,b >0,c >0,且a +b +c =1, 所以1a +1b +1c =a +b +c a +a +b +c b +a +b +c c=3+b a +c a +a b +c b +a c +b c=3+⎝⎛⎭⎫b a +a b +⎝⎛⎭⎫c a +a c +⎝⎛⎭⎫c b +b c ≥3+2+2+2=9,当且仅当a =b =c =13时,取等号. 类型二 利用基本不等式求最值[例2] (1)若x >0,求f (x )=4x +9x 的最小值;(2)设0<x <32,求函数y =4x (3-2x )的最大值;(3)已知x >2,求x +4x -2的最小值;(4)已知x >0,y >0,且1x +9y=1,求x +y 的最小值.[分析] 利用基本不等式求最值,当积或和不是定值时,通过变形使其和或积为定值,再利用基本不等式求解.[解] (1)∵x >0,∴由基本不等式得 f (x )=4x +9x ≥24x ·9x=236=12, 当且仅当4x =9x,即x =32时,f (x )=4x +9x 取最小值12.(2)∵0<x <32,∴3-2x >0,∴y =4x (3-2x )=2[2x (3-2x )] ≤2⎣⎡⎦⎤2x +(3-2x )22=92.当且仅当2x =3-2x ,即x =34时取“=”.∴y 的最大值为92.(3)∵x >2,∴x -2>0,∴x +4x -2=(x -2)+4x -2+2≥2(x -2)·4x -2+2=6.当且仅当x -2=4x -2,即x =4时,x +4x -2取最小值6.(4)∵x >0,y >0,1x +9y=1,∴x +y =(x +y )⎝⎛⎭⎫1x +9y =10+y x +9x y ≥10+29=16.当且仅当y x =9x y 且1x +9y =1时等号成立.即x =4,y =12时等号成立. ∴当x =4,y =12时,x +y 有最小值16.求最值问题第一步就是“找”定值,观察、分析、构造定值是问题的突破口.找到定值后还要看“=”是否成立,不管题目是否要求写出符号成立的条件,都要验证“=”是否成立.[变式训练2] (1)已知lg a +lg b =2,求a +b 的最小值; (2)已知x >0,y >0,且2x +3y =6,求xy 的最大值. 解:(1)由lg a +lg b =2可得lg ab =2, 即ab =100,且a >0,b >0,因此由基本不等式可得a +b ≥2ab =2100=20, 当且仅当a =b =10时,a +b 取到最小值20. (2)∵x >0,y >0,2x +3y =6, ∴xy =16(2x ·3y )≤16·⎝⎛⎭⎫2x +3y 22=16·⎝⎛⎭⎫622=32, 当且仅当2x =3y ,且2x +3y =6时等号成立, 即x =32,y =1时,xy 取到最大值32.类型三 基本不等式的实际应用[例3] 特殊运货卡车以每小时x 千米的速度匀速行驶130千米,按规定限制50≤x ≤100(单位:千米/时).假设汽油的价格是每升6元,而送货卡车每小时耗油⎝⎛⎭⎫2+x2360升,司机的工资是每小时140元.(1)求这次行车总费用y 关于x 的表达式.(2)当x 为何值时,这次行车的总费用最低,并求出最低费用的值. [解] (1)设所用时间为t =130x(小时),y =130x ×6×⎝⎛⎭⎫2+x 2360+140×130x,x ∈[50,100].所以,这次行车总费用y 关于x 的表达式是y =130×152x +13x 6,x ∈[50,100].(2)y =130×152x +13x 6≥525703,当且仅当130×152x =13x6,即x =4570∈[50,100]时,等号成立.故当x =4570千米/时,这次行车的总费用最低,最低费用的值为525703元.解实际问题时,首先审清题意,然后将实际问题转化为数学问题,再利用数学知识(函数及不等式性质等)解决问题.用基本不等式解决此类问题时,应按如下步骤进行:(1)先理解题意,设变量,设变量时一般把要求最大值或最小值的变量定为函数. (2)建立相应的函数关系式,把实际问题抽象为函数的最大值或最小值问题. (3)在定义域内,求出函数的最大值或最小值. (4)正确写出答案.[变式训练3] 要制作一个容积为4 m 3,高为1 m 的无盖长方体容器.已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是160(单位:元).解析:设该长方体容器的长为x m,则宽为4x m .又设该容器的总造价为y 元,则y =20×4+2⎝⎛⎭⎫x +4x ×10,即y =80+20⎝⎛⎭⎫x +4x (x >0).因为x +4x≥2x ·4x=4⎝⎛⎭⎫当且仅当x =4x ,即x =2时取“=”,所以y min =80+20×4=160(元).1.给出下列条件:①ab >0;②ab <0;③a >0,b >0;④a <0,b <0,其中能使b a +ab ≥2成立的条件有( C )A .1个B .2个C .3个D .4个解析:当b a ,a b 均为正数时,b a +ab≥2,故只须a 、b 同号即可.所以①、③、④均可以.2.若a ,b ∈R ,且ab >0,则下列不等式中,恒成立的是( D ) A .a 2+b 2>2ab B .a +b ≥2ab C .1a +1b >2abD .b a +a b≥2解析:∵a ,b ∈R ,且ab >0, ∴b a >0,a b >0, ∴b a +a b≥2b a ×ab=2. 当且仅当b a =ab,即a =b 时取等号.3.设a ,b 为实数,且a +b =3,则2a +2b 的最小值为( B ) A .6 B .4 2 C .2 2D .8解析:2a +2b ≥22a +b =223=4 2.4.已知0<x <1,则当x =12时,x (3-3x )取最大值为34.解析:3x (1-x )≤3(x +1-x 2)2=34,当且仅当x =1-x 即x =12时等号成立.5.已知a >0,b >0,c >0,求证: (1)b +c a +c +a b +a +b c ≥6;(2)b +c a ·c +a b ·a +b c≥8.证明:(1)b +c a +a +c b +a +b c =b a +c a +c b +a b +a c +b c =(b a +a b )+(c a +a c )+(c b +b c )≥2+2+2=6(当且仅当a =b =c 时取“=”).(2)b +c a ·c +a b ·a +b c ≥2bc a ·2ac b ·2abc=8abc abc=8(当且仅当a =b =c 时取“=”).——本课须掌握的两大问题1.基本不等式成立的条件:a >0且b >0;其中等号成立的条件:当且仅当a =b 时取等号,即若a ≠b 时,则ab ≠a +b 2,即只能有ab <a +b2. 2.利用基本不等式求最值,必须按照“一正,二定,三相等”的原则,即 (1)一正:符合基本不等式a +b2≥ab 成立的前提条件,a >0,b >0;(2)二定:化不等式的一边为定值;(3)三相等:必须存在取“=”号的条件,即“=”号成立.以上三点缺一不可.若是求和式的最小值,通常化(或利用)积为定值;若是求积的最大值,通常化(或利用)和为定值,其解答技巧是恰当变形,合理拆分项或配凑因式.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第3节基本不等式:ab≤
a+b
2
考试要求 1.了解基本不等式的证明过程;2.会用基本不等式解决简单的最大(小)值问题.
知识梳理
1.基本不等式:ab≤
a+b
2
(1)基本不等式成立的条件:a≥0,b≥0.
(2)等号成立的条件:当且仅当a=b时取等号.
(3)其中
a+b
2
称为正数a,b的算术平均数,ab称为正数a,b的几何平均数.
2.几个重要的不等式
(1)a2+b2≥2ab(a,b∈R),当且仅当a=b时取等号.
(2)ab≤






a+b
2
2
(a,b∈R),当且仅当a=b时取等号.
(3)
a 2+
b 22
≥⎝ ⎛⎭
⎪⎪⎫a +b 22(a ,b ∈R ),当且仅当a =b 时取等号. (4)b a +a
b
≥2(a ,b 同号),当且仅当a =b 时取等号.
3.利用基本不等式求最值
已知x ≥0,y ≥0,则
(1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p (简记:
积定和最小).
(2)如果和x +y 是定值s ,那么当且仅当x =y 时,xy 有最大值是s 2
4(简记:和定
积最大).
[常用结论与易错提醒]
1.对于基本不等式,不仅要记住原始形式,而且还要掌握它的几种变形形式及公式的逆用等,例如:ab ≤⎝ ⎛⎭⎪⎪
⎫a +b 22≤a 2+b 22,ab ≤a +b 2≤a 2+b 2
2
(a >0,b >0)
等,同时还要注意不等式成立的条件和等号成立的条件.
2.使用基本不等式求最值,“一正”“二定”“三相等”三个条件缺一不可.
3.连续使用基本不等式求最值要求每次等号成立的条件一致.
4.基本不等式的一般形式:1
n(
a1+a2+a3+…+a n)≥
n
a1a2…a n(其中a1,a2,
a3,…,a n∈(0,+∞),当且仅当a1=a2=a3=…=a n时等号成立).
诊断自测
1.判断下列说法的正误.
(1)当a≥0,b≥0时,a+b
2
≥ab.( )
(2)两个不等式a2+b2≥2ab与a+b
2
≥ab成立的条件是相同的.( )
(3)函数y=x+1
x的最小值是2.( )
(4)函数f(x)=sin x+4
sin x
的最小值为4.( )
(5)x>0且y>0是x
y+y
x≥2的充要条件.( )
解析(2)不等式a2+b2≥2ab成立的条件是a,b∈R;
不等式a+b
2
≥ab成立的条件是a≥0,b≥0.
(3)函数y=x+1
x值域是(-∞,-2]∪[2,+∞),没有最小值.。

相关文档
最新文档